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An Intuitionistic Fuzzy Pseudo Enlarged Ideal of a BH-

Algebra 

                    and                        

                                                                                   

                                                                                                                    

khudhayer1981@gmail.com 

Abstract. In this Work the concepts of an intuitionistic fuzzy pseudo ideal of a pseudo BH-algebra are insert. 

several propositions and examples are scrupulous to study properties of this idea. 

Keywords. BH-Algebra, Pseudo BH-Algebra, intuitionistic fuzzy pseudo ideal in pseudo BH-algebra, 

intuitionistic Enlarged ideal in pseudo BH-algebra.  

1. Introduction:  

The algebraic design named BCK-algebra & BCI- algebra a generality of BCK-algebra are come in 

by  K. ISEKI and Y. IMAI  in 1966[2]. In 1998 Y. B. Jun, et al show the idea of a BH-algebra [8]. 

furthermore, Y.B.Jun, et al introduce the idea of a pseudo BH-algebra in 2015[8]. In 2017, A.H. Nouri 

andH.H. Abbass thoughtful some kinds of ideals of pseudo BH-algebra [9].The most writer deem the 

year 1965 is the starting of a fuzzy logic when L. A. Zadeh knew a subset in fuzzy sets [1]. In 1991Xi. 

O thoughtful  BCK-algebra a fuzzy sense [10]. Ever after then, the researchers have on a 

comprehensive scale. fuzzy Ideals about an Element of Pseudo BH-algebra defined by   A. A. 

mutesher & H. H. Abbass[11]. H.H. Abbass & H.A. Dahham offer a fuzzy completely closed ideal of 

BH-algebra in 2012[5].  A fuzzy closed ideal relies on an element in BH-algebra thoughtful by H. M. 

A.Saeed & H. H. Abbass in 2011 [7], we intuitionistic fuzzy if pseudo ideal and pseudo enlarged ideal 

in a pseudo BH-algebra. 

2. Preliminaries.  

In this work, several basic connotations about a BH-algebra, ideal in BH-algebra, intuitionistic 

enlarged ideal in BH-algebra, pseudo ideal pseudo BH-algebra, intuitionistic  fuzzy ideal in BH-

algebra are given 

2.1. Definition  

A set                with a dual operation ( ) and aconstant 0 is named a BH – algebra if achieved : 

    ,     X  

       = 0                                                                                                                                                 

       = 0  and        = 0      =            

    0 =   

2.2. Definition  

Assume that S    is a subset of a BH-X is named a BH-subalgebra of X signify by BH-S if          

S,     ,     S. 

 

2.3. Definition  
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 Assume that I   and a subset of a BH-X. Therefore I is named an ideal of X if that was achieved:   

  ,     X  

 0   I. 

          I and     I       I.                                                                                                      

2.4. Definition  

Assume that I    and a subset of a P.BH-algebra   and there is no need an ideal of  , a subset J of   

is named an Enlarged ideal of   related to I, and signify by E. I if that was achieved : for every   ,    

      

 I is a subset of J  

 0    J 

           I  and     I       J. 

2.5. Definition  

 A pseudo BH indicates  P.BH is a set                   with a fixed 0 and dual operations  ,  check 

the next conditions :  

         =       = 0,          

         = 0  &       = 0         =  ,     ,       

      0 =    0 =  ,        . 

2.6. Definition  

Assume that S    is a subset of a P.BH-X is named a P.BH-subalgebra of X signify by P.BH-S if 

that was achieved :        and          S,     ,     S.  

2.7. Definition  

Assume that I    and subset of a P.BH-X. Therefore I is named a pseudo ideal & signify by P. I of 

X if achieved :     ,     X

 0   I. 

       ,          I and     I       I. 

2.8. Definition  

Assume that I   and subset of a P.BH-algebra  , a subset J of   is named a pseudo Enlarged ideal 

of   related to I, and signify by P. E. I if that was achieved :     ,          

 I is a subset of J  

 0    J 

          I,          I  and     I       J.  

2.9. Definition  
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Assume X that is a non-empty set, fuzzy subset  ,   in X are a formula from X into [0 , 1] of the real 

number.         

2.10. Definition  

Assume that   is an intuitionistic fuzzy set in  shortened by I. F. S and the set U (  ,   ) =  {       

:   ( )      }  is named upper   -level cut of   and L (   ,   ) ={       :   ( )      } is named 

lower   - level cut of  .  

2.11. Definition  

Assume   = (   ( ),   ( ) ) &    = (   ( ),   ( ) ) are I. F. S  in   :         

 (   )(  ) ={<  , max (  ( ),   ( ) ), min (  ( ),   ( ) ) >|      } 

 (    )(  ) ={<  , min (  ( ),   ( ) ), max (  ( ),   ( ) ) >|       } 

     &      are I. F. S in   ,         in broadly , if {    ,     } be a chain of intuitionistic sets 

in   

(    ) ( ) = ( inf    
( ) , sup    

( ) ) 

(   
 ) ( ) = ( sup    

( ) , inf    
( ) ) 

Which are too I. F. S in X. 

  

3. The Main Results 

In the work, is defined the concepts of intuitionistic fuzzy pseudo enlarged ideal in P.BH-algebra. for 

our conversation, we will study the advantages of these concepts. 

3.1. Definition  

Assume A & B are two I. F. S of a BH-algebra X, so that A   B then B is named intuitionistic fuzzy 

enlarged  ideal of X related to A & signify by I. F. E. I if that was achieved : 

  

   (0)     (μ ) &   (0)     (μ ),   μ    X.   

   (μ )   min {   (μ     ),   (λ) },   μ , λ   X.  

   (μ )   max  {   (μ     ),    (λ) },   μ , λ   X. 

3.2. Example  

Assume that X = { 0, k, v, h } is a BH-algebra with the next cayley tables :   

 

* 0 k v h 
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Define A = (   (μ ),   (μ ) ), B = (   (μ ) ,   (μ ) ) are two I. F.S of X by 

  ( ) = {
                                   
                                   

  

 

  ( ) = {
                                
                             

  

  ( ) = {
                                
                                  

  

  ( ) = {
                                 
                               

         

Then B is an I. F. E. I of X related to A.  

3.3. Definition  

Assume A & B are an I. F. S of a BH-algebra X so that A   B then B is named intuitionistic fuzzy 

pseudo enlarged ideal of X related to A, signify by I. F. P. E. I if that was achieved :   μ , λ   X  

   (0)     (μ ) &   (0)     (μ ) 

   (μ )   inf {   (μ    λ),   (μ    λ),   (λ) } 

   (μ )   sup {   (μ    λ),   (μ    λ) ,   (λ) } 

3.4.Example  

Assume that X = { 0, k, v, h }is a P.BH with the following cayley tables : 

  

 

 

 

 

 

0 0 0 0 0 

k k 0 0 k 

v v v 0 v 

h h h h 0 

* 0 k v h 

0 0 0 0 0 

k k 0 0 k 

v v v 0 v 

h h h h 0 

  0 k v h 

0 0 0 0 0 

k k 0 0 h 

v v v 0 v 

h h h h 0 
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Define A = (   (μ ),   (μ ) ), B = (   (μ ),   (μ ) ) are two I. F. S of X by 

  ( ) = {
                                        
                                        

  

 

  ( ) =  {
                                        
                                     

  

 

  ( ) = {
                                        
                                     

  

 

  ( ) =  {
                                       
                                         

                                                          

Then B is an I. F. P. E. I of  X related to A. 

3.5.Theorem  

Assume that {    |      } is a family of I. F. P. E. I of a P.BH-algebra X related to A. Then          

is an I. F. P. E. I of X related to A.                                                                        

Proof :-  

 Assume that μ    X,    ,    (0)      (μ )                         (0)            (μ )   

    (0)       (μ ). Let μ    X,    ,    (0)      (μ )            (0)            (μ )   

    (0)       (μ ).                                                                                                                                                                             

 Assume μ , λ   X,    ,     (μ ) = inf {    (μ )}                                                                 

  inf{ inf {   (μ     ),    (μ     ),    (λ) }                                                                     

 [since    is an I. F.P. E. I of X related to A,       ]                                                            

      (μ )   inf {     (μ     ),     (μ     ),     (λ) }.                                                            

 Assume μ , λ   X,          (μ ) = sup{    (μ ) }                                                                  

    sup{sup{    (μ     ),    (μ     ),    (λ) }                                                                              

 [since    is an I. F. P. E. I of X related to A,      ]                                                            

     (μ )   sup{     (μ     ),     (μ     ),     (λ)}.                                                                  

Then         is an I. F. P. E. I of X related to A. ∎  

3.6.Theorem  

Assume that X is a P.BH-algebra. A = (  ,   ) & B = (  ,   ) are two I. F. S of X, such that A   B 

then B is an I. F. P. E. I of X related to A   the set upper level U(  ,  ) is P. E. I of X related to 

U(  ,  ) or empty of X,      [0,1] and the set lower level L (  ,  ) is P. E. I of X related to L 

(  ,  ) or empty of X,      [0,1].  
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Proof:- Let B = (  ,   ) be an I. F. P. E. I of X related to A & U (  ,  )   L (  ,  )    , for every 

  ,     [0,1]. Obviously 0   U (  ,  )   L (  ,  ) since   ( )      &   (0)     .  

Assume  μ , λ   X such that μ     , μ    λ   U(  ,  ) & λ   U(  ,  )  

Then   (      )     ,   (      )     , and   ( )      . 

 

Therefore,  inf {  (      ),    (      ),   ( ) }     , but 

  (  )   inf {  (      ),    (      ),   ( ) } [since B is an I. F. P. E. I of X related to A] 

previously,   (  )        μ    U(  ,  ).    

Of above U(  ,  ) is P. E. I of X. Now assume μ , λ   X such that   

 μ     , μ    λ   L (  ,  ) & λ   L (  ,  ) then   (      )     ,        (      )       and    ( ) 

    , therefore, sup{  (      ),    (      ),   ( ) }      but 

  (μ )   sup{  (      ),    (      ),   ( ) }[since B is an I. F. P. E. I of X related to A] 

previously,   (  )        μ    U(  ,  )            

then L (  ,  ) is an P. E. I of X. Conversely, assume that   ,     [0,1] and U (  ,  ) & L (  ,  ) 

are P. E. I of X related to U(  ,  )& L (  ,  ) respectively,   μ    X. 

Let   (  ) =    &   (  ) =    then μ    U (  ,  )   L (  ,  ) &U (  ,  )   L (  ,  )     since 

U (  ,  ) & L (  ,  ) are P. E. I of X then 0   U (  ,  )   L (  ,  ) Hence [  ( )     = 

  (  )] & [  ( )     =   (  )],   μ    X, we take the opposite. Let  ,     X such that,   ( )   

inf {  (     ),    (     ),   ( ) }, now let                                        

   =  
 
 (  ( ) + inf {  (     ),    (     ),   ( ) }),  

then   ( )         inf {  (     ),    (     ),   ( ) }.                                                       

Hence      U (  ,  ),      ,        U (  ,  ) and     U (  ,  ), then U (  ,  ) is not P. E. I. 

And let  ,     X such that 

  ( )   sup {  (     ),    (     ),   ( ) },                                                              

now let    =   
 
 (  ( ) + sup {  (     ),    (    ),   ( ) } )   

then sup {  (     ),    (     ),   ( ) }         ( )                                                       
Hence      ,        L (  ,  ) and     L (  ,  ), but     L (  ,  ), then L (  ,  ) is not P. E. I. 

This is impossible from the assumption, therefore, B=(  ,   ) is an I. F. P. E. I of X related to A. ∎ 

 

3.7. Remark  

Assume that A = (  ,   ) is an I. F.S of X then the mappings   ́=(  ́,   ́) is define as follows   ́(μ ) 

=   (μ ) + 1     (0) and   ́(μ ) =   (μ )     (0).  
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3.8. Theorem  

Assume that X is a P.BH such that  ́ is an I. F. S of X so that   (0) =   (0) &   (0) =   (0), then B 

is an I. F. P. E. I of X related to A   ́ is an I. F. P. E. I of X related to  ́.                                                                                                                            

Proof :- Suppose B is an I. F. P. E. I of X related to A and μ    X    

  (μ )     (μ ),   (0)     (0) &   (μ )     (μ ),   (0)     (0) 

    ́(μ ) =   (μ ) + 1     (0) &    ́(μ ) =   (μ ) + 1     (0)    

  (μ ) + 1     (0)     (μ ) + 1     (0) [since B is an I. F. P. E. I of X related to A ].                 

Then [  ́(μ )     ́(μ )]  & 

  ́(μ ) =   (μ )     (0) &    ́(μ ) =   (μ )     (0) then 

  (μ )     (0)     (μ )     (0) [since B is an I. F. P. E. I of X related to A]   [   ́(μ )     ́(μ )]  

i.   ́(0) =   (0) + 1     (0)      ́(0) = 1   [  ́(0)     ́(  ) ] for every μ    X. And 

  ́(0) =   (0)     (0)     ́(0) = 0   ,  ́(0)     ́(μ ) ]  

ii.  ́(μ ) =   (μ ) + 1     (0)                                                                                                        

   inf {   (μ    λ),   (μ    λ),   (λ)} + 1     (0)                                                                        

   inf{  (μ    λ) + 1     (0),   (μ    λ) + 1    (0),   (λ) + 1    (0)}                                     

   inf {   ́(μ    λ),   ́(μ    λ),   ́(λ) }        

  ́(μ )   inf {   ́(μ    λ),   ́(μ    λ),   ́(λ) }      

iii.  ́(μ ) =   (μ )     (0)                                                                                                      

    sup{   (μ    λ),   (μ    λ),   (λ) }     (0)                                                                                

    sup{   (μ    λ)     (0) ,   (μ     )     (0) ,   (λ)     (0) }                                                   

    sup {   ́(μ    λ),   ́(μ    λ),   ́(λ) }    

  ́(μ )   sup {   ́(μ    λ),   ́(μ    λ),   ́(λ) }  

Thence  ́ is an I. F. P. E. I of X related to  ́.  Conversely, 

assume that  ́ is an I. F. P. E. I of X related to  ́ & μ    X  

  ́(μ )     ́(μ )      ́(0)     ́(0)    

  (μ ) =   ́(μ ) + 1     (0) &   (μ ) =   ́(μ ) + 1     (0) 

  ́(μ ) + 1     (0)     ́(μ ) + 1     (0)                                                                                  

[since  ́ is an I. F. P. E. I of X  related to  ́ ] therefore, [   (μ )     (μ )] &                                           

   ́(μ )     ́(μ )     ́(0)    ́(0)    
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  (μ ) =   ́(μ )     (0) &   (μ ) =   ́(μ )     (0)  

  ́(μ )     (0)     ́(μ )     (0)                                                                                                

 [since  ́ is an I. F. P. E. I of X related to  ́ ] therefore, [  (μ )     (μ ) ]. Now 

i.   (0) =   ́(0)  1 +   (0)      ́(μ )  1 +   (0) =   (μ )                                                

 ,  (0)     (μ )] for every μ    X & 

  (0) =   ́(0) +   (0)     ́(μ ) +   (0) =   (μ )    [  (0)     (μ ) ] for every μ    X.  

ii.   (μ ) =   ́(μ )  1 +   (0)   inf {{   ́(μ    λ) ,   ́(μ    λ) ,   ́(λ) } –1 +   (0) }  

  inf {   ́(μ    λ) – 1 +   (0),   ́(μ    λ) – 1 +   (0),   ́(λ) –1+   (0) }                                

  inf {   (μ    λ),   (μ    λ),   (λ)}    

  (μ )   inf {   (μ    λ),   (μ    λ),   (λ)}   

iii.   (μ ) =   ́(μ ) +   (0)   sup{{   ́(μ    λ) ,   ́(μ    λ) ,   ́(λ) }+   (0)} 

  sup {   ́(μ    λ) +   (0),   ́(μ    λ) +   (0),   ́(λ) +   (0) }                                                         

  sup{   (μ    λ),   (μ     ),   (λ) }     

  (μ )   sup{   (μ    λ),   (μ     ),   (λ) }    

Then B is an I. F. P. E. I of X related to A.  

                                                                                   

4. Conclusion                                                                                                                                              

In this work, the ideas (I.P.I & I.P.E.I & I.F.P.I)of a P.BH-algebra are offered. moreover, the 

consequences are studied in idiom of the relationship WITH an I.P.E.I, I.F.P.I & I.F.P.E.I of 

a P,BH- algebra. 
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Abstract. In this paper, efficient numerical methods are given to solve linear Volterra integral (VI) 

equations and Volterra Integro differential (VID) equations of the first and second types with 

exponential, singular, regular and convolution kernels .These methods based on Laguerre polynomials 

(LPs) and Touchard polynomials (TPs) that convert these equations into a system of linear algebraic 

equations. The results are compared with one another method and with each other.  The results show 

that these methods are applicable and efficient. In addition, the accuracy of solution is presented and 

also the calculations and Graphs are done by using matlab2018 program. 

Keywords:  Volterra integral and integro differential equation, Laguerre polynomials, Touchard     

                     polynomials, approximate numerical solutions 

 الخلاصة:

فً هذه الورقة البحثٌة، تم اعطاء طرق عددٌة فعالة لحل معادلات فولتٌرا التكاملٌة والتفاضلٌة التكاملٌة الخطٌة من النوع الاول      

ثانوٌة اسٌة، منفردة، منتظمة والالتفافٌة. هذه الطرق التً تستند على اساس متعددتً حدود لكوٌروتشارد تؤدي الى   والثانً مع

ل هذه المعادلات الى نظام المعادلات الجبرٌة الخطٌة . تمت مقارنة النتائج مع طرٌقة اخرى واحدة ومع بعضها البعض. وتبٌن تحوٌ

النتائج ان هذه الطرق قابلة للتطبٌق وفعالة. بالإضافة الى ذلك، تم تقدٌم دقة الحل وكذلك الحسابات والرسوم البٌانٌة تمت باستخدام 

. 0288برنامج الماتلاب   

، كثٌرات حدود تشارد، الحلول العددٌة  والتفاضلٌة التكاملٌة ، كثٌرات حدود لكوٌر معادلة فولتٌرا التكاملٌةالكلمات المفتاحية: 

 التقرٌبٌة.

1.  Introduction: 
The idea of this work is to illustrate the results of the solutions for linear Volterra integral (VI) 

equations and linear Volterra integro differential (VID) equations in two methods using the (LPs) and 

(TPs). Such equations are model of problems in many applications, like, heat conduction, dynamics of 

viscoelastic, electrodynamics [1]. The solutions of integral and integro differential equations have an 

essential role in several applied areas which include ―mechanics, chemistry, physics, biology, 

astronomy and potential theory‖ [2].  
The general formulas of the linear (VI) equations of the 2

nd
 and 1

st
 types [3, 4] respectively are 

defined by: 

 ( )   ( )   ∫ (   )  ( )                                                                  ( )                   
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                          ( )   ∫  (   )  ( )                                                       (  )     
 

 
 

Also the general formula of linear Abel’s singular of the 1
st
 type [4, 5 and 6] is defined as follows: 

 ( )   ∫
 

√   
  ( )                                                                 ( )     

 

 

 

The general formula of the linear (VID) equation of the 1
st
 order and 2

nd
 type [4] is defined as follows: 

 

                           ( )   ( )   ∫
  (   )  ( )                                            ( )  

 

 

 

with initial condition  ( )                                                                                                (  ) 

where   ( )  
  

  
 ,   ,     are constants, Q (α) is the unknown function that must be determined,   is 

a known constant, it represents the physical meaning of the material, and Y ( ,  ) is a kernel of the 

Integral equations (IEs), which is a known continuous or dis-continuous function holds characteristic 

or property of the material, w ( ) is a known function represents the integration surface and  ( )     

is a constant initial condition for eq. (3). 

There are many approximate numerical methods used and developed by the scientific researchers to 

obtain the approximate numerical solutions for the (VI) equations and (VID) equations, mentioned as 

follows: [7] proposed numerical methods to solve weakly (VI) equations of the 1
st
 type. [8] gave 

numerical method for the approximation of the (VI) equations with oscillatory Bessel kernels. [9] 

applied Chebyshev wavelet method to solve the (VI) equations with weakly singular of kernels. [10] 

used the standard Galerkin polynomial method to solve weakly singular kernels for the (VI) 

equations. [11] extended the single step pseudo spectral method to the multi step pseudo spectral 

method for the (VI) equations of 2
nd

 type. [12] applied the Galerkin weight residual method and (LPs) 

as a trial function for solving the (VI) equations of the 1
st
, 2

nd
 type with singular and regular kernels. 

[13] used the (LPs) for solving system of generalized Abel integral equations. [14] used iterative 

methods to solve the (VID) equations with singular kernel. [15] applied collocation method to solve 

the (VID) equations. [16] applied ―Galerkin the weight residual method‖ with the (TPs) as a trial 

function to get numerical solutions to (IEs).  

This article is arranged as follows: Laguerre polynomials, function of approximation using the (LPs),  

Touchard polynomials, function of approximation using the (TPs), solution the (VI) equation using 

the (LPs) method, accuracy of solutions, convergence rate, illustrative examples, tables and figures 

are provided, summary of conclusions and recommendations. Finally the references are mentioned. 

2.  Laguerre Polynomials [12 and 13]: 

This section, begin with definition of the (LPs) which was studied in 1782 by Adrien-Marie 

Legendre. The (LPs) consisting of the polynomial sequence of binomial type, it’s defined on [0, ∞) as 

follows:
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  ( )  ∑(  ) 
 

  

 

   

 (
 

 
*    ∑

(  ) 

(  ) (   ) 
  

 

   

                     ,    )  (  ) 

where k and s represent the degree and the index for the (LPs) respectively. 

The first five polynomials of the (LPs) are given below:  

  ( )    

  ( )       

  ( )  
 

 
(       )  

  ( )  
 

 
(            )   

  ( )  
 

  
(                   ) 

 

3. Function of Approximation using the (LPs): 

Suppose that the function    (α) is approximated using the (LPs) as follows: 

 

  ( )      ( )      ( )        ( )   ∑    ( )

 

   

                       ( )      

 

for s≥0, the function *  ( )+   
  denotes the Laguerre basis polynomials of kth degree, as defined in 

Eq. (4).     (         ) are the unknowns Laguerre coefficients that calculate later. 

Writing Eq. (5) as a dot product: 

 

  ( )  ,  ( )     ( )   ( )-    

[
 
 
 
 
 
  
   
 
 
  ]
 
 
 
 
 

                                                                                         ( ) 

 

Eq. (6) can be written in the following form: 

 

  ( )  [           ] 

[
 
 
 
 

                                 
                                   
                                    
                                               

                                              ]
 
 
 
 

 

[
 
 
 
 
 
  
   
 
 
  ]
 
 
 
 
 

                                                ( ) 

where     (            )  are known values of the power basis that are used to find the (LPs), also 

the square matrix is an upper triangular and non-singular. For example, if k= 1, and 2, the operational 

matrices are shown as in Eqs. (8) and (9) respectively:  
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  ( )  ,     - 0
     
   

1  [
  
  
]                                                                                          … (8) 

 

  ( )  ,        - [
      
     
     

]  [

  
  
  

]                                                                           … (9) 

Since the derivative of Eq. (4) is:  
 

  
 ( )  

 

  
∑(  ) 

 

  

 

   

 (
 

 
*    ∑

(  ) 

(  ) (   ) 
      

 

   

                  ,    )  (   ) 

so, the derivative of Eqs. (7), (8) and (9) is respectively:   
 

   ( )  [             ] 

[
 
 
 
 

                                 
                                   
                                     
                                               

                                              ]
 
 
 
 

 

[
 
 
 
 
 
  
   
 
 
  ]
 
 
 
 
 

                                              (   ) 

 

   ( )  ,     - 0
     
   

1  [
  
  
]                                                                                … (10b) 

 

   ( )  ,        - [
      
     
     

]  [

  
  
  

]                                                                … (10c) 

 

4. Touchard Polynomials [16, 17, 18 and 19]: 
(TPs) were first studied by the French mathematician Jacques Touchard 1885–1968, consisting of the 

polynomial sequence of binomial type, it’s defined on [0, 1] as following: 

 

  ( )  ∑ (   )   

 

   

∑(
 

 
*

 

   

        (
 

 
*  

  

  (   ) 
                                              (  ) 

 

where k and s represent the degree and the index for the (TPs) respectively. 

The first five polynomials of the (TPs) are written below: 
 

  ( )     
  ( )      

  ( )          

  ( )               
  ( )                   

 

5. Function of Approximation using the (TPs): 

 Suppose that the function    (α) is approximated using the (TPs) as follows: 

  ( )      ( )      ( )        ( )   ∑    ( )

 

   

               (  )         

for s≥0, the function *  ( )+   
  denotes the Touchard basis polynomials of kth degree, as defined in 

Eq. (11).     (         ) are the unknowns Touchard coefficients that determine later. 

 

https://en.wikipedia.org/wiki/French_people
https://en.wikipedia.org/wiki/Mathematician
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Writing Eq. (12) as a dot product: 

  ( )  ,  ( )     ( )   ( )-    

[
 
 
 
 
 
  
   
 
 
  ]
 
 
 
 
 

                                                    … (13) 

Eq. (13) can be written as follows: 

 

  ( )  [           ] 

[
 
 
 
 
                                
                                   
                                     
                                               
                                        ]

 
 
 
 

 

[
 
 
 
 
 
  
   
 
 
  ]
 
 
 
 
 

                 … (14) 

 

where      (ρ= 0, 1, 2,…, k) are known constants of the power basis that are used to find the (TPs), 

also the square matrix is an upper triangular and non-singular. For instance, if k=2 and 3, the 

operational matrices are shown in Eqs. (15) and (16) respectively: 

 

  ( )  ,        - [
   
   
   

]  [

  
  
  

]                                                         … (15) 

 

  ( )  ,            - <

          
          
          
                        

=  [

  
  
  
  

]                                       … (16) 

Since, the derivative of Eq. (11) is:  
 

   ( )  
 

  
∑ (   )   

 

   

∑(
 

 
*

 

   

              (
 

 
*  

  

  (   ) 
                           (  )             

 

then, the derivative of Eqs. (14), (15) and (16) respectively is:   
 

   ( )  [              ] 

[
 
 
 
 
                                
                                   
                                     
                                               
                                        ]

 
 
 
 

 

[
 
 
 
 
 
  
   
 
 
  ]
 
 
 
 
 

              … (17a) 

   ( )  ,        - [
   
   
   

]  [

  
  
  

]                                                         … (17b) 

 

   ( )  ,             - <

          
          
          
                        

=  [

  
  
  
  

]                                       … (17c) 

 

6. Solution the (VI) Equation of the 2
nd

 type using the (LPs): 
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In this section, the (LPs) is used to find the solutions for the (VI) equation. Since Eq. (1) is: 

 ( )   ( )   ∫ (   )  ( )                                                                     (  )                    

 

 

 

 

by using Eq. (5), suppose that: 

 ( )    ( )   ∑    ( )

 

   

                                                                              (  )       

now, substituting Eq. (19) into Eq. (18), gives:   

∑    ( )

 

   

  ( )   ∫ (   )

 

 

∑    ( )

 

   

                                     (  )  

 
 By using Eq. (6), then Eq. (20) becomes: 

 

,  ( )     ( )   ( )- 

[
 
 
 
 
 
  
   
 
 
  ]
 
 
 
 
 

  ( )   ∫ (   ),  ( )     ( )   ( )- 

[
 
 
 
 
 
  
   
 
 
  ]
 
 
 
 
 

  

 

 

    (  ) 

 

And by using Eq. (7), so, Eq. (21) is converted to: 

[           ] 

[
 
 
 
 

                                 
                                   
                                     
                                               

                                             ]
 
 
 
 

 

[
 
 
 
 
 
  
   
 
 
  ]
 
 
 
 
 

 

  ( )

  ∫ (   )

 

 

[           ] 

[
 
 
 
 

                               
                                   
                                     
                                               

                                              ]
 
 
 
 

 

[
 
 
 
 
 
  
   
 
 
  ]
 
 
 
 
 

     (  ) 

Now, after simplifying Eq. (22), the unknown Laguerre coefficients (              )  are obtained 

by selecting points    (          )  in the interval [  ,  ]. Consequently, Eq. (22) converts to a 

system of (k+1) linear algebraic equations in (k+1) unknown coefficients, this system can be solved 

using ―Gauss elimination method‖ to obtain these coefficients, which have the unique solutions. 

These coefficients are substituted into Eq. (5), to get the approximate numerical solution for Eq. (1).  

 

The same procedure can be applied to Eqs. (1a) and (2) when using the (TPs). 

 

7. Solution the (VID) Equation of the 1
st
 order and 2

nd
 type using the (LPs): 

In this section, the (TPs) is used to find the solutions for the (VID) equation. Since Eq. (3) is: 

 

                           ( )   ( )   ∫
  (   )  ( )                                                        (  )   

 

 

 

        ( )                                                                                                             … (23a) 
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by using Eqs.(7) and (10a), suppose that: 

 

      ( )     ( )  [           ] 

[
 
 
 
 

                                 
                                   
                                     
                                               

                                              ]
 
 
 
 

 

[
 
 
 
 
 
  
   
 
 
  ]
 
 
 
 
 

                (  ) 

          ( )      ( )  [             ] 

[
 
 
 
 

                                 
                                   
                                     
                                               

                                              ]
 
 
 
 

 

[
 
 
 
 
 
  
   
 
 
  ]
 
 
 
 
 

        (  ) 

now, by substituting Eqs. (24) and (25) into Eq. (23), gives:   

 

[           ] 

[
 
 
 
 

                                 
                                   
                                     
                                               

                                             ]
 
 
 
 

 

[
 
 
 
 
 
  
   
 
 
  ]
 
 
 
 
 

 

  ( )

  ∫ (   )

 

 

[             ] 

[
 
 
 
 

                                 
                                   
                                     
                                               

                                              ]
 
 
 
 

[
 
 
 
 
 
  
   
 
 
  ]
 
 
 
 
 

    (  ) 

 

So, after simplifying Eq. (26), the unknown Touchard coefficients (              ) are obtained by 

selecting points    (         )  in the interval [  ,  ], with the initial condition Eq. (23a). 

Therefore, Eq. (26) converts to a system of (k+1) linear algebraic equations in (k+1) unknown 

coefficients, this system can be solved using ―Gauss elimination method‖ to obtain theses coefficients, 

which have unique solutions. These coefficients are substituted into Eq. (5), to get the approximate 

numerical solution for Eq. (3).  

The same procedure can be applied when using the (TPs). 

 

8. Accuracy of Solutions: 

In this section, the accuracy of the proposed methods is tested. 

8.1: For the (VI) equation: 

 Since Eq. (20) has the following formula: 

 

∑    ( )

 

   

  ( )   ∫ (   )

 

 

∑    ( )

 

   

                                         (  )  

Since Eq. (5) has the following form:  

  ( )   ∑    ( )
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And the unknown Laguerre coefficients (          ) were determined by using Eq. (22). Also, by 

using Eq. (19), we have: 

 ( )    ( )   ∑    ( )

 

   

                                                                         (  )  

then, Eq. (28) is the unique approximate solution for Eq. (27), and it’s substituted into Eq. (27).  Now, 

suppose that α=      [0, 1], θ = 0, 1, 2,…, k , and then, the error function: 

 

   (  )   |∑  

 

   

  (  )   (  )   ∫ (    ) ∑  

 

   

  (  )   

 

 

|          

AR (  ) ≤      for each    in [0, 1] and ϵ > 0. 

 

Then, the difference for error function    (  ) at each point    will be smaller than any positive 

integer ϵ > 0. Thus, the error function    ( ) can be estimated using the relation: 

 

    ( )   ∑  

 

   

  ( )   ( )   ∫ (   ) ∑  

 

   

  ( )   

 

 

 

 

then,     ( )   . 

This procedure is suitable for Eqs. (1a) and (2). Also this procedure can be applied using the (TPs). 

 

8.2 For the (VID) equation: 

Since Eq. (3) with initial condition is: 

                           ( )   ( )   ∫
  (   )  ( )                                                 (  )   

 

 

 

 ( )                                                                                             
 

since Eq. (5) has the following form:  

  ( )   ∑    ( )

 

   

                

and the unknown Laguerre coefficients (          ) were determined by using Eq. (26). Also, by 

using Eq. (19), we have: 

 ( )    ( )   ∑    ( )

 

   

                                                                                 (  )  

is the approximate numerical solution for Eq. (29) also, Eq. (30) and its derivative is substituted into 

Eq. (29). Now, suppose that α=      [0, 1], θ = 0, 1, 2,…, k , and then, the error function: 

 

   (  )   |:∑    (  )

 

   

;

 

  (  )   ∫ (     ) ∑  

 

   

  (  )    

 

 

|          

AR (  ) ≤      for each    in [0, 1] and ϵ > 0. 

 

Then, the difference for error function    (  ) at each point    will be smaller than any positive 

integer ϵ > 0. 

Thus, the error function    (  ) can be estimated using the relation: 
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    ( )   :∑    (  )

 

   

;

 

  ( )   ∫ (   ) ∑  

 

   

  ( )   

 

 

 

 

then,     ( )   . 

Note: This procedure can be applied using the (TPs) for Eq. (3). 

 

9. Convergence Rate: 

In this section, the error function can be defined by the following relation [20]: 

 

‖   ( )‖  :∫   
 

 

 

( )  ;

 
 ⁄

 (
 

 
∑   

 

 

   

(  ),

 
 ⁄

  

 

where ‖   ( )‖   is an arbitrary vector norm of error function, 

   ( )   ( )    ( ), where Q (α) and   ( ), are the exact and approximate numerical solutions 

respectively. 

 

10. Illustrative Examples: 

In this section, the (LPs) and (TPs) are used to solve linear (VI) and (VID) equations. These two 

polynomials have been applied to six numerical examples, and the convergence of solutions using the 

error function is given. 

 

Example 1: Solve the linear (VI) equation of 1
st
 type with the exponential kernel [20]:  

∫ (   )  ( )       ( )        ,   - 

 

 

 

where  ( )     ( )     ( ) is the exact solution. 

 

For k = 2, 3, 4, 5 and 6, the approximate results using: 

1. The (LPs) are:  

  ( )            ( )          ( )          ( )  
  ( )          ( )          ( )          ( )          ( ) . 
  ( )          ( )          ( )          ( )           ( )          ( ). 
  ( )           ( )          ( )          ( )                                
  ( )                                                                          
2. The (TPs) are:  

  ( )           ( )            ( )           ( )  
  ( )           ( )           ( )            ( )             ( )  
  ( )           ( )           ( )          ( )            ( )             ( )  
  ( )           ( )            ( )           ( )                                 
                                                                       . 

 

The solutions were approximated in five different degrees. The comparison of error functions of the 

proposed methods and those in [20] is shown in Table 1, showing the (LPs) and the (TPs) methods 

having a higher accuracy than in [20] with the same degrees, and that both proposed methods having 

the same accuracy.  

Figure 1 shows the comparison of result for k=6 with exact solution. They seem to be identical. 

 

Table1. Comparison of the Error Function of Example1. 
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Example 2: Solve the Abel’s (IEs) (linear (VI) equation of 1
st
 type with singular kernel) [20]: 

∫
 

√   

 

 

  ( )   
 √ 

   
(             )        ,   -   

where  ( )          is the exact solution. 

For k = 2, 3 and 4, the approximate results using: 

1. The (LPs) are:  

  ( )           ( )          ( )          ( )  
  ( )     ( )      ( )      ( )     ( )  
  ( )     ( )      ( )      ( )     ( )              ( )  
2. The (TPs) are:  

  ( )             ( )           ( )         ( )  
  ( )      ( )       ( )     ( )   ( )  
  ( )     ( )      ( )     ( )    ( )               ( )  
The solutions were approximated in three different degrees. The comparison of error functions of the 

proposed methods and those in [20] is shown in Table 2, showing the (LPs) and (TPs) methods having 

k 

‖   ‖ 

Method in [20] (LPs) Method (TPs) Method 

2 5.06401E 02 1.1940E 01 1.1940E 01 

3 2.07936E 03 6.7190E 03 6.7191E 03 

4 6.14967E 04 1.2897E 03 1.2897E 03 

5 1.42477E 04 3.3898E 05 3.3775E 05 

6 5.41139E 05 3.7027E 06 3.5964E 06 

 

Figure 1(a). The (LPs) of Example1 for    

                     k=6 

 

 

Figure 1(b). The (TPs) of Example1 for    

                      k=6 

 



29 
 

a higher accuracy than in [20] with the same degrees, and that both proposed methods having the 

same accuracy.  

Figure 2 shows the comparison of result for k=4 with exact solution. They seem to be identical. 

 

                            Table2. Comparison of the Error Function of Example 2. 

 

 

 
 

                         

 

 

 

 

 

     

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3: Solve the linear (VI) equation of 2
nd

 type with the regular kernel [4]: 

 

 ( )        
 

 
   

 

 
   ∫ ( )

 

 

             ,   -  

where the exact solution is  ( )        
For k = 2, 3, 4, 5 and 6, the approximate results using:  

1. The (LPs) are:  

  ( )           ( )           ( )           ( )  
  ( )           ( )            ( )            ( )           ( )  
  ( )       ( )       ( )        ( )      ( )       ( )  
  ( )      ( )      ( )       ( )      ( )      ( )              ( )  
  ( )                                                         
2. The (TPs) are:  

  ( )             ( )            ( )            ( )  

k 

‖   ‖ 

 

Method of [20] (LPs) Method (TPs) Method 

2 6.39819E 02 5.1892E 01 5.1892E 01 

3 2.42366E 02 4.2274E 07 5.4209E 07 

4 3.26226E 03 3.6611E 07 4.6947E 07 

 

Figure 2(a). The (LPs) of Example 2 

for k=4 

 

Figure 2(b). The (TPs) of Example 2 for 

k=4 



31 
 

  ( )             ( )           ( )           ( )             ( )  
  ( )                ( )      ( )      ( )      ( )     ( )  
  ( )                ( )      ( )      ( )      ( )     ( )               ( )  
  ( )                                                                  

 

The solutions were approximated in five different degrees. The comparison of error functions of the 

(LPs) method and those in the (TPs) method is shown in Table 3, showing the (TPs) method having a 

higher accuracy than in the (LPs) method with the same degrees. Figure 3 shows the comparison of 

result for k=6 with exact solution. They seem to be identical. 

 

 

 

Table 3. Comparison of the Error Function of the (LPs) and (TPs) of Example 3. 

 

 

 

 

 

 

      

              

 

 

 

 

 

 

 

Example 4: Solve the linear (VI) equation of 2
nd

 type with the convolution kernel [4]: 

 ( )    ∫  (    ) (  )      ,   -                            

 

 

 

where  ( )     ( ) is the exact solution. 

For k= 2, 3, 4 and 5, the approximate results using:  

1. The (LPs) are:  

  ( )            ( )           ( )           ( )  

k 
‖   ‖ 

(LPs) Method (TPs) Method 

2 7.1586E−01 7.1586E−01 

3 2.0767E−01 2.0767E−01 

4 3.3525E−06 1.2191E−06 

5 2.9986E−06 1.0904E−06 

6 2.7373E−06 9.9539E−07 

 

 Figure 3(a). The (LPs) of Example 4    

                      for k=6 

 

Figure 3(b). The (TPs) of Example 4    

                     for k=6. 
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  ( )             ( )           ( )           ( )           ( )  
  ( )          ( )          ( )          ( )         ( )          ( ) 
  ( )          ( )          ( )          ( )         ( )          

           

2. The (TPs) are:  

  ( )            ( )           ( )          ( )  
  ( )             ( )            ( )           ( )            ( )  
  ( )           ( )           ( )           ( )          ( )           ( ) 
  ( )           ( )           ( )          ( )                   

          

The solutions were approximated in five different degrees. The comparison of error functions of the 

(LPs) method and those in the (TPs) method is shown in Table 4, showing the (LPs) method having a 

higher accuracy than in the (TPs) method with the same degrees. Figure 4 shows the comparison of 

results for k=4 and 5 with exact solution. They seem to be identical. 

 

                                                              

                     Table4. Comparison of the Error Function of the (LPs) and (TPs) of Example 4. 

 

 

 

 

 

 

        

 
 

 

 

 

 

 

 

Example 5: Solve the (VID) equation of the 2
nd

 type with constant kernel [4]: 

  ( )        ∫ ( )

 

 

       ( )       

k 
‖   ‖  

(LPs) Method (TPs) Method 

2 7.0865E 02 7.0865E 02 

3 3.2692E 03 3.2693E 03 

4 6.3587E 04 6.3589E 04 

5 1.6865E 05 1.6908E 05 

 

Figure 4(a). The (LPs) of Example 4    

                     for k=4 and 5 

 

 

Figure 4(b). The (TPs) of Example 4                         

                     for k=4 and 5. 
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where   ( )     is the exact solution. 

For k= 2, 3 and 4, the same exact solution is obtained, so, using the (LPs), we have:  

  ( )     ( )     ( )   ( )     

  ( )     ( )     ( )   ( )      

  ( )     ( )     ( )   ( )     

Also using the (TPs), we have:  

  ( )       ( )       ( )    ( )     

  ( )       ( )      ( )   ( )      

  ( )       ( )      ( )   ( )     

The solutions were approximated in three different degrees and the exact solution was obtained the 

same and this shows that the error function is zero in this case. Figure 5 displays the comparison of 

results for k=2, 3 and 4 with exact solution. They seem to be identical. 

 

 

 

 

 

 

 

Example 6: Solve the generalized Abel’s integro differential equation of the 2
nd

 type [2]: 

  ( )    ( )       ∫
  ( )   

√(   )

 

 

              ( )      

where  ( )       is the exact solution. 

 

 

Figure 5(a). The (LPs) of Example 5                  

                     for k=2, 3 and 4 

 

Figure 5(b). The (TPs) of Example 5    

                     For k=2, 3 and 4. 
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For k= 2, 3 and 4, the same exact solution is obtained, then, using the (LPs) and (TPs), the results are 

respectively:  

  ( )    ( )    ( )   ( )        and    ( )    ( )    ( )   ( )       

The solutions were approximated in three different degrees and the exact solution was obtained the 

same and this shows that the error function is zero in this case. Figure 6 displays the comparison of 

results for k=2, 3 and 4 with exact solution. They seem to be identical. 

                      

 

 

 

 

 

 

 

 

11. Conclusions and Recommendations: 

In this work, two effective approximate numerical methods base on the (LPs) and (TPs) have been 

used to get approximate numerical solutions for four examples of linear (VI) equation and two 

examples of the linear (VID) equation. The error function of these methods were established and 

appeared its accuracy.The results of both proposed methods in Tables 1 and 2 were better than in [20]. 

The results of error function for example 3 in Table 3 were decreasing with increased polynomials 

degrees, also, the results in Table 4 have shown that the (LPs) method is better than the (TPs) method. 

In examples 5 and 6, the approximate solutions were exactly the same as exact solution, so, the error 

functions were zero in these cases for both proposed methods. In general, all results indicate that the 

errors function decreasing with increasing the degree of polynomials as shown in the relevant Tables 

and Figures. Therefore, the methods used in this article can be applied to other types of integral 

equations, like, nonlinear integral and integro differential equations. 
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Abstract. Graph domination by vertices is finding a subset   from the vertex set   ( ),  "in a graph    such 

that   is a dominating set if every vertex in set      is adjacent to at least one vertex in set   . In this paper, 

 (   ) when   is a composition of complete graph    and star graph   ,  is constructed where   (   ), is the 

family of all dominating sets of a graph   with cardinality   and  (   )    (   )  .  A recursive formula for 

 (  ,  -  ) is obtained.  The domination polynomial of graph   ,  - is determined by using this recursive 

formula. 

Keywords: Domination number, Domination polynomial, Dominating set, composition. 

1      Introduction  

Assume that   (   ) with   vertices is a simple graph. The set  ( )  *        + and the 

set  , -   ( )  * + are the open and closed neighborhood of        respectively [1-5]. A 

degree for every vertex    , is the number of edges incident with   or equivalently,    ( )  
  ( ) . "The minimum degree and the maximum degree of vertices of   are  ( ) and  ( ), 
respectively" [6-11].  

In a graph  , the set     is a ―dominating set‖ if every vertex     is either an element of   or is 

adjacent to an element of  . The minimum cardinality of a dominating set in a graph   is the 

―domination number  ( )‖. Any dominating set with cardinality equal to  ( ) is called      . For 

a detailed treatment of this parameter, see some types of domination by vertices [12-21]. In a graph   

an  -subset is a subset of   ( ) with cardinality equal to    . "The family of all dominating sets of   

which are  -subsets is  (   ) where,  (   )    (   ) ". The polynomial 

 (   )  ∑  (   )
  ( ) 
   ( )    "is defined as domination polynomial of  " [4- 6]. "The composition of 

two graphs    and   , is the graph   ,  - where, the vertex set of the graph   ,  -  is   (  )  
 (  ) such that the vertex (   ) is adjacent to vertex (   ) if and only if   is adjacent to   in the 

graph    or     and   is adjacent to                  ". [21], and [22].  

 

Theorem 1.1. ,  - Suppose   and   be two graphs with at least two vertices. If   ( )   , then 

 ( , -)   ( ).  

Theorem 1.2. [21] The following some properties of a composition held for all graph          .  

i.  , -   , -.  

ii. ( , -), -   ([ , -]).  

iii.   , -   .  

iv.  ,  -   .  

v. (   ), -   , -   , -.  

“Lemma 1.3. , - The following properties held for all graph   of order  . 

mailto:Ihsan.ab92@gmail.com
mailto:pure.ahmed.omran@uobabylon.edu.iq
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i. If   is connected, then  (   )    and  (     )   .  

ii.  (   )    if and only if    ( )       .  

iii.  (   ) has no constant term.  

iv.  (   ) is a strictly increasing function in ,   ).  
v. Let   be a graph and   be any induced subgraph of  . Then  

vi.    ( (   ))     ( (   )).‖ 

2     Dominating sets for composition of complete graph and star graph  

Suppose    be a complete graph of order   and, suppose    be a star graph of order  ,    . The 

composition of complete graph and star graph is   ,  - with       vertices. Let  (  ,  -  )  be 

the family of dominating sets of   ,  - of cardinality     . 

Theorem 2.1. ,  - the following properties held for each star graph    with order m,       

 (     )  (   
   

)            . 

 (     )  ∑ (   
   

)   
          

Theorem 2.2. ,  - Let                        be complete  -partite graph with order         

       , the following properties held                    

i.  .     /  ( 
 
)  (  

 
)  (  

 
)    (  

 
)                  

ii.  .     /  ( 
 
)                  

iii.  .     /  ∑ ( 
 
) 

      ∑ (  
 
)   ∑ (  

 
)

    
   

    
        ∑ (  

 
)

    
        

Theorem 2.3. Let the graph   ,  - be a composition of complete graph and star graph with order 

    ,    , then  

i.  (  ,  -  )  ( 
 
)   (   

 
)                 

ii.  (  ,  -  )  ( 
 
)              

Proof:-  

i. The number of subsets with cardinality   of   ,  - is ( 
 
). Let      be the center vertex of   , 

the vertices of star except   forms be the dominating set of   .  ince every vertex of    

composition with  the vertices of star except    then there exist  (   
 
)          of subsets 

which are not dominating sets of   ,  -, then 

  (  ,  -  )  ( 
 
)   (   

 
)             .  

ii. By (i) and since every subset with cardinality          is the dominating set of   ,  - then 

( 
 
) is the number dominating sets with cardinality           then  (  ,  -  )  

( 
 
)           .  

 

Theorem 2.4. The graph   ,  - be a composition of complete graph and star graph with order 

    ,    , then  

i.  (  ,  -  )   (    )   (      )   (      )     (        )   .     /     
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ii.  (  ,  -  )   (    )   (      )   (      )     (        )   .     /        

     
    

 
                                  

Proof:-  

i. let               such that    is the center vertex of   . It is obvious that    be a spanning 

subgraph of   ,  -,       be a subgraph of   ,  - such that    is the center vertex of 

subgraph star    ,  and so on ... That means in general     *         + be a subgraph of 

  ,  - such that    is the center vertex of        and since   ,  -  *          + is a 

complete r-partite subgraph of   ,  -, then                                  

  ,  -. The  (    ) is the number of dominating sets with cardinality   of   ,j=         

       . The number  (            ) represent the number of dominating sets with 

cardinality   of (          ), and  (  ,  -  ) is the number of dominating sets with 

cardinality   of   ,  -.   ince  (  ,  -  )    by lemma (1.3),  (          )  

 (              )   , and 

 (            )   (            )     (        )   (      )   ,  

then  (  ,  -  )   (    )   (      )   (      )     (        )   .     /  

     
    

 
                               

ii. By (1)  (          )   (              )    and  (            )  
 (            )     (        )   (      )   , then  (  ,  -  )   (    )  

 (      )   (      )     (        )   .     /   ,      
    

 
       

                     .   

 

Example       Let                              
By using Theorems 2.4 and 2.5 we calculate the coefficients of  (  ,  -  ) for        in 

Table . Let  (  ,  -  )    (  ,  -  ) . There are interesting relationships between the numbers 

of  (  ,  -  )(     ) in the next table. 

 

1413121110987654321i

mrn

161520152326

1828567056222428

110451202102522101123325210

112662204957929247924852004626212

114913641001200230033432300319909713246127214

 

Table 1:    (   )  of   ,  - with cardinality   

 

 

 

Corollary 2.6. The following properties held  for coefficients of  (  ,  -  )              

          



39 
 

i.   (  ,  -)    

ii.  (   ,   -  )     

iii.  (  ,  -)         

iv.  (  ,  -)        

Proof 

i. since  (  )   , and by definition of the composition of complete graph and star graph, then 

 (  ,  -)   .  

ii. let   be the center vertex of    and since    of order  , and by ( ), then  (   ,   -  )   .  

iii. Let    be a star graph contain     end vertices,   be any end vertex of    and   be any 

vertex of   . So by definition of composition, (   ) is not adjacent to (   ) vertices of 

   ,   - but adjacent to other vertices of    ,   -, therefore,  (  ,  -)    (   )    
   .  

iv. Let     , and   is the center vertex of   , and let                , then by definition of 

composition (    ) is adjacent to all vertices of   ,  -, then  (  ,  -)     .    

Proposition 2.7. The following properties held for all  (  ,  -  )        

i.  (  ,  -  )  ∑ ( 
 
)   

      ∑  (   
 
)   

      ∑ ( 
 
) 

       

ii.  (  ,  -  )  ∑  (    )
 
      ∑  (      )

 
        ∑  (       )

 
      

∑  .     /
 
      ∑      

     

Proof :- 

i. According to definition of domination polynomial and Theorem 2.4, then 

  (  ,  -  )  ∑  (  ,  -  )
 
      ∑ [( 

 
)   (   

 
)  ( 

 
)]   

     

 ∑ ( 
 
)   

      ∑  (   
 
)   

      ∑ ( 
 
) 

     .  

ii. By using definition of domination polynomial and according to Theorem 2.5, then  

 (  ,  -  )  ∑  (  ,  -  )
 
       ∑ 0 (    )   (      )   (      )     

   

 (        )   .     /   1     

 ∑  (    )
 
      ∑  (      )

 
        ∑  (        )

 
      ∑  .     /

 
      

∑      
                              .      

 

 

 

 

 

 

 



41 
 

Example 2.8. Let the graph   ,  - with order  , be the composition of    and   , then by Proposition 

(2.7) we have  

 (  ,  -  )  ∑ ( 
 
) 

      ∑  ( 
 
) 

      ∑ ( 
 
) 

     

 ,       -  ,      -  ,                          -  

                                   . (see figure 2.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 2.1:   ,  - 
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Conclusion  

      In this paper, we studied the dominating sets for composition of complete graph and star graph 

and find the formula of domination polynomial of the composition of a complete graph and star graph.  

References 

1 [1] Ahmed A. O. and Haneen H. O. (2019). " Hn-Domination in Graphs", Baghdad Science 

Journal, Vol.16(1) Supplement.  

[2] Saeid A. and Yee H. P. (2008). "Dominating sets and domination polynomial of cycles", Global 

Journal of Pure and Applied Mathematics,4(2),151–162.  

[3] Saeid  A. and Yee H. P. (2011). "Domination polynomials of cubic graphs of order 10", Turk. J. 

Math.,35(3), 355–366.  

[4] Saeid A. and Yee H. P. (2014). "Introduction to domination polynomial of a graph", Ars Combin., 

Vol. 114, 257–266. 

[5] Saieed A., Saeid A. and Yee H. P. (2010). "Characterization of graphs using domination 

polynomial", Europ. J. Combin., Vol 31, 1714–1724. 

[6] Saeid A. (2013). "On the domination polynomial of some graph operations", ISRN Combin., 

Volume 2013, Article ID 146595, 3 pages. 

[7] Manal N. A. and Mohammed A. A. (2020). "Pitchfork domination in graphs", Discrete 

Mathematics, Algorthem and Applications,              https://doi.org/10.1142/S1793830920500251. 

[8] Manal N. A. and Athraa T. B. (2019). "Variant types of domination in spinner graph", Al-Nahrain 

Journal, 2, 127-133.  

[9] Saeid A. (2013). "Graphs whose certain polynomials have few distinct roots", ISRN Discrete 

Math., Volume 2013, Article ID 195818, 8pages. 

[10] Manal N. A. and Mohammed A. A. (2019). "Pitchfork Domination and It's Inverse for Corona and 

Join Operations in Graphs", Proceedings of International Mathematical Sciences, 1(2), 51-55.  

[11] Brown J. I. and Hickman C. A. (2002). "On chromatic roots of large subdivisions of graphs", 

Discr. Math., 242, 17–30. 

[12] Brown J. I., Hickman C. A. and Nowakowski R. J. (2003). "The Independence Fractal of a 

Graph", J. Combin. Theory, Series B 87(2), 209–230. 

[13] Brown J. I. and Tufts J. (2014). "On the Roots of Domination Polynomials", Graphs Combin., 

30(3), 527–547. doi:10.1007/s00373-013-1306-z. 

[14] Chudnovsky M. and Seymour P. (2007). "The roots of the independence polynomial of a 

clawfree graph", J. Comb. Th., B 97(3), 350–357. 

[15] Gutman I. (1991). "An Identity for the Independence Polynomials of Trees", Publications Institut 

Mathematique (Belgrade), 50,19–23. 



42 
 

[16] Gutman I. (1992). "Some Analytic Properties of the Independence and Matching Polynomials", 

Match. 28, 139–150. 

[17] Teresa W. H., Stephen T. H. and Peter J. S. (1998). "Fundamentals of domination in graphs", 

Marcel Dekker, NewYork. 

[18] Kotek T., Preen J. and Tittmann P. "Subset-sum representations of domination polynomials", 

Graphs Combin. doi:10.1007/s00373-013-1286-z. 

[19] Kotek T., Preen J., Simon F.,Tittmann P. and Trinks M. (2012). "Recurrence relations and 

splitting formulas for the domination polynomial", Elec. J. Combin. 19(3), # P47. 

2 [20] Ali A. J. and Ahmed A. O. (2019). "Domination in discrete topology graph" AIP 

Conference Proceedings 2183, 030006.  

3 [21] Saeid A. and Somayeh J. (2018). "Domination polynomial of lexicographic product of 

specific graph" Journal of information and Optimization Sciences, 39(5), 1019-1028.  

4 [22] Frank H. (1969). ''Graph Theory'' Addison-Wesley, Reading, MA.  

5 [23] Abdul Jalil M. K. and Sahib S. K. (2013). "Dominating Sets and Domination Polynomial of 

Special Graph with Applications", (un published thesis). University of Kufa, Fauculty of 

Mathematics and Computer Science, Department of Mathemaatics. 

 

 

 

 

 

 

 

  



43 
 

Unit Regular Clean Rings 
1
Israa Th. Younis 

2
 Prof .Dr. Nazar H. Shuker 

1
Department of Mathematics, college of computer science and Mathematics, 

University of Mosul. 

2
 Department of Mathematics, college of computer science and Mathematics, 

University of Mosul. 

israthanon8080@gmail.com 

  

Abstract. A ring    is called unit regular clean, if every element is the sum of an idempotent and a unit regular 

elements. In this paper we introduce the notion of unit regular clean ring. we investigate some of it's basic 

properties and it's relation with clean ring. 

Keyword: Clean ring ,unit regular ring ,unit regular element ,r-clean ring 

 

1- Introduction: 

Throughout this paper,  is an associative ring with identity.  ( )    ( ) and   ( ) are 

respectively, the set of units, unit regular and idempotent elements.  ( ) is the Jacobson radical of 

  

An element   of a ring   is said to be clean if           for some      ( ) and    

   ( ). A ring   is called clean if each of its element is clean. Clean ring, was firstly presented by, 

Nicholson [7]. Many researchers worked on this subject and investigated properties of clean rings, 

see for example [2, 5, 8, 10]. In 1936 Von Newmann defined that: an element     is called regular 

if   =     for some      . The ring   is said to be regular if each of its element is regular, some of 

the properties of regular rings have been studied in [6]. A ring   is called abelian if every idempotent 

in   is central [3]. 

A ring   is said to be unit regular if for each     , there exists a unit     such that   

    . Camillo and Yu [5, Theorem 5] proved that: “every unit regular ring is clean”.  

In [7], Nicholson and Varadrajan proved that the converse is not necessarily be true. In [1] 

Ashrafi and Nasibi defined that a ring   is said to be r-clean if every element of it can be written as 

the sum of idempotent and regular elements. 

 We say that an element   of a ring    is a unit regular clean (briefly,   - clean) if           

where    ( ) and       ( )  

A ring    is said to be   - clean if each of its element is   - clean. 

mailto:israthanon8080@gmail.com
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Clearly unit regular rings and clean rings are   -clean. we also provide an example of ur- clean 

ring which is not clean. In this work we give some properties of ur- clean rings and its relation with 

clean ring. 

2- Unit regular clean ring  

In this section we introduce the notion of unit regular clean ring, we give some of it's 

properties and provide some examples. 

Definition 2.1 An element   of a ring   is unit regular clean, (briefly,   - clean) if           where 

     ( ) and        ( )  A ring    is   - clean if each of its elements is   -clean. 

Clearly, unit regular rings and clean rings are   -clean. but the converse is not necessarily be 

true. as the following example shows. 

Example 2.2 The ring of integers, Modulo 4,    is not unit regular because  2 is not unit regular in 

  . However it is easy to check that    is   - clean. In general   - clean is not 

necessarily be clean see [11, Theorem 4.1]. 

Next ,we shall give part of basic properties of   -clean rings. 

Proposition 2.3: If    is a ring, then     is   -clean element if and only if (   ) is   -clean 

element. 

Proof: Let   is   -clean element then           where,       ( ) and       ( ), then 

       (   )    (  )  but (   ) is idempotent since 

 (   )                   –             –    .Clearly (  )      ( ) since [      ,   

is unit regular then –      (  ) is a unit regular] 

Hence     is   -clean element. 

Conversely: let (   ) is   -clean element then 

            where        ( ) and        (R) 

                then   (   )    (   )  (  ) 

 (   ) is an idempotent and    is unit regular which implies that   is ur-clean element.∎ 

Note that, for any ring R, and any ideal I of R , if     is   -clean then    is not necessarily  to be   -

clean as the following examples shows. 

Example 2.4: 

1- If    is prime number  then          is   -clean, but  the ring   is not clean.  
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2- The ring of integers modulo 12,    . Let I = {0, 3, 6, 9} be an ideal of    . Now       is   -
clean since       is a field; but     is not   -clean ring. 

Following [9], idempotent can be lifted modulo, as one sided ideal   of a ring  .if for     

with        , there exists  an idempotent     such that       . 

The following result, gives a sufficient condition for    to be   -clean 

Theorem 2.5: Let    ( ) be any ideal, of a ring   then    is   -clean if and only if the quotient ring 

    is   -clean and idempotent lift modulo  . 

Proof: Let               such that           where   is an idempotent and   is unit 

regular element. 

Now                 (   )  (   ). 

Clearly, (    ) is an idempotent element of R/I and  

(   )  (     )  (     )(   )(   )  

So (    ) is unit regular then     is   -clean ring. 

Conversely: Suppose  that the quotient ring     is   - clean and idempotent lift modulo   and let   

be any element in  . since     is ur-clean we can Write 

                 for some unit regular    , and idempotent lift modulo  , we assume   is an 

idempotent of the ring  , since             is unit regular element of    . So     is unit 

regular of   , it follows that   may be written as the sum of idempotent and unit regular of    by 

writing ,     (    )      , This proves the sufficiency.∎ 

Theorem 2.6: If   is abelian   -clean ring and      ( )  then every element of   can be written as 

a sum of idempotent and two units. 

Proof: Let     , then          , where        ( )        , since    is idempotent say 

  , then          

Let           , clearly        So           , Since      ( ) then  

                   So              (           ) 

                            

Hence                 .∎  

In [4] Camillo and Khurana gave the following result. 

 If   is unit regular element then         and                
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Theorem 2.7: Let   be abelian   -clean ring ,for any     there exists an idempotent  , such that 

   is idempotent.  

Proof: Since   is   - clean, then            where    is idempotent and   is unit regular 

then           and               

Since                 , then       . So                then          , since   and 

   are central idempotents, then     is idempotent. ∎ 

In [1] Ashrafi proved that "if R be an abelian r-clean ring, then     is also r-clean ring". We do 

like wise of   - clean ring. 

Theorem 2.8: Let R be an abelian   -clean ring then     is also   - clean ring. 

Proof: Let            , then            and           where    is idempotent and      ( ) 

where  is   -clean. 

Since          then                , it follows that               we want to show that 

   is unit regular and     is an idempotent.  

for this consider (   )
    (   )  (   )     (   )      (   )   

           ) (  )   (  
    )        

Therefore     is idempotent. 

Now consider           

(  ) (   ) (  )    (  ) (   )(  )   (  )   (  ) 

                                     (  )   (  )      (   )               

Then    is unit regular, implies that     is   -clean ring. ∎ 

Theorem 2.9: Let   be a ring with every       there is      , such that         ( ) and 

        Then R is   -clean 

Proof: Let      , then there is      such that         ( ) and         

Then            ( ). Let            . Now        (       )        

    –          

So         , and hence            

Therefore   is unit regular. If we write         , then   is   -clean.∎ 
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Theorem 2.10: Let R be a ring with every   in R there is   in   such that      is unit and        , 

Then   is reduced   -clean ring. 

Proof: Let    ,then there exists     such that     is unit  

and        

Now, if we set           then       (   )              . Clearly 

 R is reduced ring, if       , then        implies that,      . 

So            this implies   (       )     . Hence          r (a) = ℓ (a). 

          Then (      )      . Hence           , so it unit regular. 

If we set           then   is    clean.∎ 

 

3- The relation between   -clean and clean rings 

In this section we give the relationship between   -clean and clean rings. Clearly every clean 

ring is ur-clean ring since unit is unit regular, but the converse is not necessarily be true. 

Theorem 3.1: Let   be an abelian ring, then   is   -clean if and only if   is clean. 

Proof: One direction is trivial. 

Conversely: let   be   -clean ring and     , then           where 

        ( ) and        ( )  So there is      such that          

Clearly           and     are idempotents and  

(      (    )(      (    ))   , also since   is abelian we have 

(    (    ))(    (    ))    then 

(    (    )) is unit and hence     (    ) is unit 

 -(    (    )) is a unit ,since     is idempotent 

So      (    )   ( (     (    )) is clean that is   is clean.∎ 

Theorem 3.2: Let R be abelian   -clean ring such that each pair of distinct idempotents in R are 

orthogonal then   is clean. 

Proof: Since every abelian regular ring is clean then for each    ,   can be written as   = 

           where            ( ) and      ( ) 
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Now since       are orthogonal then                  ( ) and hence          which 

shows that   is clean.∎ 

Theorem 3.3: If   is a directly finite   -clean ring, and 0 and 1, are the only idempotents in  , then   

is clean. 

Proof: Since   is   -clean ring, each     can be written as          , where   is a unit regular 

element and   is an idempotent element of R. 

If      , then 

        (    )   (   )  Also, since (    ) is a unit  of   and (   ) is an 

idempotent element of R, so   is a clean. Hence   is clean. 

If     , then there exists     such that        . Thus    an idempotent element of   . 

So by hypothesis,        or       . 

Now if       , then   =        , which is contradiction. Therefore 

       and since   is directly finite so            . 

Thus,   is a  unit of R. So   is clean element, and hence   is clean ring.∎ 

Theorem 3.4: Let R be abelian ring and for every    , there exists     such that         ( ) 

and       , then there is   in R such that    is clean element. 

Proof: Let     , and          ( ) then              where   is idempotent and   is unit. 

Now 

   (   )         so,           and hence  

            , so       (   )
      clearly         (    ) is unit since 

(        )(    )) (       (    ))      where              

So           
       and hence                  but      is idempotent say   so      

(    )      

This means that    is clean element and hence it is   -clean.∎ 
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Abstract: This research is to improve Sine - Cosine Algorithm (SCA) that is like any other intelligent 

techniques that encounter some problem such as slow convergence and the dropping in local solution. To 

overcome these problems. SCA has been developed and improved through three directions, First: Hybrid of 

SCA with Modified conjugate gradient method (MCG) that has improved through that derivation of parameter 

of new conjugate factor (β
new

) and attest its characteristic such as descent and global to construct improve 

algorithm called SCA-MCG. The second direction was a hybrid of SCA with classic optimization methods such 

as conjugate gradient (CG) algorithm to construct SCA-CG, , and parallel Tangent (PT) algorithm to construct 

SCA-PT. Third combining both previous methods, using the Hybrid value with SCA to construct SCA-CG-PT 

Algorithm of high quality accounts in all directions mentioned above. To improve the initial population which 

randomly generated by using excellent characteristics of MCG-CG-PT as well as using this improvement as 

initial population for SCA. Numerical results have proved the efficiency of improved Algorithm and the results 

was excellent if we compared with SCA. In addition, we got optimum global values for most functions by 

achieving functions minimum. 

 

Keyword: SCA algorithm, meta-heuristic algorithms, conjugate gradient and PARTAN methods 

1. Introduction:  

Optimization refers to the finding optimum values of the given system facts, for all possible values. In 

mathematics, it means to find minimum or maximum value of a function contains a certain number of 

variants. It can found in all fields of study that seek to develop basic optimization techniques so it is 

of a high importance for most researchers in their works. Optimization started in 1960 through many 

directions and methods through 2 main parts of algorithms, the first is Deterministic, and the other is 

Stochastic. Most of classical algorithms are deterministic, such as CG, PARTAN, QN, and others. 

Most of them based on slope or what called derivation, (derivation base algorithm). The second part 

of algorithm, Stochastic that is divided into Heuristic and meta-heuristic. It is important to mention 

that, recent trends of study refer to the lack of certain definition of these Heuristic and Meta Heuristic. 

(Glover 1986).  

SCA is a Heuristic and inspired by sine and cosine functions. It suggested by (Seyedali Marjalili 

2016) to solve optimization and apply it to improve airplanes' performance [9]. Many improvement 

and modifications as well as Hybrid suggested. In 2017, (simye ,Busra,Pakite) present a study about 

Constructed optimization problems using SCA[6] . Same year witnessed presenting another study of a 

Hybrid of SCA to solve global optimization problems by ( R.M,rizk Allah ) [13] , In 2018 Zhiliujun , 

Chiver, et al) present a study about Modifuing SCA based on search of circular uninvited adjunct. In 

mailto:ayadlohebe@Gmail.com
mailto:dr.banah.mitras@Gmail.com
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the same year, ( Ramzy Ali , Dunisis) present a study about Chaotic SCA[12] . Finally, in 2019 

(yasmin, R.sindhu et. al.) present a study of SCA Hybrid using biogeography for problems of 

choosing merit [14]. In the same year (mouhoub, Mohamed, et al.) present a study about improving 

SCA to choose merit in sorting texts [2]. Two researchers (Lalit, Kusum) present a research paper 

about choosing merit [8]. (Chandrasekaran), also, present a study to improve SCA on the problem of 

sending Dynamic economy [3]. (Gholizadeh1, S. & Sojoudizadeh) present a study to modified sine 

cosine algorithm for Sizing Optimization of Truss Structures [7]. With an explanation of CG method 

to show its characteristic. Since it is one of the classical methods and use it in generating initial 

community used with SCA, using its characteristics to get optimum and global solution. PT and its 

uses with SCA had referred to also. After checking results, we made third modification by combining 

CG and PT with SCA. The numerical results were better when applied on special functions. Finally, 

new conjugate factor had derived, and then its globalization and slope was a tested.  

It show efficiency when used in Hybrid SCA plus combining suggested and Classical and Heuristic to 

produce improved and Hybrid algorithm of high Characteristic tested on a set of special functions . 

The problem of the research focused on finding global optimum solutions for optimization problems 

to get rid of slow convergence, and fall in local solutions.  

The study aims at presenting improved algorithm that hybrid of sine-cosine algorithm SCA with a set 

of classical algorithms named as SCA-MCG, SCA-CG, SCA-PT and SCA-CG-PT. 

 

2. Conjugate Gradient Method: 

In unconstrained optimization, we minimize an objective function that depends on real variables with 

no restrictions on the values of these variables. The unconstrained optimization problem is: 

      
nRxxfMin :)( ,                                                                                   (1)                                                            

Where RRf n :  is a continuously differentiable function, bounded from down. A nonlinear 

conjugate gradient method generates a sequence kx , k  is  integer number,  0k . Starting from an 

initial point 0x , the value of kx  calculate by the  following equation: 

     kkkk dxx 1 ,                                                                                          (2) 

Where the positive step size 0k  obtained by a line search and the directions kd  generated as:  

     kkkk dgd   11 ,                                                                                            (3) 

Where 00 gd  , the value of k  is determine according to the algorithm of Conjugate Gradient 

(CG), and its known as a conjugate gradient parameter, kkk xxs  1  and   )( kkk xfxfg 

, consider .  is the Euclidean norm, and kkk ggy  1 . The termination conditions for the 
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conjugate gradient line search often based on some version of the Wolfe conditions . The standard 

Wolfe conditions [4] : 

      
    k

T

kkkkkk dgxfdxf  
,                                                               (4)  

       k

T

kk

T

kkk dgddxg   ,                                                                                 (5) 

Where kd  is a descent search direction and 10   , where k  defined by one of the 

following formulas:  

       ;1)(

k

T

k

k

T

kHS

k
dy

gy    
k

T

k

k

T

kFR

k
gg

gg 11)(   ;    
k

T

k

k

T

kPRP

k
gg

gy 1)(                                 (6)   

      

k

T

k

k

T

kCD

k
dg

gg 11)(   ; 

k

T

k

k

T

kLS

k
dg

gy 1)(      ;   

k

T

k

k

T

kDY

k
sy

gg 11)(                                (7) 

Al-Bayati and Al-Assady In (Al-Bayati and Al-Assady, 1986) proposed three forms for the scalar k  

defined by [8]: 
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3. Extension Dai and Yuan Method: 

Yabe and Sakaiwa in 2005 extended the Dai and Yuan method as [4]:  

1

2
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                                                                                                         (9) 

Where  1k  be a positive parameter. 

By setting k

T

kk yd formula (9) reduce to this DY method as: 

  
k

T

k

kDY

k
yd

g
2

1
                                                                                               (10) 

4. Proposed A New Conjugancy Coefficient: 

 We have the quasi-Newton condition  
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kkk sGy                                                                                                       (11)    

Where 
2

2

k

k
x

f
G




  is the Hessian Matrix 

We multiply both sides of equation (11) by ks  and we get 

  kkkk ssGy *                                                                                                                               (12) 

k

T

kk

T

k sGssy                                                                                                                              (13)  

nxn

k

k

T

k I
s

sy
G .

2
                                                                                                 (14) 

Where I is the identity matrix 

Let 1

1

1 



  kk

N

k gGd                                                                                   (15) 

Eq. (15) is the Newton direction. From eq.(15) and (15) we get:  

121   k
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k
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sy
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Multiply both sides of equation (16) by 
T

ky  and we get 
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From (17) and (18) we have: 
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Then we have 



54 
 

12

2

1

1 


















 k

T

k

k

k

T

k

k

T

k

k

T

k

k

k

T

k gy
s

sy
yd

yd

g
gy                                                        (20) 

From eq. (9) we get: 
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Then, we have 
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Since 01 k then from [5], we have:
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Let 1 kk ffA  then: 
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Or 
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4.1 Outlines of the Proposed Algorithm: 

Step (1):The initial step: We select starting point 
nRx 0 , and we select 

             the accuracy solution 0  is a small positive real number and  

             we find kk gd  , )( 00 garyMin , and we set 0k . 

Step (2): The convergence test: If kg  then stop and set the optimal  

             solution is kx . Else, go to step (3). 

Step (3): The line search: We compute the value of k  by Cubic method  

              and that satisfy the Wolfe conditions in Eqs. (4),(5) and go to  

              step(4). 

Step (4): Update the variables: kkkk dxx 1 and compute 11),(  kk gxf  

              and kkk xxs  1 , kkk ggy  1 . 

Step (5): Check: if 1kg  then stop. Else continue. 

Step (6): The search direction: We compute the scalar 
)(New

k  by use the  

                equation (27) and set 1 kk , and go to step (4). 

 

 

5. The Convergence Analysis: 

Theoretical Properties for the New CG-Method. 

In this section, we focus on the convergence behavior on the 
New

k  method with exact line searches. 

Hence, we make the following basic assumptions on the objective function. 
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Assumption 1:  

f  Is bounded below in the level set })()({ 0
0

xfxfRxL n

x  ; in some neighborhood U  of the 

level set
0xL , f  is continuously differentiable and its gradient f  is Lipchitz continuous in the level 

set 
0xL  , namely, there exists a constant L> 0 such that: 

yxLyfxf  )()(   for all x,y   
0xL
                                       

    (28) 

 

5.1 Sufficient Descent Property: 

We will show that in this section the proposed algorithm that defined in the equations (27) and (3) 

satisfy the sufficient descent property that satisfy the convergence property. 

Theorem 1:  

The search direction kd  that generated by the proposed algorithm of modified CG satisfy the 

descent property for all k , when the step size k  satisfied the Wolfe conditions (4),(5) . 

Proof: we will use the indication to prove the descent property, for 0k , 

000000  ggdgd T
, then we proved that the theorem is true for 0k ,we assume 

that 1; 1    kkk gandgs and   assume that the theorem is true for any k  i.e. 

0k

T

k gd  or 0k

T

k gs  since kkk ds  , now we will prove that the theorem is true for 1k  

then: 

k

New

kkk dgd )(

11                                                                                (29) 
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i.e.   
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Multiply both sides of the equation (31) by 
T

kg 1 we get:
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Using strong Wolfe condition 
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  Using S=λd 
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Where 10    
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k gcdg                                                                                                     (45)                                            

For some positive constant c>0. This condition has often used to analyze the global convergence of 

conjugate gradient methods with inexact line search. 

 

5.2 Global Convergence Property: 

The conclusion of the following lemma used to prove the global convergence of nonlinear conjugate 

gradient methods, under the general Wolfe line search. 

Lemma 1:  

Suppose assumptions (1) (i) and (ii) hold and consider any conjugate gradient method (27) and (3), 

where kd  is a descent direction and k  is obtained by the strong Wolfe line search. If  
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Then    




k

kg 0inflim                                                                          (47) 

For uniformly convex functions that satisfy the above assumptions, we can prove that the norm of 

dk+1 given by (27) is bounded above. Assume that the function f is a uniformly convex function, i.e. 

there exists a constant 0  such that for all Syx , , 

         ,)())()((
2

yxyxygxg T                                                   (48)                           

 Using lemma 1 the following result can be proved. 

Theorem 2: 

Suppose that the assumptions (i) and (ii) hold. Consider the algorithm (3), (27). If ks  tends to zero, 

and there exists nonnegative constants 1  and 2 such that: 
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and f is a uniformly convex function, then. 
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Proof:  From eq. (27) We have:  
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6. Parallel Tangent Method: 

The name of parallel tangent (PARTAN) has no significance as far as the mechanics of the search 

procedure are concerned; however, the name has an interesting geometrical origin, which shown in 

the two-dimensional case of Fig. 1. [10].  

 

 

 

 

 

 

 

Figure 1. Locus of the search for a quadratic function. 

The strong point common to all PARTAN methods, is that the acceleration step from 0x  through 2x  

to 3x  is taken through the two points 0x and 2x at which the two parallel lines 0L  and 2L  are tangent 

to the equi-magnitude contours. To see this consider any two lines in the 21xx  plane which are 

parallel and which intersect a straight ravine of )x,x(f 21 (Fig. (2)). Observed that the point of 

tangency defines a line, which parallels the ravine. Hence, by searching along the parallel ravine-line, 

we effectively follow the ridge. The gradient descent searches are used to find ,x,x,x,x 6421 and 

acceleration steps are used to locate ,x,x,x,x 9753  . With PARTAN, the acceleration steps 

conducted through the following pairs of points: 
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 , )x,x(,, )x,x(),x,x(),x,x( k23k2634120   

The locus of the gradient-PARTAN search would look as depicted in Fig. (3) below.  

 

 

 

 

 

Figure  2. The path taken by the gradient-PARTAN. 

6.1. A General Outlines of the PARTAN Algorithm: 

Starting procedure: For the first step, 

Let, d0=-g0      and 0001 dxx  , Next, choose  d2=-g2                                                                            

Then, the fourth point is generated by moving in direction that is collinear with (x3-x1) so that                   

d3= -(x3-x1)                                                                      

This referred to as an acceleration step. Continuing the procedure: 

After determining x4, the procedure continued by successively alternating gradient and acceleration 

steps. Thus  

 di=-gi                    for  i=0,2,…,2n-2                                      (62) 

  di=-(xi-xi-2)            for  i=3,5,…,2n-1                                        (63) 

This method will reach the minimum of an n dimensional quadratic surface in no more than 2n 

steps[11].     

7. Sine - Cosine Algorithm (SCA): 

Mathematical sine - cosine algorithm is one of the meta-heuristic suggest by (Seyedali Marjalili 2016) 

which depends in general on sine and cosine functions that starts with improving a set of arbitrary 

solutions , then we estimate these solutions repeatedly using objective function which improved by a 

set of rules representing the essence of improving technique . Since techniques based on community 

aim at optimization for improving problems, there no guarantee to find solution in one term. With 

existence of a sufficient number of arbitrary solutions and improving steps (repetition), there is high 

probability to get optimum solutions and global values. SCA method based on finding and improving 

solutions, changing  

t
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1 )sin(                                                        (64) 
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Where sine and cosine, are the well know Mathematic functions. Xi 
t
 is the present solution position in 

dimension i-th, With repetition t-th . r1 , r2 , r3 , are arbitrary numbers , as well as | | absolute value , 

r4 is an arbitrary number with in period [0,1] . [9] 

If we combined eqs.(64) and (65), we get the following: 
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Where r4 is a random number 

The range of sine and cosine in Eqs. (64) to (66) changed using: 

T

a
tar 1        .                                                                                            (67) 

Where t is current iteration; T maximum number of iterations and a is a constant. 

7.1. Outlines of SCA : 

     Step (1): Select arbitrary initial community (search agents) solutions X. 

     Step (2): Calculate cost function for each search agents.  

     Step (3): Return best solution. 

     Step (4): Select best search agent according to cost function. 

     Step (5): Update r1,r2, r3 and  r4 . 

     Step (6): Update search agent position using the equation (64). 

     Step (7): While t ˂ max no. iterations,  go to step 2. 

     Step (8): Return best solution you got according to its degree to get global solution [9]. 

8. Modified Conjugate Gradient method (MCG)  

It is a Hybrid method, where a conjugate factor that derived and used in Modifying conjugate 

Gradient algorithm CG, PT in addition to SCA method to produce on improved algorithm of high 

efficiency: 

Below Improved method. 

     Step (1): Preparing and generating the initial community. 

     Step (2): improving Initial community by MCG, CG and PT. 

     Step (3):  Calculating suitability function of improved community. 
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     Step (4):  Calculating the best position of all search agents to produce Improved new generation. 

     Step (5):  Updating position of each search agents using the SCA algorithm 

     Step (6):  SCA works by using certain repetitions until to reach optimum value or achieve the stop 

condition when it finish repetition case. 

     Step (7):  To get either minimum value of the function or about or to get the global value. 

The following figure represent the new SCA-MCG algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3): The Proposed SCA-MCG algorithm 

yes 
no 

Start  

 Generation of initial population randomly 

Is the stopping 

condition met ? 

Modify initial population by 

MCG 

 Evaluating each of the search 

agents by fitness function            

Update the best solution obtained so far p 

= x
* 

Update r1, r2, r3 & r4 

Update the position of search 

agents using SCA eqs. 

End 

Return the best solution obtained so 

far as global optimum  
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9. Practical part: 

To evaluate action and probability of the suggested algorithm in solving optimization problems and 

getting best results. It applied on a set of standard functions mentioned in table (1), to compare with 

SCA itself. This table includes test functions, functions extends, minimums and maximums, as well as 

its (Fmin). 

Table  l. Test Function 

Function                                                                  Dim                        Range                    Fmin 

  ( )  ∑   
  

                                                         30                       [-100,100]                    0 

  ( )  ∑ (∑   
 
   )  

                                             30                       [-100,100]                    0 

  ( )  ∑    
        ,   ) 

                             30                      [-1.28,1.28]                   0 

  ( )  ∑ [  
       (    )    ] 

                   30                      [-5.12,5.12]                   0 

  ( )  ∑   
  ∏    .

  

√ 
/      

       
                   30                       [-600,600]                    0 

      
       

  
 

 
   

          
     

       2                            [-5,5]                  -1.031 

  ( )  ∑        (√     )
 
                                    30                       [-500,500]             -418.9 

  ( )  ∑       ∏       
 
          

                            30                         [-10,10]                     0 

  ( )       *          +                              30                       [-100,100]                   0 

   ( )        4    √
 

 
 ∑   

  
   5      (

 

 
∑    (    )       
      30     [-32,32]                     0 

 

 

In Tables (2-4) Functions mentioned below have been applied on all mentioned algorithm. Results 

show the difference SCA and its improving methods, we notice that we got global values in most 

function which refers that improving methods for SCA, were of high efficiency, and In Tables (2-4) 

we notice the efficiency of the algorithms that are directly proportional to the increase in the number 

of search elements. The more the number of search elements increases, the better the numerical 

results. Note that function  F10 gives constant results for all methods used and for all the number of 

different elements. 
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Table 2. compare SCA with all other Proposed Hybrid methods at No. of element =10 

and iteration=500 

Function          SCA            SCA-CG             SCA-PT              SCA-CG-PT          SCA-MCG                    

F1                 2.00E-30        1.46E-226             1.27E-227                  0                            0 

F2                 2.13E-26         6.41E-210            1.64E-222                  0                            0 

F3                 4.17E-78               0                         0                            0                             0 

F4                      0                       0                         0                            0                             0 

F5                 0.0026593             0                         0                            0                             0 

F6                  -1.0316                -1                        -1                           0                             0 

F7                 -1257.2739         -6.70E-18          -4.08E-22            -6.05E-173                  0 

F8                   7.04E-20           1.23E-117         1.22E-116            2.27E-215                   0 

F9                   3.71E-13           6.54E-111          2.09E-109             5.50E-211                 0 

F10               8.8818E-16        8.8818E-16         8.8818E-16         8.8818E-16        8.8818E-16 

 

 

Table 3. compare SCA with all other Proposed Hybrid methods at No. of element =30 

and iteration=500 

Function          SCA            SCA-CG             SCA-PT              SCA-CG-PT          SCA-MCG                    

F1               1.26E-49        2.70E-239         3.68E-238                     0                              0 

F2               1.72E-34         3.48E-225        8.68E-227                     0                              0 

F3               1.47E-80              0                         0                             0                              0 

F4                    0                      0                         0                             0                              0 

F5               0.030856              0                         0                             0                              0 

F6               -1.0316                -1                        -1                            0                              0 

F7               -1357.09           -418.983            -418.983             -1.32E-124                      0 

F8               1.92E-23           3.06E-120         1.21E-122           1.86E-220                       0 

F9              3.66E-18            2.08E-115         2.70E-113           7.51E-215                       0 

F10           8.8818E-16        8.8818E-16         8.8818E-16        8.8818E-16           8.8818E-16 
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Table 4. compare SCA with all other Proposed Hybrid methods at No. of element =50 

and iteration=500 

Function          SCA            SCA-CG             SCA-PT              SCA-CG-PT          SCA-MCG                    

F1                 3.58E-47        4.04E-242              4.04E-242                    0                            0 

F2                 9.74E-40         6.08E-229             6.08E-229                    0                            0 

F3                 1.01E-88                0                          0                             0                             0 

F4                     0                         0                          0                             0                             0 

F5                     0                         0                          0                             0                             0 

F6                 -1.0316                  -1                         -1                            0                             0 

F7                 -1401.8469         -4.19E+02           -4.19E+02          -1.18E-108                     0 

F8                 1.15E-26             1.10E-124          1.10E-124              6.63E-225                    0 

F9                 2.48E-20             7.79E-119           7.79E-119               3.23E-218                  0 

F10              8.8818E-16          8.8818E-16         8.8818E-16         8.8818E-16       8.8818E-16 

 

 

10. Conclusions: 

 The process of improving and hybrid of Heuristic SCA with the suggested method of MCG and other 

classical ones such as CG and PT leads to increase the convergence speed and avoid falling in local 

solutions. It also assists in improving the resulted solution kind through the increase of detecting 

algorithm efficiencies. Where the results show the possibility of the improved algorithm to solve 

different optimization problems, after comparison, results were excellent, where global optimum 

value had reached in most test function. This shown in the numerical results of this study. 
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Abstract : The goal of this paper is to find a better method that converges faster of Max-Cut problem. One 

strategy is to the comparison between Bundle Method and the Augmented Lagrangian method. We have also 

developed the theoretical convergence properties of these  methods. 

Keywords: Max-Cut, Augmented Lagrangian Method, Bundle Methods and Constrained Optimization 

problems. 

1. INTRODUCTION  

Optimization is a primary mathematical method aimed at finding the value of variables that 

provide the minimum value for a mathematical function. Optimization algorithms are a basic and 

efficient technique in mathematical programming, to arrive at a solution, generally with the help of a 

computer. Optimization algorithms start with a first estimate of the value of the variables and by an 

iterative technique generates a sequence of get better estimates, or iterates, until an optimal solution is 

reached. 

A great algorithm should be accurate, fast, efficient and robust. A good approximation of an 

optimal solution should be generated. 

We here present a short overview of multiplier methods [1]. The beginning in the field of 

multiplier methods begins with Joh (1943). Kuhn and Tucker (1951) are eminent scientists who have 

conducted extensive research in the field of multiplier methods. Its results on the necessary conditions 

and adequate conditions are important in this field. Arrow and Hurwicz (1956) introduced the 

Lagrangian function [2]. King (1966) [3] developed the augmented Lagrangian algorithms. 

Hestenes and Powell [4] showed that the algorithm is locally convergent if the second-order 

sufficient conditions are satisfied. Miele et al. (1971) [5] and Rockafellar (1970) [6] introduced an 

augmented Lagrangian method for inequality constrained convex programming. 

This method has been studied by Rockafellar in several papers [7]. The augmented 

Lagrangian method has got a powerful theoretical tool for convex programming. Arrow, Gould, and 

Howe (1971) [8] studied Rockafellar’s augmented Lagrangian method and Pierre (1971) [9] 

introduced a special augmented Lagrangian method with local convergence properties. This method 

mailto:basim4345@gmail.com
mailto:aljelawy2000@yahoo.com


69 
 

was also studied by Lowe (1974) [10], Bertsekas (1982) [11], Humes (2000), R. A. Polyak (2001), R. 

A. Castillo (2003), J. M. Martinez (2006), S. Leyffer (2007) and H. Z. Luo et al. (2011). 

Recently, many researchers have been interested in Lagrange’s enhanced methods, such as 

Leyffer (2016) [12], Kanzow et al. (2018) [13] and Lourenço (2018) [14]. The benefit of the 

augmented Lagrangian method is that it is robust, and we do not need a feasible beginning point. The 

augmented Lagrangian method has been used to solve optimization problems with both equality and 

inequality constraints [11].  

Also, the Bundle method was independently created by Claude Lemarechal [15] and Philip 

Wolfe [16] in (1975). Since then a large number of variants of bundle methods have been developed, 

such as proximal bundle (1990) [17], trust region bundle (2001) [18]. Bundle methods are at the 

moment the most efficient and promising methods for smooth optimization and they have been 

successfully used in many practical applications, for example, in engineering, economics, mechanics 

and optimal control.(2002) [19]. The convergence of the minimization algorithm was studied and 

compare them with different versions of the bundle methods using the results of numerical 

experiments (2013) [20]. Bundle methods have been extensively studied to solve convex and 

nonconvex optimization problems (2015) [21]. The a simple version of the bundle method with linear 

programming is suggested. (2019) [22].  

2. MAX-CUT Problem  

The maximum cut (MAX-CUT) problem is an fascinating area of combinatorial optimization 

and has several applications in different fields, for instance, physics, computer science, and 

mathematics. This problem is NP-hard [23] The abbreviation NP denoting for non-deterministic 

polynomial time, which means NP-hard is a difficult problem that can not be solved accurately. 

Several papers have studied the MAX-CUT problem. This line of research was started by Goemans-

Williamson (1995) [24] with their approximation for the MAX-CUT problem based on semidefinite 

programming relaxation. Poljak showed that linear programming techniques cannot accomplish a 

better approximation solution [25], which is why semidefinite programming has attracted great 

importance and research activity. (For more details see [26]).  

Suppose   (   ) A nondirected graph is with the vertex set   and edge set  , and suppose 

        be edge weight      and       if     . The adjacency matrix of   is given by 

  ,   - such that        . 

We can write the Mac-Cut problem model as  

 (  )    >
        ∑        .

      

 
/

          *    +    

the objective function ∑          .
      

 
/   number of cut edges. For example, if  
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Figure 1: Example MAX- CUT .  

3. The bundle and Augmented Lagrangian Methods 

In the optimization problem, we wish to minimize or maximize some function subject to some 

constraint. The general problem of optimization given by [27, 28]:  

 

         ( )

             (1) 

The function   is defined from a convex set      into  . A point      is a local solution of 

problem (1) if there exists a neighborhood  (    ) where  (  )   ( ) for every    (    )  

  *                +  

 

3.1  Optimality Conditions for Unconstrained Optimization 

 

In this section ,We consider the problem of unconstrained optimization. If       i.e., 

minimize   sans constraints [27, 28], it can be expressed by:  

         
        

 ( )  (2) 

• If   is continuously differentiable, then a necessary condition for       is a solution of  
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   problem (2)  

   (  )     

 

• If   is twice continuously differentiable, then a necessary condition for       is a solution  

  of problem (2)  

   (  )           (  )     

 

• The sufficient conditions for       is a local solution of problem (3)  

   (  )           (  )     

 

Theorem 3.1(First-Order Necessary Condition (FONC)) [28]  

Suppose          be differentiable. If    is a local minimizer of  , then   (  )   . 

  

Proof: Define        as  ( )   (     ) for some       then 

         ( )      (     ). If    , than   ( )      (  ). By definition,  

   ( )     
   

 (     )  (  )

 
  

Since    is a local minimizer, there exists      where  (     )   (  ) for every        

thus we get     (  )   . Since   it is arbitrary, we can substitute w by   , and thus 

     (  )     So,     (  )     for every       Thus,   (  )                  

 

Theorem 3.2 (Second-Order Necessary Condition (SONC) ) [28] 

Suppose         be twice differentiable. If    is a local minimizer of  , then   (  )     

and     (  ) is positive semidefinite.  

 

Proof: Suppose     . We want to prove that      (  )   . 

        By using Taylor expansion of   at     we get  

  (     )   (  )       (  )  
  

 
     (  )   (  )  
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Since   (  )       by   (FONC) theorem, we have  

  (     )   (  )  
  

 
     (  )   (  )  

Divide the sides on     we have  

 
 (     )  (  )

  
 

 

 
     (  )  

 (  )

  
  

We take the limit to both sides, and use the fact of that    is a local minimizer, we get  

      
   

 (     )  (  )

  
    

   
*
 

 
     (  )  

 (  )

  
+  

Since  

    
   

 (  )

  
    

we conclude that      (  )   . So ,    (  ) is positive semidefinite.               

 

Theorem 3.3 (Second-Order Sufficient Condition (SOSC)) [28] 

 Suppose         be twice continuously differentiable. If   (  )    and    (  ) is positive 

 definite, then    is a strict local minimizer. 

  

3.2. The Augmented Lagrangian Method  

This method started to be used in the 1970s. Initially, it was called the multipliers method. 

Now, this method is called the augmented Lagrangian method. The goal of this method is to solve 

constrained optimization problems. This is done by substitute a constrained problem with a series of 

unconstrained problems [4]. The augmented Lagrangian method is analogous to the bundle method 

since in both of them a bundle term is added to the objective. The difference in the augmented 

Lagrangian method is the Lagrange multiplier term is added to it [27]. 

The augmented Lagrangian method was introduced by Hestenes [4]. To introduce the 

augmented Lagrangian method, we change the constraint   ( )    to the constraint   ( )      . 

therefore, we get the problem  

 

         ( )

           ( )                     

    

 (3) 

We apply the bundle method to the problem (3), can get the augmented Lagrangian function as 

follows. We start with the bundle problem for the problem (3)  



73 
 

       
 

   ( )  
 

  
( ( )    ) ( ( )    )  

this expands to  

       
 

   ( )  
 

  
( ( )  ( )       ( )       )  

after simplification we get  

       
 

   ( )     ( )  
 

  
  ( )     

Thus, the augmented Lagrangian function is  

  (     )   ( )     ( )  
 

  
  ( )      

 

We apply the equality augmented Lagrangian and the bundle methods to the linear programming (LP) 

problem. The initial results will provide an idea to work in semidefinite programming. The bundle 

method and augmented Lagrangian methods can be used for equality  

The generally LP problem is given as  

 (  )    >

             

                              

             

  

where      , for        , the numbers     , for        , and the vector      ,     , 

for        . The Lagrangian is given by  

  (   )                      

The general form for the augmented Lagrangian is 

   (   )   ( )                
 

  
          

    

Consider the primal ( ) and the dual ( ) standard linear programming problem: 

 

 ( )   >
             

             

   

  

and  

  ( )   >
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Example 3.1 Consider the following simple linear programming problem:  

 

 

 

 

 

 

 

 

 

Figure 2: Biq Mac library (100 nodes and 2475 edges) 

 

                        ( )     >
                  
                   

    

 (4) 

The dual of problem (4) is given by  

                        ( )   

{
 
 

 
 

           
             

    

    

                         (5) 

The optimal solution of problem (4) is        ,      and the optimal value is        

       ; an optimal solution of problem (5) is     , and the optimal value is       .  

4. Algorithms and Numerical Computation 

In this section, We discuss the numerical results of the algorithms by using Julia Language  

(JuliaBox). The numerical results were generated using the augmented Lagrangian method, which 

was Validated with the bundle method. This test was done on a specific graph that was imported from 

the Biq Mac library [29] in Figure 2. This graph consists of 100 nodes connected with 2475 edges. 

The figure shows that the exact MAX-CUT solution equals 1430 
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4.1. Augmented Lagrangian Methods 

The multiplier method is to update the Lagrange Multiplier estimate [29]   and sometimes the 

bundle parameter   in all iteration. The method of the multiplier is summarized in the Algorithm [1].   

 

  Algorithm [1]  :  The Augmented Lagrangian Methods  

  1.  Choose   , and     , choose      

  2.  Find      such that  

            
 

   (       )  

 

  3.  Update    and     

  4.  Set       and repeat.   

 

4.2. Bundle Methods [30] 

We define another method that can be considered as a stabilization of the plane’s cutting 

method. We start by adding an additional point called the center,  , to the bundle of information. We 

will continue to use the same linear model for our function  , but it is no longer a solution LP on each 

iteration. Instead, we will compute the next iterate of the Algorithm [2]. 

   

    Algorithm [2] : Bundle Method  

   1.  Let       (   )           and      Compute  (  ) 

   2.  Compute the next iterate  

            
    

   ( )  
 

 
          

 

   3.  Define      (  
 
)  ,  ( 

   )  
 

 
          -    

   4.  If      Stop 

   5.  Compute  (    )  

   6.  Update the model  

     ( )     *  ( )  ( 
   )               + 
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   7. Set       and go to Step 2 

4.3. Numerical Resultes 

        In this section, we will review our results and we are assessing the performance of the 

development algorithm proposed. The figures in this section illustrate the number of function calls of 

the approaches being used to solve the max-cut problems. Different sizes of cases were tested, results 

were extracted and shown in this section. 

        In Figure [3] and Figure[4], it is obvious that the Augmented Lagrangian Method provides a 

more rapid convergence. The bundle methods converge after 4s, while the augmented Lagrangian 

methods required only 3s for the convergence. 
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Figure 3: Augmented Lagrangian 

 

Figure 4: The Bundle 
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CPU time may change between runs due to the use of other software on the same computer. 

Accordingly, it was more accurate to plot the number of function calls rather than the CPU time, 

Which cannot be affected by any other program that is run at the same time by using our program, it is 

evident that the augmented Lagrangian method performed faster and required fewer function calls, 

while the bundle method required more function calls. 

4.4. L-BFGS and BFGS methods [31] 

        In the section, we present methods solve of minimizing the problem optimization [L-BFGS, 

BFGS and CQ methods] 

 Limited-memory BFGS (L-BFGS) is an optimization algorithm in the quasi-Newton method 

family that is using a limited amount of computer memory to approximate the Broyden – 

Fletcher – Goldfarb – Shanno algorithm (BFGS). 

 It is a common algorithm for parameter estimation in machine learning. The target problem 

for the algorithm is to minimize over unconstrained values for the real vector. 

 The algorithm L-BFGS solves the problem of minimizing an objective, given its gradient, by 

Iteratively measure approximations of the Hessian inverse matrix. 

 The conjugate gradient (CQ) method Is an algorithm for the numerical solution of specific 

linear equation systems, namely those whose matrix is symmetric positive-definite. 

 

Table [1] and Table [ 2] reports the CPU time and number of function calls for several graphs in the 

Biq Mac library that have 100 nodes and 2475 edges [29].  

Augmented Lagrangian Method 

 

 

 

Problem 

Aug. 

(LBFGS) 

m=1 

time    fcalls 

Aug. 

(LBFGS) 

m=2 

time    fcalls 

Aug. 

(LBFGS) 

m=10 

time     fcalls 

Aug. 

(BFGS) 

 

time     fcalls 

Aug. 

(CQ) 

 

time   fcalls 

g05_100.0 

g05_100.1 

g05_100.2 

g05_100.3 

g05_100.4 

g05_100.5 

g05_100.6 

g05_100.7 

g05_100.8 

g05_100.9 

1.22      112 

1.19      118 

1.24      115 

1.37      130 

1.80      163 

1.44      120 

1.30      110 

1.25      106 

1.43      119 

1.46      102 

1.31      120 

1.22      108 

1.31      125 

1.27      122 

1.68      150 

1.50      130 

1.30      109 

1.20      108 

1.45      119 

1.30      96 

1.38       118 

1.25       102 

1.34       118 

1.70       139 

1.63       152 

1.47       122 

1.49       117 

1.26       108 

1.50       126 

1.36       100 

1.88       161 

1.39       119 

1.60       158 

2.15       181 

1.72       158 

1.71       155 

1.35       116 

1.20       100 

1.46       126 

2.01       91 

0.75      80 

0.73      82 

0.65      81 

0.87      100 

0.88      100 

0.80      90 

0.74      86 

0.77      79 

0.88      90 

1.12      72 
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Table 1: CPU time and function calls number of iterations for augmented Lagrangian method 

 

Bundle Method 

 

 

 

Problem 

Bundle. 

(LBFGS) 

m=1 

time    fcalls 

Bundle. 

(LBFGS) 

m=2 

time    fcalls 

Bundle. 

(LBFGS) 

m=10 

time     fcalls 

Bundle. 

(BFGS) 

 

time      fcalls 

Bundle. 

(CQ) 

 

time    fcalls 

g05_100.0 

g05_100.1 

g05_100.2 

g05_100.3 

g05_100.4 

g05_100.5 

g05_100.6 

g05_100.7 

g05_100.8 

g05_100.9 

2.65      240 

2.00      204 

2.30      250 

2.85      295 

3.15      338 

2.50      266 

3.00      234 

2.26      238 

2.61      267 

3.00      229 

2.50     233 

2.01     202 

2.52     260 

2.65     270 

3.00     329 

2.68     282 

2.88     240 

2.10     212 

2.26     234 

2.82     218 

2.46      234 

2.40      203 

2.82      261 

2.79      270 

3.40      322 

2.58      267 

2.37      242 

2.21      222 

2.55      239 

2.75      216 

3.21     302 

3.31     255 

3.18     355 

5.44     444 

5.27     515 

4.02     416 

3.22     340 

2.72     281 

3.81     355 

3.77     315 

1.44    161 

1.05    133 

1.58    187 

1.65    218 

2.00    234 

1.70    192 

1.47    160 

1.18    150 

1.81    186 

1.82    149 

 

Table 2: CPU time and function calls number of iterations for bundle method 

 

Figure 5: Bounds vs CPU time for augmented Lagrangian and bundle methods. 
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    In figure [5] we plotted the bounds against the CPU time to compare the performance of the 

augmented Lagrangian methods and the bundle methods. This test was performed on a specific graph 

imported from the Biq Mac library [29]. It is evident that the augmented Lagrangian method 

performed faster and required 28 function calls to converge, while the bundle method required more 

than 37 function calls.  

5. The Theoretical Convergence Properties of the bundle and Augmented Lagrangian Methods 

In this section, we discuss the current major convergence theorems. We start with the 

convergence of the bundle and augmented Lagrangian methods. Recall that  

   (   )   ( )  
 

  
  ( )     

and, the augmented Lagrangian function is  

  (     )   ( )     ( )  
 

  
  ( )     

suppose us define  ( ) to be     Jacobian of  ( ), such that  

  ( )  ,  ( )     ( )-
   

Hence  

  ( )  ,   ( )      ( )-  

 

Theorem 5.1 (Convergence of augmented Lagrangian method) [32] 

 Suppose   and   be twice continuously differentiable functions. suppose  

       
 (  )

    

and  

     ( 
       )       

where      as      If    converges to   , where    ( 
 ),        , are linearly independent, 

then       with    satisfying   (  )   (  )   . If additionally, either      with bounded    

or       with bounded   , then    satisfies the (FONC) and    is the vector of Lagrange 

multipliers.  

 

Proof: Since the augmented Lagrangian function is  

  (     )   ( )     ( )  
 

  
 ( )  ( )  

we have that  
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    (     )    ( )   ( )   
 

 
 ( )  ( )  

It can be rewritten  

    (     )    ( )   ( ) .  
 ( )

 
/  

So , we have that  

     ( 
       )      (  )   (  )         

by assumption      , where     ( (  ) )   (  ), and that  

                    (  )   (  )     . Now, by definition of   ,  

   (  )                                  

By assumption,      with bounded    or       with bounded   , so we have that  (  )    

in either case. Since    converges to    and   is continuous, 

 (  )   . Thus (     ) satisfies the (FONC).                                               

 

The Bundle Method [33]  

The aim is to provide the rate convergence of the bundle method for solving convex 

optimization problems of a form below 

      
    

 ( ) (6) 

and            is a convex function. 

        The bundle method is linked to the basic idea of the proximal point method,who uses the 

Moreau-Yosida regularization for  ( ),  

   ( )     
 
 * ( )  

 

 
      +       

  

to build the proximal step for  (6) ,  

      ( )        
 

 * ( )  
 

 
      +  

The proximal point method apply the iteration           ( 
 )    

          and is converging to a minimum of  ( ), if a minimum exists [34]. The basic idea of the 

bundle method is to replace the problem (1) with a series of approximate problems of the following 

form:   



82 
 

    
 
    ( )  

 

 
        

Here k = 1,2, . . . is the iteration number,    is the best approximation to the solution, and   ( ) is a 

piecewise linear convex lower approximation of the function  ( ).Two versions of the method differ 

in the way it constructs this approximation. 

 

Theorem 5.2 (Convergence of bundle method): [33] 

Let Argmin     and    . Then a point                 exists such that : 

    
   

        
   

        

 

Proof: The proof of this result (in slightly different versions) it can be found in many references, such 

as [[34] Thm.4.9],[[35] Thm.XV.3.2.4], [[36] Thm.7.16]  

 

6. Conclusions 

        The aim of the research has been achieved, and the following points have been clarified : 

1- We test comparison between two methods the bundle method and Lagrangian augmentation 

   method.  

2- We prove the properties of theoretical convergence and we studied algorithms. 

3- The graphs available in the Big Mac library were used to evaluate the method. These drawings 

   included different features with a large number of edges and nodes 

4- The results showed that the augmented Lagrangian method reached the goal in fewer the 

   number of function calls of the bundle method and also was timed faster in CPU time. 
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ABSTRACT: We discuss qualitative behavior of the solutions for the nonlinear 

parabolic equation which modeling nonlinear convection equation with absorption. 

This model represents the movement of growing population that is ruled by 

convection process. In this paper, we concentrate on proving the existence of 

traveling wave solutions for the nonlinear convection-reaction equations. In 

addition, we consider the model  when the speed of  advective wave may breakdown 

and the problem has a shock wave solution. The mathematical interesting of the 

waves comes from the behaviors of singular differential equation and discussing the 

stability of the solution. 

Keywords: traveling-waves, convection-reaction process, characteristic methods, stability. 

1. Introduction 

The traveling waves have played a very important role in  many nonlinear parabolic 

equations modeling reaction-diffusion-convection processes. In this paper we are 

interested in solutions of  nonlinear advection equation model  

  

  
  

   

    
    (   )                    ( ) 

where                  and   are positive constants and    (   ) is a 

nonnegative unknown density (concentration), with space   and time  . The study 

and application of this model clearly appeared in many areas of science such as 

biological and physical models including shock waves and traveling waves of 

oscillatory chemical reactions. Existence and uniqueness of the local solution and 

traveling waves for reaction-diffusion-convection equation are introduced in [1, 2, 3, 

7, 8, 12]. Several models of partial differential equations are represented as pattern 

formations, critical patch sizes, traveling waves, ecological invasion and many others 

in [5, 9, 10].Combining population growth dynamics with models of movement has  

ecological interest. the Fisher model is one of the classical model of ecology that 

represents dispersion and population growth see [6]. In addition, we consider the 
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standard nonlinear reaction-diffusion-convection equation in one dimension. 

Generally, this equation can show shock wave solutions [4, 5, 11].  

       In this paper, we considerate on the problem of a nonlinear advection-absorption 

process which has traveling wave solutions for special situations in one dimensional 

space. Particularly, we consider the population at a particular position which grows 

according to the diffusion process that is very weak with respect to the advection 

effects. It is interesting that we discuss the solutions in the form    (    ) where 

    represents the speed of the wave and it travels without changing shape. 

2. Traveling Wave Solutions 

        In this section,  we  find travelling-wave solutions for the equation (1), and give 

the asymptotic behavior of these solutions of (1) and a description of a nonlinear 

convection process with a logistic population growth. The second part of (1) 

represents the nonlinear absorption term. the solution represents population density 

which is changed per unit time. In the spatially homogeneous status, the steady 

states of equation (1) for    ,     and     which are unstable and stable 

respectively. Before we discuss the existence of solutions, it is appropriate to change 

the variable     (   )⁄  in the equation (1) and it becomes 

  

  
    

  

    
  (   )  (   

 
   *               ( ) 

where   (     )    ⁄ .   

Theorem 1. If                     then the traveling wave 

solution   (   )   ( )        of (2) is satisfied for          with  the boundary 

conditions           ( )    and           ( )                  

Proof.  Let us use rescaling technique to equation (2) by writing new variables as 

     and   (   ) ⁄ .Then equation (2) becomes  

  

  
  

  

    
 (   )  (   

 
   *                        ( ) 

where      We consider nonnegative solution to (3) for     because the uniformly 

steady states of the solutions are only     and    . We can formulate the 

traveling wave solution as  

 (   )   ( )                                                      ( ) 
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where     is the wave speed. Then the wave fronts of the solutions move to the left 

in the  -plane. We substitute the function (4) in the equation (3), then  ( ) satisfies 

  

  
 (   )(   )    (   

 
   *                         ( ) 

where differentiation is satisfied according to the variable  . A singularity of the 

solution happens at  ( )   . We can get the wave front solution  ( ) to have limiting 

values. The problem is to govern the traveling wave solution with respect to    where 

the solution of (5) is  nonnegative and exists. It  satisfies   ( )    and, 

          ( )    and           ( )                ( ) 

which are steady states and also  ( ) can be monotonically increasing. Where 

equation (5) has steady states at  ( )    and  ( )    and stability of them relies too 

much on value of    Linearity of the equation (5) displays that the solution  ( )    is 

unstable for      and  ( )    is stable for    . Also, it is generally unstable for 

       If      we can reduce equation (5) into   ( )   ( ) provided that ( )     

Definitely, ( )    is a singularity of (5), and   ( ) is exponentially increasing. ∎ 

Next, we introduce in particular case the traveling wave of (5) with     and    , 

for    .  Let us consider the equation (2) which becomes the following equation 

  

  
    

  

    
    (   )                                          ( ) 

and  after rescaling equation (7) by assuming       and   (   ) ⁄ , we get  

  

  
  

  

    
   (   )                                                 ( ) 

Then the similar way in Theorem 1, the traveling wave solution  ( ) satisfies  

  

  
   (   )  (   )                                            ( ) 

Then for    ( )     we have three cases to get the solution of the ODEs. First, if 

         then the solution of (9) is   

  4
  √ 

  √ 
5

   

    √                                           (  ) 
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  If the parameter      , then the solution of (9) is  in the following form    

  
  

(   )   
                                                   (  ) 

Finally, let us choose that        then the solution of (9) has the following form    

  (
 

   
*
   

 
 

 
 (    )                          (  ) 

where             are constants of integration. The solutions (10)-(12) of the 

equation (9) for     ⁄     ; respectively are  satisfied with the initial condition 

 ( )     , for all     with the boundary conditions (6) at    for any constants  

   (  (   )    )  ⁄             (    (   )    )  Also, the boundary  

conditions (6) are satisfied at    for     but  they are not satisfied for    .  The 

solution   is exponentially increasing and satisfied travelling wave solutions for 

     Because the traveling wave solutions are invariant, the equation (9) is  

unchanged if        where   is any constant. Let us take     to be the origin 

point so the behavior of solutions is invariant to any shifting from the origin.  

 

Fig.1: Traveling wave solution  ( ) where                 
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Fig.2: Traveling wave solution  ( ) where             

 

 

Fig.3: Traveling wave solution  ( ) where            . 

Therefore, traveling wave solution    ( ) of  (9) with     ⁄      are shown in 

Figs.1-3 ; respectively. They  are matching to values               and      

We observe that the derivative of the solution at     explains the steepness of the 

traveling waves is decreasing but the wave speed is increasing. 

3. Methods of Characteristics  

        Let us consider in this section the stability of the traveling wave solution. If we 

impose a small perturbation on the wavefront at initial time such as      then it 

decays away. Also, the behavior of the initial conditions effects on  the speed of 

propagation of the wave. Development of traveling wave solutions the partial 

differential equation (3) with the initial condition   (   )    ( ) are satisfied. Now, 



91 
 

we use the characteristic methods to solve the initial value problem of characteristic 

equations  

  

  
       

  

  
      

  

  
   (   )  

With the initial conditions that can be parameterized in the following forms 

 (   )         (   )     (   )    ( ) 

Integrating the equation for   yields    . For  , after substituting   for  , we consider 

particular case when              ; explicit solution 

 (   )      ( )  , ( 
   )  ( )   -              (  ) 

Also, we obtain the characteristic curves as follow  

                                             ((    )    )                        (  ) 

On the other hand, if we suppose that such             ; we get implicit 

solution which has a complicated form and is not easy to consider its characteristic 

curves and behavior. The solution of equation (13)  evolves along the characteristic 

curve (14) at  (   )       We can assume initial guess of initial conditions  

  ( )    if       and    ( )     if        

where     and   ( ) is continuous in      . Let us begin with the above initial 

condition, and  because the slope equals to the origin point (zero) for all   when 

  ( )     for    , the characteristic curves will intersect. Also, the derivative of 

  ( ) is nonnegative and  will move up to be shocks. Depending on the nature of 

traveling wave and the observation of the above initial data, we should consider the 

initial condition with the following inequality 

    
 ( )    ( )             

should be satisfied. This restriction is significant because if    
 ( )    ( ), then 

      may blow up at some    .  

Therefore, we observe that  if  initial conditions are smooth, then the curves may 

steepen into shocks-like solutions. Thus, from the above analysis, we shall assume 

the form of the initial data as 
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 (   )  8
   (    )                                     

 (     (    ))                       
                (  ) 

with the nonnegative constant   and        and           we consider the 

traveling wave in the form (4) with the initial condition (15) and boundary conditions 

(6) . Then , for      , the derivative of the solution        with the initial condition 

(15) for       will be blows up for some      . Also for     , then       is 

unbounded and the solution v does not represent the traveling wave. We observe 

numerically that the traveling wave solutions for equation (3) with the initial 

condition (15) for           are satisfied with the wave speed   depends on the 

value of   and is inversely proportional to    . 

     In Fig.4, numerical development of the traveling wave solutions is shown for 

           and     with wave speeds             and  . For more motivation , the 

wave speed depending on the parameter   has a fundamental  analysis in [10]. 
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Fig.4: Development of solutions of (3) starting from initial condition (16) with  

                   . Top:       middle:        bottom:       

4. Stability of  Traveling Wave Solutions   

In this section , we try to investigate the stability of traveling wave solutions in 

particular cases where          and for      Let us write the equation (8) by 

assuming  (   )   (   ) where         and we get  

  

  
 (   )

  

  
   (   )                                    (  ) 

Suppose that  ( ) is a traveling wave solution of the equation (9) which is defined for 

   . Let us consider the equation (14) that has a solution in the form 

                                   (   )   ( )   (   )                                          (  ) 

where  (   ) is a small perturbations of  ( ). Thus, for some      , we suppose that 

 (   )    for     , which means that the perturbation can be vanished on the 

interfaces of the waves. Let us substitute the form (17) in the equation(16), then we 

obtain a partial differential equation of the perturbation  (   ) as 

  

  
 (   ( ))

  

  
 (  ( )      ( ))   

  

  
              (  )    

By varnishing the last two terms since   is too small and 
  

  
 is very small at low 

density (if is advection). Also if     , we use the similar calculation thus (18) 

becomes  

  

  
 (   ( ))

  

  
 (  ( )      ( ))                         (  )       
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 Since        (   )    for any fixed  . We shall apply the same technique that 

introduced in [10], for     to investigate the stability of the traveling wave solution 

 ( )  of (19) to small perturbations  (   ). 

5. Conclusion   

Existence and uniqueness of the solutions for the nonlinear parabolic equation which 

modeling nonlinear convection equation with absorption have introduced in several 

studies in [1, 2, 7, 8, 12]. Proving the existence of traveling wave solutions for the 

nonlinear convection-reaction equations in some cases was discussed. Also, Shock 

wave solutions happens in some restrictions of the parameters where the speed of  

traveling wave may breakdown. Qualitative techniques displayed the traveling wave 

depends on the behavior of the initial conditions particularly at the edges of the 

waves. The equation(1) with       has speed of the traveling wave that depends 

on the initial conditions at infinity. We satisfy that traveling wave solution which has 

a compact support cannot grow from the initial data.  
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Abstract. The main goal of this work is to introduce a comparison between connected and confine MO-
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1. Introduction 

There are numerous different types of function spaces, and there are several various topologies that 

can be configured on a given collection of functions [2]. A function space is an precious example of a 

topological space. There are numerous researchers studied various kinds of function spaces via 

placing various topologies on the collection of functions [11]. In 1945 Ralph Fox defined the 

compact-open topology by using a collection of continuous functions between two topological spaces 

[12]. In 1981 Panos Lambrions introduced the bounded-open topology [9].  In 1996 Kathryn Porter 

introduced the regular open-open topology  by using a collection of continuous maps between two 

topological spaces [7]. In 2016 R. Saadati introduced the quasicompact-open topology by using 

continuous real-valued maps on space C(X) [10]. In 2017 Sanjay Mishra and others introduced the 

generalized pre-open compact topology by using collection of real-valued continuous maps respecting 

a Tychonoff space [13].  In the paper that was accepted for publication at the International Scientific 

Conference of the University of Babylon (ISCUB-2019) we presented  a new kind of topology on 

function spaces was the confine measurable open topology (confine MO-topology) which was defined 

as follows: Let .  ∑  / and .  ∑  / be two Borel measurable spaces, a function    
         
→  ∑   is said 

to be set-valued Borel function (şᴃ-function), a collection of şᴃ-functions denoted by  . The pair 

(   ) is said to be şᴃ-function space ( -space) where   (   ( )). So that     is said to be 

measurable şᴃ-function (ϻşᴃ-function) if,    ( )  ∑    for every open subset   of ∑  . A collection 

of ϻşᴃ-functions denoted by  . The pair (   ) is said to be measurable şᴃ-functions space ( -

space).  

Let  (   )  *      ( )     for fixed     * +  ∑   and     } then    
 * (   )  for 

fixed    , * +  ∑   and   is an open set of  + is a subbase in   and the union of finite interaction 

of    
 is a topology on   is called the confine MO-topology of   denoted by    

. The pair (     
) 

is called the confine MO-topological space. 

The main goal of this study is to provide a comparison between the topological space and the confine 

measurable open topology (confine MO-topology), which this comparison includes a many properties 

mailto:hasanainalabbasi@gmail.com
mailto:drluayha11@yahoo.com
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of topological space such as connected space, locally connected, first countable and second countable 

space, thus we obtain new relationships between various types of topological spaces. 

2. Preliminaries  

Definition 2.1 [3]. Let (   ) be a  -space and      then (   ) is said to be  

a) First scarce  -space at  , if             such that  ( )  * +. 
b) Second scarce  -space at  , if             such that  ( )  * +  
c) Principle scarce  -space at  , if                 there exist         such that 

     ( )      ( ) and      . 

Definition 2.2 [3].  Let (     
) be a confine MO-topological space and  (   )    then: 

a)   (   ) is said to be exact set if     (   )  ( )   . (     
) is said to be exact space, if 

   (   )   ,  (   ) is an exact set. 

b)  (   ) is said to be plenary set if ( (   ))
 
  (    ). (     

) is said to be plenary space 

if    (   )   ,  (   ) is a plenary set. 

Definition 2.3 [3].  Let (     
) be a confine MO-topological space, then (     

) is said to be  

a) United space if    (    ),  (    )   ,   (     )   (     )   (        ). 
b) limpid space if    (    ),  (    )    such that   (    )   (    )           

 . 

Definition 2.4 [3]. Let (     
) be an exact united plenary limpid space then (     

) is said to 

caliper topological space.  

Definition 2.5 [3]. Let (     
) be a confine MO-topological space. The union of all confine MO-

open subsets of  (   ) is called the confine MO-interior of  (   ) and is denoted by ( (   ))
 
. 

The confine MO-interior of  (   ) is a confine MO-open subset of  . 

Definition 2.6 [3]. Let (     
) be a confine MO-topological space and  

 (   )   . The intersection of all confine MO-closed supersets of  (   ) is called the confine 

MO-closure of  (   ) and is denoted by  (   ). The confine MO-closure of  (   ) is a confine 

MO-closed subset of  .   

Definition 2.7 [3]. Let (     
) be a confine MO-topological space and  

   . A confine MO-neighbourhood of   is a subset  (   ) of   such that there exists a confine 

MO-open set   (   )    such that    (   )   (   ). The set of all confine MO-

neighbourhood of    is denoted   (   )( ). 

Definition 2.8 [3]. Let (     
) be a confine MO-topological space and  

 (   )   . A confine MO-neighbourhood of  (   ) is a subset  (   ) of   such that there exists 

a confine MO-open set   (   )    such that  (   )   (   )   (   ). The set of all confine 

MO-neighbourhood of   (   ) is denoted   (   )( (   )). 

Definition 2.9 [3]. Let (     
) be a confine MO-topological space. A collection   of subsets of   is 

said to form a confine MO-base for    
 iff      

 and if for each point     and each confine MO-

neighbourhood  (   ) of  (   ) there exist  (   )    such that    (   )   (   ). 

Theorem 2.10 [3]. Let (     
) be an exact united space then: 
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a) If  (   ) is a confine MO-neighbourhood of  (   ) then   is a neighbourhood of  .  

b) If   is a neighbourhood of   then  (   ) is a confine MO-neighbourhood of   (   ). 

Proof:  

a) Let (     
) be an exact united space and  (   ) be a confine MO-neighbourhood of 

 (   )  then there is a confine MO-open set  (   ) of   such that  (   )   (   )  
 (   ) since (     

) is an exact space then by lemma 2.12 (a) we have       and 

since (     
) is an exact united space then      hence   is a neighbourhood of   . 

b) Let   be a neighbourhood of   then there is an open set   of   such that       then by 

lemma 2.11 (c) we have  (   )   (   )   (   ) such that  (   ) is a confine MO-open 

set hence  (   ) is a confine MO-neighbourhood of  (   ). 

Lemma 2.11 [4]. Let (     
) be a confine MO-Topological space then: 

a)  (  * +)   . 

b) If                  then  (     )   (     )   . 

c) If               then  (     )   (     ). 

Lemma 2.12 [4]. Let (     
) be an exact space and  (    ),  (    ) are subsets of   such that: 

a)  (    )   (    ) then      . 

b)  (    )   (    )  then      . 

Theorem 2.13 [4]. Let (     
) be an exact united space then  (   ) be an open set of   iff   be an 

open set of  . 

Proposition 2.14 [4]. Let (     
) be a confine ϻşᴃ-function topological space and  (   ) is a subset 

of   then  (    )  ( (   ))
 
. 

Proposition 2.15 [4]. Let (     
) be an exact united space and  (   ) is a subset of   then 

( (   ))
 
  (    ).   

Theorem 2.16 [4]. Let (     
) be a plenary space, if  (   ) is a subset of   then  (   )   (   ). 

Proposition 2.17 [4]. Let (     
) be an exact united limpid space,  (   )    then  (   )  

 (   ). 

Result 2.18 [4]. Let (     
) be a caliper space,  (   )    then  (   )   (   ). 

Proposition 2.19 [4]. Let (     
) be a plenary space and   be a closed subset of   then  (   ) is a 

closed subset of  . 

Proposition 2.20 [4]. Let (     
) be an exact united plenary space and  (   ) is a closed subset of 

  then   be a closed subset of  . 

3. Confine MO-connectedness and connectedness. 

Definition 3.1. Let (     
) be a confine MO-topological space and  (   )    then  (   ) is 

said to be confine MO-connected set iff cannot be represented as the union of two disjoint non-empty 

confine MO-open subsets in  (   ). 



98 
 

Definition 3.2. Let (     
) be a confine MO-topological space then   is said to be a confine MO-

connected space iff cannot be represented as the union of two disjoint non-empty confine MO-open 

subsets.  

Theorem 3.3. Let (     
) be a confine MO-topological space then   is a confine MO-connected 

space iff the only subsets of   which are both confine MO-open and confine MO-closed are   and 

the empty set. 

Definition 3.4. The maximal confine MO-connected subsets of a confine MO-topological space 

(     
) are called the confine MO-connected components of  . 

Definition 3.5. Let (     
) be a confine MO-topological space and 

    then   is said to be a confine MO-locally connected at a point   if every confine MO- 

neighbourhood of   contains a confine MO-connected open neighbourhood. A space   is said to be a 

confine MO-locally connected iff   is a confine MO-locally connected at each of its points. 

Definition 3.6. Let (     
) be a confine MO-topological space and 

    then   is said to be a confine MO-weakly locally connected at a point   if every confine MO-

neighbourhood  (   ) of   contains a confine MO-connected set  (   ) such that    (   )  
 (   )   (   ). A space   is said to be a confine MO-weakly locally connected iff   is a confine 

MO-weakly locally connected at each of its points. 

Definition 3.7. A confine MO-topological space (     
) is said to be a confine MO-extremally 

disconnected space iff the confine MO-closure of every confine MO-open set is a confine MO-open 

set. 

Lemma 3.8. Let (     
) be an united space and  (   ) be a confine MO-connected set in   then   

is a connected set in  . 

Proof: Let (     
) be an united space and   (   ) be a confine MO-connected set in  . Suppose 

that   is a disconnected set in   then there exist two disjoint open sets       such that         

thus  (   )   (       ) since (     
) be an united space then  (   )   (       )  

 (    )   (    ) but       are two disjoint open sets in   therefore  (    )  (    ) are two 

disjoint open sets in   thus  (   ) is a disconnected set in   this contradiction hence   is a 

connected set in  . 

Lemma 3.9. Let (     
) be an exact united limpid space and   is a connected set in   then  (   ) is 

a confine MO-connected set in  . 

Proof: Let (     
) be an exact united limpid space and   be a connected set in  . Suppose that 

 (   ) is a disconnected set in   then there exist two disjoint open sets  (    )  (    ) such that 

 (   )   (    )   (    ) since (     
) is an united space then  (   )   (    )   (    )  

 (       ) since (     
) is an exact space then         since (     

) is an exact united 

limpid space then we have       are two disjoint open sets in   thus   is a disconnected set in   this 

contradiction hence  (   ) is a confine MO-connected set in  . 

Theorem 3.10. Let (     
) be an united confine MO-connected space then (    ) is a connected 

space. 

Proof: Let (     
) be an united confine MO-connected space. Suppose that (    ) is a disconnected 

space then there exist two disjoint open sets       such that         thus    (   )  
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 (       ) since (     
) be an united space then    (   )   (       )   (    )  

 (    ) but       are two disjoint open sets in   therefore  (    )  (    ) are two disjoint open 

sets in   thus (     
) is a disconnected space this contradiction hence (    ) is a connected space. 

Theorem 3.11. Let (     
) be an exact united limpid space and (    ) be a connected then (     

)  

is a confine MO-connected space. 

Proof: Let (     
) be an exact united limpid space and (    ) be a connected space. Suppose that 

(     
) is a disconnected space then there exist two disjoint open sets  (    )  (    ) such that 

   (    )   (    ) since (     
) is an united space then    (    )   (    )  

 (       ) since    (   ) and (     
) is an exact space then         since (     

) is 

an exact united limpid space then we have       are two disjoint open sets in   thus (    ) is a 

disconnected space this contradiction hence (     
) is a confine MO-connected space. 

Theorem 3.12. Let (     
) be an exact united limpid space then  (   ) be a confine MO-

component set in   iff   is a component set in  . 

Proof: Let (     
) be an exact united limpid space and  (   ) be a confine MO-component set in   

then   is a connected set in  . Suppose that    is a connected set in   such that      thus 

 (   )   (    ) since (     
) be an exact united limpid space then  (    ) is a connected set in 

  but  (   ) be a confine MO-component set in   this contradiction hence   is a component set in 

 . 

Now let   be a component set in   then  (   ) is a confine MO-connected set in  . Suppose that 

 (    ) is a confine MO-component set in   such that  (   )   (    ) since (     
) be an exact 

space then      since (     
) be an exact united space then    is a confine MO-connected set in 

  but   be a component set in   this contradiction hence  (   ) is a component set in  . 

Theorem 3.13. Let (     
) be a confine MO-locally connected space. If (     

) is an exact united 

space and (   ) is a principle scarce  -space at   then (    ) is a locally connected space. 

Proof: Let (     
) be a confine MO-locally connected space and (   ) be a principle scarce  -

space at  . Suppose that (     
) is an exact united space and    ,   is an open set of   such that 

    then there exist     such that  ( )  * + thus  ( )    so that    (   ) such that  (   ) 
is an open set in   then there exist a confine MO-connected open set  (   ) such that    (   )  
 (   ) since (     

) be an exact space then  ( )  * +      so that       but (     
) is 

an exact united space then   is a connected open set hence (    ) is a locally connected space. 

Theorem 3.14. Let (    ) be a locally connected. If (     
) is an exact united limpid space and 

(   ) is a second scarce  -space at   then (     
) is a confine MO-locally connected space. 

Proof: Let (    ) be a locally connected space and (   ) be second scarce  -space at  . Suppose 

that (     
) is an exact united limpid space and    ,  (   ) is an open set such that    (   ) 

then  ( )  * +    thus     since   is an open set of   and (    ) is a locally connected space 

then there exist a connected open set   such that       thus  ( )  * +      so that 

   (   )   (   ) but (   ) is an exact united limpid space and   is a connected open then 

 (   ) confine MO-connected open in   hence (     
) is a confine MO-locally connected space. 
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Theorem 3.15. Let (     
) be a confine MO-weakly locally connected space. If (     

) is an exact 

united space and (   ) is a principle scarce  -space at   then (    ) is a weakly locally connected 

space. 

Proof: Let (     
) be a confine MO-weakly locally connected space and (   ) be a principle scarce 

 -space at  . Suppose that (     
) is an exact united space and    ,   is a neighbourhood of   

then there exist     such that  ( )  * + thus  ( )    then    (   ) such that  (   ) is a 

confine MO-neighbourhood of   then there exist a confine MO-connected set  (   ) such that 

  ( (   ))
 
  (   )   (   ) since (     

) be an exact united space then ( (   ))
 
 

 (    )   (   ) so that (     
) be an exact space then we have  ( )  * +         thus 

         but (     
) is an exact united space then   is a connected set hence (    ) is a 

weakly locally connected space. 

Theorem 3.16. Let (    ) be a weakly locally connected space. If  (     
) is an exact united limpid 

space and (   ) is a second scarce  -space at   then (     
)  is a confine MO-weakly connected 

space. 

Proof: Let (    ) be a weakly locally connected space and (     
) be an exact united limpid space. 

Suppose that (   ) is a second scarce  -space at   and    ,  (   ) is a confine MO-

neighbourhood of   then  ( )  * +    thus     since (     
) is an exact united space then   is 

a neighbourhood of   since   is a weakly locally connected space then there exist a connected set   

such that          thus  ( )  * +         so that    (    )   (   )   (   ) 

since  (    )  ( (   ))
 
 then   ( (   ))

 
  (   )   (   ) but (   ) is an exact united 

limpid space and   is a connected set then  (   ) is a confine MO-connected set in   hence (     
) 

is a confine MO-weakly locally connected space. 

Theorem 3.17. Let (     
) be a caliper then is a confine MO-extremally disconnected space iff 

(    ) is an extremally disconnected space. 

Proof: Let (     
) be a caliper confine MO-extremally disconnected space and   be an open sets in 

  then  (   ) is a confine MO-open set in   therefore  (   ) is a confine MO-open set in   since 

(     
) is a caliper MO-space then  (   )   (   ) thus  (   ) is a confine MO-open set in   

since (     
) is a caliper space then   is an open set in   hence (    ) is an extremally 

disconnected space. 

Now let (    ) be an extremally disconnected space and  (   ) is a confine MO-open set in   then 

  is an open sets in   therefore   is an open set in   thus  (   ) is a confine MO-open set in   since 

(     
) is a caliper MO-space then  (   )   (   ) thus  (   ) is a confine MO-open set in   

hence (     
) be a confine MO-extremally disconnected. 

4. Confine MO-Countability and Countability.  

Definition 4.1. A confine MO-topological space (     
) is said to be a confine MO-first countable 

space if each point has a countable confine MO-neighboruhood basis. 

Definition 4.2. A confine MO-topological space (     
) is said to be a confine MO-second 

countable space if    
 has a countable confine MO-basis. 
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Definition 4.3. A confine MO-topological space (     
) is said to be a confine MO-separable space 

if it contains a countable confine MO-dense subset.  

Definition 4.5. Let (     
) be a confine MO-topological space and  

 (   )    then  (   ) is said to be confine MO-dense in   iff  (   )   . 

Lemma 4.6. Let (     
) be a caliper confine MO-topological space and  (   ) be a confine MO-

dense set in   then   is a dense set in  . 

Proof: Let (     
) be a caliper confine MO-topological space and   (   ) be a confine MO-dense 

set then  (   )    since    (   ) then  (   )   (   ) so that by result 2.15 we have  

 (   )   (   )   (   ) implies that  (   )   (   ) thus    , hence   is a dense set in  . 

Lemma 4.7. Let (     
) be an exact united limpid space and   be a dense set in   then  (   ) is a 

confine MO-dense set in  . 

Proof: Let (     
) be an exact united limpid space and   be a dense set in   then     thus 

 (   )   (   ) so that  (   )   (   )   (   ) implies that  (   )   (   ) but  (   )  

 (   ) therefore  (   )   (   )    thus  (   )   , hence  (   ) is a confine MO-dense set 

in  . 

Theorem 4.8. Let (     
) be a countable caliper confine MO-topological space and (    ) is a 

countable topological space then (     
) is a confine MO-separable space iff (    ) is a separable 

space. 

Theorem 4.9. Let (     
) be an exact united confine MO-first countable space and (   ) be a first 

scarce  -space at   then (    ) is a first countable space. 

Proof: Let (     
) be an exact united confine MO-first countable space and (   ) be a first scarce 

 -space at  . Suppose that     then there exist     such that  ( )  * + so that   has a 

countable confine MO-neighbourhood basis   . Consider    *   (   )    + since (     
) is 

an exact united space then    is a countable collection of confine MO-neighbourhood of  . Now we 

confirm    is a basis of  . Let   be a neighbourhood of   then  (   ) is a confine MO-

neighbourhood of   thus there exist  (   )     such that    (   )   (   ) so that  ( )  
* +      thus       but      therefore    is a basis of   hence (    ) is a first 

countable space.   

Theorem 4.10. Let (    ) be a first countable space. If (     
) is an exact united and (   ) is a 

second scarce  -space at   then (     
) is a confine MO-first countable space.  

Proof: Let (    ) be a first countable space and (     
) be an exact united. Suppose that (   ) is a 

second scarce  -space at   and     then there exist     such that  ( )  * + so that   has a 

countable neighbourhood basis   . Consider    * (   )     + then    is a countable 

collection of confine MO-neighbourhood of  . Now we confirm    is a confine MO-basis of  . Let 

 (   ) be a confine MO-neighbourhood of   since (     
) is an exact united space then   is a 

neighbourhood of   thus there exist      such that       so that  ( )  * +      thus 

   (   )   (   ) but  (   )     therefore    is a confine MO-basis of   hence (     
) is a 

confine MO-first countable space.    
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Theorem 4.11. Let (     
) be an exact united confine MO-second countable space and (   ) be a 

first scarce  -space at   then (    ) is a second countable space. 

Proof: Let (     
) be a confine MO-second countable space such that    is a countable basis of 

(     
). Suppose that (   ) is a first scarce  -space at   and consider    *    is a subset of   

such that  (   )    + since (     
) is an exact united space then    is a countable collection of 

open subsets of   now we confirm    is a basis of (    ). Let      and     since (   ) is a 

first scarce  -space at   then there exist     such that  ( )  * + thus  ( )    implies that 

   (   ) since  (   ) is a confine MO-open sub set of   then there exist  (   )     such that 

   (   )   (   ) so that  ( )  * +      thus       but      therefore    is a 

basis of (    ) hence (    ) is a second countable space.   

Theorem 4.12. Let (    ) be a second countable space and (   ) be a second scarce  -space at   

then (     
) is a confine MO-second countable space.  

Proof: Let (    ) be a second countable space such that    is a countable basis of (    ). Suppose 

that (   ) is a second scarce  -space at   and consider    * (   )  (   ) is a confine MO-

open set of   such that     + then    is a countable collection of confine MO-open subsets of   

now we confirm    is a confine MO-basis of (     
). Let  (   )     

 and    (   ) then 

 ( )    since (   ) is a second scarce  -space at   then there exist     such that  ( )  * + 
thus * +    implies that     since   is an open sub set of   then there exist      such that 

      so that  ( )  * +      thus    (   )   (   ) but  (   )     therefore    is 

a confine MO-basis of (     
) hence (     

) is a confine MO-second countable space. 

5. References 

[1] A. Geletu 2006 "Introduction to Topological Spaces and Set-Valued Maps" Ilmenau University   of 

Technology August 25. 

[2] Belk 2015 "Function Spaces" math351 faculty.bard.edu. 

[3] H. Al-Abbasi, L. Al-Swidi 2019 "Measurable şᴃ-Functions Space And Confine ϻşᴃ-Function Topology" 

International Scientific Conference of the University of Babylon (ISCUB-2019). 

[4] H. Al-Abbasi, L. Al-Swidi 2019 "On Confine ϻşᴃ-Compactness And Confine ϻşᴃ-Separation Axioms" 

International Scientific Conference of the University of Babylon (ISCUB-2019). 

[5] I. Wilde 2005  "Measure Integration and Probability" King's College London.  

[6] J. Sharma 1977 "Topology" Krishna Prakahan Mandir, Mearut. 

[7] K. Porter 1996 "the regular open-open topology for function spaces"  International J of Math and Math Sci. 

Vol 19. No. 2 (1996) 299-302.  

[8] M. Papadimitrakis 2004 "Notes on Measure Theory" University of Crete. 

[9] P. Lambrions 1981  "the bounded-open topology on function spaces"  Manuscripta Math 36, 47–66        

[10] R. Saadati 2016 "Some properties of the quasicompact-open topology on C(X)" J. Nonlinear Sci. Appl. 9 

(2016), 3511–3518. 

[11] R. Arens, J. Dugundji 1951 "Topologies for function spaces" Pacific J. Math. 1(1951) 5-31. 

[12] R.H. Fox 1945 "On topologies for function spaces" Bull. Amer. Math Soc. 51 (1945) 429-432. 

[13] S. Mishra, S. Kang, M. Kumar 2017 "The Generalized Pre-Open Compact Topology on Function Spaces" 

International Journal of Pure and Applied Mathematics Vol. 114 No. 1 (2017) 1-15. 

 



113 
 

The Split Anti Fuzzy Domination in Anti 
Fuzzy Graphs 

H J Yousif 1 and A A Omran2 

1,2Department of Mathematics, College of Education for Pure Science, University of 

Babylon, Iraq. 

Pure.Ahmed.Omran@uobabylon.edu.iqand   hayderjasim36@gmail.comil:* Ema 

Abstract. We will discuss the concept of a split anti-fuzzy dominating set (SAFD) in anti fuzzy graph (GAF) 

and investigate the relationship of      (GAF)(split anti fuzzy domination number) with other known parameters 

of anti-fuzzy graph. Some bounds and interesting results for this parameter are obtained. The split anti-fuzzy 

domination on some standard anti-fuzzy graph has been discussed with some suitable graphs. 

Keywords: anti fuzzy graph (GAF), Anti fuzzy dominating set (AFD) and Split anti fuzzy Domination number. 

1.  Introduction  

The fuzzy set introduced by L.A. Zadeh [1] to explain vagueness mathematically and tried to resolve 

problems by giving a particular grade of membership to every member of a given set, which laid the 

basis of set theory. In (1975) the fuzzy Graph introduced by A. Rosenfeld [2]. The basic idea of fuzzy 

graph introduced by Kauffmann [3], and fuzzy relation represents the relationship between the objects 

of the given set. Domination in fuzzy graphs has been introduced by A.Somasundaram and S. 

Somasundaram [4] and they defined by effective edge. Domination in fuzzy graphs by strong edge it 

was discussed by A. Nagoorgani and V. T. Chandrasekaran [5] Anti fuzzy structures on graphs has 

been introduced by Muhammad Akram [6] and discussed the concepts of self-centroid anti fuzzy 

graphs and constant anti fuzzy graphs and other concepts. on anti fuzzy graph and domination on anti 

fuzzy graph has been introduced by R. Muthuraj and A. Sasireka [7, 8] Antipodal anti fuzzy graph has 

been discussed by Seethalakshmi, R.B. Gnanajothi [9]. Split domination in Fuzzy graph has been 

introduced by Q. M. Mahioub and N.D Soner [10]. The Strong Split Domination Number of Fuzzy 

Graphs introduced by C.Y.Ponnappan, P.Surulinathan and S. Basheer Ahamed [11]. In this paper, we 

introduce the concept of Split anti fuzzy domination on Anti Fuzzy Graph. Some theorems are 

discussed and suitable examples are given. 

2. Basic Definitions: 

 

2.1. Definition [6]: Let η: V→ [0, 1] and ρ: V× V → [0, 1], then GAF = (η, ρ) is known as anti fuzzy 

Graph if ρ (u1, u2) ≥ η (u1) ∨ η (u2)   u1, u2   V and is denoted by GAF = (η, ρ) and ∨: refer to 

maximum. 

 

2.2. Definition [6]: GA*= (η*, ρ*) is known as underlying crisp graph of GAF = (η, ρ)  

Where η *= {w   V / η (w) > 0} and ρ * = {(u, w)   V x V / ρ (u, w) > 0}. 

 

 Note: ρ is taken into account as reflexive and symmetric. For each example, η is selected suitably. 

i.e., only undirected GAF are studied. 

 

2.3. Definition [7]: The size Ş and order Ῥ of GAF = (η, ρ) are defined to be Ş =∑  (   )     

mailto:Pure.Ahmed.Omran@uobabylon.edu.iq
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And Ῥ =∑  ( )     , Denoted by S (GAF) and O (GAF) respectively.  

 

2.4. Definition [8]: GAF is complete if ρ (u, w) = max [η (u), η (w),   u, w   η *] and it is denote by 

   

  

2.5. Definition [9]: The complement of GAF = (η, ρ) is an anti-fuzzy graph such that: η =  ̅  and 

  (   )̅̅ ̅̅ ̅̅ ̅̅ = 1- ρ (u, w) + max [η (u), η (w)] for all ρ (u, w)   E. 

 

2.6. Definition [8]: The effective edge e = (u, w) in GAF is defined as if ρ (u, w) = max [η (u), η (w)]. 

 

2.7. Definition [8]: Let w be a vertex in GAF, N (w) = {u: (w, u) is an effective edge} is known as The 

Neighbourhood of w and N[w]  {w} is known as the closed neighbourhood of w. 

 

2.8. Definition [6]: The GAF = (η, ρ) is connected if there exist a fuzzy path between any two vertices 

of GAF. 

 

2.9. Definition [12]: The GAF = (η, ρ) is a strong anti fuzzy graph if ρ (u, w) =max [η (u), η (w)],    

ρ (u, w)   ρ *. 

 

2.10. Definition [12]: The v-nodal in GAF is defined as every vertex has equal fuzzy values. i.e η (x) = 

k,   x  V (GAF). 

 

2.11. Definition [12]: The e-nodal in GAF is defined as every edge has an equal fuzzy values. i.e. ρ (x, 

y) = k   (x, y)  E (GAF). 

 

2.12. Definition [12]: The uninodal in GAF is defined as for every vertices and edges in GAF have the 

equal Fuzzy values i.e. η (x) = k = ρ (x, y).  

 

2.13. Definition [13]: Let A  V(GAF) is known as an anti-fuzzy vertex cover of  GAF if  for each 

effective 

 Edge e = (u, w), at least  (one) of u ,w is in A. The maximum anti-fuzzy cardinality of anti-fuzzy 

vertex cover is known as anti-fuzzy vertex covering number of GAF and is represented by α0 (GAF). 

 

Note: If e = (v, w) is an effective edge in an anti fuzzy graph GAF, then we say that v and e cover each 

other. 

 

2.14. Definition: A vertex w is known as an isolated vertex if ρ (w, u) > η (w) ∨ η (u)   u   V-{w}. 

 

2.15. Definition:  Let S   V(GAF) is known as the independent anti-fuzzy set if  

{
  (   )                                                  (   )    (   )

  (   )     ( ) ∨    ( )                       (   )    (   )
  

 

2.16. Definition: An independent anti – fuzzy set S of GAF is called the maximal independent anti 

fuzzy set if there is no independent anti- fuzzy set S* of GAF such that |S* | > | S |. 

 

 2.17. Definition: The maximum fuzzy cardinality over all maximal independent anti fuzzy set of GAF 

is known as the independence number of GAF and is denoted by β0 (GAF). 

 

2.18. Definition: Two vertices u1 and u2 of GAF dominate each other if ρ (u1, u2) = max [η (u1), η (u2)]. 
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2.19. Definition: A vertex subset 𝓓 of V(GAF )is known as anti-fuzzy 

dominating (AFD) set of GAF if for each vertex u1   V − 𝓓 there exists a vertex 

u2   𝓓 such that u2 dominates u1. The AFD set 𝓓 of GAF is called minimal AFD 

set of GAF if no proper subset 𝓓 * of 𝓓 is AFD of GAF. 

2.20. Definition: The maximum fuzzy cardinality among all minimal AFD set of GAF is called the anti 

fuzzy domination number and is denoted by     (GAF). 

 

3. Split anti fuzzy Domination of GAF. 

In this section the SAFD set and split anti fuzzy domination number on GAF are defined, uninodal anti 

fuzzy graph is discussed, and these concepts are studied on some kinds of simple GAF. 

3.1. Definition: AFD set 𝓓 of GAF is known as SAFD set of GAF if the induced anti fuzzy subgraph  

 < V − 𝓓 > is disconnected. 

3.2. Definition: The SAFD set 𝓓 of GAF is known as minimal SAFD set of GAF if no proper subset 𝓓* of 

𝓓 is SAFD set of GAF. 

 3.3. Definition: The maximum fuzzy cardinality among all minimal SAFD set of GAF is known as the 

split anti fuzzy domination number of GAF and is denoted by       (GAF). 

3.1. Example: Consider GAF in Figure1. 

Such that V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13} and    (u, v) = η (u) ∨ η (v)  (u, v)   E (GAF) 

 

Figure.1 

We see that the vertex subset 𝓓 1 = {v2, v3, v4, v5}, 𝓓 2 = {v1, v6, v7, v8, v9, v10, v11, v12, v13}, 

𝓓 3 = {v4, v5, v10, v11, v12, v13} and 𝓓 4 = {v2, v3, v6, v7, v8, v9} are minimal SAFD Set of GAF and hence, 

     (GAF) = max {|𝓓1|, | 𝓓2|, | 𝓓3|, |𝓓4|} = max {1, 4.3, 2.8, 2.3} = 4.3 

 

Observation 3.1: A minimal SAFD set of GAF with |𝓓| =      (GAF) is denoted by     - set of GAF. 
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3.1. Preposition: Let anti fuzzy graph GAF =   then SAFD set does not exist. 

3.2. Preposition: Let GAF =        a star anti fuzzy graph then      (K1, η) = η (v), v is a root vertex. 

3.3. Preposition: Let GAF =       be a complete anti fuzzy bipartite graph where |V1|= m and |V2|=n 

where m=∑ ( ) , v    V1 and n=∑ ( ) , v   V2 then      (        ) = max {m, n}. 

3.1. Theorem: Let 𝓓 be a (SAFD) set of GAF be a minimal SAFD set of GAF if and only if for every vertex 

u2   𝓓 one of the next situations holds: 

 (a) There exists a vertex u1   V − 𝓓 such that N (u1)   𝓓 = {u2}; 

(b)  u2 is an isolated in 𝓓; 

(c) < (V − 𝓓) {u2} > is connected. 

Proof: Consider 𝓓 is a minimal SAFD of GAF and u2   𝓓 such that u2 does not satisfy any one of the 

three situations, Then by (a) and (b) 𝓓* = 𝓓 − ,u2} is AFD set of GAF and by condition (c) < V – 𝓓* > is 

disconnected. This implies that 𝓓* is a minimal SAFD set of GAF; this is a contradiction with 

minimalist 𝓓. Therefore, for every vertex u2   𝓓 satisfies one of the above conditions. 

Conversely, assume that for every vertex u2   𝓓 one of the above situations holds. Further, 

if 𝓓 is not minimal, then there exists a vertex u2   𝓓 such that 𝓓 − ,u2} is SAFD set of GAF and there 

exists a vertex u1   𝓓 − ,u2} such that u1 dominates u2. That is u1   N(u2). Therefore, u2 does not 

satisfy the conditions (b) and (c), thus it must satisfy the condition (a). Then there exists u1   V − 𝓓 

such that N (u1)   𝓓 = {u2}. Since 𝓓 − ,u2} is a SAFD set of GAF, then there exists h   𝓓 − ,u2} such that 

h   N(u1). Therefore, h   N (u1)   𝓓, h  u2, is a contradiction with N (u1)   𝓓 = {u2}. Clearly, 𝓓 is a 

minimal SFD set for GAF  

3.2. Theorem: The AFD set 𝓓 of GAF is a (SAFD) set of GAF if and only if there exist u1, u2   V − 𝓓 such 

that every u1-u2 path contains a vertex of 𝓓. 

Proof: Suppose that 𝓓 is a minimal SAFD set of GAF, then < V − 𝓓> is disconnected, take u1, u2    V − 

𝓓 such that every u1-u2 path-joining u1 and u2 must contain a vertex of 𝓓. 

Conversely, assume that u1, u2   V − 𝓓 such that every u1-u2 path contains a vertex of 𝓓. Let 𝓓 be an 

AFD set of GAF, < V − 𝓓 > either connected or disconnected. < V − 𝓓 > is connected, then for any two 

vertices u1, u2   V − 𝓓 there is a u1-u2 path joining u1 and u2 in < V − 𝓓 > which does not contain a 

vertex of 𝓓, this impossible with our assumption. Therefore, 𝓓 is a SAFD set of GAF.   

3.4. Preposition: Let GAF = (η,   ) be a strong anti fuzzy graph and 𝓓 be a      (GAF) – set of GAF, Then 

V − 𝓓 is AFD set of GAF. 

Proof: Assume that 𝓓 is a minimal SAFD set of GAF. If V − 𝓓 is not AFD set of GAF, then there exists w 

  𝓓 which does not dominate any vertex of V − 𝓓. Thus 𝓓*= 𝓓 − ,w- is a SADF set of GAF, this is a 

contradiction, therefore V − 𝓓 is AFD set of GAF.   
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3.5. Preposition: For any strong anti fuzzy graph GAF= (η,  ),  

                            (   )       (   )       

Proof: Let 𝓓 be a     − set of GAF, thus from Preposition 3.3, V − 𝓓 is AFD set of GAF. Therefore 

     (GAF)   |V − 𝓓 | = Ῥ −      (GAF). Hence     (GAF) +      (GAF)   Ῥ.   

3.6. Preposition: Let 𝓓 be a     − set of GAF = (η,  ). If < 𝓓 > is disconnected anti fuzzy subgraph of 

GAF, then      (GAF)   Ῥ /2. 

Proof: Let 𝓓 be a     − set of GAF, thus V − 𝓓 is AFD set of GAF, since < 𝓓 > is disconnected, then V − 

𝓓 is a SAFD set of GAF. Therefore,      (GAF)   |V − 𝓓 | = Ῥ −      (GAF). Hence       (GAF)   Ῥ/2.   

3.7. Preposition: For any anti fuzzy graph GAF= (η,  ),     (GAF)       (GAF); 

Proof: from definitions of     (GAF) and      (GAF).   

3.8. Preposition: V − A is a SAFD set of strong anti fuzzy graph GAF = (η,  ) If A is maximal Independent 

anti fuzzy set of GAF. 

Proof: Since A is maximal independent anti fuzzy set of strong anti-fuzzy graph GAF, then V − A is AFD 

set of GAF. Further < A > =< V − (V − A) > is disconnected. This implies V − A is a SAFD set.   

3.3. Theorem: A set Si  V (GAF) is independent anti fuzzy set of GAF if and only if V(GAF)-Si is an anti-

vertex covering of GAF.  

Proof: Let Si be an independent anti-fuzzy set of GAF. By the definition of independent anti fuzzy set, 

there exist no effective edge between any two vertices in Si, thus no edges of GAF has at least one 

end in Si Then V(GAF) - Si contains at least one end for every edge, Hence ,V(GAF)-Si is an anti-vertex 

covering of GAF. And similarly if SC is anti-vertex covering then it is clear that V(GAF)-SC  is independent 

anti-fuzzy Set.    

3.4. Theorem: If GAF is an anti-fuzzy graph, then Ῥ ≤ α0+ β0, where αo, βo are anti-fuzzy covering 

number and independence number respectively. 

Proof: Let GAF be an anti-fuzzy graph. Let Si be a maximal anti independent set and SC be an anti-

vertex covering of GAF. By theorem3.3, we get V(GAF)-SC is an anti-independent set of GAF.   

Hence |V- SC| ≤ |Si |   Ῥ - αo ≤ βo   Ῥ ≤ α0+ β0.   

3.5. Theorem: Let GAF = (η,  ) be a uninodal anti-fuzzy graph then      (GAF)   0(GAF), where 0 (GAF) 

is a vertex covering number of GAF. 

Proof: Let A be a maximal independent anti-fuzzy set of GAF, then it is contains at least two vertices 

and for each vertex u   A there exists w   V − A such that    (u, w) = η(u) ∨ η(w). Thus V − A is a SAFD 

set of GAF. Hence      (GAF)   |V − A | = Ῥ – 0 (GAF) = 0(GAF).   
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 3.6. Theorem: Let GAF= (η,  ) be any anti fuzzy graph with end-vertex,     (GAF) =     (GAF). 

Furthermore, there exists a SAFD set of GAF containing all vertices adjacent to anti fuzzy end-vertices. 

Proof: Suppose that 𝓓 is AFD set of GAF and v be an end vertex of GAF, then there exists a cut vertex u 

adjacent to v and    (u, v) = η(u) ∨ η(v). Assume that u   𝓓, then 𝓓 is a SAFD set of GAF, if u   V − 𝓓 

then v   𝓓 Hence 𝓓 − ,v- {u} is SAFD set. Repeating this process for all such cut-vertices adjacent to 

end-Vertices, we obtain a SAFD set of GAF containing all cut-vertices adjacent to end-vertices of 

GAF.   

3.7. Theorem: Let GAF= (η,  ) be any anti fuzzy graph, then      (GAF) = t, t   [0, 1], 

t = η (w), w   V (GAF) if and only if GAF has only one cut vertex w   V(GAF) which has n − 1 

neighbors of vertices. 

Proof: Assume that 𝓓 = {w} is a      set of GAF, thus < V − ,w-> is disconnected. Hence v is a cut 

vertex of GAF, so N (w) = ,V − ,w-- then w has n − 1 neighbors in GAF. Assume that there exists another 

cut vertex say u in GAF which has n − 1 neighbors in GAF, then u is adjacent to all remaining vertices of 

GAF. In this case < V − ,w- > is connected, this is a contradiction. Then w is only the cut vertex of GAF 

has n − 1 neighbors in GAF. 

Conversely, assume that w is only one cut vertex of GAF has n − 1 neighbors in GAF, then w is adjacent 

to all vertices of GAF. Hence there exists u  V − ,w-, u   w which it is not adjacent with other vertex 

of V − ,w-, the < V − ,w- > is disconnected. Thus   = ,w- is SAFD set of GAF and hence      (GAF) = t, t = 

η (w).   

3.8. Theorem: Every SAFD set of GAF = (η,  ) is a split dominating set in crisp graph GA* = (η  ,    *). 

Proof: Let 𝓓 be a SAFD set of GAF = (η,  ) then for each vertex u  V- 𝓓 there exist w   𝓓 such that    

(u, w) = η (u) ∨ η (w) > 1, and < V- 𝓓 > is disconnected. Thus    ( u ,w)    *, hence each vertex in V- 

𝓓 is dominated by at least one vertex in 𝓓 and < V- 𝓓 > is disconnected , thus 𝓓 is a split dominating 

set in GA*= (η  ,    *).  

Note: The convers theorem 3.8 is not true. 

3.8.1. Example: Let GA*= (η  ,    *) and GAF = (η,    ), be a crisp graph of GA and  anti fuzzy graph  are 

considered in figure (2) and figure (3) respectively. 

 

 

 

 

                    Figure.2 crisp graph (GA*)                                   Figure.3 anti fuzzy graph (GAF)    
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We see that the split dominating set in crisp graph GA*= (η  ,   *), 𝓓 = {x, u} which is not a split anti 

fuzzy dominating set in anti fuzzy graph GAF = ( ,  ). 

4. Conclusion 

In this work, we studied (SAFD) set and a split anti fuzzy domination number of an anti-fuzzy graph 

(GAF). For some standard an anti-fuzzy graphs, we found the exact value of      (GAF). In addition, 

we got some relationships between split anti-fuzzy domination number and for some parameters. 
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Abstract. In this work, we constructed a new types of topological structures by associated with digraphs called 

   
                           

 
                   by induced two alternate definitions     

                                       . Investigatedsome properties ofthe topologies determined by a 

digraph with respect  to each of these alternated definitions. 

1. Introduction 

Graph theory is important mathematical tool in many subjects ply an important role in discrete 

mathematic. There is a closed connection between topologies and digraphs. In 1967, J.N. Evans, et al. 

[3] There was found a correlation between the set of all topologies and  the set of all transitive 

digraphs. In 1968, T.N. Bhargve  and T.J.  Ahllborn [7] studied and dissect the topological spaces 

with digraphs explain that every digraph   (   )  is offset by topology (    ) where   ={    
        };. In 2013, A. H.Mahdi and S.N.Al-khafaji [1], construccted a topollogy on finiite 

undirectd graphs and a topology on subgraphs on the set of edges and discussed the connectedness of 

each of the graph and the topological spacee that induces by that finite undirectd graph . In 2015, 

Khalid Al’Dzhabri in [6] find the correspondnce between the finite topology and the graph of finite 

reflexive –transitive relations. In 2018, K. A. Abdu  and A. Kilicman[4] by using the set of edges of 

any digraph  studied  associated of applyiing the topology on digrphs called compatible edge topology 

and incompatible edge topology. In 2020, Khalid Al’Dzhabri, A. Hamza Mahdi and Y. Saheb Eissa 

[5] constructed each digraph to topology and studied new operators called    operators. In our 

work, we constructed a new types of topological structures by associated with digraphs called 

   
                          

 
                   by induced two alternate definitions  

                                          . 

2. Preliminaries 

In this part, we recall that some definitions and facts and update another definition by using our new 

concepts . 

Definition2.1[2]: A digraph (directed graph)is a set  of vertices and a set  of  order pairs of vertices 

such that         and denoted by   (   ) or simply by  ( ) if the set  is fixed . 

Definition2.2[2]:Let  ́   ,the digrph   (  ́     ́   )́  denoted simply by  ( )́  ,is a subdigrph of 

the digraph   (   ). 
Definintion2.3[2]:An element of   is called an arc or (directed edge) of the digraph   (   )and is 

denoted by      ;and said to be an arc from   to  . 

mailto:mohfalih17@yahoo.com
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Definition2.4 [2]:A directed path (dipath) of length   from    to    is an ordered (   )  tuple of 

vertices of   (   )  ,                    (   )      in which   is a positive integer and 

*                      (   )  + is a subset of the arc set   of   (   ) .The vertex    is called the 

initial vertex ,the vertices             (   ) is called intermediate vertices ,and    is called the 

terminal vertex of the digraph . 

Definition2.5[2]:An directed edge from    to   is called a loop at    and denoted by         
Definition3.6:If there exists a dipath from    to    in   (   ) ,we say that    indegree to    or     

outdegree from    and denoted by  (   ) .The ordered pair (     ) is called an indegrees pair . If   is 

not indegree to   ,we write  ̃(   ) . 

Definition2.7:If both  (   )  and  (   ) that is if    is indegree to    and    indegree to     we say that  

   and   are symmetrically indegrable and denoted by   (   ) 

Remarrk2.8:We note that the relation    is an equivalence relation on a set   in   (   ). 
Definition3.9[2]:Let   (   ) be a digraph .Then   (   ) is called a transitive digraph if      

and      implies that     . 

Now by using  (   )  in the definition 3.6 we give the following definitions. 

 Definition2.10:Let   (   ) be a digraph . Then   is called  

i)   ―stronglly connected , if   (   ) , for every    and    in  . 

ii)   unilaterally connected , if  (   ) or  (   )  for every    and    in  . 

iii)  weakly connected , if   (      ) is   strongly connected where    *       + . 
iv)   disconnected if   (   ) is not even   weakly connected. 

Remark 2.11: 1) Adigraph   (   ) is called be of type: 

i)    if   (   ) is   strongly connected‖. 

ii)     if   (   ) is   unilaterally connected but not  strongly connected. 

iii)     if   (   ) is  weakly connected but not  unilaterally connected. 

iv)     if   (   ) is   disconnected. 

2) A digraph   (   ) of type   is said to be in the connectedness state     for               
3. On     open set. 

This section, introduced by Khalid Al’Dzhabri, Abd Alhamza Mahdi and Yousif Saheb [5]by 

constructed a topology which associated with digraph called     topological space induced by 

   open set. 

Definition 3.1[5]: Let ―  (   ) be a digraph a subset   of   is called     open set‖ if for      

and an directed edge      , then     . 

Remark 3.2 [5]:From the definition above the topology associated with the digraph   (   ) 
denoted by     and      *                +.And (     ) is called     topological space . 

Example3.3: consider the digraph   (   )        2                3 
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 And the topology corresponding to the above digraph     *    *  +,*     + 

,*     +,*        + *        + *           + + 
Theorem3.4 [5]:Let   (   ) be a digraph then (     ) is topology on a set   associated with the 

digraph   (   ). 
Proof: 

[O1] Clearly   and        

[O2] Let *  +   be a collection of subsets of   in     ,let   ⋃    and      then         for 

some   with      implies that    , so ⋃         . 

[O3] Let                    . Now let   ⋂   
 
    and      ,then      for all   and      

and therefore a family ⋂   
 
        .Hence     is topology on   . 

Definition3.5: Let(     )be a      topological space , then (     ) is called a     topologically 

connected if    can not be expressed as union of two disjoint non empty a     open set and other 

wise (     ) is called a    disconnected space. 

Theorem3.6: The digraph   (   ) is    weakly connected iff (     ) is a     topologically 

connected . 

Proof: Suppose that (     ) is a     connected space , then   cannot be expressed as the union of 

two disjoint     open sets and this iff every non empty proper subset of   is not a     open or is 

not      closed . Equivalently , by definition 3.1 , for each proper subset say   of   , there exists an 

directed edge from    to   or there  exists an directeed edge from   to    in the digraph  ( ) , that is 

in   (      ) , where    *       ) there exists an directed edgefrom    to   and there 

exists an directed edgefrom   to    for each proper subset   of   . Hence by definition 3.1the only  

    open set in   (      )are and   . Thus  (      ) is   strongly connected and 

hence   (   ) is    weakly connected . 

4. On     open set. 

In this section, we constructed  a topology associated with digraph called    
  topological space 

which induced by     open set.  

Definition 4.1:Let   (   ) be a digrph, subset   of   is called     opeen set if for      and 

     implies that       . In other words, a subst   of   is      opeen set, if there does not exist 

an directed edge in   (   ) from   to   . 
Theorem 4.2:Let   (   ) be a digraph then:  

a subset   of a digraph   (   )  is      opeen set, iff   is     closed. 

A subset   of a digraph  (   )  is      open set, iff   is      open of a digraph   
(    )         *              +. 

Proof: we can compare between the definition 4.1 and the definition 3.1 then we note that (  )    

and that the digraph   (    ) obtained from the digraph   (   ) by reversing the direction of 

each and every directed edge of   (   ) and this operation does not alter the connectedness state 

    for               of a digraph. 

Theorem 4.3:Each digraph  (   ) determines, with respect to     open sets, a unique    
   

topological  space (      
 ) and this topological space is identical to the     

   topological  space 

(     
  
 ) determined with respect to     open set by digraph   (    )  where    *     

         +.  

Proof: Let   be an arbitrary subset of  . By theorem 4.2 a subst   of a digraph   (   )  is  

    opeen set, iff   is      open of a digraph   (    )         *              +.And 

thus     
  *       of   (   ) is      open set} and this    

   topology is identical to the 

    
   topology such that    

  
  *       of   (    )    is      open set} and hence by 

theorem 3.4,   (    ) determines a unique     
   topological  space (     

  
 ) which is identical 

to the    
   topological  space (      

 ). 
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Definition 4.4: Let(      
 )be a    

    topological space , then (      
 ). is called a    

     

topologically connected if    can not be expressed as uniion of two disjoint non empty a      opeen 

set and other wise (      
 ) is called a    

  disconnected space. 

Theorem 4.5:The digraph   (   ) is    weakly connected iff (      
 ) is a    

   topologically 

connected . 

Proof:  (   ) is of the same connectedness states     for               of a digrph   (    ), 
   *              +. In particular,   (   ) is    ―weakly connected‖ iff   (    ) is    

weakly connected and from theorem 4.3 (      
 ) is identical to the (     

  
 ) and similarly from 

theorem 3.6   (   ) is    weakly connected iff (      
 ) is a    

     topologically connected 

with respect to      open set. 

5. On     open set 

In this section, we constructed  a topology associated with digraph called    
 
 topological space 

which induced by     open set. 

Definition 5.1:Let   (   ) be a digraph a subset   of   is called     open set if for       and 

     implies that       . In other words, a subset   of   is      open set, if there exist an 

directed edge in   (   ) from   to  . 

Theorem 5.2: A set     of digraph   (   ) is     open set iff a set     of digraph   
(    ) is     open set, where           
Proof: we can compare between the definition 5.1 and the definition 3.1 we note that (  )    and 

the digraph   (    ) may be determine from the digraph   (   ) be including in   (    ) iff 
the directed edges which do not appear in the digraph   (   ) and this operation does in some 

cases, change the connectedness states     For example the digraph   (     ) is type of    but 

the digraph   (   ) is type of   . 

Theorem 5.3:Each digraph  (   ) determines, with respect to     open sets, a unique    
 
  

topological  space (      
 ) and this topological space is identical to the     

 
  topological  space 

(     
  
 ) determined with respect to     open set by digraph   (    )  where         .  

Proof: Let   be an arbitrary subset of  . By theorem 5.2 a subset   of a digraph   (   )  is  

    open set, iff   is      open of a digraph   (    )              .And thus 

    
  *       of   (   )   is      open set} and this    

 
  topology is identical to the 

    
 
  topology such that    

  
  *       of   (    )    is      open set} and hence by 

theorem 3.4   (    ) determines a unique     
 
  topological  space (     

  
 ) which is identical 

to the    
 
  topological  space (      

 ). 

Definition 5.4:Let(      
 )be a    

 
   topological space , then (      

 ). is called a    
 
    

topologically connected if    can not be expressed as union of two disjooint non empty a      open 

set and other wise (      
 ) is called a    

 
 disconnected space. 

Remark 5.4:In general, the ―connectedness classification‖ of a digraph   (   ) is not consistent 

with    
 
    topologically connected of the    

 
   topological space.      

 /  For example : let 

  *     +. The digrph   (    ) is type of     , but the     
 
   topological space(     

  
 ) 

determine with respect      open sets, by   (    ) is an indiscrete space and hence is    
 
    

topologically connected.  
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Abstract: A matroidal structure that generalizes the properties of independence. Relevant applications 

are found in graph theory and linear algebra. This paper will focus on the definitions of a matroid in 

terms of generalization for a crisp set called soft-set and soft-point, also we give some results related to 

this concept. A soft-matroid is defined and examples of soft-systems which form are given. The novel 

concept of independent soft-set is introduced. The notion maximal of independent soft-sets and minimal 

dependent soft-sets, with examples from linear algebra and soft-graph theory, are illustrated. Finally, we 

investigate some fundamental properties of soft-matroid.  

1. Introduction: 

Soft-set theory was initiated by the Russian researcher Molodtsov in 1999,  [1] as a new mathematical 

tool for many mathematical theories. Up to now, the algebraic structure of the soft-sets has been 

investigated by some authors, (see [2], [3], [4], [5] and [6]).  Maji et al. [7], presented applications of 

soft-sets in some decision making problems. Ali et el. [8], proposed several new operations in soft-set 

theory. Moreover, many works have been devoted to application of soft-sets in various algebraic 

structures. In 2002, Maji et al they introduced the definition of processes on soft-sets and their 

properties. After that Sujoy et al [9], specified the definition of soft-set which is called a soft-point a 

generalization of a crisp-point.  

       A matroid is a structure that generalizes the properties of independence, [10]. Relevant 

applications are found in graph theory and linear algebra. There are several but equivalent ways to 

define a matroid, each related to the concept of independence. Various basic examples of matroids are 

presented and basic concepts are clarified in the context of these examples, [11] and [12].  

     In recent years, a graph theory is one of the branches of mathematics, which aims to describe 

phenomena and concepts of an ambiguous, vague, undefined and imprecise meaning. Since the graph 

theory has a rich potential, researches on a graph theory and its applications in various fields are 

progressing rapidly.  

mailto:kholodmohamed@qu.edu.iq
mailto:saiedjhonnykh@gmail.com
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      There exists several different approaches for studying the generalization of the matroidal structure 

and one of the most important was presented by [13], [14] and [15] such as fuzzy-graph theory, and 

soft- graph theory which are all generalizations of the graph theory. 

     The purpose of this paper is to make contribution for investigating on soft-graph theory and we 

focus  on a soft-point of a soft-set and give some new properties within this concept. Moreover, our 

study in this paper focuses on the analytical part of some aspects of the soft-graph theory.  

 

2. Background Material: 

We first review some elementary concepts of soft-sets and soft-graphs that are necessary for this 

paper. 

 

2.1. Definition [1 , 9]:  

( ) A pair (   ) is said to be a soft-set over a universal set  , where     for a set of parameters 

and   is a set-valued mapping      ( ). 

It is apparent that a soft set    (   ) over a universe   can be viewed as a parameterized 

family of subsets of   . 

(  ) A soft set      is said to be a soft-point and its denoted by: 

  
  *(   ( ))+, if exactly one    ,  ( )  * + for some     and  (  )    for all  

     * +. i.e. the fact that   
  a soft-point of    and will be denoted by   

  ̃   , if    ( ). 

 

2.2. Definition [2 , 9]:  

( )  Let    and    be two soft-sets. Then     is said to be a sub-soft-set of   , denoted by 

   ̃   , if: 

    ; 

  ( )   ( ) for all    . 

(  )    Two soft-sets    and    are equal, if     ̃    and    ̃   .  

(   )  Two soft-point   
  and    

 
 are equal, if       and      .   

 

2.3. Definition [2]: 

( ) A soft-set     is said to be null soft-set and denoted by   , if for all    , implies that 

 ( )   .  

(  ) A soft-set     is said to be an absolute soft-set  and denoted by   , if for all    , implies that 

 ( )   .                                                                                                                                         

(   ) A complement of a soft-set    , denoted   
   and defined by: 

,   ( )      ( ) for all    .        ( ) 
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2.4. Remark  [9]: 

( )   
      and    

    .   

(  ) If    
  ̃    ,   

  ̃   
  , i.e.      ( ).  

2.5. Definition  [9]:  

A soft-set    is said to be a finite, if   ( ) is finite for all    . 

 

2.6. Definition  [2 , 3]:  

( ) The intersection (union) of two soft-sets    and    is the soft-set   , which is defined by: 

     ⋂̃   (     ⋃̃  ), where    ⋂  (   ⋃ ) and for all    , written 

as  ( )   ( )⋂ ( ) ( ( )  >

 ( )                                                

 ( )                                                 

 ( )⋃ ( )                                  ⋂ 

).   

 

It is clear that every soft-set can be expressed as a union of all soft-points belong to it.   

 

(  )  The difference of two soft-sets    and    is the soft-set    , which is defined by: 

      ̃  , and for all    , write  ( )   ( )  ( ). 
 

2.7. Definition [13]: 

       Let a pair   (   ) be a crisp graph and   any non-empty set. Let   be a subset of     be an 

arbitrary relation from   to  . A mapping (or set-valued mapping)  from   to  , written as: 

     ( ) can be defined as  ( )  *          + and a mapping      ( ), can be 

defined as  ( )  *     *    +   ( ) +.  A pair (   ) is a soft-set over   and (   ) is a soft-

set over  .   

 

2.8. Definition [13]: (Soft-graph) 

      A 4-tiple    (          ) is said to be a soft-graph, if it satisfies the following conditions: 

(  )   is a graph;  

(  )   is a non-empty set of parameters; 

(  )    is a soft-set over  ; 

(  )    is a soft-set over  ; 

(  ) ( ( )   ( )) is a sub-graph of    for all    . 

3. Main results: 

In this section, our definition of soft-matroid as introduced. We prove some systems of    are 

equivalent to the soft-matroid. In our use of the terms independent soft-set, dependent soft-sets, bases 
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of soft-matriod and circuit of a soft-matroid. Finally, give some examples and results related to these 

concepts.    

      The number of any soft-points in finite soft-set    is said to be the cardinal number and its 

denoted as     . 

 

3.1. Definition: A soft-matroid  ̃ is a structure or an ordered pair (    ) of a soft-graph, which 

consisting of a finite soft-set    and a collection   of a sub-soft-sets of    satisfying the following 

three conditions:                               

(  )      . 

(  )  If       and   
  ̃    , then   

    . 

(  ) If    ,      with          , then there exists   
  of     ̃    such that   ⋃̃  

   . 

           

If  ̃ is the soft-matroid (    ), then  ̃ is called soft-matroid on    . 

 

3.2. Examples:  

( )   Let     *   +,    *  
     

     
    

 + and   *  +. Then  ̃  (    ) is a soft-matroid.   

(  )  Let     * +,    *  
 + and   *      +. Then   ̃  (    ) is a soft-matroid. 

(   ) Let     *    +,    *  
     

     
     

 + and    *          +, with     *  
     

 +  and 

   *  
     

 +. Then   ̃  (    ) is not soft-matroid.                                                             

(  ) Let   *     +,    *   +,    *  
    

    
     

    
    

    
    

    
  + with    *  

    
 +,   

   *  
     

     
     

 + ,    *  
     

 + and    *          +. Then  ̃  (    ) is not soft- 

matroid.                                                                                                             

 

3.3. Theorem: A structure  ̃  (    ) is a soft-matroid if and only if satisfies the following 

conditions:                                                                                                                                                    

( )       . 

(  )  If       and   
  ̃    , then   

    . 

(   ) If          and            , then there exists   
  of     ̃    such that   ⋃̃  

   . 

Proof: Suppose first that  ̃ is a soft-matroid. It is enough to prove that (   ), since          , we 

must have from (  ) of  the Definition (   ), there exists at least one soft-point   
  of     ̃    such 

that   ⋃̃  
   . 

Conversely, to show that the three soft-matroid conditions, from ( ) of a hypothesis above, we have 

    . It is clear that (  ) equivalent to (  ). Also, from (   ), we have             and hence, 

there exists   
  of     ̃    such that   ⋃̃  

   . 

This implies that  ̃ is a soft-matroid.                                                      
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3.4. Definition: Let  ̃  (      ) and   ̃  (      ) be two soft-matroids on a disjoint soft-sets 

    and      respectively. Let       ⋃̃    and   *   ⋃̃                    +. Then  ̃ 

is a soft-matroid on   . This soft-matroid  ̃ is the direct sum  ̃   ̃  of  ̃  and  ̃  .   

 

3.5. Remark: Given two soft-matroids  ̃  (     ) and  ̃  (     ), we are interested in their 

intersection, which is defined by:                                                                                              

 ̃   ̃ ⋂ ̃  (     ⋂  ) . 

In general,  ̃ ⋂ ̃  is not a soft-matroid.  

 

3.6. Definition: Let  ̃  (    ) be a soft-matroid. The soft-subset of    that is in   is said to be the 

independent soft-set.  A sub-soft-set of     that is not in   is said to be a dependent soft-set. 

 

3.7. Example: Let   *       +,   * +    *  
    

    
    

 + and   *   ̃           +. Then  

 ̃  (    ) is a soft-matroid and its clear the form of independent soft-sets. To know the sub-soft-

set of    that is not in   (dependent soft-sets), we give the following formula *   ̃           +. 

  

3.8. Definition: Let  ̃  (    ) be a soft-matroid. The maximal independent soft-set is an 

independent soft-set that is not a sub-soft-set of any other. Also, The minimal dependent soft-set is an 

dependent soft-set which has no proper sub-soft-set.                            

 

3.9. Example: For example (   ) data. 

     The collection of all maximal independent soft-sets in  ̃ given by *   ̃           + and the 

collection of all minimal dependent soft-sets in  ̃ given by *   ̃           +.                 

 

3.10. Theorem: A structure  ̃  (    ) is soft-matroid if and only if satisfies the following 

conditions: 

( )      . 

(  )  If       and   
  ̃    , then   

    . 

(   ) If   
  ̃     with     and   

  are maximal members in *               ̃    +, then 

          . 

Proof: Clear. 

 

3.11. Definition: Let  ̃  (    ) be a soft-matroid. A collection   of sub-soft-set of    such that for 

all       
   : 

(  )          
  . 

(  )  For all   
  ̃    ̃   

  , there exists    
 
 ̃   

  ̃    such that (   ̃  
 ) ⋃̃   

 
  . 

(  )  For all   
  ̃    ̃   

  , there exists    
 
 ̃   

  ̃    such that (  
  ̃   

 
) ⋃̃  

   . 
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Then   is said to be a collection of  bases for  ̃  and it is denoted by   ( ̃). 

 

3.12. Example:  

( ) Let  ̃  (    ) be a soft-matroid. A collection of maximal independent soft-sets in   is a 

collection of  bases for  ̃. 

(  ) For example (   ) data. Let    (  ) with   ( ̃)  *       +  and    *  
     

 + and  

   *  
     

 +. Then   ( ̃) is not collection of  bases for  ̃. 

3.13. Theorem: Let   be a collection of  a sub-soft-set of   . Then   is the collection of bases for a 

soft-matroid  ̃  (    ) if and only if it satisfies the following conditions: 

( )     . 

(  ) If       
    and   

  ̃    ̃   
 , then there exists    

 
 ̃   

  ̃    such that (  
  ̃   

 
) ⋃̃  

   . 

Proof: Assume   is the collection of bases for  ̃. The first direction is clear.  

Conversely, suppose that the above conditions are met. Suffice it to prove the members of   are 

equal-cardinal.  

Now, if for all       
   , with          

  . From Definition (3.11), we must have    and   
  are 

both in  . Also, from Definition (3.1.   ), implies that there exists    
 
 ̃   

  ̃    with    ⋃̃   
 
  . 

This contradicts the maximality of    . Hence         
   and similarly,    

       .  

 

3.14. Theorem: Let    be a soft-set and   be a collection of a sub-soft-set of     satisfying ( ) and 

(  ) conditions in Theorem (3.13). Let   be a collection of  a sub-soft-set of     that are contained in 

some members of   . Then  ̃  (    )  is a soft-matroid having   as it is a collection of  bases. 

Proof: Since      and     ,  implies that   satisfies (  ). Moreover, if      , then       

for some     . Thus if    
  ̃   , then   

  ̃   . So   
   . i.e.   satisfies (  ).  

Finally, to show that   satisfies (  ). Assume that (  ) false for  . Then there exist           with  

          such that, for all    
  ̃    ̃    , the soft-set    ⋃̃  

   . From our hypotheses above 

   , there exist   
     

     such that     ̃   
  and    ̃   

 . 

Assume that such a soft set   
  is chosen, so that    

  ̃(   
  ⋃̃   )  is a minimal. By the choice of 

   and    ; 

   ̃   
     ̃                                  ( ) 

Now, suppose that   
  ̃(   

  ⋃̃   )    . 

Let   
  ̃   

  ̃(   
  ⋃̃   ). Then from (   ) of our hypothesis, there exists    

 
 ̃   

  ̃   
  such that 

(  
  ̃  

 )⋃̃   
 
  . But then  ,(  

  ̃  
 )⋃̃   

 
- ̃(  

  ⋃̃  )     
  ̃(  

  ⋃̃  ) , which is a contradiction 

with   
 . Hence   

  ̃(  
  ⋃̃  )     and so   

  ̃   
     ̃   

 . Thus by ( ), we must have: 

  
  ̃   

     ̃                                 ( )  

Next, we show that   
  ̃(    ⋃̃  

  )     .  

If not, then there exists   
  ̃   

  ̃(    ⋃̃  
  ) and    

 
 ̃   

  ̃   
 , so that (  

  ̃  
 )⋃̃   

 
  . Now, 

  ⋃̃   
 
 ̃ ,(  

  ̃  
 )⋃̃   

 
-, so   ⋃̃   

 
  . Since    

 
 ̃   

  ̃   
  , it follows by ( ) that    

 
    ̃    

and so we have a contradiction to our assumption that (  ) false.  
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We conclude that   
  ̃(    ⋃̃  

  )     . Hence    
  ̃  

     ̃   
 . But; 

   ̃   
  ̃    ̃                                 ( ) 

By (  ) from hypothesis above, we have    
  ̃  

      
  ̃  

  . Therefore by ( ) and ( ), implies that 

    ̃         ̃    , so that          . This contradiction completes the proof   ̃  (    ) is a 

soft-matroid.               

 

3.15. Definition: A minimal dependent soft-set in an arbitrary soft-matroid  ̃  (    )  is said to be 

a circuit of   ̃ and  we  shall  denote  the  collection of circuits of   ̃ by  ( ̃).  

 

3.16. Example: A collection of minimal dependent sub-soft-sets in *   ̃           + of an 

example (   ) is a circuits of  ̃.                                                                                                                

3.17. Theorem: A collection   of a sub-soft-sets of     satisfying: 

( )      . 

(  ) If    and     are distinct members of   with    
  ̃   ⋂̃  , then there exists       such that  

   ̃ (  ⋃̃  ) ̃  
 . 

Let   be a collection of sub-soft-sets of    that contain no member of  . Then  ̃  (    ) is 

a soft-matroid having   as its collection of  circuits.  

Proof: We shall first show that   satisfies   ,    and   . It is clear that    does not contain in  . So 

      and    holds. If    contains no members of    and       and   
  ̃    , then   

   . Thus 

   holds.  

To prove   , suppose that   
  ,   

    with    
      

  . Assume that    fails for all   
  and   

 . Now, 

  has a member that is a sub-soft-set of   
 ⋃̃  

  with     
 ⋃̃  

      
  . Choose such a sub-soft-set   

  

for which    
  ̃  

   is minimal. As    fails,    
  ̃  

     , so we can choose   
  from   

  ̃  
 . Now, 

for each    
 

 of    
  ̃  

  .  

Then (  
 ⋃̃  

 ) ̃   
 
 ̃   

 ⋃̃  
  and    

  ̃((  
 ⋃̃  

 ) ̃   
 
)     

  ̃  
  . Therefore (  

 ⋃̃  
 ) ̃   

 
  , 

so (  
 ⋃̃  

 ) ̃   
 

  contains a member   
 

 of   . Evidently,    
 

 is not in   
 

. Moreover,    
  ̃   

 
 

otherwise   
 
 ̃   

  contradicting the fact that   
   . Let     

  ̃   
  ̃  

 . If   
  ⋂̃ (  

  ̃  
 )    , 

where   
  is a member of  . Then    

  ̃ ((  
 ⋂̃  

 )⋃̃  
 ) ̃   

  ̃   
 ; a contradiction.  

Therefore, there exists    
  ̃   

  ⋂̃ (  
  ̃  

 ). Now,   
  ̃   

  ⋂̃   
 , so (  ), implies that there exists 

a member of    
   of    such that   

   ̃ (  
  ⋃̃   

 ) ̃  
 . But, both   

  and   
  are  sub- soft-sets of 

  
 ⋃̃  

  and hence   
   ̃   

 , a contradiction. We conclude that    holds. Thus  ̃ is a soft-matroid. 

  

         Now, to prove that   is a collection of circuits of  ̃  (    ), we note that the following 

statements are equivalent: 

(  )    is a circuit of  ̃.  

(  )      and    ̃  
    for all   

  ̃   . 
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(  )    has a member   
  of    as a sub-soft-set, but    

  ̃   . 

(  )      . 

 

2.18. Corollary: Let   be a collection of a soft-subsets of    . Then   is the collection of circuits of  a 

soft-matroid  ̃  (    ) if and only if    satisfyies the following conditions: 

(  
 )       . 

(  
 ) If    and     are members of   such that    ̃    , then      . 

(  
 ) If     and     are distinct members of    with   

  ̃   ⋂̃  , then there exists      such 

that     ̃ (  ⋃̃  ) ̃  
 . 
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Abstract. In this work we focus on spectral asymptotic for the second derivative operators. Here we study 

Schrödinger operator with zero-range potentials, because this operator has great importance for understanding 

the solvable problems in quantum mechanics and atomic physics. It appears in different models such as the 

mathematical physics, applied mathematics and theoretical physics. We have two objectives in this work. We 

first demonstrated that this operator has a continuous spectrum contains an infinite number of bands separated 

by gaps.  We then explained that the bands to gaps ratio tends to zero under certain conditions. 

1. Introduction 

3.  The differential operators are ubiquitous in many natural systems, ranging from quantum to 

atomic physics applications. These applications are used to give rise a solvable model of 

complicated physical phenomena [1,2,5]. Because the method of solid-state physics reproduces 

the geometry of the problem extremely well, therefore, there is a particular interest in the 

applications of these models.  Kroing and Penney [10] were the first who described this model by 

the Hamiltonian operator 

4.     
  

   
 ∑       (   )  

5.  where   is the Dirac delta function and n  are the actual coupling constants that describes 

each point interactions. They also explained the spectrum of permissible energy values which 

consists of continuous region separated by finite intervals. Further, this operator is used to solve 

the complicated physical phenomena. The point interactions found in many different models by 

considering boundary conditions at the individual points. The generalized point interaction in one 

dimension with boundary conditions     

6.  (
 (  )

 (  )
*     (

  
  

* (
 (  )
 (  )

*  

7.  is studied in [12, 13]. He also discussed the existence and the physical properties of the one-

dimensional δ′-interaction Hamiltonian. Bloch theorem is used to explain that any such operator 

coincides with some self-adjoint extension of the unperturbed second-derivative operator 

restricted to the set of functions vanishing in a neighbourhood of the origin [7]. Moreover, the 

connected extensions of the Schrödinger operator are studied and described by the boundary 

conditions at the origin in [8], 

8.  (
 (  )

 (  )
*     (

  
  

* (
 (  )
 (  )

*, 
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9.  where         are real, and         ,       . The spectrum of the generalized 

Kroing-Penney model has infinitely many gaps and the behaviour depend substantially on the 

parameters of generalized point interaction [6]. Moreover, the spectral asymptotic for operators 

with partial derivatives have been the subject of extensive research for over a century. Therefore, 

it drew the attention of many remarkable mathematicians and physicists. The mathematical 

framework used to describe this spectral asymptotic was based on the Bloch theorem. In our work 

we used the transfer matrix to describe this behaviour.  

10.  The main result of this paper is contained in three Propositions which describe the 

asymptotic behaviour of the operator    corresponding to the values of three independent real 

parameters. We show that the spectrum of this operator is absolutely continuous and fills in an 

infinite number of bands separated by gaps. 

11.  Let us give a brief outline of the contents of the paper: In section 2, we define the 

second-derivative operator and discuss the classes of unitary of equivalent of this operator. We 

also derive the reduction relation in Proposition 2.1. Then, we study the transfer matrix to obtain 

the dispersion relation which uses to calculate the spectral bands. In section 3, we investigate the 

spectral asymptotic by three Propositions (3.1), (3.2) and (3.3). 

2. Preliminaries  

12.  At the beginning let us briefly recall the definition of the second-derivative operator  . We 

consider here the operator    (   ) where   (
  
  

*    (   ) such that           

  and         acting in the Hilbert space   ( ) defined on the functions from   
 *  

* +    (Sobolev space) satisfying the boundary conditions,  

13.                                                     (
  ( )

  
 ( )

*      (
  ( )

  
 ( )

*       .                                     

(2.1) 

14.  In addition, this coincides with a self-adjoint operator extension of the operator   

      ⁄  limited to all functions from   
 ( ), disappearance in a neighbourhood of the points 

    [9]. 

15.  Now, in order to illustrate the spectral asymptotic of the second derivative operator, we 

first are going to describe the classes of unitary equivalent operators of this operator. There are 

three independent real parameters to describe these classes which are              . The 

following proposition explains the relationship between these parameters to each other, as well as 

determining the values of these parameters to calculate the spectral asymptotic of the second 

derivative operator.  

16.  Proposition 2.1. If            be three independent real parameters describing the 

operator   such that        then      √    . 

Proof.  Since         then multiplication this equation by   we get: 

                                                                 . 

But                                                          , 

thus                                                         .  
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Implies that                                                ,                                        

then                                                       

  
  √    (    )

 
  

By the same way we get                    

  
  √    (    )

 
  

therefore                                              √    (    ) .          

Since                                                  (    )     , 

implies that                                        (    ). 

Then                                                  √     .                                                                (2.2) 

█ 

Now, we are going to study the transfer matrix for the purpose of describing the second derivative 

operator spectrum. Subsequently, this matrix is given by [3, 4] 

   (      
 

 
    

          

+ (
  
  

*

 (
      

 

 
          

 

 
    

                          
+       (   ) 

 where   √  . And since        , therefore, the specific determinant of this matrix is given 

by 

   (     )              

Furthermore, the operator's spectrum coincides with the set of   where the spectrum of this 

operator is calculated as zeros of the following inequality [11], 

          

Thus 

|(   )      (
 

 
   )     |         

Let us now define the function   by 

                         ( )          .
 

 
   /                                                            (2.4) 

Consequently, we can be determined the operator's spectrum by solving the following equation 

                                         ( )                                                                                               (2.5) 
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This equation is called the dispersion relation which used to obtain the spectral bands in the 

following section. 

3. Spectral asymptotic for the periodic operator 

In this section, we study the spectral asymptotic for the second derivative operator  . There are 

infinite numbers of bands in this operator, which has a continuous spectrum (i.e. consist of all 

eigenvalues such that the resolvent of operator   exists and defined on a set which is dense in 

  ( )) and it is tending to  . The following three Propositions give an explicit description of the 

spectral asymptotic corresponding to the parameters of this operator. 

Proposition 3.1. Assume that         are arbitrary satisfying the equation (2.2). If      then 

there are infinite numbers of bands     ,  
     

 - of the operator  , which has a continuous 

spectrum and located in the intervals ,(     ) ⁄  (     ) ⁄ - for large values of  . And 

their edges   are asymptotically which are given by  

      
   

  

 

 
 ( 

 

     
   

   

    
   

   

    
  

 

     
 
    

    
*
 

  
  (

 

  
*  

                             

                                                                                                                                                     (3.1) 

      
   

  

 

 
 ( 

 

     
   

   

    
   

   

    
  

 

     
 
    

    
*
 

  
  (

 

  
*  

        

In addition, the length and the midpoint of the band are asymptotically which given by: 

            
 

   
 

 

  
( 

 

     
   

 

    
  

 

   
 

  

    
*
 

  
  (

 

  
*                

        (   ) 

and  

             
  

 
 

 

  
( 

 

   
   

 

  
   

  

  
  

 

  
*
 

  
   (

 

  
*  

           (   ) 

respectively.  

Proof.  At first, let us to prove that there is only one band    of continuous spectrum in each 

interval    for the large enough values of  .  

Now, by the equation (2.4) we get        

                   (     ⁄ )      (     ⁄ )  (
 

     ⁄
  (     ⁄ )    (     ⁄ ) 
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 (  )        ( )        . 

This equation determines the values of the end points of each interval   . Since it has alternating 

signs, and when   is sufficiently large, thus     (     )   ⁄    Consequently, that means 

there is one spectral band when the interval is considered. 

 Let    ( )    we get: 

    ( )    .  
 

  
    /      .

 

 
   /       

 implies that      

                                        (      ) (   (   )                                                         
(3.6) 

This function is rational and by the comparison test it tends to    as     .  

Note that 

1- if             then ( (     )) ((   )    )          . 

2- if           arbitrary, then 
 (     )

(   )    
    (   )   ( (    )) ((  

 )  )       (     ).   

3- if             , then the relation (3.6) takes the form: 

(         )      (      )     , 

implies that             .  

But        when        ⁄ , hence, there is one extreme point in each interval    for the 

function   when    . Consequently, because the function   is continuous and monotonically 

between these points, then for   is sufficiently large, there is only one band where   ( )    in 

each interval   .  

In order to calculate the end points of each band   , let us to solve the equation   ( )     [11]. 

Consider the first case     , then the left and right end points of the intervals    satisfy the 

following equations 

                        (
 
  
⁄      )       (  )                                                              (3.7) 

                        (
 
  
⁄      )       (  )                                                               (3.8) 

respectively.  

On the other hand, due to the points    and    are closed to    for large  , then let us to use the 

following representation of the asymptotic 

      
 

 
 
  

  
  (

 

  
*        

 

 
 
  

  
  (

 

  
*          
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Substituting these representations into (3.7) and (3.8), we get: 

      
 

 
[
 

 
 

 

   
]
 

 
 , 

  

     
  (  

 

   
*

  

    
  (

 

    
 

 

    
)  

 

       

 
 

    
(       )-

 

  
  (

 

  
*          

      
 

 
,
 

 
 

 

   
-
 

 
  , 

  

     
 (  

 

   
)

  

    
 (

 

    
 

    

    
)  

 

       

 
 

    
(       )-

 

  
  (

 

  
)          

In the similar way we can be analysed of the case when    , which leads to formula (3.1). 

Finally, the      and    of the band are given by  

       
    

  
 

   
 

 

  
( 

 

     
   

 

    
  

 

     
 

  

    
*
 

  
  (

 

  
*          

And  

      
  
    

 

 
      

  

 
 

 

  
( 

 

   
   

 

  
   

  

  
  

 

  
*
 

  
   (

 

  
*          

respectively.                                                                                                                                █   

 

Additionally, the length of the gaps     is calculated as the following 

         
    

    (    )  
 

 
  (

 

  
*  

Implies that 

                 
    

    
 

 

      
  (

 

  
*                                                                                 (   ) 

As a result, we conclude that the bands to gaps ratio tends to zero at high energies.   

 

Proposition 3.2. Assume that    ,    , and   is an arbitrary, then there are infinite numbers 

of bands     ,  
     

 - of the operator  , which has a continuous spectrum and located in the  

intervals     ,         (   ) - for large values of  . And their edges are asymptotically 

which are given by 

           
 

 
 

 

   
  (

 

  
*            

                                                                                                                                        (3.10) 
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                                         (   )       
 

 
 

 

   
  .

 

  
/           

In addition, the length and the midpoint of the band are asymptotically which given by: 

              (        
 

 
*  (          

 

 
*   (

 

 
*                               (    ) 

and       

               (  
 

 
)  (     

 

 
 
 

 
)  

  

 
  (

 

 
*      

                                                                                                                             (    ) 

respectively.  

  

Proof.  At first, let us to prove that there is only one band    of continuous spectrum in each 

interval    for the large enough values of  .  

Now, since    , and by the equation (2.4) we get      

                                     ( )        
 

 
                                                                           (3.13) 

and         

 (  )         
 

  
       (  )    

Since the function  ( ) is continuous and  (  ) has alternating signs, moreover, when   is 

sufficiently large,    (  )   , then we conclude that there is only one spectral band in each 

interval.  

The zeroes of    ( ) we get 

    ( )         
 

 
     

 

  
      

Impels that the equation for extreme points is given by  

     
  

     
  

and because this function is decreasing if   is sufficiently large, then there is only one solution in 

each interval. 

Note that if     , then  ( )       . Also, since  ( )  (  )  ,    , then           

Consequently,   
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Hence, there is one extreme point in each interval    for the function   when    . 

Consequently, because the function   is continuous and monotonically between these points, 

therefore, for   is sufficiently large, there is only one band where   ( )    in each interval   . 

Now, when     then       
 

 
  satisfies 

       
 

 
   ⁄   

On the other hand, due to the     and    points are closed to         
 

 
 and  (   )  

     
 

 
  respectively, then let us to use the following representation of the asymptotic 

           
 

 
         (   )       

 

 
   , 

where       are real constant.  

The equation for the left end point, 

(  )   (  )  ,(
 

 
         (     

 

 
)       -  

 

        (   )⁄
 

               ,(   (     
 

 
)      )  

 

 
     )-  

By using the perturbation theory to keep the first terms, we get 

   
 

   
  (

 

  
*            

thus           

           
 

 
 

 

   
  (

 

  
*         

By the same way we can prove the representation for   , i.e.                

   (   )       
 

 
 

 

   
  (

 

  
*           

Furthermore,   

       (        
 

 
*  (          

 

 
*   (

 

 
*           

and    

     (  
 

 
)  (     

 

 
 
 

 
)  

  

 
  (

 

 
)            

respectively.                                                                                                                       █ 
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In addition, the length of the gaps     is calculated as the following 

            
 

 
(   )   (

 

 
*           

Implies that 

                                           
    

    
 
  ⁄        

 
 

     
 
 

  (
 

 
*                                                  (    ) 

As a result, we conclude that the bands to gaps ratio tends to the finite non-zero limit depending 

on the parameter   only at high energies. 

Proposition 3.3. Assume that          , and    ; then there are infinite numbers of bands 

    ,  
     

 - of the operator  , which has a continuous spectrum and located in the  intervals 

   ,         (   ) -. And their edges are asymptotically which given by 

                    
 

  
  .

 

  
/             (   )                                       (3.15) 

                       (   )  
   

  
  .

 

 
/                                               (3.16) 

In addition, the length and the midpoint of the band are asymptotically which given by:  

                           (       )   .
 

 
/                                                                 (    ) 

and 

                            
  

 
    .

 

 
/                                                              (    ) 

respectively. 

 

Proof.  By using the similar way which used in the previous two propositions we can prove this 

proposition.                                                                                                                                       █ 

                                                                                                                                   

 

Furthermore, the length of the gaps     is calculated as the following 

           (
 

 
*           

Implies that 

                 
    

    
 
  

   
   (

 

 
*                                                                                             (    ) 
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As a result, we conclude that the bands to gaps ratio tends to infinity at high energies. 

 

4. Conclusions 

As mentioned in the introduction, the goal of this study was to describe a spectral 

asymptotic of the second derivative operator corresponding to the values of three 

independent real parameters. We first used the transfer matrix method to obtain the 

dispersion relation which allowed to describe the spectrum of this operator. Then, we 

observed there are three different spectral asymptotics for this operator depending on 

independent parameters which are described in three propositions. More importantly, we 

proved analytically that there are infinite numbers of bands of this operator   filled with a 

pure absolutely continuous spectrum. Furthermore, we proved analytically that the bands 

to gaps ratio tends to zero at particular case when      
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Abstract. An infinite dimensional associative algebra   over a field   is called locally finite associative algebra 

if every finite set of elements is contained in a finite dimensional subalgebra of  . Given any associative 

algebra   over field   of any characteristic. Consider a new multiplication on   called the Lie multiplication 

which defined by ,   -        for all      , where    is the associative multiplication in  . Then 

   ( ) together with the Lie multiplication form a Lie subalgebra of  . It is natural to expect that the 

structures of   and   are connected closely. In this paper, we study and discuss the structure of infinite 

dimensional locally finite Lie and associative algebras. The relation between them, their ideals and their inner 

ideals is considered. A brief discussion of the simple associative algebras and simple Lie algebras is also be 

provided.  

2. Introduction 

   Throughout this paper, unless otherwise stated,   is an algebraically closed field of characteristic 

positive characteristic  ,   is an infinite dimensional locally finite associative algebra over   and   

is an infinite dimensional locally finite Lie algebra over  . 

   In 2004, Bahturin, Baranov and Zalesski [1] studied simple locally finite Lie subalgebra of the 

locally finite associative ones. A locally finite (Lie or Associative) algebra   is an algebra in which 

for every finite set of elements of   is contained in a finite dimensional subalgebra   of  . The Lie 

structure of associative rings or algebras were investigated by the American Mathematician Herstein 

in 1954 (see [20] and [21]) after defining a new multiplication called the Lie Multiplication by  

 ,   -                                                                            (   ) 
where    is the usual associative multiplication in the simple associative ring   over its centre  ( ). 
Then  ( ) together with the multiplication in (1.1) form a Lie algebra over  ( ). We denote by 

 ( )  ,   - to be the Lie subalgebra of  ( ) together with the multiplication defined in (1.1). 

Moreover, if an involution   is defined on  , then for any subalgebra   of   

    ( )  *         +                                                               (   ) 
form a Lie algebra with the Lie multiplication that defined as (1.1). Recall that an involution     
  is an anti-automorphism, defined by  ( )    , satisfy the following conditions  (   )      
   ,  (  )       and  ( (( ))    for all      . Involutions of the first kind only is considered 

in this paper, that is, involutions with the following property:  (  )     .  
    Baxter [11] Focused on the study of the Lie algebras come from simple associative rings with 

involution in 1958 and Ericson [17] studied the Lie subalgebras of prime rings with involutions in 

1972. A revision to Herstein’s Lie theory was giving by Martindale [22] 1986. All of these studies 

focused on the structure of the Lie ideals and Lie subalgebras that obtained from simple associative 

rings or algebras. Recall that a subspace   of   is called a subalgebra of   if  ( )     and an ideal if 
,   -   . Although simple Lie algebras have no ideals except themselves and the trivial ones, it has 

been proved in [12] that all simple Lie algebras of classical type have non-zero inner ideals.  

mailto:hasan.shlaka@uokufa.edu.iq
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     In 1976, the American mathematician Georgia Benkart introduced the notion inner ideals of Lie 

algebras. An inner ideal is a vector subspace   of   which satisfies the property ,  ,   --   . By 

the definition of the Lie ideals, one can see that every ideal is an inner ideal. However, Inner ideals 

are more difficult to be studied as some of them are even not Lie subalgebras. Benkart showed that the 

structure of the Lie inner ideals are similar to the structure of the   -nilpotent elements of Lie 

algebras [13]. Therefore, inner ideals are important in classifying Lie algebras because by using 

certain restriction on the   -nilpotent elements one can distinguish the simple Lie algebras of 

classical type and of the non-classical ones in the case when    . In several papers (See for 

example [14], [15] [18] and [19]) Fernández López et al generalized Benkart’s theory over inner 

ideals.  

      In this paper, we discuss the structure of the infinite dimensional simple locally finite algebras. 

We start Section   with some preliminaries. Section   stats some facts about the plain, diagonal and 

non-diagonal modules of finite dimensional Lie algebra and Section   consists of the infinite 

dimensional case where the some types of local systems of locally finite algebras (associative or Lie) 

are considered. Section   is the completion of Section 3 where the infinite dimensional cases of plain 

diagonal and non-diagonal Lie algebras are highlighted. In Section 6 we investigate the structure of 

(involution) simple and associative algebras. The main results of this paper are found in Sections 7 

and 8, where the simple locally finite Lie algebras of simple and involution simple associative 

algebras are considered.  

3. Preliminaries 

A perfect Lie algebra is a Lie algebra   with the property  ( )    and a perfect associative 

algebra is an associative algebra   such that      [4]. 

Definition 2.1. [1] A locally finite (associative, Lie,…etc) algebra is an algebra (associative, 

Lie,…etc)   over a field   in which for every finite set of elements in   we can find a finite 

dimensional subalgebra of   that contained it. 

 

Recall that a set   is said to be a directed partially ordered set if there is an ordering relation   

defined on   such that for each       , there is     such that       [2].  

 

Remark 2.2. Suppose that for each       with       we set    . Then for each      , 

there is     such that      , so    is a directed partially ordered set. Thus,        is the direct 

limits of an infinite chain of algebras (                ). Therefore,   is the inductive 

limit          of the algebras      
 

We denote by   ( ) the vector space of all    -matrices together with the matrix multiplication 

defined on it.  

 

Remark 2.3. Every   ( ) can be generalized to be an (   )  (   )-matrix     ( ) by 

putting   ( ) in the left upper hand corner and bordering the last column and row by  's.  

 

Example 2.4. As an example of locally finite associative algebra is the algebra   ( ) of infinite 

matrices with finite numbers of non-zero entries, that is, 

  ( )  ⋃  ( ) 

 

   

                                              (   ) 

By using the Lie multiplication in (1.1) on   ( ), we obtain a Lie algebra called the general linear 

Lie algebra    ( )    ( )
( ). There are three simple Lie subalgebras of    ( ). These are the 
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special linear    ( ), the Orthogonal    ( ) and the Symplectic     ( ) Lie algebras are 

subalgebras of    ( ) which are defind, respectively, by  

   ( )  ,   ( )    ( )-  *     ( )   ( )   +                       (   ) 
   ( )  *     ( )  

    +                                                            (   ) 
    ( )  *     ( )  

    +                                                          (   ) 
where   ( ) is the trace of the matrix  ,    is the matrix transpose of   and    is the symplectic 

transpose of a matrix   defined by          with    (
   
    

* (   is the identity    -matrix). 

 

Remark 2.5. 1) It follows from [7] that   in (2.3) and   in (2.4) are involutions on   ( ). 
2)    ( ),    ( ),    ( ) and      are the Lie algebras of classical type. 

3)    ( ),    ( ) and      are called the simple Lie algebras of classical type. 

   The simple Lie algebras of classical type in Remark 2.5(2) can be constructed from a vector space   

as follows: Consider the vector subspace   ( ) of    ( ) together with the Lie multiplication 

defined in (1.1). Then we get the general   ( ) and the special   ( ) linear Lie algebras, where   ( ) 
is a subalgebra of   ( ) defined by   ( )  ,  ( )   ( )-   
   If there is (skew)symmetric bilinear form ( )   on  , then we get the Orthogonal    (   ) or the 

Symplectic   (   ) Lie algebras, respectively. To simplify notations, we denote by   ( ) and   ( ) 
to be the Orthogonal and the Symplectic Lie algebras, respectively.  

 

Lemma 2.6. [7] Let  ,    and    be vector spaces over  . Suppose that each of them is of dimension   

and    .  

1. If   is an involution on the algebra    ( )    ( ), then there is a basis of    such that   is 

expressed as      or      for each      ( ). In particular,     (   ( ))  
   ( ) or    ( ). 

2. Let   be an involution defined on the algebra    (  )    (  ) such that    (  )
  

   (  ). Then there are bases of    and    such that   is expressed as (     )  (  
    

 ) for 

each       (  )    ( ). In particular, 

    (   (  )     (  ))  * (    ) ∣∣     ( ) +     ( ) 
. 

 

Example 2.8. [3] Consider the locally finite associative algebra   ( ) in Example 2.4. We 

construct three locally finite Lie subalgebras of   ( ). Those are the stable special linear    ( ), 
stable Symplectic    ( ) and stable Orthogonal    ( )  Lie subalgebras of   ( ) that defined 

to be the union (or the direct limit) of the natural embeddings, respectively, 

   ( )     ( )       ( )     
       ( )     ( )        ( )     
   ( )     ( )       ( )     

 

Definition 2.9. [2] A locally finite (associative or Lie) algebra   over a field   is said to be locally 

semi(simple) in the case when for every finite set of elements   of   we can find a finite dimensional 

(semi)simple subalgebra of   which contains  .   

 

Example 2.10. Let   be a simple locally finite associative algebra over  . Then for every finite set of 

elements   of  , there is a finite dimensional simple subalgebra    (for        ) of   that 

contains  , so there is a chain  

           
of simple subalgebras of   such that   ⋃   

 
     Moreover, we can identify each    with 

   
( ) (for all        ), where    is an integer number (because   is algebraically closed). Note 

that each embedding         is written as follows: 
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      (           )      
( )  

4. Plain, diagonal and non-diagonal modules of finite dimensional Lie algebras. 

   Suppose that   is perfect. Then there is a Levi (maximal semisimple) subalgebra   of   such that 

     , where   is a solvable radical of   (Levi-Malcev Theorem). As   is an ideal of  , we 

have       . Let   be a simple  -module. Since   is perfect,    ( ) annihilates  , so       

(because   is simple). Let         be the simple ideals of   such that            Then   is 

a completely reducible  -module and          , where    is a simple   -module. 

 

Remark 3.1. 1) If      (  )   (  )   (  ) for each      , then every natural   -module    is 

an  -module. 

2) Suppose that      is a perfect Lie algebra. If   is an   -module, then    
 denotes the restriction 

of   to  . 

 

Definition 3.2. Suppose that   is perfect and finite dimensional. Let   be an  -module. 

1. Suppose that      (  ) for each      . Then   is said to be a plain  -module if each    is a 

natural  -module. 

2. Suppose that    is a perfect Lie algebra such that    is finite dimensional. Let   
      

  be natural 

  -modules. An embedding      is called a plain embedding if (  
      

 )   is a plain  -

module. 

 

Example 3.3. Suppose that      ( ) and       ( ) for some positive integers   and   with 

   . Let   and   be the natural and the trivial  -dimensional  -modules, respectively. Then 

1.  The embedding      is called a natural embedding if for every   -module    we have, 

  
 
 
          

2. The embedding      is a plain embedding if the  -module    is plain, that is,  

   
       ⏟      

 

      ⏟      
 

                                         

 

Example 3.4. The embedding    ( )    ( ) is called a plain embedding if we can find a basis of   

such that       4     ⏟    
 

      ⏟  
 

5  (            ( )) 

where the integers   and   do not depend on   and               
 

Definition 3.5. Suppose that   is perfect and finite dimensional. Let   be an  -module.  

1. Suppose that      (  )   (  )   (  ) for each      . Then   is said to be a diagonal  -

module in the case when each    is either a natural or a dual to natural  -module. Otherwise,   is 

said to be a non-diagonal  -module.  

2. Suppose that    is a perfect Lie algebra such that    is finite dimensional. Suppose that   
      

  

are natural   -modules. An embedding      is called diagonal embedding if (  
      

 )   

is diagonal. 

 

Example 3.6. [5] Let   and    be classical simple Lie algebras (See Remark 2.5(3)) over  . Suppose 

that  ,    and   be a natural, a dual and a trivial  -dimensional  -modules, respectively. Let    be an 

  -module. The embedding      is diagonal if  

   
       ⏟      

 

        ⏟        
 

      ⏟      
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Example 3.7. The embedding   ( )    ( ) is called a diagonal embedding if we can find a basis of 

  such that 

      4     ⏟    
 

          ⏟        
 

      ⏟  
 

5        (    ( ))  

where   (   )           
 

Proposition 3.8. [9] Let    be a simple Lie algebra of rank greater than   . Suppose that       
  , where    are all perfect and finite dimensional Lie algebras. Suppose that     and       is a 

non-diagonal embedding. If     
 is non-trivial for every   -module  , then there is a natural   -

module   such that     
is a non-diagonal   -module. 

5. Local Systems of Locally Finite Algebras 

Definition 4.1. [4] Suppose that   is a locally finite algebra.  

1. A local system of   is a set *  +    of finite dimensional subalgebras of   satisfying the 

following conditions: 

i.          . 

ii. There exist     for each pair       such that         .  

2. A local system *  +    of   is called perfect in the case when    are perfect algebras. 

3. A local system *  +    of   is called conical if it is perfect and if   has a minimal element   

satisfying the following conditions: 

i.       for all    ; 

ii.    is simple; 

iii. If   is a natural   -module, then the restriction     
 to    contains a proper composition 

factor. 

 

Remark 4.2. [4] Definition 4.1(3.iii.) implies that the rank of every simple ideal   of any Levi 

(maximal semisimple) subalgebra of    (for every    ) is greater than or equal to the rank of   .  

 

Lemma 4.3. Suppose that   is a simple locally finite associative (or Lie) algebra. Suppose that   
 . The following holds: 

1. [2] If *  +    is local system, then there exists     for each     such that       and 

          . 

2. [9]   Possesses a perfect local system. 

3. [9] If *  +    is a local system of perfect algebras of  , then there exists      for each     

such that             for all     . 

 

Theorem 4.4. [1] Suppose that     and   is locally finite. Then  

1. If   is simple with involution  , then   contains a local system which is conical of arbitrary 

large rank; 

2. If   is simple, then   contains a local system which is conical of arbitrary large rank.  

 

Proposition 4.5. Suppose that   is simple and *  +    is a local system of  . Let *  +    be a 

system of ideals such that    is an ideal of    for each    . Then either ⋂         or for each 

    there is      with       . 

 

Proof. Put   ⋂      . Suppose that    . Let  

  
   *  ∣∣                                   +  
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Then   
  is an ideal of    with   

     for each    . Let    be a member in   
    Then    be an 

ideal of    with      . Note that for any    *  +    with       we have       is an 

ideal of    with        , so   
    

 . Hence,    ⋃   
 

    is an ideal of   with     . The 

simplicity of    implies that      ⋃   
 

   . Thus, *  
 +    is a local system of  . Let    . 

Since    is a finite dimensional, there exists      such that       
 , but    

    . Therefore, for 

each    , there is      such that       , as required. ∎   

6. Plain, diagonal and non-diagonal locally finite Lie algebras 

Let      be perfect Lie algebras. If   and    are finite dimensional and   
      

  are natural   -
modules, then an embedding      is called a plain (resp. diagonal) embedding if (  

      
 )   

is a plain (resp. diagonal)  -module. 

 

Definition 5.1. [5] Suppose that   is simple. Then a plain (resp. diagonal) local system of   is a 

perfect local system *  +    such that the embedding       is plain (resp. diagonal) for all    . 

 

Example 5.2. If   is simple and    . Then by Lemma 4.3(2),   has a perfect local system, say 

*  +   . For each    , we denote by    is a Levi subalgebra of    and {  
    

      
  } is the set 

of the simple ideals of   , so 

     
      

    
Let   

  be the standard   
 -module. As    is perfect, for each   there is a unique indecomposable   -

module   
  in which the restriction   

 
   

  is isomorphic to   
 .  

  An embedding       for     is a diagonal embedding if 

  
 

   
 2  

      
     

       
  
 

   3                 

where    is a trivial and one dimensional   -module and   
   is the dual to   

 . 

 

Remark 5.3 [4] Suppose that *  +    is a conical system of  . Then all simple components of    (for 

each    ) are of classical type if the rank of    is greater than or equal to  . 

 

Definition 5.4. [5] Suppose that   is simple, then   is said to be plain (resp. diagonal) if   has a plain 

(resp. diagonal) local system. 

 

Example 5.5. Consider the zero trace    -matrices     ( ). Then 

1.    ( ) and     ( ) can be defined to be the limit of the sequence of the natural embeddings: 

      ( )       ( ) 
and  

       ( )        ( )  
where    and    are defined as follows:   ( )      (   ) and   ( )      (   ), 
respectively. Then    ( ) and     ( ) are both simple of diagonal type. 

 

2. A generalization of     ( ) can be done as follows: Consider the sequence   (          ) 
of the positive integers   . Let           . Then    ( ) is defined to be the limit of the 

sequence of diagonal matrix embedding. 

        ( )          

where    is defined as   ( )      (       ) (     copies). 
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Definition 5.6. A subspace   of   is called an inner ideal of   if ,  ,   --   .  

 

 

Theorem 5.7. Suppose that    . The following holds: 

1.  [4] There exists a simple of diagonal type locally finite algebra that is not locally semisimple. 

2. Suppose that   is simple over  . Then 

i. [4]   is semisimple as Lie algebra and locally perfect as well. 

ii. [9]   contains a non-trivial inner ideal if it is of diagonal type and vice versa. 

 

Definition 5.8. [5] Suppose that   is simple. Then   is called non-diagonal if there is no diagonal 

local system of  . 

 

Recall that the map         ( ),    ( )  ,   - for all    , is linear. The adjoint 

homomorphism        ( ), is a linear map defined by       for all     [16].  

 

Example 5.9. Consider the Lie algebra     ( ) which is defined to be the limit of the sequence of 

embeddings 

   ( )    (   ( ))     ( )    (   ( ))     ( )    

where all embeddings are induced by the adjoint map      . Then     ( ) is a simple of non-

diagonal type (see [4 Corollary 2.11] for the proof). 

 

Theorem 5.10. [9] Suppose that   is simple of non-diagonal type and    . The following hold 

1. If  *  +    is a conical system of   of rank     , then for every    , there is     such that 

      is non-diagonal embedding for all     . 

2.   has no non-zero proper inner ideals. 

7. Simple and simple with Involution associative algebras. 

Recall Wedderburn theorem (see [6, Theorem 1]) that if   is finite dimensional, then   can be 

written as        ( ), where   is semisimple subalgebra of   and a    ( ) is a nilpotent 

ideal (the radical) of  . 

 

Lemma 6.1. Suppose that   is semisimple and finite dimensional. If    , then ,   - is a 

semisimple finite dimensional Lie algebra over  .    

 

Proof. Consider the set of the simple ideals *       + of  , so 

           

Then for each      , we have        ( ) for some integer   , so ,     -      ( ) (see (2.2)). 

Thus, 

,   -  ,     -    ,     -      ( )       ( )  

Therefore, ,   - is a semisimple and finite dimensional, as required. ∎ 
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Definition 6.2. [1] An associative algebra   is said to be an involution simple associative algebra if 

the only  -invariant ideals of   are * + and  .  

We have the following result. See [1, Proposition 2.8] for the proof. 

Proposition 6.3. Every involution simple algebra   over   is either simple with  involution   or the  

      , where   is simple ideal. 

We will need the following well-known result. See for example [7]. 

Lemma 6.4. Let   be semisimple and finite dimensional with involution  . Suppose that    . Then 

,    ( )     ( )- is semisimple Lie algebra.  

Proof. Let         be the the involution simple ideals of  , so            Then by 

Proposition 6.3, for each      , we have    is either simple with involution   or         
  

for some simple ideals    and   
  of   . Thus, by using Lemma 2.6, we get that 

    (  )  8
    ( )     ( )                                               

    ( )                                           
                           

 

Thus, ,             -      ( )     ( )     ( ) for each        . Therefore, 

 ,    ( )     ( )-  ,    (  )     (  )-   ,    (  )     (  )-  

is semisimple and finite dimensional.  

Definition 6.5. A system *  +    is called a  -invariant system if for each    *  +    we have 

  
     for all      . 

We have the following lemma (See [1]). 

Lemma 6.6. Let   be locally finite with involution  . Then   contains a  -invarint system.  

Proof. Consider the local system *  +    of  . Then for each    , consider the subalgebra  ̂  of 

  that generated by      
 . Since   

   ̂ for all      , we get that  ̂  is a  -invariant 

subalgebra of  . Thus, * ̂ +    is a  -invariant local system of  .  

 

Proposition 6.7. If   is simple with involution and     . 

1. [1]   have a  -invariant conical system of large rank.  

2. [9] If *  +    is a  -invariant conical system of  , then for every     there exists      

satisfying that  for all  -invariant maximal ideals   of    (    ) we have       . 

8. Locally finite Lie algebras of simple associative algebras  

Definition 7.1. [1] 1) An associative algebra   is said to be an envelope of a Lie algera    if  

i.   is a subalgebra of  . 
ii. L generates  . 

2) An envelope   of   is said to be a  -envelope of    if   ,   -. 
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    In what follow,  ( ) is denoted to be the universal enveloping algebra of   and  ( ) the 

augmented ideal of  ( ) which defined to be the ideal of  ( ) of codimension  . Recall that 

universal enveloping algebra  ( ) of   is an infinite-dimensional associative algebra [16]. If   is a 

 -enveloping of  , then   can be considered as the augmented ideal  ( ) of  ( ) [1]. Therefore, 

and there is a     correspondence between   and    with the following property       , 

 ( )      . 

Remark 7.2. We say that     if and only if      .   

Theorem 7.3. [1] If   is simple plain and    , then   generates two  -envelopes associative 

algebras    and    such that:  

1. The radical    (  ) annihilates   . 

2.       (  ) is a simple  -envelope of  . 
3. If   is a  -envelope of  , then       (  )       or       (  )    

  . 
4. The inverse of the mapping in (v) is defined by   ,   -. 
 

Recall that a subspace   of   is called an inner ideal of   if [  ,   -]    (see Definition 5.6).   is 

called abelian in the case when ,   -   . An inner ideal of the Lie algebra  ( ) is called Jordan-

Lie in the case when      [10]. 

 

Theorem 7.5. Let   be simple and     .  

1. [1] ,   - is a simple and plain. Moreover,   is  -envelope of ,   -. 
2. ,   - contains a proper inner ideal. 

3. [9] If   is an inner ideal of ,   -, then   is Jordan-Lie. 

4. If   is inner ideal of ,   -, then   is abelian. 

 

Proof. Part (1.) is proved in [1]. For the proof see [1, Theorem 2.12]. 

2. By (1),  ( )  is a simple and diagonal, so by Theorem 5.7(2.ii),   contains a non-trivial inner ideal, 

as required.  

3. This is proved in [9]. For the proof see [9, Corollary 4.14]. 

4. Let   be an inner ideal of ,   -. By using (3.), we get that ,   -      . ∎ 

 

Definition 7.6. [9] An inner ideal   of  ( ) (or ,   -) is called regular if   is Jordan-Lie and 

     .   
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Lemma 7.7. [10] If      , then an inner ideal   of ,   - is regular if and only if there is right   

and left   ideals of   with      such that 

           ,   -  

 

We will need the following proposition. It represents a special case of [10, Proposition 6.20]. 

Proposition 7.8. [10] If       , then Jordan-Lie inner ideals of  ( ) and of ,   - are regular. 

Theorem 7.9. Let   be simple and locally semisimple. If    , then. 

1. ,   - is locally semisimple as Lie algebra. 

2. Consider the system *  +    of  . If   is inner ideal of ,   -. Then   ,     - is an inner 

ideal of ,     -. 

3. Every inner ideal of  ( ) is regular. 

4. Every proper inner ideal of  ( ) can be written as    for some right   and left   ideals of   
with     . 
 

Proof. 1. Consider the semisimple system *  +   . Then by Lemma 6.1, ,     - is a semisimple 

finite dimensional Lie algebra over  . Therefore, *,     -+    is semisimple system of  ( ), so 

 ( ) is locally semisimple Lie algebra, as required. 

2. This is obvious as   ,     -  ,     -.   

3. Let   be an inner ideal of ,   -. Then   is Jordan-Lie (Theorem 7.5(3)), that is,     , so we 

only need to prove that      . Let      . Let *,     -+    be a semisimple local system of 

,   -, where *  +    is a semisimple local system of  . By (2),      ,     - for all    . 

Then     is Jordan-Lie of ,     -, so there exists     such that         . Since [     ] is 

semisimple, By Proposition 7.8,    is a regular inner ideal of [     ], so          . Thus, 

      . Therefore,   is regular. 

4. This follows from (3) and Lemma 7.7. ∎ 

9. Locally finite Lie algebras of involution simple associative algebras  

Definition 8.1. An associative algebra   with an involution is called   -envelope if   is an envelope 

of   and    ( ), where       ( ). 

 

Theorem 8.2. [1] If    , then   generates a unique   -envelope associative algebras   such that 

1. The Jacobson radical    ( ) annihilates  . 
2.      ( ) is a simple   -envelope of  . 
3. If   is a   -envelope of  , then either      ( )     . 
4. The mapping        ( ) is a     correspondence between   and the set of all involution 
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simple infinite dimensional locally finite associative algebras. 
5. The inverse of the linear tronsformation in (iv) is defined to be   ,           -. 
 

Theorem 8.3. [1] Let    . Then   ,   - is simple and diagonal. Moreover,   is   -envelope of 

,   -. 

 

An inner ideal of       ( ) or ,   - is said to be Jordan-Lie if      [23]. 

Definition 8.4. [9] An inner ideal   of       ( ) (or ,   -) is said to be a  -regular if   is 

Jordan-Lie and     (   )   .   

Lemma 8.5. [10] Suppose that       ( ) and    . An inner ideal   of  ( ) is  -regular if and 

only if there exists left ideal   of   satisfying         such that                ( ).  

Theorem 8.6. [9] If      and   is locally  -semisimple, then the following hold. 

1. ,   - is locally semisimple. 

2. Suppose that ,   - is non-isomorphic to    ( ), then  

       i. If   is inner ideal of  ( ), then   is  -regular;  

      ii. If   is inner ideal of  ( ) can be written in form     for some left   ideal of   with      . 
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Abstract: The spread of epidemic diseases still a major threat to the life of communities. Therefore, with the 

great development of the technology , the spread of diseases can be reduced by using media coverage 

awareness. In this paper a smoking model incorporating media coverage for warranting the population is 

proposed and studied. The dynamics of the model is investigated in two different cases: nonexistence and 

existence of diffusion. The existence, positivity and bounded-ness of solutions are investigated. The local and 

global stability by the help of Lyapunov function of all possible equilibrium points are investigated. Moreover, 

numerical simulations are carried out to validate the analytical results and specify the effect of varying the 

parameters.   

Keywords: Smoking model, media, diffusion, stability. 

 

1. Introduction 

The smoke from the Cigarette is a very complex chemical mixture that is dangerous to human health 

and all the elements of the environment. It contains more than 3,800 toxic chemicals, the most 

important of which is the carbon monoxide (Co), which is one of the poisonous and dangerous gases 

on human life, ammonia (NH3), Hydrogen sulfide (H2S), formaldehyde (HCHO), Acetaldehyde 

(CH3CHO), hydrogen cyanide (HCN), in addition to a large number of acids including: Carbonic acid 

(H2CO3), nitric acid (HNO3), acetic acid (CH3COOH) and formic acid (HCOOH), see [1]. 

  Cigarette smoke also carries a huge range of organic compounds, which have proved dangerous, 

classified globally as highly dangerous. These substances include benzopyrene, which works to 

destroy the mucous membranes of the respiratory tract of smokers, and also destroys the airways of 

smokers. In one of the statistics from 2013, the number of premature deaths due to smoking to 5950 

deaths, as well as 200,000 cases of hospitalization. And there are many diseases caused by smoking 

such as 44% Cancer, 30% Circulatory diseases, 25% Respiratory diseases and other [2-3]. All these 

reasons have invited many authors to understand and study the smoking epidemic for example: In [4], 

Castillo-Garsow et al suggested the tobacco model with recovery. Lahrouz, et al [5] proposed and 

studied mathematical model of smoking. Al-Shareef and Batarfi studied the effect of chain, mild and 

mailto:aamuhseen@gmail.com
mailto:rknaji@scbaghdad.edu.iq
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passive smoke see [6]. In [7], Sharomi and Gumel provided a rigorous mathematical study for 

assessing the dynamics of smoking and their impact on public health in a community. Zaman, studied 

the smoking dynamics with control strategy, he discussed qualitative behavior of tobacco model [8, 

9]. Erturk and Momani [10] proposed analytic method for approximating a giving up smoking model. 

Zainab et al [11] studied global dynamics of a mathematical model on Smoking. Moreover many 

researchers proposed and studied models showed how the media effect of the spread of the diseases 

for example: Misra et al [12] studied the effects of awareness programs by media on the spread of 

infectious diseases. Smith et al [13] investigated the impact of media coverage on the influenza 

disease. Cui and Zhu [14] studied the impact of media on control of infectious disease. On the other 

hand, it is well known that location play a critical role in disease dynamics see for example [15-19]. In 

this work, we proposed and studied a mathematical model describing the effect of awareness through 

media program on the spread of smoking. Further, the effect of location on outbreak the smoking in 

the population is also considered through studying the model with reaction diffusion. Finally, local as 

well as global stability analysis of the proposed model are also investigated. 

        

2. Construction of the model 

The mathematical model offer us more understand about spread the infection disease, we know that 

the disease is transmitted by direct contact between healthy individuals with infected individuals. In 

fact, outbreak the smoking is very similar to the spread of epidemic and hence some populations start 

smoking due to contact with smokers. Consider a population of size   at time  . It is assumed that, the 

population divided into four classes: the 1
st
 class consisting of individuals who do not smoke tobacco 

and maybe become smokers in future (potential smokers) and the size of individuals at time   for this 

class denoted by  ( ); 2nd
 class involving the smoker individuals and denoted their size at time   by 

 ( );  ( ) represents the size of individuals at time   in the 3
rd

 class that contains individuals who 

temporarily quit smoking;  ( ) stands for the size of individuals at time   in the 4
th
 class, which 

contains the recovery from smoking. On the other hand, the efficiency of awareness by media 

coverage to reducing the number of smokers (or smoking prevention) at time   will be denoted by 

 ( ). Accordingly, the dynamics of smoking model with the effect of awareness by media coverage 

to outbreak the smoking can be describe by the following system of nonlinear ODEs.          

MPSM

QRSMePMR

QQSMeQ

QSMSPMPSS

PMPPSP





















)(

)1()1()1(











                                                (1) 

As the fourth equation is a linear differential equation with respect to variable  ( ), which is not 

appear in the other equations of system (1), hence system (1) can be reduced to the following system: 

 

MPSM

QQSMeQ

QSMSPMPSS

PMPPSP

















)(







                                                                (2) 



147 
 

with initial condition  ( )   ,  ( )   ,  ( )    and  ( )   . Therefore, by solving system (2) 

and substituting the solution, say (           ), of it in the fourth equation of system (1) and 

solving the obtained linear differential equation we get for     that: 

 


 **** )1(])1()1[( QMSeP
R


                                                          (3) 

Moreover, all the parameters are assumed to be nonnegative with, 0  represents the recruitment of 

potential smokers population, 0  represents the natural death rate of the human populations. The 

parameter 0
 
is the contact rate between potential smokers and smokers. On other hand, the 

awareness level through media coverage that reached to the individuals is denoted by 0 , however 

portion of individuals who received awareness transfers to smoker class and temporarily quit smoking 

class with rates )10(   and )10(  e  respectively. The parameter 0  represents the rate of 

losing the temporary quitters smoking individuals, in fact fraction of them with rate )10(   

transfers to smoker’s class while the rest of individuals will transfer to recovery from smoking class. 

The parameter 0  represents media campaigns rate performed by both smokers and nonsmokers, 

however the rate of disappearance of media coverage represented by 0 .   Keeping the above 

description of variables and parameters, it is easy to proof that system (1), and hence system (2), is 

defined on the following positively invariant set:  

   2(         )    
      

 

 
     

  

  
3 

where          . 

 

3. The existence of equilibrium points of system (2) 

  In this section, the existence conditions of all possible equilibrium points are determine. It is easy to 

shows that system (2) has three equilibrium points. The points and their existence conditions can be 

described as following: 

 In the absence of smokers, that is    . Then, system (2) has a unique positive equilibrium point 

in the interior of positive quadrant of    plane, namely smoking free equilibrium point (SFEP), 

which denoted by    (         ) where 

   
   

   √(  )       
 

   
    √(  )       

   

            (4a) 

provided that the following condition holds 

                             (4b) 

 In the absence of temporarily quit smokers (   ). Hence, system (2) has an equilibrium point in 

the interior of positive octant of     space, namely free temporarily quit smoking equilibrium 

point (FTQSEP), which denoted by ),0,,( 1111 MSPE   where: 
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 (     )

 
                                    (5a) 

while (     ) is a positive root to the following two isoclines: 

  (   )     (     )                                              (5b) 

 (   )  (     (   ))                                                 (5c) 

Clearly, as    , the two isoclines reduced to: 

                                                 (5d)

                                                         (5e) 

Obviously, Eq. (5d) has a unique intersection positive point with   axis that given by  

   
   

   
 

 

   
√(  )                   (6) 

while, Eq. (5e) has zero root on the   axis. 

Therefore, straightforward computation shows that the two isoclines (5b) and (5c) have a unique 

intersection positive point (     ) provided that: 

 

  

  
  

    ⁄

    ⁄
  

  

  
  

    ⁄

    ⁄
  

            (7a) 

Consequently, in addition to condition (7a), the following condition guarantees the existence of 

FTQSEP.  

                           (7b) 

 The coexistence equilibrium point or endemic equilibrium point (EEP), which denoted by 

),,,( 22222 MQSPE   
where  

    
 (     )

 
;    

       (     )

 (   )
             (8) 

while (     ) represents a positive intersection point of the two isoclines  (   )   , which is 

given by Eq. (5b), while the other isocline is given by 

 
  (   )  ,,     (   )-                 -(   )

       (   )                                            
                     (9a) 

Clearly, as    , the last two isocline reduced to the same polynomial equation given in Eq. (5d) 

and (5e). Hence they have the same nonnegative roots fall on the   axis. Accordingly, (     ) 

exists uniquely in the interior of positive quadrant    plane provided that  

  

  
  

    ⁄

    ⁄
    

  

  
  

     ⁄

     ⁄
  

                                    (9b) 
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Hence the EEP exists uniquely in the       
  provided that in addition to condition (9b) the 

following condition holds  

                            (9c) 

Note that, the EEP and FTQSEP are coinciding in the interior of positive octant of     space under 

the condition (7b).  

4. Stability analysis of system (2) 

   In this section, the stability analysis of all equilibrium points of system (2) is studied. The 

Jacobian matrix of system (2) at (       ) can be written in the following form.  

  (       )  (   )                          (10) 

where 

              ,        ,      ,         

             ,            ,       ,             

        ,        ,         ,         

        ,      ,      ,        

Consequently, the local stability of SFEP is investigated in the following theorem. 

Theorem 1: The SFEP of system (2) is locally asymptotically stable (LAS) if the following sufficient 

conditions hold 

 00 MP                                                                                                  (11a) 

(   )           (   )(     )                               (11b)  

Proof: The Jacobian matrix of system (2) at    can be written: 

  (  )  (

 (     )                    
     (     )              
 
 

    

 
 (   )

 
 
  

,  (   )                   (12)   

Hence, the characteristic equation can be written as 

       
     

                                             (13) 

Such that 

     ,               - 

       (       )                                 (       ) 

     ,(       )(             )  (       )(             )- 
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    (             )(             ) 

while by using some algebraic computation we obtain that 

 

         (       )(       )(       )                                                      

   (       )(       )(       )                              

                         (       )(             )  (       )(             )

    (       )(             )                                        

 

However     (       )    
    can be written as: 

 

     (       )
 (       )(             )                                             

   (       )(       )
 (             )                                     

     (       )(       ),(             )  (             )-
 

 

Note that, according to the Routh-Hurwitz criterion, all the eigenvalues of  (  ) have negative real 

parts and then the SFEP of system (2) is locally asymptotically stable provided that      for 

         ;           and    .  

It is easy to verify that condition (11a) guarantees that the element     is negative and condition (11b) 

guarantees that the term                . Hence due to the sign of matrix elements and the 

sufficient conditions (11a) and (11b) all the Routh-Hurwitz conditions are satisfied. Therefore, the 

proof is complete.          

 

Theorem 2: The FTQSEP of system (2) is LAS if the following sufficient conditions hold 

     (     )                                                                                                  (14a) 

                                                 (14b) 

                                                (14c) 

     ,       -    (         ),(     )     -                         (14d) 

Proof: The Jacobian matrix of system (2) at    can be written: 

 

 (  )  (   )                                                                                                       

(

 (         )                              

            (     )                    
 
 

 
 

 (   )    
 

         
        

,
            (15) 

Hence, the characteristic equation can be written as 

 (     )(      
        )                         (16)  

where the eigenvalue in the    direction is given by     (   )   , while 
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     ,           - 

                                              

     ,   (             )     (             )     (             )- 

with   

 

         (       ),             -                            

 (       ),             -   

 (       ),             -   
                                               

 

Note that, according to the Routh-Hurwitz criterion, all the eigenvalues of  (  ) have negative real 

parts and then the FTQSEP of system (2) is locally asymptotically stable provided that      for 

      and          .  

It is easy to verify that condition (14a) guarantees that the element     is negative and condition (14b) 

guarantees that the element     is negative, while condition (14c) guarantees that the term        

        . On the other hand condition (14d) ensure that                                 

 . Hence due to the sign of matrix elements and the sufficient conditions (14a)-(14d) all the Routh-

Hurwitz conditions are satisfied. Therefore, the proof is complete.                                                                                               

 Theorem 3: The EEP of system (2) is LAS if the following sufficient conditions hold   

                                  (17a) 

                                                                                                                        (17b) 

        (   )          (     )(   )                                                          (17c) 

  (        )           (           )                                       (17d) 

Proof: The Jacobian matrix of system (2) at    is written as 

  (  )  (   )                          (18) 

where        (           ),             . Hence, the characteristic equation can be written as 

       
     

                                             (19) 

where 

     ,               - 

 
                                                    

                                                                               
 

 

    ,(       )(             )  (       )(             )

       (       )               (             )    

    (             )-                                                               
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   (             )(             )  (             )(             )   

       (             )                                                                                   
 

Moreover, we have that 

         (       )(             )        (            )

                           (               )(           )           
           (       )(             )        (       )

       (       )     (             )    

 

and     (       )    
    can be written as:  

     (     )     

where 

 

   (       )(             )  (       )(             )                                     

       (       )        (       )                (             )
 

 
   (               ),   (           )               

    (       )                     -                           
 

 
   (               )

 ,(             )(             )          

        (             )(             )        (             )- 
 

Note that, according to the Routh-Hurwitz criterion, all the eigenvalues of  (  ) have negative real 

parts and then the EEP of system (2) is locally asymptotically stable provided that      for   

       ;           and    .  

It is easy to verify that condition (17a) and (17b) guarantees that the elements     and     are negative 

respectively and condition (17c) guarantees that the term                . While, the term 

      (       )                   if the condition (17d) holds. Hence due to the sign of 

matrix elements and the sufficient conditions (17a) and (17d) all the Routh-Hurwitz conditions are 

satisfied. Therefore, the proof is complete.      

 

   It is well known that, for each equilibrium point there is a specific basin of attraction and the point 

will be a globally asymptotically stable if and only if their basin of attraction is the total domain. 

Therefore, in the following theorems, the basin of attraction or the global stability conditions of each 

point is determined. 

Theorem 4: Assume that the SFEP is LAS. Then it has a basin of attraction that satisfies the 

following conditions 

 














 








 

MP

M

PM

MPP 
4

2
0                                                                     (20a) 

   (     )                                 (20b) 
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Proof: Consider the following positive definite Lyapunov function, which is defined for all     and 

    in the domain of system (2). 

    .         
 

  
/      .         

 

  
/ 

Clearly, by differentiating    with respect to   along the solution curve of system (2), it’s obtaining 

that: 

 

  
   .

    

 
/ (    )

  .
       

  
/ (    )(    )

          
 

 
(    )

  ,  (   ) -   (   )   

 ,  (     )-  
   

 
                                    

 

Therefore by using the above conditions, it’s observed that 

  
  

   6√
    

 
 (    )  √

 

 
 (    )7

 

 ,  (   ) -   (   )   

  ,  (     )-  
   

 
                                                                             

 

Obviously,   
    at    (         ), moreover   

    otherwise. Hence   
  is negative definite 

and then the solution starting from any initial point satisfy the above conditions will approaches 

asymptotically to SFEP. Hence the proof is complete.                             

Theorem 5: Assume that the FTQSEP is LAS. Then it has a basin of attraction that satisfies the 

following conditions 

                                                                                                                 (21a) 

 .
   

 
/
 
 .

         

 
/ .

         

 
/                                                                (21b) 

 .
 

 
 

   

 
/
 
 .

         

 
/ .

 

 
/                                                                             (21c) 

 .
 

 
 

    

 
  /

 
 .

         

 
/ .

 

 
/                                                                    (21d) 

Proof: Consider the following positive definite Lyapunov function, which is defined for all   

      and     in the domain of system (2). 

    .         
 

  
/  .         

 

  
/    .         

 

  
/ 

Clearly, by differentiating    with respect to   along the solution curve of system (2), it’s obtaining 

that: 



154 
 

 

  
   .

         

  
/ (    )

  .
   

 
/ (    )(    )                 

 .
         

  
/ (    )

  .
         

  
/ (    )

        

 .
 

 
 

   

 
/ (    )(    )  

 

  
(    )

             

             .
         

  
/ (    )

  .
 

 
 

   

 
  / (    )(    )

 
 

  
(    )

  (  (   ) )  
     

 
                    

 

Therefore by using the above conditions, it’s observed that 

 

  
   [√

   

 
 (    )  √

   

 
 (    )]

 

  [√
   

 
 (    )  √

   

 
 (    )]

 

 

 [√
   

 
 (    )  √

   

 
 (    )]

 

                    
 (  (   ) )  

     

 
        

 

where     .
         

 
/;     .

         

 
/;     

 

  
. 

Obviously,   
    at    (          ), moreover   

    otherwise. Hence   
  is negative 

definite and then the solution starting from any initial point satisfy the above conditions will 

approaches asymptotically to FTQSEP. Hence the proof is complete. 

Furthermore, in the following theorem the conditions that specify the basin of attraction of EEP are 

established.  

Theorem 6: Assume that the EEP is LAS. Then it has a basin of attraction that satisfies the following 

conditions 

 MP  2                                                                                                  (22a) 

     22
2

2
3

2
PMPSPSM                                         (22b) 

      2
2

2
3

2
PSP                                                                         (22c) 

     2
2

3

2
PMMe                                                                (22d) 

    2
2

22
9

4
PMSP                                                                (22e) 

     
3

22
2Se                                                                                           (22f) 

Proof: Consider the following positive definite Lyapunov function 
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2222
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2
2

2
2

2
2

3
MMQQSSPP

V











  

Hence, by differentiating 3V
 
with respect to   along the solution curve of system (2),  we get that 

 

  
   

(        )

 
(    )

  (           )(    )(    )

 
(         )

 
(    )

  
(        )

 
(    )

                  

 (      )(    )(    )  
 

 
(    )

                   

 
(         )

 
(    )

  (       )(    )(    )

 
(   )

 
(    )

  
(         )

 
(    )

                           

 (            )(    )(    )  
 

 
(    )

  

           
(   )

 
(    )

       (    )(    )  
 

 
(    )

 

 

Therefore by using the above conditions, it’s observed that 

 

  
   [√

   

 
(    )  √

   

 
(    )]

 

 [√
   

 
(    )  √

   

 
(    )]

 

            [√
   

 
(    )  √

   

 
(    )]

 

 [√
   

 
(    )  √

   

 
(    )]

 

       [√
   

 
(    )  √

   

 
(    )]

 

                                                              

 

   

here             ;              ;        ;      .   

Obviously,   
    at    (           )  moreover   

    otherwise. Hence   
  is negative 

definite and then the solution starting from any initial point satisfy the above conditions will 

approaches asymptotically to EEP. Hence the proof is complete.               

5. Smoking model with diffusion 

Obviously, system (1) does not consider the structure of smokers spreading and hence it is not 

suitable to understand the transmission of smoking in case of moving the individuals. Therefore, it is 

important to consider the diffusion terms in the model structure in order to investigate whether and 

how spatial heterogeneity can affect the smoking transmission dynamics. Consequently, the smoking 

model with diffusion is considered in this section, which is extended to the smoking model given in 

Eq. (1). Let    is a bounded domain in   
  with smooth boundary    and   is the outward unit normal 

vector on the boundary, then the smoking model with diffusion can be written as: 

PDPMPPS
t

P





1                     (23a) 
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SDQSMSPMPS
t

S





2                  (23b) 

QDQQSMe
t

Q





3                  (23c) 

RDQRSMePM
t

R





4)1()1()1(                           (23d) 

MDMPS
t

M





5)(                      (23e) 

with homogeneous Neumaun boundary condition 

 ,0


























MRQSP
 0,  tx                                                  (24) 

and initial conditions 

 




xxMxMxRxR

xQxQxSxSxPxP

0)()0,(,0)()0,(

0)()0,(,0)()0,(,0)()0,(

00

000
                                 (25) 

where ),(),,(),,(),,( txRtxQtxStxP and ),( txM , denoted the numbers of potential smokers, smokers, 

temporary quit smoking, recovery and media at location x and time t. All parameters in system (23) 

have same meaning as those in system (1). However, the parameters 5,4,3,2,1,0  iDi  are the 

diffusion coefficients of population respectively; while,   is Laplacian operator.  

Similarly as in system (1), we can reduce system (23), by removing Eq. (23d) (recovery equation) 

from it, since the other equations in this system are independent of the recovery equation and hence 

system (23) becomes 

 

MDMPS
t

M

QDQQSMe
t

Q

SDQSMSPMPS
t

S

PDPMPPS
t

P





















5

3

2

1

)( 







                                                   (26) 

So that   can be determined from 

  ),(),(),(),( txQtxStxPNtxR  ,    0,  tx                                          (27) 

As the initial values are positive and the growth functions in the interaction functions of system (26) 

are assumed to be sufficiently smooth in   
  then standard partial differential equations theory shows 

that the solution of (26) is unique and continuous for all the positive time in  . Furthermore, we recall 
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the positivity lemma in order to using it to proof the positivity and the uniformly bounded of the 

solution of (26). 

Lemma 7 [17]: Suppose    ],0(],0[ 1,2   CCK   and satisfies 

KtzcKDKt ),( , z , ,0  t  

 ,0






K
z , ,0  t                                                                                  (28) 

 0)0,( zK ,  z  

where  ],0[),( Ctzc . Then 0),( tzK  on ].,0[   Moreover, 0),( tzK  or 0K  in 

],0[  . 

Hence, according to lemma (7), we have the following theorem. 

 

Theorem 8: Any solution of system (26) with a positive initial condition is positive. 

 Proof: Assume that (P, S, Q, M) be a solution of system (26) in ),0[ maxT . Then for any   with

max0 T , we get from 1
st
 equation of system (26) that: 

 PMSPDPt )(1   ,   tx 0,  

Since  (        ) is bounded due to the boundedness of the population in ],0[  , then by 

using the lemma (7) we obtain 0P  in ],0(  . By the same way we have 0S  in ],0(   

since that 

 SMSDSt )(2   ,   tx 0, , 

Similarly, we have 0Q , due to the following 

 QQDQt )(3   ,  tx 0, , 

Again we applied the same lemma on last equation of system (26) we obtain that 

 MMDMt  5 ,   tx 0, , 

Hence, 0M . Now, since   is arbitrary in (      ), we obtain that 0P , 0S , 0Q  and 0M  

in ),0[ maxT .                            

 

Now, we show the bounded-ness of solution of system (26) and investigate that in following theorem 
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Theorem 8: Let (     )  , ( ̅  ,      ))      (  (      ))-
  be the solution of system 

(26) with non-negative non-trivial initial values. Then T  and 

 


 )()()(,max),(),(),( 000 xQxSxPNtxQtxStxP , where    
 

 
. 

Proof: We show that ),(),,( txStxP  and ),( txQ are bounded by ),0[ maxT . Since 


 )()()()0,()0,()0,(0 000 xQxSxPxQxSxP   

and 

   )()( QSPQSPDQSP t     

with  321 ,,max DDDD  , then for ),0[ t
 
, we have that 

 















 


texQxSxPtxQtxStxP 








)()()(),(),(),( 000  

is the solution of the inequalities  

 )(
)(

tL
dt

tdL
  ; 


 )()()()0( 000 xQxSxPL  

Such that, )( QSPL  , hence, we have  

 








 )()()(,max)(0 000 xQxSxPtL



, for ),0[ t and thus,  

  )(),(),(),( xLtxQtxStxP








 )()()(,max 000 xQxSxP



 

As well, by the same way we have shown that the media equation is bounded by ),0[ maxT . Such 

that, 


 )()0,( 0 xMxM , then 

 MSPMDMt   )(5  

We have 

 te
SP

XM
SP

txM 







 
 







 





)(
)(

)(
),( 0  

If t , we get 
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)(,max),( 0 XMtxM



  

Thus the proof is complete.            

 

6. Stability analysis of system (26) 

   In this section, the local and global stabilities of the equilibrium points of diffusion system (26) are 

discussed. It is easy to verify that the equilibrium points of diffusion system (26) and those of system 

(2) are the same. Then the stability analysis for each of them can be study as in the following 

theorems 

 

Theorem 9: The SFEP of diffusion system (26) is LAS if the following sufficient conditions hold 

200 kDMP                                                                                           (29a) 

 (       )           (       )(         )                      (29b) 

  

Proof: The Jacobian matrix of system (26) at the SFEP is given by 

 

 































5444241

33332

23222

1412111

0

0

00

00

0

)(

kDbbb

kDbb

bkDb

bbkDb

EJ

                      

(30a) 

where                 are given by Eq. (12). Then the characteristic equation can be written as 

 0
~~~~

43
2

2
3

1
4  BBBB 

                
(30b)

 

Such that
 

  ̃   [ ̃    ̃    ̃    ̃  ] 

  ̃   ̃  ( ̃    ̃  )   ̃   ̃           ̃   ̃           ̃  ( ̃    ̃  ) 

  ̃   [( ̃    ̃  )( ̃   ̃         )  ( ̃    ̃  )( ̃   ̃         )] 

  ̃  ( ̃   ̃         )( ̃   ̃         ) 

As well  



161 
 

 

 ̃  ̃   ̃   ( ̃    ̃  )( ̃    ̃  )( ̃    ̃  )     

                           ( ̃    ̃  )( ̃    ̃  )( ̃    ̃  )     

                        ( ̃    ̃  )( ̃   ̃         )           

                        ( ̃    ̃  )( ̃   ̃         )          

 

while    ̃ ( ̃  ̃   ̃ )   ̃ 
 
 ̃   can be written as 

 

    ̃ ( ̃    ̃  )
 
( ̃    ̃  )( ̃   ̃         )                                             

  ̃ ( ̃    ̃  )( ̃    ̃  )
 
( ̃   ̃         )                                     

     ( ̃    ̃  )( ̃    ̃  )[( ̃   ̃         )  ( ̃   ̃         )]
 

 

where 

  ̃    (         )       ̃   (             )   

  ̃    (       )         ̃    (     )   

Note that, all the Routh-Hurwitz conditions that guarantee the LAS of the SFEP of system (26) are 

satisfied provided that the conditions (29a)-(29b) hold.                              

 

Theorem 10: The FTQSEP of diffusion system (26) is LAS if in addition to condition (14b) the 

following sufficient conditions hold 

     (         )                                                                                        (31a) 

           (     )    (     )                              (31b) 

     ,       -   (     )(             )           

                                                                    ,(         )     -
                       (31c) 

Proof: The Jacobian matrix of system (26) at FTQSEP can be written: 

  (  )  (

              
                
          
              

,                   (32a) 

where                 are given in Eq. (15). Hence, the characteristic equation can be written as 

 ( ̂    )(    ̂  
   ̂    ̂ )                       (32b) 

here the eigenvalue in the   direction is given by     (       )   , while the other three 

eigenvalues are the roots of the third degree polynomial, where 

  ̂   , ̂    ̂    ̂  - 

  ̂   ̂   ̂           ̂   ̂           ̂   ̂          
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  ̂   , ̂  ( ̂   ̂         )     (           ̂  )    (        ̂     )- 

with   

 

 ̂  ̂   ̂   ( ̂    ̂  ), ̂   ̂         -  ( ̂    ̂  ), ̂   ̂         -                      

                 ( ̂    ̂  ), ̂   ̂         -    ̂   ̂   ̂                      
 

here 

  ̂    (             )       ̂   (             )   

  ̂    (       )         ̂    (     )   

Note that, it is easy to verify that all the Routh-Hurwitz conditions that guarantee the LAS of the 

FTQSEP of system (26) are satisfied provided that the conditions (31a)-(31c) and (14b) hold. 

                                                

 Theorem 11: The EEP of diffusion system (26) is LAS if in addition to condition (17b) the 

following sufficient conditions hold 

                                     (33a) 

  (       )          (         )(       )                      (33b) 

   (        )           (                   )                (33c)  

Proof: The Jacobian matrix of system (26) at EEP can be written: 

  































5444241

3433332

242322221

1412111

2

0

0

0

)(

kDzzz

zkDzz

zzkDzz

zzkDz

EJ              (34a) 

where                 are given in Eq. (18).So the characteristic equation can be written as  

 0ˆˆˆˆ
43

2
2

3
1

4  ZZZZ                  (34b) 

where 

  ̂   , ̂    ̂    ̂    ̂  - 

 
 ̂   ̂   ̂           ̂   ̂    ̂   ̂           ̂   ̂          

  ̂   ̂           ̂   ̂                                                          
 

 

 ̂   ,( ̂    ̂  )( ̂   ̂         )  ( ̂    ̂  )( ̂   ̂         )

       ( ̂    ̂  )   ̂            ( ̂            )

    (             )-                                                            
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 ̂  ( ̂   ̂         )( ̂   ̂         )  ( ̂            )(           ̂  ) 

     ̂  (    ̂         )                                                                                  
 

Moreover, we have that 

 ̂  ̂   ̂   ( ̂    ̂  )( ̂   ̂         )   ̂   ̂  ( ̂     ̂    ̂  )

                           ̂  ( ̂    ̂    ̂    ̂  )( ̂    ̂    ̂  )           
            ( ̂    ̂  )( ̂   ̂         )        ( ̂    ̂  )

        ( ̂    ̂  )     (             )    

 

and    ̂ ( ̂  ̂   ̂ )   ̂ 
 
 ̂  can be written as:  

    ̂ ( ̂   ̂ )   ̂  

here 

 
 ̂  ( ̂    ̂  )( ̂   ̂         )  ( ̂    ̂  )( ̂   ̂         )                             

                ( ̂    ̂  )        ( ̂    ̂  )               (             ) 
 

 
 ̂  ( ̂    ̂    ̂    ̂  ), ̂  ( ̂    ̂    ̂  )               

  ̂  ( ̂    ̂  )         ̂   ̂         -                            
 

 
 ̂  ( ̂    ̂    ̂    ̂  )

 ,( ̂   ̂         )( ̂   ̂         )                 

 ( ̂            )(        ̂     )   ̂     ( ̂            )-
 

 

Such that 

  ̂    (             )          ̂   (             )     

  ̂    (       )          ̂    (     )     

Again by using Routh-Hurwitz criterion, we get that the EEP is LAS if the sufficient conditions (33a)-

(33c) with (17b) hold.                                 

 

Note that, according to the above theorems it’s clear that, the equilibrium points of diffusion system 

(26) are always LAS if they are stable in system (2), that is mean without diffusion, but the converse 

is not necessarily true. 

Next, in following theorems the globally asymptotically stability (GAS) of diffusion system (26) at 

SFEP, FTQSEP and EEP is carried out using the method described in [19]. 

Theorem 12: Assume that the SFEP of the diffusion system (26) is LAS, then it is GAS if the 

conditions (20a)-(20b) hold 

Proof: Consider the following candidate Lyapunov function with  (   ) is a solution of diffusion 

system (26) 
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  dxtxuVW 


 ),(1                                 (35) 

where  ( ) is a continuously differentiable function defined on some   
 . Then the time derivative of 

1W  along the positive solution of system (26) is written as 

dxuDufuV
dt

dW
))(()(1  



 

where  ( ) is the vector field that given in right hand side of system (26) without diffusion, while 

    is the diffusion term with   (           ) and     . Therefore, we obtain that  

 


 dxuDuVdxufuV
dt

dW
)()()(1  

which gives 
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1 )()(
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i
i

i dxu
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V
DdxufuV

dt

dW

                 

(36)

 

Assume that, the integrand of the first term in Eq. (36) is already calculated as that for the system (2) 

given by theorem (4). However, the second term is simplified by using Green’s formula, and we 

obtain
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Since 0






u
on   . Therefore, Eq. (37) becomes 
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Accordingly, by using Eq. (38) in Eq. (36), it’s obtain that 
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1 .)()(
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ii dx
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uDdxufuV

dt
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Therefore, in order to construct the function   we should have   

 0. 

















dx
u

V
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i
ii , for all          .                    (40) 
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Now by using the function     , that given in theorem (4) 

   .         
 

  
/      .         

 

  
/ 

Hence, in this case we have that 
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Consequently, we obtain that 
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   ∫ 0  
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where      *     +. Therefore by using the conditions (20a)-(20b), it’s observed that 
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 (    )  √

 

 
 (    )7

 

 ,  (   ) -      

  (   )     ,  (     )-  
   

 
              

              ∫ 0  
     

   
   

     

  1                                                         
                              

 

Obviously,   
    at    (         ), moreover   

    otherwise. Hence   
  is negative 

definite and then the solution starting from any initial point satisfy the above conditions will 

approaches asymptotically to SFEP. Hence the proof is complete.                

 

Theorem 13: Assume that the FTQSEP of the diffusion system (26) is LAS, then it is GAS if the 

conditions (21a)-(21d) hold 

Proof: Similarly as in proof of theorem (12), we consider the following candidate Lyapunov function 

with  (   ) be a solution of diffusion system (26). 

  dxtxuVW 


 ),(22                     (41) 

with the function    that given in theorem (5). Therefore, direct computation gives that 
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where      *        +. Therefore by using the conditions (21a)-(21d), it’s observed that 
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where    ,     and      are given theorem (5). Obviously,   
    at    (          ), 

moreover   
    otherwise. Hence   

  is negative definite and then the solution starting from any 

initial point satisfy the above conditions will approaches asymptotically to FTQSEP. Hence the proof 

is complete.                                                                              

Theorem 14: Assume that the EEP of the diffusion system (26) is LAS, then it is GAS if the 

conditions (22a)-(22f) hold 

Proof: Consider the following candidate Lyapunov function with  (   ) be a solution of diffusion 

system (26). 

  dxtxuVW 


 ),(33                                 (42) 

with the function    that given in theorem (6). Therefore, direct computation gives that 
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where      *           +. Therefore by using the conditions (22a)-(22f), it’s observed that 
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here    ;    ;    ; and     are given in theorem (6). Obviously,   
    at    (           ), 

moreover   
    otherwise. Hence   

  is negative definite and then the solution starting from any 

initial point satisfy the above conditions will approaches asymptotically to EEP. Hence the proof is 

complete.  

8. Numerical simulation of systems (1)  

    In a bid to check our computation, some numerical simulations are carried out. The objective is to 

understand the global dynamics if system (1) and then study the effects of varying the parameters 

values. For the following set of hypothetical values of the parameters with different initial conditions 

the dynamical behavior of system (1) is investigated using the following sets of initial conditions 

(0.7,0.9,0.6,0.5,0.5), (1,2,3,1,4) and (3,0.5,5,3,1) respectively. The obtained trajectories are drawn in 

Fig . (1) below. 

 

 
02.0,05.0,1.0

1.0,03.0,0,1.0,1.0,03.0,3







 e
                                  (43) 
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Fig. 1: The trajectory of system (1) approaches asymptotically to a globally stable SFEP given by 

)1.8,7.26,0,0,2.3(0 E . (a) Trajectory of P(t), (b) Trajectory of S(t), (c) Trajectory of Q(t), (d) 

Trajectory of R(t), (e) Trajectory of M(t).  

 

  Clearly, as shown in Fig. (1), system (1) has a globally asymptotically stable SFEP for the data (43). 

Now, for the following set of hypothetical parameters values with the same initial sets of values used 

in Fig. (1), the trajectories of system (1) are drawn in Fig. (2) below.  

02.0,05.0,1.0

1.0,03.0,1.0,1.0,1.0,3.0,3







 e
                                 (44) 



168 
 

 

 

 

 

 

Fig. 2: The trajectory of system (1) approaches asymptotically to a globally stable EEP given by 

)4.8,9.25,6.0,95.0,4.2(2 E . (a) Trajectory of P(t), (b) Trajectory of S(t), (c) Trajectory of Q(t), (d) 

Trajectory of R(t), (e) Trajectory of M(t).  

  Now, we used the same set of hypothetical parameters values in Eq. (44) with    , and the same 

initial sets of values used in Fig. (1), then system (1) has a globally asymptotically stable FTQSEP, 

hence the trajectories of system (1) are drawn in Fig. (3) below.     
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Fig. 3: The trajectory of system (1) approaches asymptotically to a globally stable FTQSEP given by 

)4.8,6.26,0,95.0,4.2(1 E . (a) Trajectory of P(t), (b) Trajectory of S(t), (c) Trajectory of Q(t), (d) 

Trajectory of R(t), (e) Trajectory of M(t).  

   Now, for the data set (44) with different values of contact rate  
 
given by the parameters values 

0001.0,5.0,3.0  respectively, system (1) is solved numerically and the obtained trajectories are 

drawn in Fig. (4) below.  
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Fig. (4):  Time series of the trajectory of system (1) for the data (44) with different values of contact 

rate. (a) Trajectory of system (1) for 3.0 , (b) Trajectory of system (1) for 5.0 , (c) Trajectory 

of system (1) for 0001.0 . 

  According to Fig. (4), as the contact rate between the potential smoker individuals and smoker 

individuals increases, then the trajectory of system (1) approaches asymptotically to the (EEP) point 

as shown in the typical figure given by Fig. (4). In fact as   increases, it is observed that the 

populations of smoker, quit smoker and media coverage increase while the populations of potential 

smokers and recovered decrease. On the other hand, as the contact rate   decreases then the 

trajectory of system (1) still approaches asymptotically to the (EEP) but with opposite size of 

populations. 

Now, for the data (44) with awareness level given by 2.0  
and different values of response to 

media coverage from the potential smoker individuals such that 0,8.0,99999.01   respectively, 

system (1) is solved numerically and the obtained trajectories are drawn in Fig. (5) below.
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Fig. (5):  Time series of the trajectory of system (1) for the data (44) with 2.0  
and different values 

of response rate to the media coverage. (a) Trajectory of system (1) for 99999.01  , (b) 

Trajectory of system (1) for 8.01  , (c) Trajectory of system (1) for 01  .
 

 

Clearly, as shown in Fig. (5), increase the efficiency rate of the media coverage makes the trajectory 

of system (1) approaches asymptotically to the (SFEP) gradually and vice versa.  

 

Similarly, for the data (44) with awareness level given by 2.0  
and different values of response to 

media coverage from the smoker individuals such that 0,5.0,11  e  respectively, system (1) is 

solved numerically and the obtained trajectories are drawn in Fig. (6) below. 
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Fig. (6):  Time series of the trajectory of system (1) for the data (44) with 2.0  
and different values 

of response rate of smoker individuals to the media coverage. (a) Trajectory of system (1) for 11  e , 

(b) Trajectory of system (1) for 5.01  e , (c) Trajectory of system (1) for 01  e .
 

Clearly, as shown in Fig. (6), increase the efficiency rate of the media coverage on the smoker 

individuals makes the trajectory of system (1) approaches asymptotically to the (FTQSEP) gradually 

and vice versa.  

9. Discussion 

     In this paper, a mathematical model has been studied and analyzed to study the effect of a warning 

by media on the dynamical behavior of smoking epidemic model. The existence and the stability 

analysis of all possible equilibrium points are studied analytically as well as numerically. Finally 

according to the numerically simulation the following results are obtained: 

 

1. As the contact rate between the individuals of potential smokers and smokers increase the 

trajectory of system (1) approaches asymptotically to the (EEP).  

2. As the response to the media coverage from the potential smokers increases then the 

trajectory of system (1) approaches asymptotically to the (SFEP). Otherwise the trajectory 

still approaches asymptotically to (EEP). 

3. As the response to the media coverage from the smokers increases then the trajectory of 

system (1) approaches asymptotically to the (SFEP). Otherwise the trajectory still 

approaches asymptotically to (EEP). 
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4. The stability of the smoking system in presence of diffusion follows if the smoking system 

without diffusion is stable, but the converse is not necessarily true. 
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Abstract. Many researchers studied the approximation by neural networks 

approximation. However only using first or second modulus, that is with low speed 

approaching zero. Here we define a neural network. Then we use it to approximate 

functions from   _quasi normed spaces we prove upper and lower bounds 

trigonometric neural networks estimations using the modulus of smoothness of 

order k. 

المستخلص. درس العدٌد من الباحثٌن التقرٌب باستخدام الشبكات العصبٌة، لكن باستخدام مقٌاس النعومة من الدرجة 

دوال المستمرة فقط، و بالتالً سٌكون الاقتراب الى الصفر بطٌئ جدا. فً هذا البحث قمنا بتعرٌف الأولى او الثانٌة و لل

. برهنا نظرٌات   p<1>0عندما     Lpعائلة من الشبكات العصبٌة و استخدمناها لتقرٌب الدوال المثلثً فً الفضاءات 

مما ٌجعل  kبدلالة مقٌاس النعومة من الرتبة  مباشرة و عكسٌة حول التقرٌب المثلثً باستخدام الشبكات العصبٌة و

  p<1>0عندما     Lpالاقتراب سرٌعا جدا نحو الصفر و لٌس للدوال المستمرة فقط و انما لجمٌع الدوال فً الفضاءات 

. 

 1. Introduction 

In the recent years, the approximation using neural networks have many good 

applications. Many results on the density of the FNNs on the space of continuous 

functions or on the space of integrable functions are introduced see for example [7], 

[11], [10], [18], [6]and [4].In these references we can read the result that for any 

continuous function   of multivariable defined on a compact subset of    we can 

find a FNN of one hidden layer as best approximation for   of the form  

 ( )  ∑     (∑      
 
   

 
      )                                      (1.1) 

where              is a real threshold,    (             )
     is the weight 

that connect the neuron of index   of the hidden layer and the neuron that we input 

it.,     is a real constant that connect the weight and the neuron that it output.  and 

  ( ) is the activation function of the neural network. In the above formula the   is 

very important: it draw the topology of the hidden layer of the neural network. In 

many of the approximation studied of the neural network is very difficult to specify 

the number d, and it is sufficient to say it is existing and large. [8] 
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We can see many kinds of forward neural networks; all these kinds are different. 

They are same by: Its input nodes and the links connecting them. We input these 

nodes then we make processing on them to get the outputs. 

 The approximation by neural network attracted attentions, especially in the recent 

years. See for example [1], [13], [16], [14], [5], [3] and [17]. In all studies above the 

authors study the degree of best neural approximation using modules of smoothness 

of order 1. The estimation in the above references cannot characterize the ability of 

the neural network in general. So in this section we will study the order of essential 

approximation on a special class of neural using trigonometric hidden layer in terms 

of the     order modulus of smoothness. We shall use upper and lower bound 

estimation of neural approximation. After upper and lower bounded, estimation we 

can write the order of essential neural approximation. We want to mention that we 

will use the multivariate function for approximation, and using     order modulus 

of smoothness for measuring the approximation order. We clear that there is a 

relationship between the speed of approximation and the number of hidden units. 

2. Some Definitions and Notation  

 If N is the naturals, and R is the reals. Let    be the naturals with the zero number 

and   is the zero vector,   (                )    
 . Let     ∑     

 
    for 

  (          )    
      (∑   

 )
 

  
     for   (          )    , and    ∑     

 
   . 

Let      
         Write     the space of  the continuous functions with   

periodic with respect to the variable in   . If       
       , its quasi norm. 

Define the symmetric difference of degree r for the function   as  

           
( )
 ( )  ∑ ( ) 

  
   (  )  (  .

 

 
  /  ).  

Using    
  ( ), we define the modulus of smoothness of order r as:  

  (   )               
( )
 ( ) 

 
 .                                          (2.1) 

where 

   
 
 (∫   ( )  )  ⁄  

 

  

 

We say that the function f belongs to Lipishtz space of order greater than        

. Write      ( ) , if   (   )   (  )  with an   (   -  
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Modulus of smoothness is a measurement of smoothness. The modulus of 

smoothness of many variables is an improvement of the modulus of smoothness 

of one variable. Let us list some properties of the modulus of smoothness. For 

     
         we have 

      (1)        (     )     

      (2)  (     )  is nondecreasing function of  . 

      (3)  (     )       (     )   for      

We denote by    ( )  
 

(  ) 
∫  ( ) (   )  
 

  
  the convolution of   and  , and 

by   ( )            the Fourier transformation of function , where      

 
 

(  ) 
∫  ( ) ( )  
 

  
 is inner product of   and  . The definition of the  r-th K-

functional of      
         and          it mean 

  (   
 )            

 *     
 
             

   
 
+,                              (2.2) 

     where                   (          )    
   and    

    

         
  
   

is the operator of derivative. The K-functional operator was defined by K-Peetre 

in [15]. Then it developed by Johmen and Scherer in [12] and in [9] by Ditzian 

and Totik. The K-functional operator used to measure the distance between the 

neural liner space and the approximations space. One of the famous results for 

the K-functionless is it's equivalence with the modulus of smoothness define in 

(2.2), it mean there are constants    and     satisfy  

                            (   )    (   
 )      (   ) .                               (2.3) 

Now let us introduce some notations from [16]. We have     and       
      

    

        (          )    
    (          )    

  

      (
 

   
)       ∏   

    

   
  

 

   

 

In our article we will use the notation  (     ) to denote such absolute crostatas 

which are             may differ on different occurrences even in the same line, and 

depending on    and   . 
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  3. The Main Results  

 This section consists of the main results of this article.  

 Theorem.3.1.           
            , we have 

    (  )      
  (   )  (   

 

   
)  

Proof.                                                                                                                  

 Suppose r = (r1,r2,. . . ,rd)    
 ,   is a natural number. 

 The Fejer – korovkin kernel kλ of dimension d is defined by 

    ( )       ∑                 , where  

 bλ,r =∏    
    

   

 
          ,    (∑ (          )

 )  . 

 Then  

 Bλ = ( ∑ (∏    
    

   
) )   (

 

   
)   (

 

   
)  

         , 

 and 

  ( )      ∑      
                 ∑             (   ) 

         

      
 . 

 We define the operator  
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∫ (∑   (  ( 

 
  ) )  ( )  )  

 

(  ) 
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 where        
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 ) 
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 ( )       

 ( )     ∑           
         

            
 ,  

and    
 (  )     

 

    
 [16]. 

Using (1), (2), and (3) to get 
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If we take   
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and since (1-   
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Proof. 

By lemma (3.2)  

          (  )      
 

 

  
∑      (  )      
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and by using theorem (3.1) 
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/. 

Therefore, we get 
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Theorem.3.5. If       
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and only if       ( )   

Proof. 

Let       ( )                we must prove that 

    ,  -      
  (   )   

Since       ( ) , then  (   )   (   ).                                      (3.5.1) 

Using theorem.3.1 and (3.5.1) we get 

║E  ,  -      
  ( ) (   ). 

 Then 

            ,  -  
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Let       
 
        then ║E  ,  -      

  (   ). 

We must prove that      ( ) . 

Now, ║E  ,  -      
  (   ) 

                                         (   ), 

and since  ║E  ,  -      
  (   )  (    ). Then 

                ( )  (    )   (   ) 

                         (    )   (   ). 

Therefore, using definition of Lipschitian function we get       ( )  
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Impress of rotation and an inclined MHD on waveform 
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canal 
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Abstract: Waveform flow of non-Newtonian fluid through a porous medium of the non-symmetric sloping 

canal under the effect of rotation and magnetic force, which has applied by the inclined way, have studied 

analytically and computed numerically. Slip boundary conditions on velocity distribution and stream function 

are used. We have taken the influence of heat and mass transfer in the consideration in our study. We carried out 

the mathematical model by using the presumption of low Reynolds number and small wave number. The 

resulting equations of motion, which are representing by the velocity profile and stream function distribution, 

solved by using the method of a domain decomposition analysis and we obtained the exact solutions of velocity, 

temperature, and concentration. The expressions of velocity, temperature, and concentration of the particles of 

the fluid have obtained and examined graphically by utilizing the soft wave of the Mathematica program. The 

efforts of various variables on mathematical modeling of motion and energy are discussed in detail. We found 

that. 

Keywords: rotation effect, non-Newtonian fluid, porous medium, magnetic force, waveform transport. 

  1- Introduction 

       Motion through the porous area takes place in the filtering of fluids and leakage of water in the 

beds of rivers. The moment under the ground, oils and water are some important examples of flows 

through a porous medium. An oil barrage mostly includes the formation of sediments such as 

sandstone and limestone in which the oil is entrapped. Another example of motion through a porous 

medium is the leakage under a dam, which is very important. There are examples of nature's porous 

medium such as rye bread and beach sand. The transport through porous media discussed by 

(Sceidgger, 1963). The waveform motion of Newtonian fluid in a vertical asymmetric porous channel 

is studied by (Srinivas S and Gayathri R, 2009). The peristaltic transport of Jeffrey fluid under the 

effort of a magnetic field in an asymmetric porous canal is studied by (kothandapani & Srnivas, 2008). 

The impact of porous medium and magnetic force on the waveform flow of Jeffrey fluid is studied by 

(Mahmood, Afifi, & Al. Isede, 2011). The influence of the thickness of the porous material on the 

waveform pumping of Jeffrey fluid when the tube wall is provided with non-erodible lining is made 

by (Rathod & Channakote, 2011).  

The MHD flow of a fluid in a channel with elastic, rhythmically contraction walls is of interest in 

connection with a certain problem of the movement of conductive physiological fluids, e.g., the blood 

and with the need for theoretical research on the operation of a peristaltic MHD 

Compressor. The effect of a moving magnetic field on blood flow was studied by (Stud V K, Sephone 

G S and Mishra R K G, 1977). And they observed that the effects of a suitable moving magnetic field 

accelerate the speed of blood.  The blood as an electrically conducting fluid that constitutes a 

suspension of red cells in the plasma is considered by (Srivastava L M and Srivastava V P, 1984). The 

MHD flow of a conducting couple stress fluid in a slit channel with rhythmically contracting walls is 

analyzed by (Mekheimer Kh S, 2008). The MHD peristaltic motion of a Sisko fluid in an asymmetric 

channel is studied by (Wang Y, Hayat T, Ali N and oberlack M, 2008). The peristaltic transport of a 

Jeffrey fluid under the effect of the magnetic field in an under the effect of a magnetic field in a 

Symmetric channel with flexible rigid walls are examined by (Kothandapani M and Srinivas S, 2008). 
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The effects of an endoscope and magnetic field on the peristalsis involving Jeffrey fluid has 

investigated by (Hayat T, Ahmed N and Ali N, 2008). Given these facts, it will be interesting to study 

the peristaltic flow of conducting Jeffrey fluid flow in a channel bounded by permeable walls. 

Waveform transport with heat and mass transfer has many applications in biomedical sciences and 

industry such as conduction in tissues, heat convection due to blood flow from the pores of tissues and 

radiation between environment and its surface, food processing and vasodilation. The processes of 

oxygenation and hemodialysis have also visualized by considering peristaltic flows with heat transfer. 

There is a certain role of mass transfer in all these processes. The mass transfer also occurs in many 

industrial processes like membrane separation process, reverse osmosis, distillation process, 

combustion process and diffusion of chemical impurities. The effect of heat transfer on the peristaltic 

flow of an electrically conducting fluid in a porous space is studied by (Hayat T, Qurashi M U and 

Hussain Q, 2009). The influence of heat transfer and slip-on peristaltic transport is analyzed by (Hayat 

T, Hina S and Hendi A A, 2012). Heat transfer analysis of peristaltic flow in a curved channel is 

analyzed by (Ali N, Sajid M, Javed T and Abbas Z, 2010). 

It is also of interest to remember that non-slip boundary conditions are unsuitable for must non-

Newtonian fluids because they display microscopically the slip condition of the walls. The fluids that 

displaying the boundary slip condition give applications in technology such that the polishing of 

artificial heart, there are many studies, which are, using this condition, see (Abdulhadi A M and Al-

Hadad A H, 2015), (Chaube M K, Pandey S K and Tripathi D, 2010) & (Ali N, Wang Y, Hayat T and 

oberlack M, 2009). Recently, magnetic field and rotation effects on the peristaltic transport of Jeffrey 

fluid in an asymmetric channel studied by (Abd-Alla, A M. and Abo-Dahab, S M, 2015). The effect of 

the rotation on wave motion through the cylindrical bore in a micropolar porous medium is discussed 

by (Mahmoud S R, Abd-alla A M and El-Sheikh M A, 2011). The effects of rotation and MHD on the 

nonlinear peristaltic flow of Jeffrey fluid in an asymmetric channel through a porous medium has 

discussed by (Abdulhadi A M and Al-Hadad A H, 2016).  

Now in this paper, we discuss the waveform motion of the non-Newtonian fluid through a porous 

medium of non- symmetric sloping canal under the effect of rotation and inclined magnetic field in 

two-dimensional channels. We studied the problem under the slip boundary conditions on the velocity 

distribution and stream function profile, in addition to the impact of heat and mass transfer in the 

channel. The governing equations are modeling and then solved analytically by using a domain 

decomposition method and we obtained the exact solutions of the velocity, temperature, and 

concentration distribution by using the approximations of long wavelength and low Reynolds number. 

We studied the effects of various parameters on the above distributions by displaying some graphs, 

which have shown by using the por rogram of Mathematica software. 

 

2- Problem's Mathematical Pattern 

     Through our work, we have considered the waveform flow of non-Newtonian fluid through a 

porous medium of two-dimensional with non-symmetric and non-uniform inclined channel under the 

effect of rotation parameter of the channel and combined influence of inclined magnetic field as well 

as heat/mass transfer. We suppose that there is infinite number of waves, which are transporting with 

speed 1c along the non-regular walls. We have chosen a system of rectangular coordinates for this 

channel with 1X along the direction of wave's propagation and parallel to the cort line and the axis 1Y

is transverse to it. The mathematical model for the channel's walls can described by:  

11 1

12 2

, left wall,...
,                                                                                               ...(2.1)

, right wall,...

G A B

G A B
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1 1

1 1 1 1 1

2 2 1 1

2
where sin[ ( ) ]                                                                                    ...(2.2)

2
sin[ ( )]

A e m X

B e X c t

B e X c t











 



   



  


 

Such that  is the wave's length, (2e) is the width of the channel at the inlet 1( 1)m  which is the non 

–uniform parameter, 1 2( , )e e are the wave's amplitudes, 1 is the phase difference of the waves which 

changes in the rate about 1 [0, ]  in which if 1 0   corresp onds to symmetric channel and the 

waves are out the phase and if 1  represent to the waves in the phase. Moreover the parameters 

1 2 1, ,  and e e e  achieved the following condition: 

2 2 2                

1 2 1 2 12 cos (2 )                                                                                         ...(2.3)e e e e e    

 

Also, it is worth noting through our study, we suppose the magnetic Reynolds number is small and 

hence the induced magnetic field is cancel. 

 

3- Basic Equation 

 The system that governing the equations of motion and energy can give in the following formula:     

  

1 2

1 1

0                                                                                                                                      ...(3.1)
W

X Y

W 
 

 
 

1 1 1 1

1 1 1
1 1 2 1 1

1 1 1 1

2 0
0 1 2 1 1 1

1

2

1 1

( ) ( ) ( )

cos ( cos sin ) sin .                                                                                 ... 

( 2 ) X X X Y

W W W
W W W

t X Y X X

N
B W W W g

k

W P

Y Y
   

     

    
    

    

   

   
 

 

(3.2)

1 1 1 1

1
1 1 2 1

1 1 1 1

2 0
0 1 2 2 1 1

1

2 2 2 1
2

1 1

( ) ( ) ( )

sin ( cos sin ) .                                                                                   

( 2 ) X Y Y YW W
t X Y X

N
B W W W gCos

k

Y

W W W W P
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Y Y
   

     

    
    

    

  

    



 

 

          ...(3.3)
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X Y X Y Y XX Y X

Y
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W N
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f
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                                                             ...(3.4)

 
2 2 2 2

1 2 2 2 2 2

1 1 1 1 1 1

(                                                            ...(3.5)) ( ) ( )m F
m

m

W g
X Y X Y X Y

g kf f f f F F
W

F

     
   

     



 

Where ( 1 ) is the fluid's density,   ,  is the unit vector parallel to 1 axisz  ,   is the 

rotation parameter, 1 1 1 2 1 1[ ( , ), ( , ),0]W W WX Y X Y  is the vector of velocity in two-dimensional 

coordinates 1 1( , )X Y , 1 is the fluid's pressure,   is the flow's fluid time,  is the fluid's electrical 

conductivity, 0B is the strength of the applied magnetics force. The absence of an electrical field 

characterized by the Lorentz force ( )J B , which takes the following formula: 
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2 2

0 1 2 0 1 2cos ( cos sin ) sin ( cos sin )                    ...(3.6)i iJ B B W W e B W W e               

Where ( , )i je e are the unit vectors, J is the induced current density. We observed that the effect 

of the magnetic field appears on the flow of 
1 1 directionX Y  due to the inclination angle  of 

magnetic field. Also, we have 1 referred to inclination angle of the channel, g is the acceleration 

due to gravity, No is the fluid's viscosity, 1k is the porosity parameter of the canal, 1 is the 

specific heat at constant pressure, F is the fluid's temperature, f is the fluid's concentration, 2k

is the fluid's thermal conductivity, mg is the coefficient of mass diffusivity, sk is the 

concentration susceptibility, Fk is the thermal diffusion ratio and mF is the fluid's mean 

temperature. 

The constituent equations for non-Newtonian incompressible fluid which characterized by rate 

type fluid can be shown as the form: 

1                                                                                                                            ...(3.7)S I   
 

Where S is the Cauchy stress tensor, I is the identity tensor and  is the extra stress for the 

fluid which is formed as [18]: 

0
2

1

( )                                                                                                                 ...(3.8)
1

N
r r 



 

 


Where the ratio of repose to obstruction times is 1 , 2 is the obstruction time, r


is the rate of 

shear, such that:  

( ) ( )                                                                                                                   ...(3.9)r W W


     

1 2

1 1

[ ]                                                                                                   ...(3.10)r W W r
t X Y

   
  
  

 
Now, if we substitute (3.10) into (3.8), we obtain: 

0
1 2

1 1 1

(( ))                                                                                        ...(3.11)
1

N
W W r

t X Y




  
  
   

 
Then the components of stress have given by: 

1 1
1 1 1 1

0
2

1
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1

X X
X X X X
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1

W

Y X Y X X Y X Y XY

N
W W

W W W W W W W

t t





       

          

      


 

1 1
1 1 1 1

0
2

1
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0 2 2 1 2
2 1 2 2

1 1 1 1 1 1

2
[ ( )]                                                             ...(3.14) 

1

N W W W W
W W

Y t Y X Y Y




   
   
      

 
Now, if we introduce the following non-dimensional parameters into Eq. (1-14) we obtain: 
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 ..(3.15)

 

where 1 is the wavenumber, Pr n is the Prandtl number, Ec is the Eckert number, Ren is the 

Reynolds number, Brn is the Brinkman number, M is Hartmann number,  & ba are the 

amplitudes of the wave, Sci is the Schmidt number, Sor is the soret number, Da is the porous 

medium parameter, &  are the non-dimensional of temperature and concentration 

respectively, 
1P is the pressure of the fluid, 0 1&F F are the temperature of the fluid at upper and 

lower side of the walls, 0 1&c c are the concentration of the fluid at upper and lower part of the 

walls 1 2&g g are non-dimensional of upper and lowers walls of the channel, fD is the Dufour 

number, Fr is the Froude number. 

So, Equations (3.1)-(3.14) will become: 

0                                                                                                                             ...(3.16)
u v

x y
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In which 
2 2 2 2

1 2

1 1
cos ,  sinN M N M

Da Da
     and the components of shear stress are: 

1 2 1 1

1

2
= [1 ( )]                                                                         ...(3.21)

1
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1
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1 2 1 1

1

2
= [1 ( )]                                                                         ...(3.23)

1
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c v
u v

e t x y y

  




    
  

    
 

Now, by using the approximations of small wavenumber 1  and it's orders and the low value of 

Reynolds number (Ren), Eq. (3.16)-(3.22) will be in the following form: 
2 2

21 1
1

0

Re
si                                                                                       ...(3.24) xy

P e n
u N u
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Now, if we introduce the stream function ( , )x y in Eq. (3.24) by taking the formula ,u
y





   

,v
x


 


  we get                                                                                                               … (3.29)  

2 23
2 1

1 13

1 0

1 Re
= ( ) sin                                                               ...(3.30)
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From Eq. (3.25) we deduce that the pressure 1 of the fluid doesn’t depend on y, so if we derive                        

Eq. (3.30) with respect to y we obtain: 
2 24 2

21
14 2

1 0

1
0 = ( )                                                                                       ...(3.31)
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The boundary conditions, which are used through this study, can represent in the following: 
2

1 22

2

1 12

,  + 1   at  y = g  
2

,  1   at  y = g                                                                                   ...(3.32)
2

y y

y y

  
 

  
 

 
  

 

 
    

 

 

2

1

 = 0, = 0 at y = g  

 =1, =1  at y = g                                                                                                   ...(3.33)

 

 
 

In which, 2 2 1 1 1 1 1 2, , 1 , sin[2 ( ) ], sin[2 ( )]   ...(3-34)g A B g A B A m x B a x t B b x t              

4. Problem's solution 

By using the method of "A domain decomposition", the Eq. (3.31) can be written as: 
4 2

2

4 2
                                                                                                                             ...(4.1)S

y y

  


 
 

In which

2 2
2 2 1

1 1

0

(1 )( )
e

S N
N





   , an operator ( ) can write Eq. (4.1) as: 

2 ( )                                                                                                                            ...(4.2)m yyS   
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In which 
4

4y






is a fourth-order difference operators 1( )  is a fourth-fold integration operator 

defined by: 

1

0 0 0 0

( ) (.)                                                                                                      ...(4.3)

y y y y

dydydydy        

if we are operating with 1( )   on Eq. (4.2), we have : 
2 3

2 1

11 12 13 14 ( ) ( )                                                                        ...(4.4)
2

m yy

y y
c c y c c S      

 
 

In which the function ( 1, 1,2,3,4)ijc i j  can be obtained by using the boundary conditions, 

Eq. (3.32) 

 The standard of A domain decomposition method, are get: 

0

                                                                                                                                 ...(4.5)m

m

 




  

Where the components ( ), 0m m  , will be located frequently. The following repeated relation is 

got from Eq. (4.4): 
2 3

0 11 12 13 14 .....                                                                                       ...(4.6)
2

y y
c c y c c     

 
 

2 1

1 ( ) ( ) ,m 0m m yyS  

  
 

Hence, we have: 
4 5

1 13 142 3

1 ( ) 1 ( )
.....                                                                                 ...(4.7)

Sy Sy
c c

S S
   

   
6 7

2 13 142 3

1 ( ) 1 ( )
.....                                                                                 ...(4.8)

Sy Sy
c c

S S
   

   

2 2 2 3

13 142 3

1 ( ) 1 ( )
,m 0                                                                   ...(4.9)

2m + 2 2m + 3

m m

m

Sy Sy
c c

S S


 

  
   

 
Thus from Eq. (4.5), the formula for  is given as: 

11 12 13 142 3

1 1
(cosh 1) (sinh )                                                 ...(4.10)c c y c Sy c Sy Sy

S S
      

 
2 2

4 2 4 3                                                          (                       ...(4-11[ )] [ ]) /u c c s c Cosh sy c sSinh sy s      

The expression of temperature and concentration distributions as follow: 
2 2 22 2 2

3 34 4

1 22 4 2

3 4

3

[2 ][2 ]

4( 1 1) 4 ( 1 1) 8 ( 1 1) 8 ( 1 1)

[2 ]
                                                                                  

4 ( 1 1)

Brc y Brc Cosh syBrc y Brc Cosh sy
a ya

W s W s W s W

Brc c Sinh sy

s W

       
       

 
                                              ...(4 -12)

 

2 2 2 2 2

4 1 2

2 4 2 2

4 3

3

3 4

(( 3 ) / (4( 1 1))) ( ) / (4 ( 1 1))

( [2 ]) / (8 ( 1 1)) ( [2 ])(8 ( 1 1))

( [2 ]) / (4 ( 1 1));                                  

Brc ScSry W Brc ScSry s W b yb

Brc ScSrCosh sy s W Brc ScSrCosh sy s W

Brc c ScSrSinh sy s W

          

     

                                                           ...(4 -13)

 

5 – Discussion of the problem's results 

5.1 Velocity's distribution  

By Equation (4-11), we can realize that velocity's profile is a function of y. 

In this section, we have displayed the results of the problem and have discussed for different 

physical parameters of interest. Figure (1) have used to show the distribution of axial velocity 
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for various of the channel 1m , the phase difference of the channel 1( )  , the amplitudes of the 

channel's waves ( & )a b , Hartmann number ( )M , the fluid's material parameter 1( ) , fluid's 

density 1( ) , fluid's viscosity 0( )N , rotation parameter ( ) , channel's width (2 )e , inclination 

angle of magnetic field ( ) , volume flow rate 1( ) and the slip parameter 1( ) . In figure (1-a), 

we observed that an increase in 1( )m leads to an increase in flow of fluid on the walls of the 

channel and decrease in the cort of channel at ( 0.7,0.9)y   . Figure (1-b), shows the impact of 

1( ) on the velocity profile, it have found that the magnitude of velocity reduces at all the 

channel and especially at the lower wall of the channel. Figure (1-c,d,e) displays the effects of 

parameters 1( , & )a b  on the velocity, it have noted that their behavior on velocity is opposite to 

phase difference's behavior on it. The efforts of 1 0 1, ,  and M N  on the velocity distribution have 

sketched on the figures(1-f,g,h,i) and we noticed that the rising values of the last parameters 

results an increase to amount of flow on the sides of the channel and decreasing in the center. 
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                           Fig(1-a,b,…,n): Effect of parameters on velocity profile  
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  5.2 Temperature's characteristics 

By Eq. (4-12), we can see that the distribution of fluid's temperature is a function of y. figure (2) 

have designed to show the changes of temperature distribution for various values of

1 1 1 1, , , , , , ,m a b M     0 1 1, , , , P r , , , , , ,  a n d  f aN e n Ec D Sci D Sor   .figure (2-a) have drawn to 

explain the effect of non-uniform parameter of channel 1m on fluid's temperature, we have seen 

that the temperature increase on the walls of channel but it decreases in the part of center of 

channel when ( 1.2,0.2)y   . The impact of phase difference 1  on the distribution of 

temperature, it observed that an increase in this parameter leads to reduce in the heat of fluid 
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on the lower part of channel but there is a slight increase in the cort of channel when 

( 0.8,0.02)y   a of wave's amplnd we can see that in figure (2-b). opposite effectiveness can see 

in figure (2-c)for the influence of wave's amplitude a on the heat of fluids and we see that it's 

temperature is low in the area when ( 1.2,0.3)y   . Figure (2-d,e,f,g,h,i) are displayed the 

efforts of wave's amplitude b , fluid's density 1 , fluid's viscosity 0N , rotation parameter  , 

inclination angle of magnetic force  and Darcy number aD on heats distribution, we have 

noted that the temperature of fluid increases in the all parts of channel with an increase of these 

parameters. adverse effective can notice in figure (2-j,k) for the actions of Hartmann number M 

and fluid's material parameter 1 . Figure(2-l,m,n,o,p,q,r) is sketched to show the impress of 

Prandtl number Pr n , Eckert number Ec , Dufour number fD , Schmidt numberSci  ,half 

width e, soret number Sor and volume flow rate 1 ,on the fluid's heat, we viewed that with an 

excess values of previous variables, the temperature of the fluid will raise at the middle of the 

channel but it goes down little at the endings of walls. In figure (2-s) , the effectuation of slip 

parameter 1 on the fluid's temperature is offered, we have seen that this parameter show up 

cross attitude for the prandtl number's manner Pr n on the heat of fluid. 
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Fig(2-a,b,…s): Effect of parameters on 

temperature profile 
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  5.3 Concentration's Profile 

By equation (4-13), we can notice that the fluid's concentration is a function of y. figure (3)have 

drown to show the variation of concentration distribution for sundry value of 

1 1 1 1, , , , , , ,m a b M  
0 1 1, , , ,Pr , , , , , ,  and f aN e n Ec D Sci D Sor   . The concentration's profile is 

opposite of temperature profile and the variables have behaved inverse action on concentration 

than a fluid's heat. Figure (3-a) have depicted to state the effect of non-regularity parameter of 

channel 1m on fluid's concentration, we have seen  that the concentration decreases at the walls 

of the channel but it have started to increase by a slightly way at the upper wall when 

(0.2,1.5)y  . Opposite conduct on the impact of (b) which have shown in figure (3-b). figure (3-

c,d,e,f) are displayed the efforts of 1 0 1, ,   and M N  , we have noted that the concentration is an 

increasing function of these parameters. figure (3-g,h,I,j,k,l) are sketched to clarify the actions 

of 1 0, , , , ,  and aaN e D  , we have observed that the concentration is an decreasing function of 

these parameters. the activity of Pr n on the fluid's concentration have formalized in figure (3-

m), we have perceived that the concentration is less in the center of channel but it is more at the 

walls of the channel. Similar effectiveness for the influence of 1, , ,  and fEc D Sci Sor  and their 

efficacy have shown in figure (3-n, o, p, q), but we can see the inverse impress for the parameter 

1 and have seen it's influence in figure (3-s). 
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Fig (3-a,b,…,s): effect of parameter on 

concentration profile.  

1

1 1 0

1 1

0.1, / 6, 0.2, 0.3, 1,

1.5, 0.1, 0.2,  1, 1,

/ 6,Pr 3, 0.8, 0.3, 0.7

2, 0.7, 0.5, 1.5, 0.3

f

a

t a b M

N e

n Ec D Sci

D Sor m x

 

 

 



    

     

    

    

 

 

 

5.4 Phenomenon of fluid's waves stream 

The phenomenon of fluid's trapping is an motivating them in wave's transporting of fluids. The 

formulation of an inwardly revolving bolus of fluid through enclosed stream lines is known by 

trapping and this trapping bolus is derived a head a long with the contracted waves. The 

impacts of various parameters like 1 1 1 1, , , , , , ,m a b M  

0 1 1, , , ,Pr , , , , , ,  and f aN e n Ec D Sci D Sor   on trapping have seen through the figures (4-17). 

Figures (4-a,b)-(7-a,b) show that the number and size of trapping bolus increase with an 

increase of 1 1 1, ,  and m a   . Inverse situation can noticed in the figures (8-a,b)-(12-a,b) for the 

actions of 1 1 0, , , and M N   . The effect of b is sketched in figure (13-a,b), at the beginning, we 

have noted that there is a connected wave but it have taken to separated different waves which 
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is increasing in volume and number. The influence of e have illustrated in figure (14-a,b), it have 

observed there is an increasing in volume and number of bolus in the right side of channel when 

0.8 1.5x  and there is a decreasing in the size and number of bolus in the left part of channel 

when 0 0.6x  . Similar effect for the activity of  and aD on the waves of fluid and their effect 

have represented in figure (15-a,b)-(16-a,b) respectively, and we have noticed that there is clear 

boost in number of bolus in the right wall of channel when 0.8 1.5x  . Where as in figure (17-

a,b), we have viewed the contrary demeanor for the work of 1  on the fluid's waves, we have 

recognized that the bolus of fluid have gone down in number for both sides of channel but they 

have enhanced in the size. 
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      Fig (4-c) 
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     Fig (4-d) 

 

 

 

 

 

 

 

     Fig (4-e) 

 

 

 

 

 

 

 

     Fig (4-f) 
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    Fig (4-h) 
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     Fig (4-j) 

 

 

 

 

 

 

     Fig (4-k) 
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     Fig (4-L) 
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                              Fig (4-a,b,…,n): Effect of parameters on streamline 
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6- Inferred notes for the problem  

In the present study, we deal with the waveform transport of non-Newtonian fluid under the 

combined influence of inclined magnetic field and heat  /mass transfer in the porous medium of 

non-symmetric inclined channel by using the effect of rotation parameter of the channel. Thus 

through our study we have conclude the following observations: 

1. On the velocity's distribution, there is an enhancement on it's profile with an increase 

values of non-uniform parameter ( 1m ) of the channel, amplitudes of channel (a& b), 

Hartmann number M , fluid's material parameter
1 , fluid's viscosity 

0N , volume flow 

rate of fluid 
1  and slip parameter

1 . Opposite case is satisfied with an increase values 

of phase of fluid's wave ( 1 ), fluid's density
1 . Rotation parameter of the channel , 

half-width of channel (e) and slopping angle of magnetic field  . 

2. On temperature's distribution ; there is an ascending on it's profile with an rising 

magnitude of left amplitude of wave (b), fluid's density 
1 ,darcy number 

aD , rotation 
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parameter  , half-width of channel (e) and slopping angle of magnetic field , inverse 

status is achieved with an increase of Hartmann number M , fluid's material parameter

1 and fluid's viscosity
0N . 

3. With an increase of right amplitude of wave a . There is clear increasing on fluid's heat on 

left wall of the channel and there is slight reducing in the middle part of the channel. We 

can see the opposite behavior for the influence of wave's phase. 

4.  With an increase of non-uniform parameter of channel and slip parameter 
1 . There is 

clear increasing on fluid's temperature on the walls of the channel and it decreases at 

the center of channel. The contrary case can be seen with an increase of prandtl number 

Pr n , Eckert number Ec , Dufour number 
fD , Schmidt number Sci ,soret numbe Sor

and volume flow rate of the wave 
1 . 

5. There is a seriousness relationship between the distribution of velocity of fluid and it's 

temperature. 

6. There is discrepant relationship between the distribution of fluid's temperature and it's 

concentration. So, we have noticed that the fluid's concentration is an ascending 

function of the parameters 
1 0, ,M N and it is decreasing function of the parameters 

1, , , , ,ae D a  . 

7. With an increase of the following parameters 
1Pr , , , , ,fn Ec D Sci Sor  , the fluid's 

concentration have increased at the walls of the channel and have decreased at the 

center of the channel. We can observe the inverse case with an increase of 
1 1( , , )m b  . 

8. The number and size of the trapping bolus have increased with an increase of 

1 1 1,( , ),  m a b and  . Opposite p light with an increase of 1 1 0, , ,M N and   . 

9. With increase values of parameters, ( , , ),ae D there is clear increasing in size and number 

of bolus in the right side of channel and clear decreasing in it in the left side of channel. 

10. The influence of volume flow rate 
1  on the trapping bolus of fluid's waves have 

promoted basically the size of these bolus, but it have negative effect on their number on 

both sides of channels walls. 
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Abstract : This project aimed to concept types intuitionistic fuzzy  -filter and intuitionistic fuzzy complete  -

filter of  -algebra. Showing the relationship between the different types of intuitionistic fuzzy filters and 

condition that must be put on  -algebra using an example putting forward to explain that .Explore the properties 

of the types of intuitionistic fuzzy filter, finally a chart has been drawn up showing the types and relationship 

between them . 

Keywords:  -algebra, -filter, complete  -filter, intuitionistic fuzzy  -filter,, intuitionistic fuzzy complete  -

filter.              

 

1. Introduction : 

In 1965,Zadeh .L. [14] introduced in the real physical world the notion of fuzzy sub set of the set as a tool  for 

verbal doubt. Atanassov K.T. [4,5] further described The generalization of Intuitionistic fuzzy, Takeuti .G and 

Titanti S.[13] have  also intuitionistic fuzzy sets , but Titanti S. intuitionistic fuzzy mysterious logic in the 

narrow sense and they derive from the set theory of logic which  they said to by (Intuitionistic fuzzy set theory ). 

In 2001 Neggers .J. and Ahn SS,KimHS,[11] We introduced a new idea ,called  -algebra,  -algebra considered 

generalization of  some types algebras (BCK/ BCH/BCI-algebras).In this work, we introduce the idea of 

(Intuitionistic fuzzy  -filter,Intuitionistic fuzzy  -  -filter) of   -algebra, also some properties , relationship and 

condition between different  Intuitionistic fuzzy  filters of  -algebra. 

 

2. Background: 

In this part of our subject, we have provided some basic concepts of  -algebra, types of filters and we need in 

our work.  

Definition 2.1:[11] 

A set   is called  - algebra with a binary operation "   "   and constant "0", if         ,then  

     
 
-         

    
 
-        

    
 
- (   )    (   )          

A binary relation denoted   we will define on  , then            ,       . 

Definition 2.2:[2] 

Let ( ,   ) be a   -algebra , if there is a special element                         ,then   is called an 

unit of  . A  - algebra with unit is called the bounded 

Remark2.3:[2]   

1-we denoted      by                 ,such that   a bounded          . 

2- In a bounded  -algebra                ,          

Remark2.4: 

From now on ,all           is a bounded with unite is unique . also the sets                        . 

Definition2.5:[11] 

If    (     )  (     ) is a mapping, then                  
(1)                   (   )   ( )   ( )                
(2 )                                                 
(3)                                               . 
(4)                                                            . 
Proposition 2.6:[8] 

       (     )  (      )    a mapping epimorphism, then: 

mailto:habeebk.abdullah@uokufa.edu.iq
mailto:shakrakzan192@gmail.com
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(1)  (  )  ( ( ))
 
              

(2) if                                                  ( )    .  
Definition2.7: [2] 

If                                             uch that                                       then 

                            
Proposition2.8:[12]  

In                - algebra  , for all            . 

1- If     then      

2-            

Definition2.9:, -   

The intuitionistic fuzzy sets (shortly, IFS) are defined on a non-empty set    ,as objects having the form  

    *(     ( )    ( ))      +, where the functions        ,   - ,  

      ,   - mean the degree of membership and  mean the degree of nonmember ship ,correspondingly , 

such that      ( )     ( )   .For ease the form is used    (       ). 

 Definition2.10: [7]   

An  IFS   (   ( )    ( )) of  a non-empty set  . Then 

(1)   *(       ( )    ( ))    +  *.     ( )    ( )/     + 

(2)    {(     ( )      ( ))    }  *.     ( )    ( )/     +  

Definition2.11:[7] 

Let    (    ( )    ( )) and   (   
( )   ( ))               ,then     

(1)    {(     ( ) ∨    
( )    ( )    ( ))    } 

                   ={ ( ,max (   ( ) ,   ( )), min(   ( ),    ( )):      }. 

 ( )    {(     ( )     
( )    ( ) ∨   ( ))    }  

                    ={( ,min(   ( ),   ( )),max(   ( ),  ( )) ):    } 

Definition2.12:[7] 

Let *       +    a family of IFS in set        

1-      *(   ∨      ( )       ( ))    + . 

2-      *(   ∨      ( )       ( ))     +. 

Where (   )( )       *   
( )    +    (∨    

)( )      *   
( )    +   

 

Definition2.13:[4]  

If        is a mapping,         {      
( )   ( )        } in   ,the     ( )  

pre-image of   under    is the IFS in   denoted by    ( )is the IFS in   defined by : 

     ( )  *(      (   
( )     (  ( ) ))     +, such that : 

     (  ( ))    (  ( ))    
  .   

( )/     
(  ( )). 

If         *(     ( )    ( ))     +  in  , the image of    under     denoted by :  

     ( )  = {(       (  ( )),      (  ( )))      },  where  

 

    (  ( ))  {
          ( )  ( )             

  ( )     

                                                    
,   and  

 

       (  ( ))  {
           ( )  ( )             

  ( )     

                                                    
,               

Definition2.14:[12] 
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If            is said to be a  -filter of  ,if               ,then   

 F1 -               F2 - ( 
    )                        

Definition2.15:[1] 

An IFS   (       ) is called intuitionistic fuzzy  -filter of  ,(briefly IFS-  -filter), if:  

I1-    ( )     ( ), and     ( )     ( )      

I2-    ( )      *   (( 
    )     ( )+ , 

I3-    ( )      *   (( 
    )     ( )+         

Definition2.16:[12] 

If     ,   it is called complete  -filter of   (shortly ,           ) , if : 
C1-                C2 - ( 

    )    ,      implies    ,                
Definition2.17:[1] 

If   is a  - -filter of  . An       (       ) is called intuitionist fuzzy  - -filter at   ( briefly, IFS- - -

filter ), if : 

IC1-    ( )     ( ), and    ( )     ( )         

IC2-    ( )      *   (( 
    ) )    ( )}      

IC3 -    ( )      *   (( 
    ) )    ( )}      .  

Definition2.18: [12] 

 Let         is called a  - filter of     : 
 S1-    .              S2- (  

       )                    . 

Proposition2.19:[12] 

Every  -filter is an  -filter. 

Definition2.20:[12] 

If       then    is called a complete  - filter ,( -  -filter ), if : 

  1-     ,         2 - (  
       )    ,                   ;         

Proposition2.21:[12] 

I- Every  -filter is  -  -filter.  

II-Every  -  -filter  is  -  -filter. 

III- Every  -filter is  -  -filter 

Proposition2.22:[12] 

Every   - -filter an involuntary  -algebra  - -filter. 

Definition2.23:[14] 

A fuzzy set   in set   is a function     ,   -. If         are two fuzzy subset of  , then by    , we 

mean  ( )   ( )       . 

The complement of   [symbolize it,  ̅] is the fuzzy set in   by :  ̅( )     ( )      . 

Definition2.24:[10]  

If     and a fuzzy set   in             ,   - ,the sets  

I)  (   )  *   ( )   +,it’
s said to be lower  -level cut of  . 

II)  (   )  *   ( )   +,it’
s  said to be upper  -level cut of  .             

Definition2.25: [12] 

 A fuzzy subset   in   is called a fuzzy  -filter (briefly F- -filter), if 

1-  ( )   ( )      , 

2-  (  )      *  ((      ) )  ( )}          
 

3. Intuitionistic fuzzy  -filter 

 In this section ,we provide a description of Intuitionistic fuzzy  - filter, and we are studying  its relationship 

with Intuitionistic fuzzy   -filter in  -algebra .     

Definition3.1: 

 In IFS   (       ) in   is said to be an Intuitionistic fuzzy  -filter of  ,( briefly, 

IFS-  -filter),if : 

 1-    ( )     ( ) , and    ( )     ( ) , for all       

 2-    ( 
 )      *   (( 

      ) )     ( )+ 

 3-    ( 
 )      *    (( 

      ) )    ( )}        
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Example3.2: 

Let   *         + ,then (     )               with unit    as shown table : 

Table 1. 

 

 

 

 

  

 

 

 

If , 

   ( )  {
                  
              

                                       ( )  {
                  
               

  

Then       (       )  is an IFS- -filter of    since:  

     ( )     ( ),and    ( )      ( ) ,          

     ( 
 )          *   (( 

      )      ( )+      

     ( 
 )          *   (( 

      ) )    ( )}      

     ( 
 )          *   (( 

      )     ( )+      

     ( 
 )          *   (( 

     )      ( )+      

     ( 
 )          *   (( 

      ) )    ( )}      

     ( 
          *   (( 

      ) )    ( )}      

     ( 
 )         *   (( 

      ) )    ( )}      

     ( 
 )          *   (( 

      ) )    ( )}      

And, if  

   ( )  {
                 
              
             

                                         ( )  {
               
             
            

   

 

Then       (       ) is not IFS-  -filter of  ,since : 

   ( 
 )      min {   (( 

      ) ) ,    ( )}=0.3. 

Proposition 3.3: 

Every IFS-  -filter of  -algebra (     ) is IFS-  -filter. 

Proof : 

Let   (       )    an IFS-  -filter of   then by Definition (2.14), we have : 

 1-    ( )     ( ) , and    ( )     ( ) ,       

 2 -    ( )      *   (( 
    )     ( )+        , then  

         ( 
 )      *   (( 

     )     ( )+ , [by Remark(2.3)2] , we will get: 

         ( 
 )      *   (( 

      ) )    ( )+,        

 3-   ( )      *   (( 
    )     ( )+        , then  

        ( 
 )      *   (( 

     )     ( )+ , [by Remark(2.3),2)], we will get: 

        ( 
 )     *   (( 

      ) )    ( )+,        

Then   (     ) is IFS-  -filter of  . 

Remark 3.4: 

The converse Proposition (3.3) is not generally true as the next example. 

Example3.5:  

 Let   *         + ,note that (     )              ,and   is unit of  , by the table : 

               

Table 2. 

* 0                  

0 0 0 0 0 0 

          0     0 0 

          0 0 0 

                  0 0       
            0 0 

*   0         

  0   0  0   0  0  0 

     0   0  0  0 

     0   0  0  0 
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If , 

   ( )  {
               
                    

                                              ( )  {
                
                  

 

Then   (       ) is IFS- -filter but not IFS- -filter, since : 

    ( )           *   (( 
    ) )    ( )}     *   (  )    ( )+      

Proposition 3.6: 

Every IFS-  -filter on an involutory  -algebra (     ) is IFS- -filter. 

Proof : 

If IFS- -filter   (       ) of an involutory   -algebra, then  

1-   ( )     ( ) , and    ( )     ( ) ,          

2-    ( )     ( 
  )      *   (( 

      ) )    ( )+,[ by Proposition(2.8,1)] 

                                          *   (( 
      ) )    ( )+  

                                          *   (( 
    ) )    ( )+ 

3-   ( )     ( 
  )     *   (( 

      ) )    ( )+  

                                        *   (( 
      ) )    ( )+ 

                                        *   (( 
    ) )    ( )+,                  

thus   (       )  is IFS- -filter. 

Proposition3.7  : 

Let    (       ) be IFS-  -filter of  . Then    ( 
 )     ( ) and     ( 

 )     ( ),if     

  ,        

 

Proof :- 

          ,then                            . Since    (       ) is IFS-  -filter of  , then  

    ( 
 )      *   (( 

     ) )    ( )+      *   (( )
 )    ( )+  

                                                                         *   ( )    ( )+, ,         ( )     ( )] 

                                                                        ( ) 

     ( 
 )     *   (( 

     ) )    ( )+      *   (( )
 )    ( )+  

                                                                            *   ( )     ( )+           ( )     ( ) 

                                                                           ( ). 

Corollary3.8 : 

If   (       )  is a IFS-  -filter of involutory  -algebra  ,then    ( 
 )     ( ) and    ( 

 )  

   ( ) if       for every       . 

Proof :- 

Let if       , then        , by Proposition ((2.8),2 and by Proposition (3.7),we have hence    ( 
 )  

   ( ) and    ( 
 )     ( ) 

Proposition3.9 : 

If    (       ) is an IFS-  -filter of  , then :- 

1-     ( 
 )     (0) ,    ( 

 )     (0) ,      . 

2-    ( 
  )     ( ) ,    ( 

  )     ( ) ,for all     .  

Proof :- 

Let   (       ) be an IFS-  -filter then :- 

   ( 
 )   min {   (( 

     ) ) ,    (0)} 

              = min {   (( 
      ) ) ,    (0)} 

     0   0  0  0 

             0 
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              = min {   ((   
 ) )    (0)}  

              = min {   ((0 )
 ),    (0)} 

              = min{   ( ),    (0)}          [since    ( )     ( )] 

                  ( ) 

Similarly    ( 
 )     ( ),       

2-    ( 
  )      *    (( 

      ) )    ( )+ 

                   =  min {    ((0)
 ) ,    ( )} 

                   = min {   ( ),    ( )}    [since    ( )      ( )] 

                   =    ( )   

Similarly     ( 
  )     ( ) . 

Proposition3.10 : 

Let     and       [0,1] such that     and  0     +     1,if   (       ) is IFS  

,defined the  

   ( )  2
           
             

                                      ( )  2
          
            

   

Then   is  -filter of   if and only if    is IFS- -filter 

Proof :- 

Suppose that   is a  -filter and     (       ) is not  IFS- -filter,        , such that  

   ( 
 )   min{    (( 

     ) ),    (j)}=  , thus (      ) , j   [since   is a  -filter] ,then      , the 

implies    ( 
 )    ,it need to contradict . 

 or , 

    ( 
 )   max {   (( 

     ) ),    (j)}   ,thus (      ) , j   [since   is  -filter] then        the 

implies     ( 
 )    , it need to contradict . 

Thus   (       ) is IFS- -filter of  .  

Conversely, let    (       ) be IFS-  -filter of  , and (      )   ,    , 

    ( 
 )      *   (( 

     ) )    ( )+     [ since   is IFS-  -filter],then       

And,    ( 
 )      *  (( 

     )     ( )+          

    ( 
 )   , then      ,hence    is a  -filter 

Proposition 3.11: 

An IFS   (       ) of   is IFS- -filter if and only if           
̅̅ ̅̅ ̅ are F- -filter . 

Proof: 

Let   (       ) be IFS- -filter of  ,cleary,    is F- -filter  

              
̅̅ ̅̅ ̅ ( )       ( )       ( )      

̅̅ ̅̅ ̅ ( ) 

    
̅̅ ̅̅ ̅ (  )       ( 

 )      *  (( 
     )     ( )+  

                                                *    (( 
     )       ( )+  

                                               *    
̅̅ ̅̅ ̅((      ) )    

̅̅ ̅̅ ̅( )+ then     
̅̅ ̅̅ ̅is F-  -filter. 

Conversely, let           
̅̅ ̅̅ ̅ be  F- -filter of   ,      ,then 

 1-    ( )     ( )          ( )      
̅̅ ̅̅ ̅( )      

̅̅ ̅̅ ̅ ( )       ( ) 

                   ( )      ( )  

 2-    ( 
 )      *   (( 

     ) )    ( )+ 

 3-      ( 
 )      

̅̅ ̅̅ ̅ (  )      *   
̅̅ ̅̅ ̅((      )     

̅̅ ̅̅ ̅( )+ 

                                                   *     ( 
     ) )      ( )+ 

                                                     *  (( 
     )     ( )+    

   ( )      *  (( 
     )     ( )+        (       ) is IFS- -filter. 

Corollary3.12  :- 

If       (       )  in  , than    (       
̅̅ ̅̅ )       (   

̅̅ ̅̅ ̅    ) are IFS-  -filter if and only if   is 

IFS- -filter of  . 

Proof :- 
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 If          are  IFS-  -filter of  , than the fuzzy sets            
̅̅ ̅̅ ̅ are F- -filter . Hence   (       )  

is an IFS-  -filter.  

Conversely, suppose   (       ) is IFS- -filter of   than         
̿̿ ̿̿  

and
 
     are F- -filter [by Proposition 

(3.11)] hence    (   
̅̅ ̅̅ ̅    )        (       

̅̅ ̅̅ ) are IFS-  -filter. 

Proposition 3.13: 

Let   (       )   an IFS of   .then    is IFS-  -filter of       and only if the sets 

 (     )     (     )are  -filter or it’s empty of         ,   - 

Proof: 

If   (       ) is IFS-  -filter of  ,and     ,   -  (     )     (     ) 

by Definition (3.1), then    ( )     ( )           ( )     ( )                  

then    (     )   (     ),let           (      )     (     )    

    (( 
     ) )           ( )    therefor    ( 

 )      *   (( 
     ) )    ( )+     

Then  (     )      -filter.Similarly  (     ) is  -filter. 

Conversely,we imposed  (     )      (     )are  -filter or it’s empty of  ,if     ,   -   

If we take any            ( )       ( )    we conclude that   

    (     )   (     )    (     )      (     )       (     )     (     ) 

are  -filter concluded    (     )   (     ) hence    ( )       ( )    

     ( )     ( )          Let       if we take       *    (( 
     ) )    ( )+ 

    (( 
     ) )       ( )       (      )     (     ),              (    )- 

         (     ),       (     )      -filter],  

       (  
 )        *    (( 

     ) )    ( )}. 

Let                        *   ( 
     ) )    ( )+, 

then    ( 
     )       ( )     

    (      )     (     )  ,              (    )-       
   (     ) 

,       (      )      -filter],       ( 
 )        *    ( 

     ) )    ( )+ 

Then   (       ) is an IFS-  -filter. 

Proposition3.14 : 

If {   , i   ∆} is  an arbitrary family of IFS-  -filter of  , then ∩   is an IFS-  -filter of   . 

Proof: 

Let     , i   ∆  be IFS-  -filter, such that    (    
     

)then  

 1-     
( )      

( ), so  ⋀     
( )   ⋀     

( ) ,and  

          
( )      

( ),so ⋁    
( )  ⋁    

( ),for all     and i   ∆. 

 2-          
(  )   min{    

((      ) ),     
(j)} 

       ⋀     
(  )   ⋀ {min {    

(      ) )     
(j)} 

       ⋀     
(  )   min{⋀    

(      ) ) ⋀    
(j)} 

 3-        
(  )   max {    

(      ) )     
(j)},      , j          

       ⋁    
(  )   ⋁{max {    

((      ) ),     
(j)}}   

      ⋁    
(  )   max{⋁    

(      ) ) ⋁    
(j)},          

  Then ∩    is IFS- -filter of  . 

Remark3.15: 

In general, the union of two IFS-  -filter is not needed ,as shown in the following example  

Example3.16  : 

 If   (       ) is IFS-  -filter in Example (3.5) and if , 

   ( )  {
                         

                        
                 ( )  {

                          

                      
 

Then       (       )    IFS-  -filter of  , But  
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       ( )  >

           

            
            

             ( )  >

              

             
             

 

Then     (               )       IFS-  -filter,were   

       ( 
 )          *       (( 

     ) )         ( )+      . 

Proposition 3.17  : 

If   is epimorphosim mapping from (     )     (     ) and   (       ) is an IFS-  -filter of  ,then 

   ( )        IFS-  -filter of  . 

Proof: 

If         (       )    IFS- -filter of  , 

 1-       ( )( )     ( ( ))    (  ( ))        ( )( )       

            ( )( )     (  ( )     ( ( ))        ( )( )      , [since   is IFS-  -filter] .  

 2-        ( )( 
 )    (  ( 

 )    ( ( ( ))
 
)      *   (( ( ))

    ( )) )    ( ( ))+  

                                                                              *  ( ( 
     )     ( ( ))+ 

                                                                              *      ( )( 
     )        ( )( )+ 

 3-       ( )( 
 )    ( ( 

 )     (  ( ))
      *  ((  ( ))

   ( ( )) )    (  ( ))+                                             

                                                                           *   ( ( 
     ) )   (  ( ))+       

                                                                          *      ( )(( 
     ) )      ( )( )+ 

Hence     ( ) is an IFS- -filter of   . 

Proposition3.18 :- 

Let   be epimorphosim mapping from(      )    (       ) and   (       ) is an IFS in    such that 

    ( )  (      ( )       ( )) is an IFS- -filter of  , then   is an IFS- -filter of  .  

Proof :-  

 1-            ,such that   ( )    ,then  

    ( ̀)     ( ( ))        ( )( )        ( )( )    ( ( ))    ( ),     , and 

    ( ̀)    ( ( ))        ( )( )       ( )( )    ( ( ))    ( ). 

 2- Let      .Then  ( )   , and   ( )    , for some      . It follow that  

           ( 
 )    ( ( ))

    ( ( )
 )        ( )( )

      *      ( )(( 
     ) )       ( )( )+                                                                           

                                                                                            *  ( (( 
     ) )    ( ( ))+  

                                                                                            *  ( ( 
  )   (  ))    (  ( ))+ 

                                                                                             *  (( 
     ) )   ( )+. 

  3-  ( 
 )    ( ( ))

    ( )( ( 
 )        ( )( )

  

                                                                  *      ( )(( 
     ) )      ( )( )+ 

                                                                  *  ( ( 
     ) )   (  ( ))+  

                                                                  *  ( ( 
  )   (  ))     ( ( ))+ 

                                                                  *   (( 
     ) )   ( )+  

 Then   is an IFS- -filter of  . 

Proposition3.19  :- 

If   (       ) is  IFS- -filter of  ,then    *       ( )     ( )+  

       *       ( )     ( )+  are  -filter of  . 

Proof : 

Let              (       )       then    (( 
     ) )     ( ),    ( )     ( ) 

Since   is IFS- -filter ,so    ( 
 )      *   (( 

     ) )    ( )}     ( ) 

but    ( )     ( 
 )         ( 

 )     ( ) thus       ,hence    is  -filter . 
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And, let      ,and (      )         then    (( 
     ) )     ( )    ( )     ( ) 

   ( 
 )      *   (( 

     ) )    ( )}     ( ),           - -filter],but  

   ( )     ( 
 )       ( 

 )     ( )     
      ,hence    is  -filter .   

4. Intuitionistic fuzzy Complete-S-filter.  

 In this part ,we provide the definition  of  Intuitionistic fuzzy complete  -filter, and study its relationship with 

the Intuitionistic fuzzy filters in  -algebra . 

Definition4.1 : 

Let   be  -  -filter of  . An IFS   (      )of   is called IFS complete  -filter at   (briefly, IFS-  -  -

filter ). 

  -   ( )    ( ), and    ( )     ( ) ,     .  

  -   ( 
 )      *  (( 

     ) )   ( )+     . 

  -    ( 
 )      *   ( 

     ) )    ( )+     . 

Example4.2 : 

Let   *         +  then (     ) is  -algebra,   is a unit , as the shown table: 

                                 Table 3. 

 

 

 

 

 

 

 

 A sub set   *   + is a  - -filter     ,if IFS   (      ) is IFS- - -filter, such that: 

  ( )   {
                       
                      

                                         ( )  {
                     
                    

 

 but the set   (   ,   ) is not IFS-  -  -filter   such that  

 

   ( )  {
                     
                     

                                            ( )  {
                     
                   

        

since, 

   (  )=   ( )= 0.1  min{  (( 
     ) ),   ( )} 

                                 min{  ( ),   ( )}= 0.8. 

Proposition 4.3: 

Every IFS- -filter of    is IFS- - -filter at any  -  -filter . 

Proof :- 

If   is  -  -filter of  , and   (       ) is IFS-  -filter, then  

  -   ( )    ( ) , and    ( )     ( ) ,     .  

  -   ( 
 )     *  (( 

     ) )   ( )} ,for all        ,since     ,then , 

         ( 
 )      *   (( 

     ) )   ( )}         . 

  -    ( 
 )     *   (( 

     ) )    ( )+       ,since      then , 

          ( 
 )     *   (( 

     ) )    ( )+     . 

Thus   (      )is IFS- - -filter at  in  . 

Remark 4.4: 

In general, the inverse of Proposition (4.3) is not realized, can demonstrate this by the following example. 

Example4.5 : 

In Example (4.2),let   *   + be  -  -filter of  .if  

  

  ( )  {
                         
                             

                                     ( )  {
                       
                          

 

*  0            

0  0  0  0  0 0 

        0     0 0 

        0  0 0 

      0     0 0 

            0 
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then   (      ) is IFS- - -filter at  ,but   is not IFS-  -filter,because   

   ( 
 )    ( )          *  (( 

     ) )   ( )}      *   ( )   (0)}= 0.6 

Corollary4.6  :  

Every IFS- -filter of  - algebra   is IFS- - -filter at any  -  -filter  . 

Proof : 

By using Proposition (3.3) and using Proposition (4.3). 

Proposition4.7 : 

Every IFS- - -filter at  - -filter   of   is IFS- - -filter at  - -filter    

Proof : 

Let   (      ) be IFS-  -  -filter at  ,such that    is  - -filter then  by Proposition (2.17),3,   is  - -

filter on  , by Definition (2.14) we have  

  -   ( )     ( ), and    ( )      ( ),     .  

  -   ( )      *   (( 
    ) )   ( )+         . Thus 

       (  )     *  (( 
     ) )   ( )+       [by using Remark (2.3),2]  

       ( 
 )      *  (( 

     ) )   ( )+     . 

  -    ( )     *   (( 
    ) )    ( )}     .Thus  

        ( 
 )       *   (( 

     ) )    ( )}      .[by using Remark (2.3),2] 

       ( 
 )      *    (( 

     ) )    ( )+       . 

Then   (      ) is  IFS- - -filter at  . 

Remark 4.8: 

In general, IFS- - -filter at   is not IFS- - -filter an in the following example . 

Example 4.9:  

in Example (4.2) let   *   + be  -  -filter and  - -filter of  .  

If  

  ( )  {
                               
                        

                             ( )  {
                              
                     

 

 

Then IFS   (      ) is IFS- - -filter at  , but   is not IFS- - -filter,because    

   ( )           *  (( 
    ) )   ( )}      

Proposition 4.10:  

Every IFS- - -filter at  - -filter   in an involutory  -algebra  is IFS- - -filter at  . 

 Proof : 

      (      ) is IFS-  -  -filter at  ,such that   is  - -filter [by Proposition (2.21)],then   is  - -filter.By 

using Definition (4.1) 

1-  ( )     ( ), and    ( )     ( ),     .  

 2-  ( 
 )      *  (( 

     ) )   ( )+ 

      ( )     ( 
  )      *  (( 

      ) )   ( )+  

                                     *  (( 
      ) )   ( )+ 

                                     *  (( 
    ) )   ( )+. 

 3-     ( 
 )      *    (( 

     ) )    ( )+ 

          ( )     ( 
  )      *   (( 

      ) )    ( )} 

                                         *   (( 
     ) )    ( )+ 

                                        *   (( 
      ) )     ( )+ 

                                        *   (( 
    ) )     ( )+ 

   Thus  is IFS- - -filter at  of  .    

Remark 4.11: 

The next diagram shows the relationship between different types Intuitionistic fuzzy filters (IFS- -filter, IFS-  -

  -filter at  , IFS-  -filter and IFS-  -  -filter at  ).  

 



214 
 

 

 

 

 

 

 

 

 

 

                                                                 involutory  -algebra 
 

                                                                                     

                                                         

 

 

 

 

 

 
                    

         
 

5. Conclusion 

This work is study some types of intuitionistic fuzzy filters which is called ( -filter and  -  -filter) on Q-

algebra, which is generalizing the concept of fuzzy filters, we added some important characteristics and 

equivalents definition in Q-algebra, and the relations related to them .  
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Abstract. In the current work, we realize Lie group method for system of stochastic differential 

equations(SDE). To comprehend this method which is used the vector field in the function and solved system by 

associated with Fokker-Planck equations(FPE). For more accurate, we inserted some applications of system 

solved by this method.                                                      

 Keywords: Lie group , SDE ,FPE ,Vector field , Wiener process.                                                                       

Introduction 

Lie group (L.G) method of (ODEs) is will sense in [1,2,3,4] and exercised many important 

applications for sense (DEs). The idea Lie's classical tactic settled on ruling a symmetry group (symg) 

correlating with the (DEs). The inequality to the deterministic (DEs) only a few effort have been made 

to dilate (L.G) theory to (SDE) . It is shown in [6], how to calculation get (sym) of the (FPE) which is 

an equation for probability density from those of (SDE) which is the equation for space variable χ(t), 

depending on Wiener process(W.P). Lie symmetries of Wiener process (SDE) in [5,6,9,7,12,8].  

(L.G),(SDEs),[10] 

In the subsidiary section, discussed the SSDEs in thev Itoa brews: 

                                                                         (2.1)         

Where  
i  and 

i

k  are fine functionss ,   a nonzeroo matrix and 
k are distinct identical gauge 

(W.P) , satisfactory: 

 

     
2

( ) ( ) ( )i ji it t t s                                                                                           

(2.2) 

It is famous that  (2.1) is the (Ito eq) is correlating a diffusion (F-P or Chapman-Kolmogorov) (eq) 

which write as: 

gG + G + G + G=h D 0i j i
t i j i

                                                                                            (2.3)                   
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                                                                                                        (2.4)         

                                               

Is settled , to invention for (2.3) the 2- extension of the( sym)  worker is : 

                                              (2.5)                                                         

The extended infinitesimals are:  

                                                                                 (2.6)                                                    

                                                                                       (2.7)             

                                                                    (2.8)                       

anywhere: 

                                      (2.9)                  





   
    
   1

1

( ) ( )

( )

...
i i i j i i M

i j i M

D u u u
x u u u

                                                   (2.10) 

Then the determining (eq) of an SDE associated with the FPE as : 

( )
0

i k i k k i

r i r r k

r r rt x x x

    
  
    
         

                                                    (2.11)   

2( )
0

i i i i i

r r r k

r r r kt x x x x

   
 

      
    

    
                                                    (2.12)  

17.  Applications 

In the following, we discuses some examples to show this method. 

 
Application(3.1): Consider 0 0

, ,
0 2

y

y
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record as : 

   , ( )dx ydt dy ydt dW t , where  is (+ constant)                                                                         

  (3.1)  

Corresponding (FPE) : 

2

2

u u u u
y y u

t y x y

   
   

   

                                                                                             

(3.2)   

Let 

                                                                    (3.3)   

The 2-prolongation: 

                                                        
(3.4)                       

The determining equation is: 

 

                                                                         
(3.5)                           

  

We get: 

                                                                         
(3.6)   

By using  expansions for ((2.6)-(2.8))  and replacing  



u

t

    by  ¶ ¶ ¶
- + +

¶ ¶ ¶
l l l

2

2

u u u
y y u

y x y

    

We result : 

    

   

1 2 2 2

2 2 2 2

2 2 2

0

t y y x y y u t x t y t y y y y u y y u y u u y y y y y y

x x x u x x y y y y y y

u y u y u u u u u u u u u

u y u u u y u u

          

        

            

         

                          (3.7)    

Solved by separation of the coefficient we obtain the general solution : 
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1

1 1 1

5 3 4 6

2

4 3 6

2 4 6

1
( ) ( , , )

2

t t

t t

t

c

c c e c t c e

c c e c e

c c y t c y e t x y







 

  





   

  

 
     
 

                                                                                        

(3.8) 

Where 
ic are constant , we obtain the following: 

a a

- -

-

¶
P =

¶

¶
P =

¶

é ù¶ ¶
ê ْP = -
ê ْ¶ ¶ë û

¶ ¶ ¶
P = + - +

¶ ¶ ¶

¶
P =

¶

é ù¶ ¶ ¶
ê ْP = + -
ê ْ¶ ¶ ¶ë û

¶
P =

¶

l

l

l

l

l

1

2

1

3

4

5

1

6

1
( )
2

( , , )

t

t

t

u
u

e
x y

t y x u
x y u

x

e y u
x y u

t x y
u

                                                                                                         (3.9) 

Now, the symmetry generators of (3.1) , when using (( 2.11)-(2.12)) we find: 

1

2

1 1
2

2 2
2

0

0

0

0

0

y

y

t

y
t x

y
t x







 


 

















 
  

 

 
  

 

                                                                                                                                           

(3.10) 

By solving above system we get the general solution: 

        

                                                                                                                                              (3.11) 

1

1 1

2 3

2

2

( )

t

t

t c

c e c

c e
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The symmetry generators are 
1 3,  and 

5
. 

Application(3.2): Consider  
1

1 0
, ,

0 1
1

x

 
        

 

 

record as: 

1 2

1
d x= dt+dW (t) , d y=dt+dW (t)

x
                                                                                   

(3.12)              

The associated with FPE is: 

                                                                                              
(3.13) 

By using (3.3) and applied 2-prolongation (3.4) on (3.13) as: 

                                         
(3.14)                                        

                                                          
(3.15) 

                         
(3.16)                                                                      

Solved (3.16) by separation of the coefficient yields the general solution: 

                                                     
(3.17) 

We obtain: 
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(3.18)                                        

We find the determining equation by using ((2.11)-(2.12)) as: 

 

                                                                                            
(3.19) 

 

By solving system (3.19) we find the general solution as: 

 

                                                                                                                                             
(3.20) 

The (sym) generators of (3.12) generate by 
1 3,  and   
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4 2 ( )t x y t
t x y

  
    

  

                                                                                                                

(3.21) 

Which is a projection of 
4 to (t,x,y)-space. 

Conclusion  
In this paper, introduced Lie group method for solving  system of stochastic differential equations(SDE). Also studied 

techniques  for this method which is used  to solve system by associated with Fokker-Planck equations(FPE) show that by 

give some applications about this method. 
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Abstract. In this paper, we introduce  a new generalization for hyponormal operators which is (N, k)-

hyponormal operators, also we study some properties of these operators. In addition, we given the solvability of  

the - commuting operator equation ST = TS ,where      , and S , T are bounded (N, k)- hyponormal 

operators. 

1. Introduction 

The first to study the concept of  hyponormal operators was P.R.Halmos in (1950)[6], .In (1962), 

J.G.Stampfli [10] was studied some properties of hyponormal operators. In (1972) Shila Devi[9] 

defined a new generalization for hyponormal operators which call quasihyponormal operators. In 

(1974), B. L. Wadhwa[12] introduced  the  M-hyponormal operators. In (1979) Kevin Clancy [3] 

introduced three equivalent formulas for hyponormal operators.  In (2009) N.L.Braha [2] given a new 

formula for hyponormal operators. 

 

The purpose of this paper is to present a study on the (N, k)-hyponormal operators. In this study 

we explain that the inverse of invertible ( N, k )-hyponormal operator is not necessarily be ( N, k )-

hyponormal. Also we explain that the sum and the product of two (N, k)-hyponormal operators need 

not be (N, k)-hyponormal. 

During this paper,   ć represents the Hilbert space, and every operator defined on ć  is bounded 

linear operator. 

      

 Finally, we give the following theorem: 

Theorem 

 Let S , Ƭ: ć ć be operators on  ć such that ST = TS  0,     . Let N1,N2: ć  ć be non-

zero positive operators on ć, such that N1T = TN1 and N2S = SN2 , then: 

i. If  S
*
 is (N1,k )-hyponormal operator and T is (N2 ,k )-hyponormal operator , then     

(‖  ‖ ‖  ‖)
 

  . 

ii. If  S is (N1,k )-hyponormal operator and T* is (N2 ,k )-hyponormal operator , then     

(‖  ‖ ‖  ‖)
  

 

 . 

5. Preliminaries 

In this section, we given some essential definitions and propositions, we will need in this paper. Let us 

start by the definition of self – adjoint operator. 

mailto:Nadaaalbadry1981@yahoo.com
mailto:dr_salim2015@yahoo.com
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2.1. Definition [11]   

Let Ƭ: ć  ć be an operator  on ć, then T is called self-adjoint operator if  T
*
 = T. 

2.2. Definition [1 , P. 2] 

Let T: ć ć be a self-adjoin operator  on ć, then T is called  positive , written T  ≥  0, if and only if              

<  T x , x  >  ≥  0 , x  ć. 

2.3.Definition [5] 

Let Ƭ: ć ć be an operator on  ć, then T is called  normal if  T
* 
T = T T

*
, that is: 

 <  T
* 
T x, x  > = <  T T

*
 x , x  > , x  H. 

2.4.Definition [3, P. 1],[7] 

Let T: ć ć be an  operator on  ć,  then T is called  hyponormal if  T
* 
T ≥ T T

*
, that is:  

< T
* 
T x, x >  ≥  < T T

*
 x , x > , x ć. 

 

The following proposition gives equivalent formulas for hyponormal operators: 

2.5.Proposition [3, P. 3],[2] 

Let  T: ć ć be an operator on ć,  then the following arguments  are equivalent:  

i. T
*
T ≥ TT

*
 

ii. T
*
T + 2TT

*
 + 

2
T

*
T  ≥ 0,     . 

iii. ||T
*
x||  ||Tx||,  x  ć. 

iv. T
*
 = ST ,for some bounded  linear operator S : ć ć, such that ||S||  1 .  

 

 Now,  we recall a few properties for hyponormal operators. 

   

2.6.Proposition[7, P. 225], [10] 

Let T: ć ć  be an operator on ć ,then: 

i) T is hyponormal operator , for every     . 

ii) (T- I) is hyponormal operator , for every     . 

iii) If  T has  inverse ,then  the inverse of T 
 
is hyponormal operator . 

iv)  If  E  ć  invariant under T, then T|E  is hyponormal. 

2.7.Proposition  [8], [4] 

Let S, T: ć ć be  hyponormal operators, then: 

i. (S+T) is hyponormal operator if TS
*
 = S

*
T  and ST

*
 = T

*
S.  

ii. ( S T ) is hyponormal operator if  ST
*
 = T

*
S. 

 

6. Main Result 

In the following ,we introduce the new generalization for the hyponormal operators:  

3.1.Definition 

Let T: ć ć be an operator on ć, then T is called  ( N, k )- hyponormal if there exists a positive 

operator N: ć ć such that   NT
*
T

k
 ≥ T

k
T

*
, that is < N T

* 
T

k
  x,  x  >  ≥  <  T

k 
T

*
 x ,  x > ,  x  ć 

and for any positive integer k. To explain this definition consider the next  example. 
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3.2.Example 

The operator T = 0
  
  

1  is (N, k ) – hyponormal , where N = 0
  
  

1 . 

3.3.Proposition 

Let T: ć ć be an  (N, k ) – hyponormal operator,  then : 

i. If N = I (identity operator on ć), and k = 1, then T is hyponormal operator, 

ii. If  A  is closed subspace of ć and  invariant under T , then T|A  is (N, k ) – hyponormal 

operator. 

Proof: 

i. Obvious  

ii. Suppose that T is ( N, k ) – hyponormal operator, and  T1 = T|A, then: Tx = T1x ,for all xA  

            Let x  A, then 

            < N(T1)
*
 (T1)

k
 x , x > = < N T

* 
T

k
 x , x > ≥ < T

k 
T

*
 x,  x > = < (T1)

k 
T

*
 x,  x > ,for all x  A. 

            Hence, T1 is (N, k ) – hyponormal operator. 

3.4.Remarks and Examples 

Let T: ć ć be an  (N, k ) – hyponormal operator,  then : 

i. T is (N, k ) - hyponormal operator , for every    . 

           Proof: 

          Assume that  T is (N, k ) - hyponormal operator,  then NT
*
T

k
  ≥  T

k
T

* 

          Now, 

           (T )
k 
( T )

*
 = ( 

k 
T

k 
) (  ̅ T* 

) 

                                 = ( 
k ̅ ) ( Tk 

T
* 
) 

                                 (
k  ̅ ) ( N T

* 
T

k 
) 

                                = N ( ̅ T*
) (

k
 T

k 
) 

                                = N (  ̅ T* 
) (

k
 T

k 
) 

                             = N( T )
* 
( T )

k
 

            Thus, T is an (N, k ) - hyponormal operator.  

                  

ii. (T- I) is not (N, k )- hyponormal operator for every    \{ 0} .To illustrate this consider 

the following example: 

        The operator  T = 0
  
  

1 is (N, k)-hyponormal, where N = 0
  
  

1. 

        (T- 2I) = 0
  
  

1 is not (N,k)-hyponormal ,when k = 1 and  = 2 .Since 

        N(T- 2I)
*
(T-2I) – (T- 2I)(T-2I)

*
 = 0

     
   

1 and |
     
   

| = - 64 

 

iii. If  T  has  inverse , then the inverse of  T  is not necessarily be (N, k ) – hyponormal operator. 

To show  this consider the next example: 

 

       The operator T =  0
  
  

1 is an (N, k)-hyponormal, where N = 0
  
  

1. 

        But T
-1

 =0
     

     
1 is not (N, k)-hyponormal .Since when k =2, we have 

        N(T
-1

)
*
(T

-1
)

2  
- (T

-1
)

2
(T

-1
)

* 
= 0

           
           

1which is not positive. 
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iv. T
*
 is not necessarily be (N, k)- hyponormal operator. To explain this consider the following 

example:  

       The operator T =  0
  
  

1 is an (N, k)-hyponormal, where N = 0
  
  

1. 

       But T
*
= 0

  
  

1 is not (N, k)-hyponormal operator. Since when k = 1,we have  

 

       NT
*
T – TT

*
 = 0

  
  

1 0
  
  

1 0
  
  

1 - 0
  
  

1 0
  
  

1 

                    = 0
      
   

1 . 

      And the determinant  |
      
   

| = - 7696 

 

 Now, in  the following proposition we give the conditions that make Remark(3.4)(iii) are  true 

. 

3.5.  Proposition 

Permit that  T: ć ć is (N, k ) – hyponormal operator, then: 

i. If  T
-1

 and  N
-1

 are exists and  NT
*
T

k
 =T

*
T

k
N ,then T

-1 
 is an (N, k )- hyponormal operator. 

ii. If  T
k
T

*
 = T

*
T

k
, and N

*
(T

*
T

k
)

*
 = (T

*
T

k
)

*
N

*
, then T

*
 is an (N,k)- hyponormal operator. 

Proof: 

i) 

Assume that  T is ( N, k )- hyponormal operator, then : 

 N T
* 
T

k
  ≥ T

k 
T

*
 

 T
* 
T

k 
N ≥ T

k 
T

*
 

 ( T
k 
T

* 
)

-1  
≥ ( T

* 
T

k 
N )

-1 

 ( T
* 
)

-1 
( T

k 
)

-1  
≥ N

-1 
( T

k 
)

-1 
( T

* 
)

-1  

 N ( T
* 
)

-1  
( T

k 
)

-1  
≥ N N

-1
( T

k 
)

-1 
( T

* 
)

-1 
 

 N ( T
* 
)

-1  
( T

k 
)

-1   
≥  I ( T

k 
)

-1 
( T

* 
)

-1 
 

 N ( T
* 
)

-1  
( T

k 
)

-1  
≥ ( T

k 
)

-1 
( T

* 
)

-1 
 

 N ( T
-1 

)
*  

( T
-1 

)
k  
≥  ( T

-1 
)

k 
( T

-1 
)

* 

Hence , T
-1 

 is (N, k)- hyponormal operator. 

 

ii) 

 

( T
* 
)

k  
(T

* 
)

* 
= ( T

* 
T

k 
)

* 

                  = (T
k 
T

*
)

* 

                   (N T
* 
T

k 
)

* 

                              
= (T

* 
T

k 
)

*
 N

*
 

                              
= N

* 
( T

* 
T

k 
)

*
 

                             
= N ( T

* 
T

k 
)

*
 

                             
= N ( T

k 
T

* 
)

*
 

                             
= N ( T

* 
)

* 
( T

k 
)

* 
 

                             
= N ( T

* 
)

* 
( T

* 
)

k 

Therefore, T
* 
 is an (N, k)-hyponormal operator. ■ 

 

3.6.  Remark 
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Let S,T : ć ć  be an  (N, k )-hyponormal operators on ć, then (S+T) is not necessarily be (N, k )-

hyponormal. To illustrate this consider the next  example: 

The operators T = 0
  
  

1, and S = 0
  
  

1 are (N, k )-hyponormal operators, where  N= 0
  
  

1. 

But (S+T) = 0
  
  

1 is not (N , k)-hyponormal. Since, when k = 2 

N(S+T)
*
(S+T)

k 
– (S+T)

k
(S+T)

*
 = 0

       
   

1. 

 

 In the following theorem we will provide  the conditions that make Remark (3.6.) correct. 

3.7.  Theorem 

Let S,T : ć ć be (N, k )-hyponormal operators on  ć such that ST = TS = TS
*
 = S

*
T= ST

*
 = T

*
S = 

0 ,( 0 is zero operator on ć),  then (S+T) is (N, k )-hyponormal operator. 

Proof: 

(S + T)
k  

(S + T )
*
  = (S

k
 + T

k
)(S

*
 + T

*
 ) 

                              = S
k 
S

*
 + S

k 
T

*
 + T

k 
S

*
 + T

k 
T

*
 

                              = S
k 
S

*
 + T

k 
T

*
 

                               N S
* 
S

k
 +N T

* 
T

k
 (since S, T are (N, k )-hyponormal operators) 

                              = N (S
* 
S

k
 + T

* 
T

k 
)……………………(1) 

On the other hand  

N (S + T)
*  

( S + T )
k
  = N (S

*
 + T

*
 ) (S

k
 + T

k
) 

                                 = N (S
* 
S

k
 + S

* 
T

k
 + T

* 
S

k 
+ T

* 
T

k  
) 

                                 = N (S
* 
S

k
 +  T

* 
T

k  
)………………... (2) 

By (1) and (2) , we get  

 (S + T) is (N, k )-hyponormal operator. 

 

3.8.  Remark 

Let S,T : ć ć be (N, k )-hyponormal operators on ć, then (ST) is not necessarily be (N, k )-

hyponormal. To explain this consider the below  example: 

 

The operators T = 0
  
  

1 and S = 0
   
   

1 are  (N, k )-hyponormal operators ,where N = I. 

But (ST) =0
  
    

1 is not (N, k )-hyponormal operator, when k = 1.Since 

N (ST)
* 
(ST)

  
-  (ST) (ST)

* 
= 0

   
   

1, and the determent  |
   
   

| = -2916 < 0. 

 

Now, the following theorem give the conditions which make Remark(3.8.) is true. 

3.9.  Theorem 

Let S,T : ć ć be (N, k )-hyponormal operators on ć such that 

 ST = TS,  ST
*
 = T

*
S, TS

*
 = S

*
T,  NT

*
T

k
 = T

*
T

k
N  and N

2
 = N  , then (ST) is (N, k )-hyponormal 

operator. 

Proof: 

Suppose that S, T  are (N, k )- hyponormal operators, then by hypothesis we have 

( S T )
k 
( S T )

*
 = (T S )

k 
( S T )

*
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                       = T
k 
S

k 
T

* 
S

*
 

                       = T
k 
T

* 
S

k 
S

*
 

                       N T
* 
T

k 
N S

* 
S

k
 (since S, T are (N, k )-hyponormal operators) 

                      = N
2 
T

* 
T

k 
S

* 
S

k
 

                      = N T
* 
T

k 
S

* 
S

k
 

                      = N T
* 
S

* 
T

k 
S

k
 

                      = N ( S T )
* 
( T S )

k
 

                      = N ( S T )
* 
( S T )

k
 . 

Therefore, N ( S T )
* 

( S T )
k
  ≥  ( S T )

k 
( S T )

*
, which mean that (ST) is (N , k )-hyponormal 

operator. 

 

 In the following theorem we solve the equation ST = TS, where S and T are (N, k)-

hyponormal operators. 

3.10.Theorem 

Let S,T : ć ć be  operators on  ć such that ST = TS  0,     and let  N1,N2 : ć ć be non-

zero  positive operators on ć such that N1T = TN1 and N2S = SN2 , then: 

i. If  S
*
 is (N1,k )-hyponormal operator and T is (N2 ,k )-hyponormal operator , then 

    (‖  ‖ ‖  ‖)
 

  . 

ii. If  S is (N1,k )-hyponormal operator and T
*
 is (N2 ,k )-hyponormal operator , then 

    (‖  ‖ ‖  ‖)
  

 

 . 

Proof : 

i) 

Suppose that  S
*
  is (N1,k )-hyponormal operator and  T  is (N2 ,k )-hyponormal operator, 

Since ST = TS , then  

   ‖  ‖  ‖    ‖  

                 ‖   ‖  

                 ‖(  )(  ) ‖
 

   

                 ‖       ‖
 

   

                 ‖     
      ‖

 

   

                 ‖     
      ‖

 

   

                 ‖  ‖
 

  ‖(     )(   ) ‖
 

   

                 ‖  ‖
 

  ‖   ‖  

                 ‖  ‖
 

  ‖(   )   (     )‖
 

   

                 ‖  ‖
 

  ‖      ‖
 

   

                 ‖  ‖
 

  ‖     
   ‖

 

   

                 ‖  ‖
 

  ‖     
   ‖

 

   

                 (‖  ‖ ‖  ‖)
 

  ‖(  )(  ) ‖
 

   

             (‖  ‖ ‖  ‖)
 

 ‖  ‖  

Hence     ‖  ‖   (‖  ‖ ‖  ‖)
 

  ‖  ‖  and     (‖  ‖ ‖  ‖)
 

 .  

ii) 
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Suppose that  S is (N1,k )-hyponormal operator and  T
*
  is (N2 ,k )-hyponormal operator. 

Since ST = TS, then  

‖  ‖  ‖   ‖ 

                ‖  ‖ 

               ‖(  )(  ) ‖
 
  

               ‖      ‖
 
  

               ‖    
    ‖

 
  

              ‖    
    ‖

 
  

               ‖  ‖
 
  ‖      ‖

 
  

               ‖  ‖
 
  ‖(   )(   ) ‖

 
  

               ‖  ‖
 
  ‖   ‖ 

               ‖  ‖
 
  ‖(   )  (   )‖

 
  

               ‖  ‖
 
  ‖      ‖

 
  

               ‖  ‖
 
  ‖     

   ‖
 
  

               ‖  ‖
 
  ‖     

   ‖
 
  

               ‖  ‖
 
  ‖     

   ‖
 
  

               (‖  ‖ ‖  ‖)
 
  ‖(  )(  ) ‖

 
  

               (‖  ‖ ‖  ‖)
 
  ‖  ‖ 

Hence, ‖  ‖      (‖  ‖ ‖  ‖)
 

  ‖  ‖ and      (‖  ‖ ‖  ‖)
  

 

  .  

3.11. Corollary 

Let S,T  : ć ć be  operators on  ć such that ST = TS  0,     .Let N1,N2:ć ć be positive 

non-zero  operators on ć such that N1T = TN1 and N2S = SN2 , then: 

i. If  S
*
 and T are (N ,k )-hyponormal operators , then     ‖ ‖. 

ii. If  S and T
*
 are  (N ,k )-hyponormal operator , then     (‖ ‖)   . 

Proof:  

Obvious. 
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Abstract. The aim of this paper is to investigate the Uniqueness solution of Abstract Cauchy Problem 

represented for fractional order nonlinear dynamical control system involving certain control input and their 

approach of investigated depended on commutative composite semigroup and some certain conditions in certain 

space.  

        

1. Introduction 

The semilinear and nonlinear  equations appearing in variety of theories and applications ,in  

particular in the theory of fractional ordinary and fractional partial differential equations as well as 

integral equations with different types of derivatives have recently been addressed  by several 

researchers for different problems and provided excellent tool for the description of memory and 

hereditary properties of various materials and processes.  

In [12],[14],[15],[17],[19],[20], the authors had been studied  some classes of nonlinear and semiliner 

equation without ordinary or fractional derivatives with projectively compact and which among others 

contains completely continuous , quasi compact and monotone operators with general fixed point 

theorems as well as the nonlinear and semilinear equation studied with  closed linear operator in 

Hilbert space, self adjoint operator also some time with perturbed operator that has densely defined 

domain in Banach space , moreover studied with monotonicity and compactness of  the linear 

operator on reflexive Banach space ,the strongly positive operator and maximal monotonicity linear 

operator with nonlinear functions presented with existence and uniqueness approach. 

In [7],[1],[11],[21],[16],[5],[6],[13],[2], the authors had been studied  the solvability of  fractional 

order nonlinear and semilinear control differential equations by using fractional integral formulation 

with properties of calculus of fractional derivative and integration and the existence and uniqueness 

obtained by using classical fixed point theorems with initial values as well as boundary values and  

integral boundary condition also some of them involving nonlocal initial condition   

Our intersect in this paper to study the fractional order nonlinear dynamical feedback control system  

involve  sum of N- unbounded operators with feedback perturbation  as a generators of N-semigroup 

with new definitions depended on no expansive prosperity , maximal accretive, maximal monotone, 

resolvent set , fractional  derivative and fixed point theorem  also presented some  results for 

solvability without using fractional calculus and equivalent integral formulation . main  interest on 

nonlinear functional analysis and  some new properties defined on  special space, 

   
 ,   -  {      ,   -        ,   -}, T>0. Also appear the role of feedback control 

operator as a perturbation for the generators  still a challenge for many researchers up to our 

knowledge.  
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Our aim establish necessary and sufficient conditions on sum of nonlinearity operator interacts 

suitably their  system: 

 

∑   
 
   (      

  )  ∑    
 
    ∑     

 
                                                                                        

(1)    =   , for all    ⋂   
  (  )                                                                                                             

(2) 

 Where     (  )    
    

              are linear unbounded operators generators of 

    -semigroups   ( )   
    

 , 1,2,...,i n ,     ,     (  )    
    

       
        

  
 ,    1,2,...,i n , are nonlinear operators. The input control functions   (.)   

 ,   - such that 

      
    

  is a feedback linear operators,
 1,2,...,i n . 

 

 2. Preliminaries 

Some necessary mathematical concepts for semigroup  theory as well as some non-linear fractional 

calculus concepts have been presented. 

 

 Definition (2.1), [18]: 

The family of bounded linear operators ( ),  0T t t defined on the Banach space X is a semigroup 

ifq  0  . T I  I is identity operator on X, and  (   )   ( ) ( ) for every ,  0.t s   

 Definition (2.2) ,[18]: 

Let  T t be a semigroup then  T t  is called strongly continuous and which denoted by    on a 

Banach space X if          ‖ ( )    ‖      
Definition (2.3) ,[18]: 

The domain of the linear operator A is defined as follows: 

q  
0

( )
{ lim : 

t
D A x X

T t x x

t


 

 exists} and                                                                                             (3)                                  

      
  ( )

  
|
   

    
   

 ( )        

 
 for ( )x D A . A is the generator of the semigroup ( )T t . 

Remarks (2.4),[18]: 

There exists a constant  0w  , such that  

      ( )
( )  wt

L X
T t M e ,      for  1M   . 

The family of linear operator  ( )t T t  is differentiable which is 

  
  ( )

  
   ( )   ( )   

 Lemma (2.5), [18]: 

A bounded linear operator A is the generator of a uniformly continuous semigroup.  

A strongly continuous semigroup of bounded linear operators on a Banach space X will be called a 

semigroup of class C . 

 Theorem (2.6) ,[3]: 

      A linear (unbounded) operator A is the generator of a strong  semigroup of contraction family

 
0

)(
t

T t


if and only if: 

(i) A is closed and  densely defined, and  

(ii) The resolvent set ( )A  of A contains R  and ‖(    )  ‖  
 

 
 q for every 0  . 

 Remark (2.7), [18]: 

1. If B is a bounded linear operator on X, then A+B with D(A+B)=D(A) is the generator of 
0

C -

semigroup S(t) on X. satisfying ‖ ( )‖    (   ‖ ‖)  for 0t  . 
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2. For            
 

 
∫  ( )      ( )    (   )
   

 
  

  

Definitions (2.8), [22]: 

1. Let X be a real Banach space and let A:X    be an operator . Then A is called monotone if     
              foe all x,y    
2. Assume  operator A: D(A) H   defined on real Hilbert space H. 

a. A is called maximal monotone if A is monotone and               for y  ( ).   
Implies Ax=b which is  A has no proper monotone extension. 

b. A is accretive if (I+  )  ( )    is injective also (    )  is nonexpansive for      
c. A is maximal accretive if A is accretive also (    )  exists on H for      
 

 Definition (2.9), [8]: 

The For a function : [0, ) ,g R   the Caputo derivative of fractional order   is defined as  

 1 ( )

0

1
( ) ( ) ( ) ,

( )

t

c n nD g t t s g s ds
n

 



  
 


0,   1n n   , where   denotes the gamma 

function 

 Definition (2.10), [10]: 

The Riemann-Liouville fractional integral of order   for a function g  is defined as 

1

0

1 ( )
( ) ,

( ) ( )

t g s
I g t ds

t s



 

 

 0,   provided the right hand side is pointwise defined on (0, ) . 

 Lemma(2.11),[22]: 

 Let an operator     ( )      on the real Hilbert space H . the statements are equivalent: 

A is monotone and R(I-A)=H   A is maximal accretive   A is maximal monotone. 

 Lemma(2.12),[22]: 

         Let a linear operator    ( )      on real Hilbert space H 

1. A is the generator of a linear nonexpansive semigroup. 

2. –  maximal accretive and  ( )̅̅ ̅̅ ̅̅ ̅     
 Lemma(2.13),[4]: 

Let A be the generator of 
0

C - semigroup of contraction (nonexpansive semigroup) on a Banach space 

X. A bounded linear operator B is a perturbation of A such that  ( )   ( ) and  

   i.   Let F denoted the duality on    Banach space to    defined as 

              F(y)={           ‖ ‖  ‖ ‖ } So for every x  (   (   )) there is    

               .(   (   )) / , for every y    thus  (– ‖ ‖ )       ‖ ‖  

              ‖   (   )) ‖‖ ‖   ‖   (   )) ‖   

  ii.    ‖(   (   ))  ‖   ‖(   (   ))  ‖      

  iii.     ‖ ‖.Then A+B is the generator of  
0

C -semigroup of contraction (nonexpansive                        

semigroup) in X. 

 

 Lemma(2.14),[22]: 

Let the mapping A.B:     be maximal monotone on the real reflexive Banach space X,(where     

is the dual space of X) and let  ( )⋂    ( )    . Then the sum A+B:X    is also maximal 

monotone. 

Lemma(2.15),[9 ]: 

Let f be a contraction on complete metric space X. Then f has a unique fixed point  ̅   . 

Our problem investigated on the following space that which denoted by   
 ,   
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 ,   -  {      ,   -        ,   -},   0 <    1. 

 

 

2.Main Results: 

 Lemma(3.1): 

Let          (  )    
    

              are linear unbounded operators generators of     -

semigroups   ( )   
    

 , 1,2,...,i n , respectively D(∑ (       )  
   
    Int D(       )= 

D(∑ (  )  
   
    Int D(  ))    , for n    Then 

‖((
 

  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  ∑ (       ))
 
   

  
‖    ∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ,forall   ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                  

(4) 

Where  
∑ ‖    ‖
 
   

 
 ∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   . 

 Proof: 

From lemma(2.12) , we have that  (       ) are a maximal monotone for i=1,…n. Since  

D(∑ (       )  
   
    Int D(       )= D(∑ (  )  

   
    Int D(  ))    , then by lemma(2.15) 

we have that  ∑ (       )  (∑ (       ))         
   

   
    a maximal monotone, then by 

lemma(2.13) and definition(2.9), we get  

‖(  (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )∑ (       ))
   
   

  
‖     for   ∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
  

‖((  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
  
  ∑ (       ))

   
   

  

‖     for   ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Hence, ‖((  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
  
  ∑ (       ))

   
   

  

‖    ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for   ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

 Lemma (3.2): 

Let          (  )    
    

              are linear unbounded operators generators of     -

semigroups   ( )   
    

 , 1,2,...,i n , respectively and     (  )    
    

 

 
 satisfies the 

following condition for every    (   (       )) there is    (   (       ) ) such 

that 

 ( ‖    ‖ )       ‖ ‖   ‖(   (       )) ‖   ‖(   (       )) ‖
  

, for   ‖    ‖  such that D(∑   
 
    )  D(∑     

 
    ) 

 D(∑ (       )  
   
    Int D(       )= D(∑ (  )  

   
    Int D(  ))    , for n    Then 

‖((  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  ∑ (       ))
 
   

  
‖  (  ∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
  

 ,for all   ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                          

                                                                                                                                                                

(5) 

Where  
∑ ‖    ‖
 
   

 
 ∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   . 

 Proof: 

      Since(       )  (       )   (  )     
    

 , 1,2,...,i n , are generators of perturbed 
0

C

-semigroups, then from remark(2.8), we have that 

‖((  (       ))
  ‖  (  ‖    ‖)

   , 1,2,...,i n  for   ‖    ‖                                 

(6) 

By using Lemma (2.14), we get 

‖(  ‖    ‖)  (       ))
  ‖  

 

  ‖    ‖
, 1,2,...,i n  for   ‖    ‖                                  (7) 
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    Thus, the operators (       ) are generators of nonexpansive semigroup. Then from theorem 

(2.12) and lemma (2.13) we have the operators  (       ) are maximal monotone for 1,2,...,i n

, hence 

‖4.  
 

  ‖    ‖
(       /5

  

‖    , 1,2,...,i n  for   ‖    ‖                                               

(8) 

 Since D(∑ (       )  
   
    Int D(       )= D(∑ (  )  

   
    Int D(  )    

 

and for    ‖    ‖, we get  n   ∑ ‖    ‖
 
     

∑ ‖    ‖
 
   

 
 =∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Then by lemma (2.15) we have that 

  

 ∑ (       )
 
     (∑ (       )

 
   )                                                                               

(9) 

is also a maximal monotone, then by lemma (3.1), we have that 

‖.  (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
  
 ) ∑ (       )

 
   /

  

‖    , for    ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ,  

          

Thus, 

(  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )‖((  ∑ ‖    ‖)
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   ∑ (       ))
 
   )  ‖     for   ∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .  

Hence,  

 ‖((  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  ∑ (       ))
 
   

  
‖  (  ∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
  
     for    ∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    

      

 Lemma (3.3): 

Let      
          

 ,    1,2,...,i n , are nonlinear operators satisfy the following 

1.    (      
  )    (      

  )        (‖   ‖  ‖  
     

  ‖)  

                                                          ‖   ‖  
 
 
,   = min*          +  

2.    
   (      

  )    
   (      

  )        
 (‖   ‖  ‖  

     
  ‖)  

  ‖   ‖  
 

      

    for all        and some   
   ;    = min*          +, 

3. ‖  (      
  )    (      

  )‖  
    (‖   ‖  ‖  

     
  ‖)      

 (‖   ‖  ‖  
 (   )‖)   ‖   ‖  

 for all , ,x y H and some     . 

      = min*          + 

4.  ‖  
   (      

  )    
   (      

  )‖  
    

 (‖   ‖  ‖  
     

  ‖)     ‖   ‖  
  ,  

      = min*  
         + 

Then there exists interval of λ  such that ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅          *  
  

    ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 
   

     

∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  }  for some * * 0m k  , n    such that      
    

 . 

  ( )    (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ∑   (       
  )) 

    

  
   ( )    (  ∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ∑   
   (       

  )) 
    

   ( ) is a contraction operator in   
   space.  

 

 Proof: 
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     We have           ‖  ( )    ( )‖
     (  ∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) )∑   (      
  ) 

    (  

(  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) )∑   (      
  ))   (  ∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) )∑   (      
  ) 

    (   
   

(  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) )∑   (      
  )) 

     

=   

   (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) )∑   (      
  ) 

      (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) )∑   (      
  ))    

   

(  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )∑   (      
  ) 

      (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) )∑   (      
  )) 

    =

       (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) )∑   (      
  ) 

    (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) )∑   (      
  ))    

   

  (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )∑   (      
  ) 

    (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) )∑   (      
  )) 

    

 

       

        (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) )∑   (      
  )  (  ∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ∑   (      
  ) 

   
 
     

 (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) )∑   (      
  )  (  ∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )∑   (      
  ) 

   
 
         

 (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) )∑   (      
  )  (   

   

∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )∑   (      
  ) 

    ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ∑   (      
  )  (   

   

∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )∑   (      
  ) 

    
 Thus,

 ‖  ( )    ( )‖
  ‖   ‖  

 (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ∑   (      
  ) 

    ∑   (      
  ) 

         (  

∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )‖∑   (      
  ) 

    ∑   (      
  ) 

   ‖ 

 Also 

 ‖  
   ( )    

   ( )‖
  ‖  

 (   )‖   (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ∑   
   (      

  ) 
    

∑   
   (      

  ) 
      

 (   )  (  

∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )‖∑   
   (      

  ) 
    ∑   

   (      
  ) 

   ‖  

From conditions (1-4), we obtain  

‖  ( )    ( )‖  
 

 

 

 .   (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  )  (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
 
(  ) /

 
 ⁄

 

     .   (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )   )  (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
 
(   ) /

 
 ⁄

(‖   ‖  ‖  
 (  

 )‖)  ‖   ‖  
                                                                                                                              

(10) 

We claim that 

.   (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  )  (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
 
(  ) /

 
 ⁄

 

.   (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )   )  (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
 
(   ) /

 
 ⁄

    

   So,    

0< (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  )  (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
 
(  )  1 

and  

0< (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )   )  (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
 
(   ) <1 

 (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
 
(  )   (  ∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  )  

 (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
 
(   )   (  ∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )                                              

(11) 

Then by (11), we have that      *  
  

    ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 
   

     ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  }and then the interval 

of   is  

∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅          *  
  

    ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 
   

     ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  }  

.  To be, ‖  ( )    ( )‖  
   (‖   ‖  ‖  

     
  ‖)=  ‖   ‖  

  
 
. 

Where   
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b=.   (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  )  (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
 
(  ) /

 
 ⁄

 

.   (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )   )  (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
 
(   ) /

 
 ⁄

 <1 

Hence ( )S x


 is contraction operator  in   
  space.      

 

Consider the following semilinear of sum of N-perturbed unbounded operators equations discussed in 

the following equations. 

 Theorem (3.4): 

 Let          (  )    
    

 , 1,2,...,i n , are linear unbounded operators generators of  

0
C -semigroups   ( )   

    
 1,2,...,i n , respectively and    (  )    

    
 satisfies the 

following condition for every    (   (       )) there is    (   (       ) ) such that   

 ( ‖    ‖ )       ‖ ‖   ‖(   (       )) ‖   ‖(   (       )) ‖
  

,for ,
i

B  such that 

, for   ‖    ‖  such that D(∑   
 
    )  D(∑     

 
    ) 

 D(∑ (       )  
   
    Int D(       )= D(∑ (  )  

   
    Int D(  )   , for n  , 

and Let      
          

 ,    1,2,...,i n , are nonlinear operators satisfy the following 

1.    (      
  )    (      

  )        (‖   ‖  ‖  
     

  ‖)  

                                                          ‖   ‖  
 
 
,   = min*          +  

2.    
   (      

  )    
   (      

  )        
 (‖   ‖  ‖  

     
  ‖)  

                                                           ‖   ‖  
 
 

    

              for all        and some   
   ;    = min*          +, 

3. ‖  (      
  )    (      

  )‖  
    (‖   ‖  ‖  

     
  ‖) 

  (‖   ‖  ‖  
 (   )‖)   ‖   ‖  

  

             for all       
  , ,x y H and some     .   = min*          + 

4. ‖  
   (      

  )    
   (      

  )‖  
    

 (‖   ‖  ‖  
     

  ‖)     ‖   ‖  
  

,            = min*  
         +   for all x,y   . 

      Then the following equation 

             ∑   
 
   (      

  )  ∑    
 
    ∑     

 
     

                                        =    , for all   ⋂   
  (  )                                                  (12) 

has an unique solution. 

 Proof: 

The Equation (12) can be written as  

(  (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)∑ (       ))  (   
   (  ∑ ‖    ‖)

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∑   (      
  ))    

   ,for 

    ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  and      Or 

 (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)∑ (       ))    ( )
 
    ,for    ∑ ‖    ‖

 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  and                             
(13)  

Where   ( )    (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )∑   (      
  ) 

   . 

(  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)( (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )   ∑ (       ))    ( )
 
   , 

for    ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  and       

( (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  )
  

 ∑ (       ))  (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  )
  
  ( )

 
      for 

 (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  )       

From lemma (2.15), we have  
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  (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )  ((  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )    ∑ (       ))
 
   

  
  ( )                              

(14) 

To show that, (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )  ((  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )    ∑ (       ))
 
   

  
  ( ) is a 

contraction operator 

(  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )  ((  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )    ∑ (       ))
 
   

  
  ( )  

(  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )  ((  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )    ∑ (       ))
 
   

  
  ( )  

 (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )  ((  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )    ∑ (       ))
 
   

  
(   ( )    ( )) 

   (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )  ‖((  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )    ∑ (       ))
 
   

  
‖‖(  ( )    ( ))‖      

 By lemmas(3.1) and equation(3.2), we get 

 

(  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )  ‖((  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )    ∑ (       ))
 
   

  
  ( )  

((  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )    ∑ (       ))
 
   

  
  ( )‖  

((  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )  )(  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ‖   ‖ 

Hence,  (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )  ‖((  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )    ∑ (       ))
 
   

  
  ( )  

((  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )    ∑ (       ))
 
   

  
  ( )‖   ‖   ‖                                                           

(15) 

From lemma (3.2), we have 

b=.   (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )(   )  (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
 
(   ) /

  

   

for ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    
   

     ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  by theorem (1.7.8), we have that  

((  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )    ∑ (       ))
 
   

  
  ( ) has an unique fixed point, thus (14) and 

consequently (12) has an unique solution.        

 

 Definition (3.5): 

Let X be a real separable Banach space a one-parameter family   1 1
( ) ( )... ( ) L( ),

n n
S t S t S t X




[0, )t    of a perturbed 
0

C -semigroups of bounded linear operators  
1

( ) L( )
n

i i
S t X


  are 

commutative and generated by(       ) for 1,...,i n  respectively and [0, )t    is called 

commutative composite perturbed semigroup if  

1. 
1 1

(0) (0)... (0)
n n

S S S I


 , (I is the identity operator on X). 

2.   1 1 1 1 1 1
( ) ( )... ( ) ( ) ( )... ( ) ( ) ( )... ( )

n n n n n n
S t s S t s S t s S t S t S t S s S s S s

  
     

              for every , 0.t s   

Definition (3.6): 

The generator ∑ (       ))
 
   of a semigroup of commutative composite perturbed semigroups

 
 1 1 0

( ) ( )... ( )
n n t

S t S t S t
 

, on a real separable Banach space X, defined as the  Limit 

 ∑ (       ))
 
          

  ( )  ( )   ( )    

 

 

    (∑ (       ))
 
     (   

    )⋂ (       ) ⋂ (       )   (  )⋂ (  ) ⋂ (  ) 
where  (∑ (       ))

 
      is a domain of ∑ (       ) 

 
   has a countable subset which is 

dense in X and  defined as follows 

  (∑ (       ))
 
    *          

  ( )  ( )   ( )    

 
           + 

 Lemma (3.7): 

      Let H be a real separable Hilbert space, and 
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∑ (       ) 
 
   ⋂   

  (  )       

be a generator of a semigroup of a commutative composite perturbed semigroups.Then 

 ‖(   ∑ (       ))
 
   

  
 ‖  

 

  ∑ ‖    )‖
 
   

‖ ‖ and   ⋂   
  (  )  for 1,...,i n .             

(16) 

 

Proof: 

  ( )   (  ( )    ( )    ( ) )  ∫     
 

 
  ( )    ( )    ( )      ,for   ∑ ‖    ‖

 
    

and .x X                                                                                                 

(17) 

    Since ( )
i

t S t x are continuous for 1,2,...,i n  the integral exists and defines a bounded linear 

operator ( )
p

F  satisfying  

  
1 1

0

( ) ( ) ( )... ( )t

p n n
F x e S t S t S t x






  dt  

  
1 1

0

( ) ( ) ( ) ... ( )t

p n n
F x e S t S t S t x






  dt  

But     ‖  ( )‖   ‖    ‖ , for 1,2,...,i n , then 

              ‖  ( ) ‖  ∫       
‖    ‖ 

  
‖        ‖    

‖    ‖ ‖ ‖  
 

 
 

                ‖  ( ) ‖  ∫   (  ∑ ‖    ‖
 
   ) ‖ ‖  

 

 
 

               ‖  ( ) ‖  
 

  ∑ ‖    ‖
 
   

‖ ‖                                                             

(18) 

Furthermore, for 0h 

 
1 1 1 1

1 1

0

( ) ( )... ( ) ( ) ( )... ( )
( ) ( ) ( )... ( )tn n n n

n n

S h S h S h I S h S h S h I
F x e S t S t S t xdt

h h




 



 
 

   1 1 1 1 1 1

0

1
( ) ( )... ( ) ( ) ( )... ( ) ( ) ( )... ( )t

n n n n n n
e S h S h S h S t S t S t x S t S t S t x dt

h






  
 

 
Since ( ) ( )

i j
S t S t are commutative then 

 1 1 1 1

0

1
( ) ( )... ( ) ( ) ( )... ( )t

n n n n
e S t h S t h S t h x S t S t S t x dt

h






 
    

1 1 1 1

0 0

1 1
( ) ( )... ( ) ( ) ( )... ( )t t

n n n n
e S t h S t h S t h xdt e S t S t S t xdt

h h

 
 

 

 
     

 

Let t h d dt     , if 0 t   then h   , we get 

( )

1 1 1 1

0

1 1
( ) ( )... ( ) ( ) ( )... ( )h t

n n n n

h

e S S S xd e S t S t S t xdt
h h

     
 

  

 
  

 

1 1 1 1

0 0

( ) ( )... ( ) ( ) ( )... ( )
h h h

n n n n

e e
e S S S xd e S S S xd

h h

 
        



 

 
  

 

1 1

0

1
( ) ( )... ( )t

n n
e S t S t S t xdt

h







   

We get 

1 1 1 1

0 0

1
( ) ( )... ( ) ( ) ( )... ( )

h h h

t t

n n n n

e e
e S t S t S t xdt e S t S t S t xdt

h h

 
 



 

 


   .                                                

(19) 

As 0,h  from (17) and remarks (2.4) the right-hand side of (19) converges to ( ) .
p

F x x     
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This implies that for every x H and 0  ,  (λ)   (∑ (       ))
 
     and ∑ (   

 
   

    )  ( )     ( )       

or  

(   ∑ (       ))
 
     ( )  I                                                                                                     (20) 

For      (∑ (       ))
 
      we have 

  ( )∑ (       )
 
     ∫     

 

 
  ( )    ( )    ( )∑ (       )

 
                              

(21)              

From remarks (2.4), the Equation (21) become 

         ( )∑ (       )
 
    =∫     

 

 
∑ (       )
 
     ( )    ( )    ( )∑ (   

 
   

    )    

 = ∑ (       )
 
   ∫     

 

 
  ( )    ( )    ( )    

=∑ (       )  ( ) 
 
                                                 

(22) 

From (20) and (22) it follows that  

  ( ) (   ∑ (       )    
    for         (∑ (       ))

 
    

Thus, ( )
p

F   is the inverse of    ∑ (       )
 
   , it exists for all    ∑ ‖    ‖

 
   .  

 Theorem (3.8): 

      Let H be a real separable Hilbert space, ∑ (       )
 
    be a generator of commutative 

composite perturbed semigroup 1 1 0
( ) ( )... ( )

n n t
S t S t S t

 
and

 : ,
i

F H H 1,2,...,i n are nonlinear operators 

and there exist , 0, 1,2,...,
i i

m k i n   such that  

1.     (       
  )    (       

  )         ‖   ‖for all       and some     ; 

2. ‖  (       
  )    (       

  )‖    (‖     ‖  ‖   ‖  ‖  
     

  ‖) 
    (‖     ‖  ‖   ‖  ‖  

 (   )‖)    (‖     ‖  ‖   ‖  ‖  
 (   )‖) 

             for all  , .x y H  hence the equation 

     ∑   
 
   (      

  )  ∑    
 
    ∑     

 
   ,       , for all   ⋂   

  (  )                          (23) 

has an unique solution. 

Proof: 

     The Equation (23) can be equivalently written as  

(    ∑ (       ))  (   ∑   
 
   (      

  ) 
   )              

Or     ∑ (       )    
 
   (x)                                                                             

(24) 

Where   ( )=    ∑   
 
   (      

  )    we have 

 ‖  ( )    ( )‖
   

                    ∑   
 
   (      

  )  (   ∑   
 
   (      

  ))    ∑   
 
   (      

  )  (   
∑   
 
   (      

  ))    

 
     ∑   

 
   (      

  )     ∑   
 
   (      

  ))     ∑   
 
   (      

  )     
∑   
 
   (      

  ))         ∑   
 
   (      

  )  ∑   
 
   (      

  )       
∑   
 
   (      

  ))  ∑   
 
   (      

  )) 

 
  

                     ∑   
 
   (      

  )  ∑   
 
   (      

  )  
 ∑   

 
   (      

  )  ∑   
 
   (      

  )        
 ∑   

 
   (      

  )  ∑   
 
   (      

  ) ∑   
 
   (      

  )  ∑   
 
   (      

  ) 
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‖  ( )    ( )‖
    ‖   ‖     ∑   

 
   (      

  ) ∑   
 
   (      

  )      
‖∑   

 
   (      

  )  ∑   
 
   (      

  )‖ 

  

Also,‖  
   ( )    

   ( )‖
 =  ‖  

     
  ‖  

   ∑   
   

 
   (      

  ) ∑   
   

 
   (      

  )   
     

    ‖∑   
   

 
   (      

  )  
∑   

   
 
   (      

  )‖ 

 From conditions(1)(2), we obtain 

 ‖  ( )    ( )‖  
  .     (   )  (   ) )/

 
 ⁄
 .(     (   )  (   ) )/

 
 ⁄
(‖  

 ‖  ‖  
     

  ‖  ‖   ‖  
 )

(

                                                                                                

(25) 

      From lemma (3.4.36) the operator∑ (       ))
 
     is generator of a family of linear 

commutative composite perturbed semigroup. 

Then the operator    ∑ (       )
 
    is invertible and 

  ‖(   ∑ (       ))
 
   

  
‖  (  ∑ ‖    ‖

 
   )   for   ∑ ‖    ‖

 
                             (26) 

Now, Equation (24) is equivalent with 

         (   ∑ (       ))
 
   

  
  ( )                                                                                        (27) 

To show that   (   ∑ (       ))
 
   

  
  ( ) is a contraction operator  

                ‖(   ∑ (       ))
 
   

  
  ( )  (   ∑ (       ))

 
   

  
  ( )‖ 

 ‖(   ∑ (       ))
 
   

  
(  ( )  (  ( ))‖ 

 

 

 ‖(   ∑ (       ))
 
   

  
‖‖  ( )    ( )‖  

 

 By (24) and (25), we get  

 (  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  )  (     (  )  (  ) )
 
 ⁄  (     (   )  (   ) )

 
 ⁄ )‖   ‖  

   

for all , .x y H  

Now we find when the following inequality is hold 

(  ∑ ‖    ‖
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  )  (     (  )  (  ) )
 
 ⁄  (     (   )  (   ) )

 
 ⁄     

 (     (  )  (  ) )
 
 ⁄  (     (   )  (   ) )

 
 ⁄  (  ∑ ‖    ‖)

 
     

(     (  )  (  ) )
 
 ⁄  (  ∑‖    ‖)

 

   

 

(     (   )  (   ) )
 
 ⁄  (  ∑ ‖    ‖)

 
     

Hence 

     (  )  (  ) )  (  ∑ ‖    ‖)
 
   

 
  

(     (   )  (   ) )  (  ∑ ‖    ‖)
 
   

 
  

 

(     (  )  (  ) )       ∑ ‖    ‖  (∑ ‖    ‖
 
   ) 

   
 
  

(     (   )  (   ) )       ∑ ‖    ‖  (∑ ‖    ‖
 
   ) 

   
 
  

   (     ∑ ‖    ‖
 
   )   (  )  (∑ ‖    ‖

 
   )   

   ((  )  (∑ ‖    ‖
 
   ) )(     ∑ ‖    ‖

 
   )   

Also 

   (     ∑ ‖    ‖
 
   )   (  )  (∑ ‖    ‖

 
   )   

   ((   )  (∑ ‖    ‖
 
   ) )(      ∑ ‖    ‖

 
   )   

Let us choose  

      {∑ ‖    ‖
 
    ((  )  (∑ ‖    ‖

 
   ) )(     ∑ ‖    ‖

 
   )   ((   )  

(∑ ‖    ‖
 
   ) )(      ∑ ‖    ‖

 
   )  }  
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it result that 

 (  ∑ ‖    ‖)
 
   )  ((     (  )  (  ) )

 
 ⁄  (     (   )  (   ) )

 
 ⁄ *    

Therefore, (   ∑ (       ))
 
   

  
  ( ) is a contraction in   

 . Then by theorem (2.16) the 

Equation (27) and consequently (23) has a unique solution. 
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Abstract. For compute the five term relations in the pre-Bloch group for specify an infinite-

order- element 

in    ( (√  ))        square- free. For the quadratic imaginary number fields F of 

discriminant 

(-1;-2;-3;-7;-17;-19). We use the GAP Programming software to implement our method. 

 

1. Introduction 
 
Let   be an associative ring with unit. The higher algebraic K-group of   are defined to be 
the homotopy groups    ( )      ( ( )) for a space  ( ) that is constructed as follows 
                    

where the union is formed using the inclusions    ( )         ( )       . for 

a group G, the commutator subgroup    ,   -                      , then as an 

Abelian group, the first K-group is  

 

Any ring map      induces a natural map   ( )     ( ), and hence a map   ( )   

  ( ).Therefore,     is a functor from rings to Abelian groups. 

Definition 1.1 If          and     , then the elementary matrix     ( ) is the matrix in 

  ( ) which has diagonal entries all 1, (i; j)-entery r, and 0 elsewhere. 

Setting   ( )         ( )                      

 ( )   ⋃   ( )    , the subgroup E(R) of elementary matrices in GL(R), equals the 

commutator :  ( )    ,  ( )   ( )-  Note that for a field F,   ( )     ( ): 

 
1.1. Quillen’s space    ( )     ( ) 

 

The space    ( )     ( ) that we are going to construct is also called  Quillen’s ‖ + 

‖-construction ofthe space  ( ) defining algebraic K-theory. 

For a group G, there exist a space BG with     (  )        (  )     , for all n ≥ 2. 

mailto:alexander.rahm@uni.lu
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So there is a theoretical construction of BGL(R)-the classifying space for group 

homology. 

 

Definition 1.2 The notation     ( )   will denote any CW-complex X which has a 

distinguished         ( )      ( )  such that the following are true: 

1)      ( )
     ( )  and the natural map   ( )         ( )         ( )   

is surjective with kenerl  ( ): 

2)   (   ( )  )        ( )
   ) for every   ( )  module M. Such a space X is 

called a model for    ( )  

 

Definition 1.3 An  - module   is called projective if there exist an  -module   such that     is 

free (it has a basis). The set    of isomorphism classes of finitely generated projective R-module, 

together with direct sum and identity 0, forms an abelian monoid. 

  ( )    (  )   ( ) is the Grothendieck group completion. K(R) is the disjoint union of copies of 

   ( )     ( )      ( )     ( )      

because    ( )  is a connected space. we recover   ( ) with the definition   ( )      ( ( )), 

for all      . Note that for all n ≥ 1,   ( )      (   ( )
 ); because in ∐    ( )     ( ) , all 

connected components are identical, so it dose not matter where we place the basepoint. 

Now we have a theoretical construction of the higher algebraic K-groups, but we do not know yet 

how  any non-trivial element in them looks like. 

A theorem of Borel implies that for an imaginary quadratic field F,   ( )         ( )  for a 

natural number   ( )         which is constructed using Tate twists(we will not go into the 

details of that 

construction, because for the present purposes, we are not interested in the torsion). 

Question. Can we specify an infinite-order- element in   ( (√  )),       square- free? For this 

purpose, we use the Bloch group, and work of de Jen,Gangl, Rahm and Yasaki. 

2. The Bloch group 

for an Abelian group A, let    ̃   denote the quotient of the group     by the subgroup 

generated by all                  
 ̃                                 

 

 
Definition 2.1 :[7] For any field F, the pre-Bloch group  ( ) denote the abelian group 

presented with generator symbols , - for     * +  with relations , -    , -    , -      

and for      in    *   +, the "five-term relations": 

, -  , -  ,   -  ,
     

     
-  ,

   

   
-     , In [4] refer the five term relation is different 

because of the different definition of the cross- ratio for more details see [[3],[5]]. In addition, 

for [Proposition 2.14 [3]] illustrates the equivalence between the two relation of five term 

relations. If we have [r]+[r-1] = 0, r > 0 and [r1]-[r2]+[r1=r2]-[1 1- -1 1= =r r1 

2 ]+[11--rr12 ] = 0, where 1 < r1 < r2 and [r] 6= [¥;0;1], r > 1, can be translated to 
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defining relation in terms of generators [s], satisfying [s1]-[s2]+[s1=s2]-[1 1- -1 1= 

=ss1 2 ]+[11--ss12 ] = 0. Setting s1 = 11--xy x and s2 = 1y--xy xy in the relation 

above, we obtain 

Definition 2.4 The 6-fold symmetry [x] = [1-(1=x)] = [1=(1-x)] = -[1=x] = -[1-x] 

= -[-x=(1-x)] 

and similar with [y]. Also if we have -[x] it does not mean [-x]. 

Example 2.5 Show [2] - [1=2] = 0. 

•∑2 i=1 mi[xi]=1[x1] - 1[x2]=1[2]+ 1[1=2] 

[2] [1/2] 

1 1 

•0 = [xi] - [xj]+F3 -F4 +F5 

[xi] [xj] F3 F4 F5 

1 -1 1 -1 1 

•Choose m1 = 1;m2 = 1. 

F3 = [xy] = [1= 22] = [1 4], F4 = [11--11==xy] = [1- 1-1= 22] = [-21], F5 = 

[11--xy] = [11 --12 =2] = [1-=12] = [-2], the 6-fold 

symmetry [x] = [2] = [1=2] = [-1] = [-1=2] = [1] = -[2], since [2]+[2] = 2[2] 

= 0: 

 

[2] [1=2] [1=4] [-1=2] [-2] 

1 1 0 0 0 

-1 1 -1 1 -1 

•We can merge column with 6-fold symmetry. 

•Choose i=3, j=4. F3 = [xy] = [--12 =2] = [4], F4 = [11--11==xy] = [1-1-1=1-=-

1=22] = [2], F5 = [11--xy] = [1+1+1=22] = [1 2] 

[2]=[1=2] [1=4] [-1=2] =-[-2] 

1 + (-1) 0 0+ 0 

-1 + 1 -1 1+1 

0 -1 2 

•Choose i=3, j=4. F3 = [xy] = [-11==42] = [-21], F4 = [11--11==xy] = [11--11==-

11==42] = [-1], F5 = [11--xy] = 

[11++11==24] = [2], 

[-

1=2]  
2  

[1=

4]  
-1  

[-

1=2]  
0  

[-

1]  
0  

[
2

]

 
0 

-1  1  -1  1  -
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1 

•We can merge column with 6-fold symmetry. 

[-1=2]=[-1=2] [1=4] [-1] =[2] 
2 + 0 -1 0+ 0 

-1 + (-1) 1 1+(-1) 

0 0 0 

 

Algorithm 2.1 Algorithm for the check [x]-[y] = 0 in P(F) 

Input: A difference [x]-[y] = ∑k i=1 mi[xi], where x1;:::;xk 2 F, m1;:::;mk 2 Z. 

Output: Either a list of 5-term relations with which [x]-[y] can be seen to be zero in P(F). 

Or return 

"fail" if the algorithm cannot find such 5-term relations. 

Procedure: 

1: Write the vector [x]-[y] in the space < [x1];:::;[x2] >≈ Zk, 

2: check if there are two coefficients mi;mj with the same absolute value. 

3: Choose two coefficients with high absolute values jmij;jmjj, (assumejmij ≥ jmjj). 

F3 = [xxij ], 

F4 = [11--11==xxij ], F5 = [11--xxij ]. 

4: Pick [x1] and [y1] with the biggest prime in their denominators: x1 = p=q, q = pm 1 

1;:::; pm r r prime 

factorisation of q, p1;:::; pr prime mi 2 N. 

5: Add the 5-term relations 0 = [xi]-[xj]+ F3 -F4 + F5 

6: We just keep the sum: If we instead take m3 times the row, then we get 

[x1] [x2] ::: [xk] F3 F4 F5 

m1 m2 + m3 ::: mk m3 -m3 m3 

Here we have to keep track of the sign, so we can enter the coefficient with the correct sign. 

7: Merge rows using the 6-fold symmetry. 

8: If we arrive at a final row ∑ = 0, then run the program a second time and print the 5-term 

relations 

that have been used. 

9: If the number of non-zero columns exceeds a limit that has been defined in advance (10m) 
then return 

"fail". 

Example 2.6 Show 2[3]-[-3] = 0. 

To prove the difference class [3] with coefficient 2 and [-3] with coefficient 1, need to 

find the five terms 

relations from these classes. 

•F(xi;xj) = [xi]-[xj]+ F3 -F4 + F5 

•We add F(3;-3). F3 = [xy] = [-33] = [-1], F4 = [11--11==xy] = [11-+11==33] = 

[12], F5 = [11--xy] = [11-+33] = [-21], 

[3] [-3] [-1] [1=2] [-1=2] 
2 -1 0 0 0 

-1 1 -1 1 -1 
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Using the 6-fold symmetry we find [3]=[-1=2] and [-1] =[1=2],so we can merge these 

columns. 

[3]=[-

1=2]  
2  

-1+(-1)  

0  

[-

3]  
-1  

1  

0  

[-1] = 

[1=2] 
0+ 0 

-1 +1 

0 

Hence +2[3] +-1[-3]= 0+-1F(3,-3), as claimed 

[2] [1=2] [1=4] [-1=2] [-2] 
1 1 0 0 0 

-1 1 -1 1 -1 

•We can merge column with 6-fold symmetry. 

•Choose i=3, j=4. F3 = [xy] = [--12 =2] = [4], F4 = [11--11==xy] = [1-1-1=1-=-

1=22] = [2], F5 = [11--xy] = [1+1+1=22] = [1 2] 

[2]=[1=2] [1=4] [-1=2] =-[-2] 
1 + (-1) 0 0+ 0 

-1 + 1 -1 1+1 

0 -1 2 

•Choose i=3, j=4. F3 = [xy] = [-11==42] = [-21], F4 = [11--11==xy] = [11--11==-

11==42] = [-1], F5 = [11--xy] = 

[11++11==24] = [2], 

[-

1=2]  
2  

[1=

4]  
-1  

[-

1=2]  
0  

[-

1]  
0  

[
2

]

 
0 

-1  1  -1  1  
-

1 

•We can merge column with 6-fold symmetry. 

[-1=2]=[-1=2] [1=4] [-1] =[2] 

2 + 0 -1 0+ 0 

-1 + (-1) 1 1+(-1) 

0 0 0 

Algorithm 2.1 Algorithm for the check [x]-[y] = 0 in P(F) 

Input: A difference [x]-[y] = ∑k i=1 mi[xi], where x1;:::;xk 2 F, m1;:::;mk 2 Z. 

Output: Either a list of 5-term relations with which [x]-[y] can be seen to be zero in P(F). 

Or return 

"fail" if the algorithm cannot find such 5-term relations. 

Procedure: 

1: Write the vector [x]-[y] in the space < [x1];:::;[x2] >≈ Zk, 

2: check if there are two coefficients mi;mj with the same absolute value. 

3: Choose two coefficients with high absolute values jmij;jmjj, (assumejmij ≥ jmjj). 



249 
 

F3 = [xxij ], 

F4 = [11--11==xxij ], F5 = [11--xxij ]. 

4: Pick [x1] and [y1] with the biggest prime in their denominators: x1 = p=q, q = pm 1 

1;:::; pm r r prime 

factorisation of q, p1;:::; pr prime mi 2 N. 

5: Add the 5-term relations 0 = [xi]-[xj]+ F3 -F4 + F5 

6: We just keep the sum: If we instead take m3 times the row, then we get 

[x1] [x2] ::: [xk] F3 F4 F5 

m1 m2 + m3 ::: mk m3 -m3 m3 

Here we have to keep track of the sign, so we can enter the coefficient with the correct sign. 

7: Merge rows using the 6-fold symmetry. 

8: If we arrive at a final row ∑ = 0, then run the program a second time and print the 5-term 

relations 

that have been used. 

9: If the number of non-zero columns exceeds a limit that has been defined in advance (10m) 
then return 

"fail". 

Example 2.6 Show 2[3]-[-3] = 0. 

To prove the difference class [3] with coefficient 2 and [-3] with coefficient 1, need to find 

the five terms 

relations from these classes. 

•F(xi;xj) = [xi]-[xj]+ F3 -F4 + F5 

•We add F(3;-3). F3 = [xy] = [-33] = [-1], F4 = [11--11==xy] = [11-+11==33] = 

[12], F5 = [11--xy] = [11-+33] = [-21], 

[3] [-3] [-1] [1=2] [-1=2] 
2 -1 0 0 0 

-1 1 -1 1 -1 

Using the 6-fold symmetry we find [3]=[-1=2] and [-1] =[1=2],so we can merge these 

columns. 

[3]=[-
1=2]  
2  

-1+(-1)  

0  

[-
3]  
-1  

1  

0  

[-1] = 

[1=2] 
0+ 0 

-1 +1 

0 

Hence +2[3] +-1[-3]= 0+-1F(3,-3), as claimed 

Example 2.7 we can implement a GAP function CheckEquivalence(x;y;Cx;Cy), 

which inputs x,y the coefficient of [x] and the coefficient of [y], and output five term 

relation 

GAP session 

gap>L:=[2,1/2];;H:=[1,-1];; 

gap> CertifyEquivalence(H,L); 

We want to show that 

+1[2] +-1[1/2]is zero, 
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in case that this is possible for us.The terms 1[2] and 

-1[1/2]are being merged because 1/2 has been found in 

the class [ [ 2 ], [ 1/2 ], [ -1 ], [ 1/2 ], [ -1 ], [ 2 ] ] 

For j = 2 we get 0 

Success: 

+1[2] +-1[1/2]=0 

"success" 

Example 2.8 For example we 2.6 we can computation by use gap function 

CheckEquivalence(x;y;Cx;Cy), which inpute x,y and coefficient of x,coefficient of y, and 

the output five 

term relation. 

GAP session 

gap>L:=[3,-3];;H:=[2,-1];; 

gap> CheckEquivalence(L,H); 

We want to show that 

+2[3] +-1[-3] 

is zero, in case that this is possible for us. 

+2[3] +-1[-3] 

The terms 1[3] and -1[-1/2]are being merged because -1/2 

has been found in the class [ [ 3 ], [ 2/3 ], [ -1/2 ], 

[ 1/3 ], [ -2 ], [ 3/2 ] ] 

For j = 3 we get 0 

The terms -1[-1] and 1[1/2]are being merged because 1/2 

has been found in the class [ [ -1 ], [ 2 ], [ 1/2 ], 

[ -1 ], [ 2 ], [ 1/2 ] ] 

For j = 3 we get 0 

Success: 

+2[3] +-1[-3] 

= 0+-1F(3,-3) 

Success: 

+2[3] +-1[-3] 

= 0+-1F(3,-3) 

"success" 

 

Algorithm 2.2 Algorithm for picking the biggest prime 

Input: The list of coefficient and list of classes . 

Output: The list of pick two terms as [Cx1,Cy1,x1,y1]. 

Procedure: 

1: I = [] the list I is going to contain the maximum of absolute value. 

2: for j 2 1::N= Length(list of classes) do 

3:  

4:  

5:  

6:  

7:  

8:  

9:  

p=Numerator rational (list of classes[j]). 

q=Denominator rational(list of classes[j]). 

absolute values of primes=[]; 

for x in union( prime factors(p),prime factors(q)) 

do. 

Add(absolute values of primes,jxj). 
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10:  end for 

pj=Maximum(absolute values of primes). 

Add(I;pj) each element of list of classes 

produces an element of I, at the same index j. 

11: end for 

12: for i 2 I do  

13:  

14:  

15:  

if I[i]= maximum(I) then 

j1 = i; 

end if 

16: end for 

17: x1= list of classes [j1]. 

18: Cx1=List of coefficient H[j1]. 

19: for i 2 I do 

20:  

21:  

22:  

if not j1 = i then 

Insert the element I[i] into reduced list. 

end if 

23: end for 

24: for i 2 I do  

25:  

26:  

27:  

28:  

if I[i]= maximum(reduced list) and not not 

j1 = i then 

Add (L-reduced, list of classes [i]). 

Add (H-reduced, H[i]). 

end if 

29: end for 

30: Apply Algorithem 0.3 to (H-reduced,L-reduced)and return the output. 

31: EndProcedure: 

we use the command gap PickBiggestPrime(H;L) which is function input the list of 

coefficient and 

list of classes and the output the list of [Cx1,Cy1,x1,y1], where cx1,Cy1 the coefficient of x1 

and y1 

respectively. the algorithm above describe how can pick the biggest prime. 

By merging duplication we can computation for the discriminant -3 case with which we 

prove that the 

algebraic and geometric elements. 

Example 2.9 Let we have the algebraic element [[-3;-1=2  x- 1=2]] and geometric 

element [[2, w]], 

where delta=-3 mod 4, d= delta/4 and w= Sqrt(d). The GAP session below prove the 

discriminant -3. 

We want to show that 

-2[-z32]- 3[z32] = 0 

we can rewrite 

-2[-z32]- 2[z32]- 1[z32] = 0 

2.1 Cross- ratios of ideal hyperbolic tetrahedra 8 

By merging duplication 

-2[-z32]-2[z32] = -1[z3] 
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we have 

-1[z3]-1[z32] = 0 

Applying the 6-fold symmetries has yielded 

The terms -1[z3] and -1[z32] are being merged because z32 

has been found in the class [[z3];[-z3 -2 z32];[-1=3 z3 -2=3 z32];[z32];[-2 z3 -
z32];[-2=3 z3 - 
1=3 z32]] 
Then we have 

+0[z3] = 0 

GAP session 

We want to show that 

+-2[-E(3)^2] +-3[E(3)^2] 

is zero, in case that this is possible for us.Then we have 

+-2[-E(3)^2] +-3[E(3)^2] 

Applying the 6-fold symmetries has yielded 

+-2[-E(3)^2] +-3[E(3)^2] 

Inserting duplication relations has yielded 

+-1[E(3)] +-1[E(3)^2] 

The terms -1[E(3)] and -1[E(3)^2]are being merged because E(3)^2 

has been found in the class [ [ E(3) ], [ -E(3)-2*E(3)^2 ], 

[ -1/3*E(3)-2/3*E(3)^2 ], [ E(3)^2 ], [ -2*E(3)-E(3)^2 ], 

[ -2/3*E(3)-1/3*E(3)^2 ] ] 

Then we have 

+0[E(3)] 

Applying the 6-fold symmetries has yielded 

+0[E(3)] 

Success: 

+-2[-E(3)^2] +-3[E(3)^2] 

= 0 

In The GAP session below we can computation for the discriminant -7,with algebraic element 

and 

geometric element. 

GAP session 

gap> Read("./desktop/Bloch.g.txt"); 

Over the imaginary quadratic field of discriminant -7, we 

compare thegeometric Bloch group element 

+8[-E(7)^3-E(7)^5-E(7)^6] +2[-1/4*E(7)-1/4*E(7)^2-1/2*E(7)^3- 

1/4*E(7)^4-1/2*E(7)^5-1/2*E(7)^6] +-2[-1/2*E(7)-1/2*E(7)^2 

-1/4*E(7)^3-1/2*E(7)^4-1/4*E(7)^5-1/4*E(7)^6] 

with j times the algebraic Bloch group element 

+-2[-3/11*E(7)-3/11*E(7)^2-1/11*E(7)^3-3/11*E(7)^4-1/11*E(7)^5 

-1/11*E(7)^6] +2[-E(7)-E(7)^2-5/6*E(7)^3-E(7)^4-5/6*E(7)^5-5/6* 

E(7)^6] +-2[-1/5*E(7)-1/5*E(7)^2-1/15*E(7)^3-1/5*E(7)^4-1/15* 

E(7)^5-1/15*E(7)^6]+2[-3/4*E(7)-3/4*E(7)^2-5/8*E(7)^3-3/4*E(7)^4 

-5/8*E(7)^5-5/8*E(7)^6] +-2[-7/8*E(7)-7/8*E(7)^2-3/4*E(7)^3-7/8 

*E(7)^4-3/4*E(7)^5-3/4*E(7)^6] +2[1/90*E(7)^3+1/90*E(7)^5+1/90* 

E(7)^6]+2[-1/2] +-2[1/3*E(7)+1/3*E(7)^2+E(7)^3+1/3*E(7)^4+ 
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E(7)^5+E(7)^6] +2[-1/2*E(7)-1/2*E(7)^2-1/2*E(7)^4] +-2[E(7)+ 

E(7)^2+3/2*E(7)^3 +E(7)^4+3/2*E(7)^5+3/2*E(7)^6] +2[2*E(7)+ 

2*E(7)^2+5/2*E(7)^3+2*E(7)^4+5/2*E(7)^5+5/2*E(7)^6] 

+2[-1/4] +-2[2/11*E(7)+2/11*E(7)^2+5/22*E(7)^3+2/11*E(7)^4+ 

5/22*E(7)^5+5/22*E(7)^6]+2[-3/5*E(7)-3/5*E(7)^2-1/5*E(7)^3 

-3/5*E(7)^4-1/5*E(7)^5-1/5*E(7)^6] 

+-2[-1/2*E(7)-1/2*E(7)^2-1/4*E(7)^3-1/2*E(7)^4-1/4*E(7)^5 

-1/4*E(7)^6] +-2[-5/4*E(7)-5/4*E(7)^2-E(7)^3-5/4*E(7)^4-E(7)^5 

-E(7)^6] +-2[-11/5]+-2[-15/22*E(7)-15/22*E(7)^2-6/11*E(7)^3 

-15/22*E(7)^4-6/11*E(7)^5-6/11*E(7)^6] +-2[-5/2*E(7)-5/2*E(7)^2 

-5/2*E(7)^4] +-2[-E(7)-E(7)^2+3/2*E(7)^3-E(7)^4+3/2*E(7)^5+3/2* 

E(7)^6]+-2[-7/2*E(7)-7/2*E(7)^2 -9/4*E(7)^3-7/2*E(7)^4-9/4* 

E(7)^5-9/4*E(7)^6]2[-1/6*E(7)^3-1/6*E(7)^5-1/6*E(7)^6]+ 

2[1/8*E(7)+1/8*E(7)^2-1/4*E(7)^3+1/8*E(7)^4-1/4*E(7)^5 

-1/4*E(7)^6] +-2[2*E(7)+2*E(7)^2-E(7)^3+2*E(7)^4-E(7)^5-E(7)^6]. 

j = -3 yields 22 remaining terms. 

j = -2 yields 1 remaining terms. 

geobelt = 2*algbelt + 

+22[-1] 

, where geobelt is the geometric Bloch group element and algbelt 

the algebraic Bloch group element. 

We observe the 6-fold symmetries [ [ -1 ], [ 2 ], [ 1/2 ], [-1], 

[ 2 ],[ 1/2 ]], 

which might allow us to indentify the remainder term as torsion. 

We want to show that 

+22[-1] is zero, in case that this is possible for us.Applying 

the 6-fold 

symmetries has yielded 

+22[-1] Inserting duplication relations has yield 

Success: 

+22[-1] 

=[0]=[1] 
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Abstract. The aim of this paper is define and investigate some new forms of transitive maps, minimal systems 

and chaotic maps on the space of all continuous maps from a space M  to a  space N , denoted by  NMCo , .  

Also, we introduce some new definitions namely point-wise convergence transitive, compact-open transitive, 

uniform convergence topological transitive, chaotic  maps defined on spaces up to product of uniform 

convergence spaces. In addition, we study the  relationship between these new definitions. 

Keywords: Uniform convergence, topological transitive, compact-open topology, minimal 

systems   

1. Introduction 

         Let  1,M  
and  2,N  

be  topological spaces, consider  that 

   mapcontinuousNMhhNMCo  ;:, . The properties of  NMCo , , and many of those of 

transitivity on this set interrelated. We have to study dynamics properties in topologies defined on 

),( NMCo . 

A topology may be introduced on the set  NMCo ,  [1] as on any other, in different ways. We have 

studied two kinds of topologies and shown which of them weaker dynamics than other one is.  So we 

can introduce in transitivity, mixing, chaos and exactness on this set in different ways (for more 

knowledge about chaos, weakly mixing and exactness cf ( [2],[3], [4], and [5] ). First we  have to 

study two maps 21 ,hh  are said to be near if )()( 21 uhanduh  Mu are near in N . Let N  be 

a metric space then these notions are expressed in terms of metric on N . Hence, various topologies 

and thus we can introduce various types of, transitivity, minimal systems and chaos on the 

 NMCo ,  via the topology of point-wise convergence, the compact-open, Uniform Topology [1], 

etc.  

2. Uniform convergence Topology 

 

           In this section we have introduced and studied some definitions and theorems as follows: 

Definition 2.1  [6]  NMh :  is a homeomorphism map between two topological spaces M  and 

N , if h
 
is continuous, bijective and 

1h
 
is continuous. 

Definition 2.2  [1] If ),( N  is a metric space and M  is compact, then  NMCo ,  is equipped with 

a metric   thus: 

),(,)),(),((sup),( 212121 NMCohhuhuhhh
Mu




 .  
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Definition 2.3 [1] The topology 
1 on  NMCo , is called the uniform convergence topology, if 

1 is 

determined by the metric  . Any open set in 
1  is uc-open set and )),,(( 1NMCo is    – space. The 

compliment of    –closed set  is    -open set  

If )),,(( 1NMCo  is a uniform convergence-topological space, and     (   )    (   ) be a 

function. Then )),,(( HNMCo is called uniform convergence system, in short uc-system. 

Definition 2.4  Let )),,(( 1NMCo  be a uc-topological space. Given  NMCoh , ,

),...}(),(,{)( 2 hGhGhhOG   refers to its forwaed orbit and )(hG  refers to its ω -limit set, i.e. 

),...(),...(),(, 2 hGhGhGh n  the set of limit functions of the sequence.   

A set ),( NMCoB  is called a uc-minimal if B , invariant uc-closed also let no proper subset of B  

has three of these properties. 

The following conditions are equivalent:  

 )),,(( 1NMCo  is uc-minimal,  

 every orbit is uc-dense  NMCo ,  , 

 ),()( NMCohG   for every  NMCoh , . 

Definition 2.5 A function ),(),(: NMCoNMCoF   is called uc-irresolute if the inverse image of each 

uc-open set is a uc-open set in  NMCo , . 

Definition 2.6 A function ),(),(: NMCoNMCoH  is ruc -homeomorphism if H  is surjective, 

injective and thus invertible ,also H and 
1H  are both uc -irresolute. 

The systems ),(),(:),(),(:  CoCoGandCoCoF  are topologically ucr-conjugate if   

),(),(:  CoCoH is a ucr-homeomorphism such that HGFH    
If )),,(( 1NMCo  is a uc-topological space. We define the uc-closure of   by   

i

iuc FCl   

   .,, 1 iFandNMCoofsetcloseducF ii 
 

Definition 2.7 If )),,(( 1NMCo  is a uniform convergence-topological space.  

The map  ),(),(: NMCoNMCoH   is said to have uc-dense orbit if  ),( NMCoh  

),())(( NMCohOCl Huc  , where )(hOH is the orbit passing through h and ucCl is th uniform 

convergence closure of this orbit. 

Definition 2.8 

Let )),,(( 1NMCo  be a uniform convergence-topological space, ),(),(: NMCoNMCoH   
be a 

uc- continuous map, then )),,(( HNMCo is the uc –system and H  is a uniform-convergence-

transitive (uc-transitive) map if O  and V  are uc-open sets in )),,(( 1NMCo  n  is a positive 

integer VOH n  )( is not empty.  

Lemma 2.9 A map ),(),(: NMCoNMCoF   
is topologically uc-transitive if ),()( NMCogF   

for 

some ),( NMCog  

Proof: Suppose that ),()( NMCogF   for some ),( NMCog . Then for every pair of non-empty, 

uc-open ),(, NMCoWD  there are integers 0mn  such that WgFandDgF nm  )()(  Hence 

 WDF mn )( and ),(),(: NMCoNMCoF   is  topologically uc-transitive. 
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Theorem 2.10 If H is a ucr-homeomorphism, then )),,(( HNMCo  is topologically uc-transitive then 

every non empty backward invariant uc-open subset of ),( NMCo  is uc-dense. 

Proof: Suppose that the map H is uc-transitive, ),( NMCoU   is uc-open and  Assume that 

and U is not uc-dense in ),( NMCo  (i.e. )),()( NMCoUCluc  . Then there exists a non-empty uc-

open )(\),( UClNMCoV uc , since )(UCluc
 is uc-closed,  such that .VU   Further  VUH n )(   

for all   n є N. This implies  )(VHU n  for all n є N,  a contradiction to H being uc-transitive map. 

Therefore  U is uc-dense in ),( NMCo . 

Theorem 2.11 Suppose that )),,(( 1NMCo is a uc –compact space without isolated point and 

),(),(: NMCoNMCoG   is a map. If there exists uc-dense orbit , that is there exists ),(0 NMCof     

such that the set )( 0fOG
 is uc- dense then the map G  is uc- transitive . 

Proof : Let  ),(0 NMCof   be such that )( 0fOG
 is uc-dense in  ),( NMCo . Given any pair U, V of  uc-

open subsets of  ),( NMCo , by uc-density there exists n such that UfGn )( 0
, but )( 0fOG

  is uc- dense 

implies that ))(( 0fGO n

G
is uc-dense, so it  intersects V, i.e.  Tthere exists m such that .))(( 0 VfGG nm 

Therefore VUGfG mnm  )()( 0
That is .)( VUGm So G is uc-transitive.   

Definition2.12 If )),,(( 1NMCo  is a uniform convergence-topological space, also the map  

),(),(: NMCoNMCoG  be a uc-irresolute  then ),( NMCoB is called uc-transitive set if U  and V  

are non-empty uc-open sets in  NMCo ,  with  UB  
and VB N n  

.)(  VUG n

 

Theorem 2.13 Let   be a uc-closed invariant subset of )),,(( 1NMCo . So 

          (a)  is uc- transitive set of  )),,(( 1NMCo .
   (b) ),(    is uc- transitive. 

Proof: 

 (a)  (b):  Let   11 UandV  be uc-open subsets of  . For a uc-open subset 1U of  , 

 a  uc- open set O  of M   OU1
.Since   is a uc-transitive set of )),,(( HNMCo , Nn

 .)( 1 OVH  Moreover,   is invariant, i.e., )(H . Therefore,  OVH )( 1
, i.e. 

 11)( UVH . Hence ),(  is uc-transitive. 

 (b)  (a):  Suppose 1V
 
is a uc-open set of   and O  is a uc-open set of )),,(( 1NMCo  

with  , O  Since O  is an uc-open set of )),,(( 1NMCo  
and , O  therefore O is a 

uc-open set of  . Since ),(   is topologically uc-transitive, Nn  ,)()( 1  OVH  so 

.)( 1 OVH  Hence   is a uc-transitive set of )),,(( HNMCo . 

Definition2.14 

(1) If )),,(( 1NMCo  is a uniform convergence-topological space, ),(),(: NMCoNMCoH  is a 

uc-irresolute ,
 ),( NMCoB  and given ),(, NMCoVU   any nonempty uc-open 

  
with UB  

and VB then 0 N   VUH n )(  .Nn   
               In this case  is called topologically uc-mixing set. 

.)(1 UUf 

U
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(2)
 ),( NMCoB  is a weakly uc-mixing of )),,(( HNMCo  

if 
1V  and 

2V  are non-empty uc-open 

subsets of   and nonempty uc –open subsets 
21 UandU  of ),( NMCo  with  1UB and 

 2UB Nn   11)( UVH n and  .)( 21 UVH n

 

(3) )),,(( HNMCo  
is a topologically uc-mixing ,if given O  andV any nonempty uc-open sets in

),( NMCo  ,
 N  is an integer  Nn  , one has . .)( VOH n

 

Theorem 2.15   topologically uc- mixing  weakly uc- mixing uc- transitive 

Chaos in product uc-topological spaces: If )),,(( FNMCo  
is uc-system. ),(),(: NMCoNMCoF   

is 

called uc-chaotic map, if it is uc- transitive and, its periodic points are uc-dense in ),( NMCo , each uc-

open non-empty subset of ),( NMCo  contains a periodic point. ( ),( NMCof   is called periodic if 

))(1 ffFwithn n  .
   int:,).( poperiodicisfNMCOfFPer  .  Given two uc-

topological spaces ),( 11 NMCo  and ),( 22 NMCo , their product is the set ),(),( 2211 NMCoNMCo 

)},(),(:),{( 2211 NMCogandNMCofgf  , we can define a topology on 

),(),( 2211 NMCoNMCo   by saying that a basis consists of the subsets WD   as D ranges over open 

sets in ),( 11 NMCo  and W ranges over open sets in ),( 22 NMCo  . The criterion for a family of subsets to 

be a basis for a topology is satisfied since ).()()()( 21212211 WWDDWDWD   This is called the 

product topology on ),(),( 2211 NMCoNMCo    

Now, given two maps  ),(),(: 1111 NMCoNMCoG   
and ),(),(: 2222 NMCoNMCoH   on uc-topological 

spaces ),( 11 NMCo  and ),( 22 NMCo . respectively, consider their product 

),(),(),(),(: 22112211 NMCoNMCoNMCoNMCoHG  , ),(G(f),H(g)(G×H)(f,g)  
with product topology 

on ),(),( 2211 NMCoNMCo   

Lemma 2.16 Let ),),((,),),(( 2211 LNMCoHNMCo be uc-topological systems. Then the following are 

equivalent: 

 (a) The set of periodic points of L×H  is uc-dense in ),(),( 2211 NMCoNMCo  . 

 (b) For both of H and L , the sets of periodic points in    

      
),(),( 2211 NMCoandNMCo  are uc-dense in ),( 11 NMCo , respectively ),( 22 NMCo .  

Proof: (b)  (a):  Suppose that the set of periodic points of H  is uc-dense in ),( 11 NMCo  (i.e.

),())(( 11 NMCoHPerCluc   ) and the set of periodic points of L is uc-dense in ),( 22 NMCo  (i.e.
 

),())(( 22 NMCoLPerCluc  . We can prove this the set of periodic points of L×H  is uc-dense in 

),(),( 2211 NMCoNMCo  . Let ),(),( 2211 NMCoNMCo    be any uc-open set. Then   uc-open sets 

),( 11 NMCoO  and ),( 22 NMCoV  with VO× . By assumption,  a point Oh

hhH n )(  , 1n . Similarly,  Vl  such that llLm )(  , 1m . For Ws)(r,q   and nmk   

we get 
 

qlhlLhHlhLHqLH kkkk  ),())(),(((),()×()()×(  

Therefore   contains a periodic point and thus the set of periodic points of L×H  is uc-dense in

),(),( 2211 NMCoNMCo  . 

(a)  (b): let ),( 11 NMCoO  and  ),( 22 NMCoV   be non-empty uc-open subsets. Then V×O  

is a uc-open subset of ),(),( 2211 NMCoNMCo  . As the set of the periodic points of L×H  is uc-dense in

),(),( 2211 NMCoNMCo  ,  a point  V×Ol)(h,q  ),())(),(((),()×( lhlLlHLhLH nnn   for some n . 

From the last equality we obtain hhH n )(  for Oh  and llLn )(  for Vl .  
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Lemma 2.17 Let ),),((,),),(( 2211 LNMCoHNMCo  
be topological systems and H , L be topologically 

uc- mixing maps, then LH   is topologically uc- mixing. 

Proof: Given ),(),(, 221121 NMCoNMCoWW   ,
 
  uc-open sets ),(, 1121 NMCoOO  and 

 ),(, 2221 NMCoVV  
111 × VO  and 

222 × VO . By assumption there exist 21 nandn   

.)()( 221121 nnforVVLandnnforOOH kk    
 

0

210 },max{

nnFor

nnn




 

we're having  





])([])([

)()]()([)()]()[(

2121

22112211

VVLxOOH

VxOVLxOHVxOVxOLHx

kk

kkk

 

Which means that LH  is topologically uc- mixing. 

Definition 2.18 The Function ),(),(: 1111 NMCoNMCoH  is called uc -chaotic if it is topologically uc-

transitive and has uc-dense orbit. 

  Now we afford some sufficient conditions for a product map to be uc- chaotic and Let us clarify the 

condition to be uc-mixing as illustrated in the following theorem: 

Theorem 2.19 Let ),(),(: 1111 NMCoNMCoH  and ),(),(: 2222 NMCoNMCoL    be uc- chaotic and 

topologically uc-mixing maps. Then 

),(),(),(),(: 22112211 NMCoNMCoNMCoNMCoLH    is uc -chaotic. 

Proof: By Lemma 2.16, LH  has uc-dense periodic points and by Lemma 2.17, LH  is 

topologically uc mixing . Therefore topologically uc-transitive. Therefore the two conditions of uc- 

chaos are satisfied. 

3 Definition and Theorems of point wise- convergence Topology 

 

       In this section, we have introduced some new definitions of maps called pc –irresolute map. pcr 

homeomorphism, pcr-conjugate and pc-minimal maps and some new definions of sets called  up-

closure,  pc-transitive and pc-mixing sets   

Definition 3.1  Consider in ),( NMCo  the sets  

},,...,1,)(:),({},{ 1 kiVmhNMCohVm ii

k

iii 

NinsetsopenareVVMmmwhere kk ,...,,,...,, 11   

2  is topology generated by these sets in their capacity as a subset is called the topology of point-wise 

convergence on ),( NMCo . 

Any open set in 
2  is called pc-open set and )),,(( 2NMCo is pc- topological space. The compliment 

of pc-open set is called pc-closed set.  

Definition 3.2  A function ),(),(: NMCoNMCoH   is called pc-irresolute if the inverse image of 

each pc-open set is a pc-open set in ),( NMCo . 

Definition 3.3 A function ),(),(: NMCoNMCoH  is rpc -homeomorphism if it is surjective, 

injective and thus invertible , also  H ,
1H  are both

 
pc -irresolute. 
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The systems ),(),(:),(),(: NNCoNNCoLandMMCoMMCoH   are topologically pcr-conjugate if 

),(),(: NNCoMMCoG   is a pcr-homeomorphism GLHG   . 
 

If )),,(( 2NMCo  is a pc-topological space. We define the up-closure of  by   
i

ipc FCl   

   .,, 2 iFandNMCoofsetclosedpcF ii 
 

Definition 3.4 If )),,(( 2NMCo  is a uniform convergence-topological space.  

The map ),(),(: NMCoNMCoH   is pc-dense orbit if  ),( NMCoh  

),())(( NMCohOCl Hpc  . 

Definition 3.5 Let )),,(( 2NMCo  be a pc-topological space, and ),(),(: NMCoNMCoG  be a pc- 

irresolute map, then G   is a point-wise- converge –transitive (shortly  pc- transitive) map if V  and 

O  are pc-open non-empty sets in )),,(( 2NMCo n  is a positive integer  OVGn )( . 

Definition 3.6 If )),,(( 2NMCo  is  a point wise convergence-topological space, and 

),(),(: NMCoNMCoH  be a pc-irresolute  then the set ),( NMCoB is called pc-type 

transitive set if V  and O  are pc-open non-empty sets in )),,(( 2NMCo  with VB  
and 

OB n  is a positive integer .)(  OVH n
. 

Definition 3.7  

(1) If )),,(( 2NMCo  is a point-wise convergence-topological space, and ),(),(: NMCoNMCoG   
be a pc-irresolute then the set ),( NMCoB is topologically pc-mixing set if, given 

),(, NMCoVU   any nonempty pc-open
 

with UB  and VB then 0 N  

 VUGn )(  .Nn   

(2) ),( NMCoB  is a weakly pc- mixing set of )),,(( GNMCo if 
1V  and 

2V  are non-empty pc-

open subsets of B  and nonempty pc –open subsets 
21 UandU  of ),( NMCo  with 

 1UB and  2UB Nn   11)( UVGn and   21)( UVGn

 
(3) )),,(( GNMCo  

is topologically pc-mixing, if given U  and V  
any pc-open sets in 

),( NMCo ,
 N  is an integer  Nn  , one has VUGn )( . 

In addition, we have studied the compact-open topology. The compact-open topology is a topology 

defined on ),( NMCo . This topology is applied in homotopy theory and functional analysis. 

Given a compact subset C  of M  and an open subset U of N , let 

})(:),({),( UChNMCohUCV  .  

The following definition supplies a compact-open topology on ),( NMCo . 

Definition 3.8 [1] Let })(:),({),( UChNMCohUCV  . The topology 3  
generated by ),( UCV as 

a subbase of a topology which is called the compact-open topology on ),( NMCo .(Does not always 

this collection form a base for a topology on ),( NMCo ). 

Note that if  we define another new definition:   

})(:),({),( UChNMCohUCV 
where C  is compact and U  is  open in N . The topology 


3  generated by ),( UCV  as a subbase of a topology which is called compact-  open topology on 

),( NMCo . 
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Any open set in 
3  is called co-open set and )),,(( 3NMCo is called co- topological space. The 

compliment of co-open set is called co-closed set. 

Definition 3.9 

If )),,(( 3NMCo is a co-topological space, and ),(),(: NMCoNMCoG   
be a co-irresolute, so G  is 

a compact-open–transitive (shortly co- transitive) if O  and V  are co-open sets in )),,(( 3NMCo  

n  is a positive integer  VOGn )( .  

Definition 3.10  

(1) Let )),,(( 3NMCo  be a co-topological space, and  ),(),(: NMCoNMCoG  be a co-irresolute then 

),( NMCoB  is topologically co-mixing set, if given ),(, NMCoVU   any nonempty uc-open
 

with UB  and VB then 0 N   VUGn )(  .Nn    

Theorem3.11 For )),,(( GNMCo , 

(a) G is  pc-minimal map .  

(b)  If S is pc-closed subset of X with .)( SSG  Then S=  or ).,( NMCoS   

 (c ) If D is pc-open and nonempty set in ),( NMCo , then ),()(
0

NMCoDG
n

n 




 . 

Proof: 

(a)  (b): let S ≠  and h є S. Since S is invariant and pc-closed, i.e. SSClpc )( so ShOCl Gpc ))(( . 

But ),())(( NMCohOCl Gpc  . Therefore, we have ),( NMCoS  .  

(b) (c) Let S= ),( NMCo \






0

)(
n

n DG . Since D is nonempty, ),( NMCo  ≠ S and Since D is pc-open 

and G is pc irresolute, S is pc-closed. Also SSG )( , so S  must be ϕ. 

(c)  (a): Let h є ),( NMCo  and D be a nonempty pc-open subset of ),( NMCo . Since h є ),( NMCo  

=






0

)(
n

n DG .Therefore h є )(DG n
 for some n>0. So DhGn )( . 

Theorem 3.12 Let ),( NMCo  
be a compact space without isolated point, if there is a co-dense orbit, 

that is there is h0  ),( NMCo   such that )( 0hOH
 is co-dense then H  is co-transitive . 

Proof .Let 0h be such that )( 0hOH
is co-dense. Given D, W of co-open sets, by co-density   a 

positive integer n  DhH n )( 0
, but )( 0hOH  is co- dense implies that ))(( 0hHO n

H
is co-dense, so, 

there is k such that .))(( 0 WhHH nk  Therefore WDHhH knk  )()( 0
That is WDH k )( So H is 

topological co-transitive. 

 

4. CONCLUSION  

The main results are the following:
 

      Every uniform-convergence-transitive implies compact - open –transitive.,Every  uc-mixing 

implies co–mixing which implies pc –mixing,Every weakly uc-mixing implies weakly co–mixing., If 

a map is a ucr-homeomorphism on  the set of all continuous functions then, it  is topologically uc-

transitive iff every non empty invariant uc-open subset of that space  is uc-dense. 
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Let   be a uc-closed invariant subset of )),,(( 1NMCo . Then 

(a) is uc- transitive set of  )),,(( 1NMCo   .  (b) ),(    is uc- transitive.  

We have also shown that every uc-mixing implies uc-transitive.  

For )),,(( GNMCo  

           (a) G is  pc-minimal map .   (b)  If S is pc-closed subset of M  with .)( SSG   

           
Then S=  or  ).,( NMCoS    (c ) If D is pc-open and nonempty set in ),( NMCo , then  

            ),()(
0

NMCoDG
n

n 




 . Fortheremore,  If )),,(( FNMCo is a compact system without isolated point, 

and  

there is a co-dense orbit, then F is co-transitive . And we have proved that the product of two 

topologically uc-mixing maps is a topologically uc-mixing map. 

Suppose that )),,(( 1NMCo is second countable and has a Baire property. If  )),,(( GNMCo is uc- 

transitive then there exists uc-dense orbit. A map ),(),(: NMCoNMCoF  is topologically uc-

transitive if ),()( NMCogF  for some ),( NMCog . 
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Abstract: The purpose of this paper is to introduce a new class of fuzzy  paracompact space  is named fuzzy 

𝛚- paracompact space on fuzzy topological space also study the relationships with fuzzy 𝛚- separation axioms 

and we give some characterization on fuzzy 𝛚- paracompact space by using fuzzy countable set also we study 

the fuzzy 𝛚- paracompact subspace and consider some relationship between fuzzy paracompact space and 

fuzzy 𝛚- paracompact space by using certain types of fuzzy 𝛚- continuous functions.  

1. Introduction 

The concept, which we will be considered in this paper, is the so called ―fuzzy sets‖ which is totally 

different from the classical concept which is called ―a crisp set‖. The recent concept is introduced by 

Zadeh in 1965 [15], in which he defines fuzzy sets as a class of objects with a continuum of grades of 

membership and such a set is characterized by a membership function that assigns to each object a 

grade of membership ranging between zero and one, In (1968) Chang [2] introduced the definition of 

fuzzy topological spaces and extended in a straight forward manner some concepts of crisp 

topological spaces to fuzzy topological spaces. Later Lowen [10] (1976) redefined what is now 

known as stratified fuzzy topology.While Wong [13] in 1974 discussed and generalized some 

properties of fuzzy topological spaces. The note on paracompact space has been introduced by 

Ernest Michael [4] in (1953). Qutaiba Ead Hassanin [9 ] in (2005) introduced characterizations of 

fuzzy paracompactness. In this paper we introduce the concepts of fuzzy 𝛚-open set and fuzzy 𝛚-

paracompact space and fuzzy 𝛚-paracompact subspace on fuzzy topological space, and studied the 

relationships with fuzzy 𝛚-separation axioms also we presented some types of fuzzy 𝛚-continuous 

function and we give some characterization. And we obtained several properties. 

 

2. Preliminaries 

2.1 Definition [15]  

Let X be a non empty set, and let I be the unit interval i.e I=[0,1], a fuzzy set in X is a function from X 

into the unit interval I ,  : X   [0,1] be a function A fuzzy set   in X can be represented by the set of 

pairs:   = {(x,   ̃( ) ): x   X} the family of all fuzzy sets in X is denoted by I
X
. 

2.2 Definition [6]  

A fuzzy point     is a fuzzy set such that :  

   ( )  =    r     0      if   x  =  y ,      y     X    and  

   ( )  =    0     if    x      y  ,    y     X, The family of all fuzzy points of   will be denoted by FP( )  

mailto:mnraziz@yahoo.com
mailto:haider.gazwan@uomustansiriyah.edu.iq
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2.3 Definition [13]  

A fuzzy point    is said to belong to a fuzzy set    in X (denoted by :       ) if and only if      ≤ 

  ̃( )   

2.4 Proposition[13]  

Let   and B  be two fuzzy sets in X with membership functions    and      respectively, then for all  

x   X: - 

1.       B     if and only if      ̃( )  ≤     ( ). 
 

2.     =   B      if and only if      ̃( )   =      ( ). 
 

3. C  =     B    if and only if      ( )= min{   ̃( ) ,    ( ) }. 

4. D  =     B    if and only if      ( )= max{   ̃( ),    ( )}. 

2.5 Definition [7] 

The support of a fuzzy set  ̃, Supp ( ̃), is the crisp set of all x   X, such that   ̃( ) > 0. 

2.6 Definition [2]    

A fuzzy topology is a family  ̃ of fuzzy subsets in X, satisfying the following conditions: 

(a)   , 1X    ̃. 

(b) If   ̃,  ̃    ̃, then  ̃    ̃    ̃. 

(c) If  ̃     ̃,  i   J, where J is any index set, then ⋃  ̃            ̃. 

 ̃ is called fuzzy topology for  ̃, and the pair (X,  ̃) is a fuzzy topological space. Every member of  ̃ 

is called open fuzzy set ( ̃-open fuzzy set). A fuzzy set  ̃ in 1X  is called closed fuzzy set  

( ̃-closed fuzzy set) if and only if its complement  ̃  is  ̃-open fuzzy set. 

2.7 Definition [8]  

If  B    (X,T ) ,the complement of B  referred to 1X denoted by   
 
, is defined by    

 
  =  1X –     

2.8 Definition [1]  

An fuzzy open set  ̃ in a fuzzy topological space (X,T ) is said to be clopen if its complement 1X –   ̃  

is an fuzzy open. 

2.9 Definition [2]  

A fuzzy set B  in a fuzzy topological space (  ,T ) is said to be a fuzzy neighborhood of a fuzzy point 

   in   if there is a fuzzy open set G   in    such that     
( )      ( )       ( ),        X. 

2.10 Definition [11] 

Let (X, T ) be a fuzzy topological space and  B     P(1X),then the relative fuzzy topology for B    

defined by   ̃ =  {  B     ̃ :  ̃   T  }.The corresponding ( B  ,  ̃ ) is  called fuzzy subspace of  (X, T ) . 
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2.11 Definition [3] 

Let (X,T ) be a fuzzy topological space a family  ̃ of fuzzy sets is open cover of a fuzzy set  ̃ if and 

only if  ̃  { G  : G    ̃} and each member of  ̃ is a fuzzy open set.  

2.12 Definition [12]  

Let B = { ̃  :       } , C = { ̃  :       } (      ) be any two collection of fuzzy sets in (X,T ) , 

then C is a refinement of  B if for each       there exist       such that   ̃ 
( )      ̃  

( ) . 

2.13 Definition [5] 

A fuzzy topological space (X,T ) is said to be fuzzy connected, if it has no proper fuzzy clopen set. 

Otherwise it is called fuzzy disconnected. 

2.14 Definition [15]     

Let   be a function from universal set X to universal set Y. Let  ̃ be a fuzzy subset in 1Y with 

membership function   ̃( ). Then, the inverse of  ̃, written as    ( ̃), is a fuzzy subset of 1X whose 

membership function is defined by     ( ̃)(x) =  ( ̃)( (x)), for all x in X.If  ̃ be a fuzzy subset in 

1X with membership function   ̃( ). The image of  ̃, written as  ( ̃), is a fuzzy subset in 1Y whose 

membership function is defined by 

  ( ̃)( ) = 8
*  ̃( )+       

  ( )   
     ( )

          

                                           
, for all y in Y, where    ( ),  {x|  (x) = y }. 

 

From the above it is clear that: 

1. If   is injective then   ( ̃)( ) = 8
*  ̃( )+       

  ( )   
     ( )

          

                                           
 

2. If   is surjective then   x   X then   ̃( (x)) =   ̃(y)   y   Y, x      ( )   

3. If   is bijective then   ( ̃)( ) =   ̃( )   x =    ( )      ( ̃)(x) =  ( ̃)( ),   y   Y, y =  (x) 

 

3. Fuzzy 𝝎-Open Set In Fuzzy Topological Space  

3.1 Definition [14] 

A fuzzy set   in a fuzzy topological space (X, ̃) is called a fuzzy uncountable if and only if supp( ) 

is an uncountable subset of  X 

3.2 Definition  
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A fuzzy point    of a fuzzy topological space (X, ̃) is called a fuzzy condensation point of    1X if  

B      is fuzzy uncountable for each fuzzy open set B  containing   . And the set of all fuzzy 

condensation point of   is denoted by Cond( ) 

3.3 Definition  

A fuzzy subset   in a fuzzy topological space (X, ̃) is called a fuzzy  -closed set if it contains all its 

fuzzy condensation point. The complement fuzzy  -closed sets are called fuzzy  -open sets. 

3.4 Theorem  

A fuzzy subset  ̃ of a fuzzy topological space (X, ̃) is fuzzy  -open set if and only if       ̃ there 

exist a fuzzy open set  ̃ such that       ̃ and  ̃-  ̃ is countable.   

Proof:  ̃ is fuzzy  -open set if and only if 1X -  ̃ is fuzzy  -closed set, And 1X -  ̃ is fuzzy  -closed 

set if and only if Cond(1X -  ̃)   1X -  ̃, And Cond(1X -  ̃)   1X -  ̃ if and only if  each       ̃,      

Cond(1X -  ̃), Thus      Cond(1X -  ̃) there exist a fuzzy open set  ̃ such that       ̃ and  ̃ ⋂ (1X - 

 ̃) =  ̃-  ̃ is countable  

3.5 Theorem  

A fuzzy subset  ̃ of a fuzzy topological space (X, ̃) is  -open set if and only if for each       ̃ there 

exist an fuzzy open set  ̃ containing    and countable fuzzy subset  ̃ of 1X such that  ̃-  ̃    ̃. 

Proof: ( ) suppose  ̃ is fuzzy  -open set and let       ̃ , Then there exist a fuzzy open set  ̃ and    

   ̃ and  ̃-  ̃ is countable, Set  ̃ =  ̃-  ̃ , then  ̃ is countable and       ̃-  ̃ =  ̃- ( ̃-  ̃)    ̃ 

(⟸)  let       ̃ then by assumption there exist fuzzy open set  ̃ containing    and countable fuzzy 

subset  ̃ of 1X such that    ̃-  ̃    ̃, since  ̃-  ̃    ̃ then  ̃-  ̃ is countable, hence  ̃ is fuzzy  -open 

set  

3.6 Proposition  

Every fuzzy open set is fuzzy  -open set 

Proof: Let  ̃ be fuzzy open set and       ̃, Set  ̃ =  ̃ ,  ̃ =   , then  ̃ is fuzzy open set and  ̃ 

countable set, Such that        ̃-  ̃    ̃ , thus  ̃ is fuzzy  -open set 

Remark  

The converse of (3.6 proposition) is not true in general as the following examples show:- 

3.8 Example: let X = { a , b , c } and   ̃  ,  ̃ are fuzzy subset in 1X  where 

1X= { ( a , 1 ) , ( b , 1 ) , ( c , 1 ) },  ̃ = { ( a , 0.6 ) , ( b , 0.6 ) , ( c , 0.7 ) } 

 ̃ = { ( a , 0.5 ) , ( b , 0.5 ) , ( c , 0.4 ) }, Let T  = {   , 1X ,   ̃ } be a fuzzy topology on X, Then the 

fuzzy set   ̃  is a fuzzy   – open set but not fuzzy open set 

3.9 Definition  

Let B  be a fuzzy set in a fuzzy topological space (X,T ) then, The 𝛚-interior of B  is denoted by   

ω-Int(B ) and defined by ω-Int(B ) =   { G  : G  is a fuzzy ω-open set in 1X  , G    B  } 
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3.10 Definition  

Let B  be a fuzzy set in a fuzzy topological space (X,T ) then, The 𝛚-closure of B  is denoted by   

ω-cl(B ) and defined by ω-cl(B ) = ⋂ { G  : G  is a fuzzy ω-closed set in 1X  ,  B    G   } 

3.11Theorem  

Let   be fuzzy subset of a fuzzy topological space (X, ̃) then ( ̃ )
  =  ̃ 

  

Proof: To prove ( ̃ )
     ̃ 

 , let  ̃   ( ̃ )
  and        ̃ , by (3.5 Theorem), There exist fuzzy open 

set  ̃ of  ̃  and  ̃ countable subset of  ̃   such that       ̃ -  ̃    ̃ , choose  ̃    ̃ such that   ̃ =  ̃   

 , Then  ̃ -  ̃    ̃ ,       ̃ -  ̃  and  ̃ -  ̃     =  ̃ -  ̃    ̃, Therefore  ̃    ̃ 
 , To prove  ̃ 

    

( ̃ )
 , let  ̃    ̃ 

  then there exist  ̃    ̃  such that  ̃ =  ̃      if        ̃ then       ̃ and there exist 

fuzzy open set  ̃ of   ̃ and  ̃ countable subset of  ̃ such that       ̃ -  ̃    ̃, We put  ̃ =  ̃    , then 

 ̃    ̃  and       ̃ -  ̃    ̃, It follows that  ̃   ( ̃ )
    

3.12 Definition  

The fuzzy family { ̃  :     } of subset of a fuzzy topological space (X, ̃) is called  

1- Fuzzy  -locally finite if for each      1X there exist an fuzzy  -open set  ̃ containing    such that 

the set { ̃    ̃    :      } is finite 

2- Fuzzy  -discrete if for each      1X there exist an fuzzy  -open set  ̃ containing    such that the 

set { ̃    ̃    :      } has at most one member 

3.13 proposition  

Every fuzzy locally finite (resp.fuzzy discrete) family of any fuzzy topological space (X, ̃) is fuzzy 

 -locally finite (resp.fuzzy  -discrete)     

Proof:Follows from the fact (every fuzzy open set is fuzzy  -open set) 

3.14 Definition  

A fuzzy topological space (X, ̃) is called a fuzzy anti-locally-countable if each nonempty fuzzy open 

subset of  1X is uncountable. 

3.15 Definition  

A fuzzy topological space (X, ̃) is said to be  

1-  - ̃  if for each pair of distinct fuzzy point    and    of  1X there exist fuzzy  -open set  ̃  such 

that either       ̃ and       ̃ or        ̃ and      ̃. 

2-  - ̃  if for each pair of distinct fuzzy point    and    of  1X there exist fuzzy  -open sets  ̃  and  ̃ 

such that       ̃ and       ̃ and        ̃ and      ̃. 

3-   - ̃  if for each pair of distinct fuzzy point    and    of  1X there exist disjoint fuzzy  -open sets 

 ̃  and  ̃ containing      and    respectively . 

3.18 Definition  
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A fuzzy topological space (X, ̃) is called a fuzzy  -regular space if for each fuzzy  -closed subset B  

of 1X and a fuzzy point    in 1X such that       B , there exist disjoint fuzzy  -open sets  ̃ and  ̃ 

containing    and B  respectively  

3.19 Definition  

A fuzzy topological space (X, ̃) is called a fuzzy  -Normal space if for each pair of disjoint fuzzy  -

closed sets  ̃ and  B  in 1X there exist  disjoint fuzzy  -open sets  ̃ and  ̃ containing  ̃ and B  

respectively  

3.20 Theorem  

A fuzzy topological space (X, ̃) is fuzzy  -Normal if for each pair of fuzzy  -open sets  ̃ and  ̃ in 

1X such that 1X =  ̃ ⋃  ̃ there are fuzzy  -closed sets  ̃ and  ̃ contained in  ̃ and  ̃ respectively 

such that 1X =  ̃ ⋃  ̃   

Proof:  Obvious 

3.21 Theorem  

Every fuzzy  -closed subspace of fuzzy  -Normal space is fuzzy  -Normal space. 

Proof:  Obvious 

3.22 Proposition  

Every fuzzy  -regular space  is fuzzy ω- ̃  space 

Proof : Let    and    be pair of fuzzy distinct points in a fuzzy  -regular space 1X,Then    is a fuzzy 

point of 1X which is not in the fuzzy  -closed subset {  } of 1X  so by fuzzy  -regularity of 1X there 

exist fuzzy disjoint  -open sets  ̃ and  ̃ containing    and    respectively, Hence 1X is fuzzy ω- ̃  

space. 

3.23 Proposition  

If (X, ̃) is fuzzy anti-locally countable topological space and  ̃ fuzzy  -open subset of 1X then  -

cl( ̃) = cl( ̃). 

Proof: Clearly  -cl( ̃)   cl( ̃). On the other hand, let      cl( ̃) and  ̃ be an fuzzy  -open subset 

containing    then by (3.5 Theorem)There exist an fuzzy open set  ̃ containing    and countable set  

 ̃ such that  ̃ -  ̃    ̃ , thus ( ̃ -  ̃ )    ̃    ̃    ̃ and so  ̃    ̃ -  ̃     ̃    ̃. As       ̃ and      

cl( ̃),  ̃    ̃   . And then as  ̃ and  ̃ are fuzzy  -open sets ,  ̃    ̃ is fuzzy  -open set and as 1X is 

fuzzy anti-locally countable ,  ̃    ̃ is fuzzy uncountable and so is ( ̃    ̃) -  ̃. Thus  ̃    ̃ is 

uncountable therefore  ̃    ̃    which means that        -cl( ̃)  

3.24 Corollary  

If (X, ̃) is fuzzy anti-locally countable topological space and  ̃ fuzzy  -open subset of 1X then  

 -Int( ̃) = Int( ̃). 

Proof: Obvious 
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3.25 Theorem  

If a fuzzy topological space (X, ̃) is fuzzy anti-locally-countable space then every fuzzy ω-Normal 

space is fuzzy Normal space. 

Proof:  Let  ̃ and  ̃ be two disjoint fuzzy closed subset of  fuzzy anti-locally-countable ω-Normal 

space 1X , then there are fuzzy ω- open sets  ̃ and  ̃ such that  ̃     ̃ and  ̃     ̃ and  ̃ ∩  ̃ =   this 

implies that ω-cl( ̃) ∩  ̃ =   and   ̃ ∩ ω-cl( ̃) =   since 1X is fuzzy anti-locally-countable so by 

(3.23 Proposition) we get cl( ̃) ∩  ̃ =   and   ̃ ∩ cl( ̃) =   since Int(cl( ̃))   cl( ̃) and Int(cl( ̃))   

cl( ̃) then Int(cl( ̃)) ∩  ̃ =   and   ̃ ∩ Int(cl( ̃)) =  , And this implies that Int(cl( ̃)) ∩ cl( ̃) =   and 

Int(cl( ̃)) ∩ cl( ̃) =   thus Int(cl( ̃)) ∩ Int(cl( ̃)) =   , hence Int(cl( ̃))  and Int(cl( ̃)) are disjoint 

fuzzy open sets in 1X containing  ̃ and  ̃ respectively hence (X, ̃) is fuzzy Normal space  

3.26 Definition  

Two fuzzy families * ̃ +    and * ̃ +    of subset of a fuzzy space 1X are said to be similar if for 

every finite subset Δ of Λ the fuzzy sets A



  and B



 are either empty or nonempty. 

3.27 Definition  

Let (X, ̃) be a fuzzy topological space a family W of fuzzy sets is  -open cover of a fuzzy set A  if 

and only if A   { G : G   W} and each member of W is a fuzzy  -open set. A sub cover of W is 

a sub family which is also cover. 

3.28 Definition  

A function  : (X, ̃)   (Y, ̃) is said to be fuzzy ω-continuous at a fuzzy point      1X if for each 

fuzzy open subset  ̃ in 1Y containing  (  ) there exists an fuzzy ω-open subset  ̃ of 1X that containing 

   such that  ( ̃)    ̃ and   is called fuzzy ω-continuous if it is fuzzy ω-continuous at each fuzzy 

point 

 

3.29 Definition  

A function  : (X, ̃)   (Y, ̃) is said to be  

1- fuzzy pre- ω-open, if image of each fuzzy ω-open set is fuzzy ω-open 

2- fuzzy ω-irresolute if    ( ̃) is fuzzy ω-closed in 1X for each fuzzy ω-closed subset  ̃ of 1Y 

 

4. Fuzzy 𝝎-Paracompact space 

4.1 Definition  

A fuzzy topological space (X,T ) is said to be : 

Fuzzy paracompact space if for each fuzzy open covering of 1X has a fuzzy locally finite open 

refinement. [9] 

Fuzzy 𝛚 -paracompact space if for each fuzzy ω-open covering of 1X has a fuzzy ω-locally finite ω-

open refinement  
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4.2 Propositions  

If a fuzzy topological space (X,T ) is a fuzzy locally countable space then (X, ̃ ) is fuzzy 

paracompact space. 

Proof : Follows from the fact every fuzzy discrete space is fuzzy locally finite and A fuzzy 

topological space (X, ̃) is fuzzy locally countable if and only if   ̃  =   ̃    

4.3 Propositions   

If a fuzzy covering {U }   of a fuzzy topological space (X,T ) has a fuzzy locally-finite (fuzzy ω-

locally finite) ω-open refinement then there exist a fuzzy locally-finite (fuzzy ω-locally finite) ω-open 

covering {G } 
 of 1X such that G U   for each  . 

Proof: Let {V } 
 be the fuzzy locally-finite (fuzzy ω-locally finite) ω-open refinement {U }   

therefore there exist a function :   such that 
( )V U     for each  . Let 

, ( )

G V 

   

  then 

the family {G }  is fuzzy ω-open covering of 1X with the property that G U   for each  . 

Also {G } 
is fuzzy locally-finite (fuzzy ω-locally finite).  

If      1X  there is an fuzzy open (ω-open) set  ̃ containing    such that the set  

  ={γ   Γ :  ̃ ∩  ̃  ≠  } is finite. But since  ̃ ∩  ̃  ≠   

If and only if λ=β(γ) for some γ      so the set {λ   Λ :  ̃ ∩  ̃  ≠  } is finite  

 

4.4 Corollary   

A fuzzy topological space (X,T ) is fuzzy ω-paracompact space if and only if for every fuzzy ω-open 

covering * ̃ +    of 1X there exist an fuzzy ω-locally finite ω-open covering * ̃ +    of 1X such that 

 ̃     ̃  for each λ   Λ. 
 

4.5 Propositions   

Let (X,T ) be a fuzzy ω-paracompact space and let  ̃ be a fuzzy subset of 1X and  ̃ be an fuzzy ω-

closed of 1X which disjoint from  ̃, if for every       ̃ there exist disjoint fuzzy ω-open set  ̃   and 

 ̃  containing    and  ̃ respectively then there are disjoint ω-open set  ̃ and  ̃ containing  ̃ and  ̃ 

respectively. 

Proof : Consider the fuzzy ω-open covering * ̃  +    ̃ ⋃ {1X -  ̃} of an fuzzy ω-paracompact space 

(X,T ) then by (4.4 Corollary)  there exist an fuzzy ω-locally finite ω-open covering * ̃  +    ̃ ⋃  ̃ of  

1X such that  ̃   1X -  ̃ and  ̃      ̃   for each       ̃ . if   ̃   ⋂  ̃  =   then  ̃   ⋂  ̃  =   so  

ω-cl( ̃  ) ⋂  ̃  =   for each       ̃ then the fuzzy sets  ̃ = 
r

r

x

x F

G


and  ̃ = 1X - 
r

r

x

x F

cl(G )


  are the 

required ω-open sets of  1X  

 

4.6 Propositions   

Each fuzzy ω-paracompact fuzzy ω-regular (resp. fuzzy ω- ̃ ) space is fuzzy ω-Normal space. 

Proof: Let (X,T ) be an fuzzy ω-paracompact ω- ̃  space and let    be any fuzzy point in 1X which is 

not in an arbitrary fuzzy ω-closed set  ̃ of  1X  therefore for each       ̃ there are disjoint fuzzy ω-

open sets  ̃   and  ̃   containing    and {  } respectively so by (4.5 Propositions) there exist disjoint 

fuzzy ω-open sets  ̃ and  ̃ containing  ̃  and    respectively this shows that (X,T ) is fuzzy ω-regular 
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space, thus we have (X,T ) fuzzy ω-paracompact fuzzy ω-regular. Let  ̃ and  ̃ be any fuzzy two 

disjoint fuzzy ω-closed subset of  1X , since  ̃ is fuzzy ω-closed so by fuzzy ω-regularity of 1X for 

each        ̃ there exist disjoint fuzzy ω-open sets  ̃   and  ̃  containing    and  ̃ respectively 

therefore By (4.5 Propositions)  there exist disjoint fuzzy ω-open sets  ̃ and  ̃ containing  ̃ and  ̃ 

this showed that (X,T ) is fuzzy ω-Normal space   
 

4.7 Corollary   

Every fuzzy ω-paracompact  ̃  space is an fuzzy ω-Normal space. 

Proof: Follows by the fact(Every fuzzy  ̃  space is an fuzzy ω- ̃  space) and  (4.5 Propositions)  

  

4.8 Proposition   

If (X,T ) is an fuzzy anti-locally countable fuzzy ω-paracompact   ̃ -(resp. ω- ̃  , ω-regular , ω-

Normal) space then it is fuzzy paracompact. 

Proof: From 4.6 Propositions and 4.7 Corollary  we have only to assume that 1X is an fuzzy ω-

paracompact  ω-Normal space. Therefore by 3.24 Corollary and 3.25 Theorem (X,T ) is fuzzy 

paracompact  
 

4.9 Theorem  

A fuzzy topological space (X,T ) is fuzzy ω-paracompact  ω-Normal space if and only if every fuzzy 

ω-open covering of 1X has a fuzzy ω-locally finite ω-closed refinement. 

Proof: ( ) Let * ̃ +    be a fuzzy ω-open covering of a fuzzy  ω-paracompact  ω-Normal space 

(X,T ) so by (4.4 Corollary)  there exist an fuzzy ω-locally finite ω-open covering * ̃ +    of 1X such 

that  ̃     ̃  for each λ   Λ, since (X,T ) is fuzzy ω-Normal space then there exist an fuzzy ω-locally 

finite ω-closed refinement of  * ̃ +    which also fuzzy covers of  1X 

(⟸) Let (X,T ) be a fuzzy topological space with the property that every fuzzy ω-open covering of it 

has fuzzy ω-locally finite ω-closed refinement, thus (X,T ) is fuzzy ω-Normal space, it remains only to 

show (X,T ) is fuzzy ω-paracompact. For this let * ̃ +    be a fuzzy  ω-open covering of 1X and 

* ̃ +    be fuzzy ω-locally finite ω-closed refinement of * ̃ +    therefore for each      1X there 

exist fuzzy ω-open set  ̃   containing    such that the fuzzy set {     :   ̃   ⋂  ̃  ≠   } is finite. 

Consider * ̃ +    is fuzzy ω-locally finite ω-closed refinement of the fuzzy ω-open covering 

* ̃  +      of 1X then for each     the fuzzy set {     :   ̃  ⋂  ̃  ≠   } is finite so there exist fuzzy 

 -locally finite family { ̃   :    }of fuzzy   -open set of  1X  such that  ̃    ̃ for each     

which also fuzzy cover of 1X , since * ̃ +    is fuzzy refinement of * ̃ +    so for each     there is 

 ( )    such that  ̃     ̃ ( ) therefore { ̃  ⋂  ̃ ( )  :    } is fuzzy ω-locally finite ω-open 

refinement of * ̃ +    Hence (X,T ) fuzzy ω-paracompact space  

4.10 Proposition   

Let * ̃ +    be an fuzzy ω-locally finite family of fuzzy ω-closed sets of fuzzy ω-paracompact ω-

Normal space (X,T ) then there exists an fuzzy ω-locally finite family * ̃ +    of fuzzy ω-open subset 

of 1X such that  ̃     ̃   for each λ   Λ  and the fuzzy families * ̃ +    and {ω-  ( ̃ )+    are 

similar  

Proof: Let * ̃ +    be fuzzy ω-locally finite family of fuzzy ω-closed sets of fuzzy ω-paracompact ω-

Normal space (X,T ). for each      1X there exist fuzzy ω-open set  ̃   containing    such that  ̃   
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intersects only finite number of  ̃  and clearly the fuzzy family * ̃   +      forms fuzzy ω-open 

covering of  1X , therefore by (4.9 Theorem) * ̃   +      has a fuzzy ω-locally finite ω-closed 

refinement * ̃ +    and  ̃  intersects only finite number of * ̃ +    for each    ,   

so there exist fuzzy  -locally finite family { ̃   :    }of fuzzy   -open set of  1X  such that  ̃    ̃  

for each     , hence there exist an fuzzy  -locally finite family { ̃   :    } of fuzzy  -open sets 

such that  ̃     ̃    ω-cl( ̃ )    ̃  for each     and the fuzzy families * ̃ +    and {ω-  ( ̃ )+    

are similar  

 

5. Fuzzy 𝝎-Paracompact subset 

5.1 Proposition   

Every fuzzy ω-paracompact subset of a fuzzy topological space (X,T ) is fuzzy ω-paracompact 

subspace. 

Proof: Let  ̃ be a fuzzy ω-paracompact subset of a fuzzy topological space (X,T ) and let * ̃ +    be 

fuzzy covering of   ̃ by fuzzy ω-open subset of  ̃. By (3.11 Theorem )  there exist an fuzzy ω-open 

subset  ̃  of 1X such that  ̃  =  ̃  ⋂  ̃ for each    , then * ̃ +    is fuzzy covering of   ̃ by fuzzy 

ω-open subset of 1X. so by hypothesis there exist fuzzy ω-locally-finite ω-open refinement * ̃ +    of 

the fuzzy family * ̃ +    which covers  ̃ also. Therefore * ̃  ⋂  ̃+    is fuzzy ω-locally-finite ω-

open refinement of  * ̃ +    in  ̃, Thus  ̃ is fuzzy ω-paracompact subspace of  (X,T )  
 

5.2 Proposition   

An fuzzy ω-closet subset of fuzzy ω-paracompact space is fuzzy ω-paracompact subspace. 

Proof: Let  ̃ be fuzzy ω-closet subset of fuzzy ω-paracompact space 1X and let * ̃ +    be be fuzzy 

covering of   ̃ by fuzzy ω-open set of 1X , then * ̃ +    ⋃ {1X -  ̃ } is fuzzy covering of 1X then by 

hypothesis and in virtue of  (4.4 Corollary)  there exist an fuzzy ω-locally-finite ω-open covering 

* ̃ +    ⋃  ̃ of  1X such that  ̃   1X -  ̃ and  ̃     ̃  for each     therefore * ̃ +    is fuzzy ω-

locally-finite ω-open refinement of * ̃ +    which cover  ̃ this show that  ̃ fuzzy ω-paracompact 

subset to 1X and by (5.1 Proposition)  we obtain  ̃ fuzzy ω-paracompact subspace   
 

5.3 Proposition   

If a fuzzy topological space (X,T ) is fuzzy ω- ̃  space and has a fuzzy subset  ̃ which is fuzzy ω-

paracompact subset to 1X then for each      1X -  ̃ there exist two disjoint fuzzy ω-open sets of  1X 

containing    and  ̃   

Proof: Let  ̃ be fuzzy ω-paracompact subset of fuzzy ω- ̃  space (X,T ) and let    be any fuzzy point 

of  1X -  ̃ then for each        ̃ there exist fuzzy ω-open sets  ̃   and  ̃   such that       ̃   and       

 ̃   and  ̃   ⋂  ̃   =   this implies that ω-cl( ̃  ) ⋂  ̃   =    hence      ω-cl( ̃  ) for each        ̃. 

Now * ̃  +    ̃ is fuzzy cover of  ̃ by fuzzy ω-open subset of  1X thus by hypothesis and in virtue of  

(4.4 Corollary) there exist an fuzzy ω-locally finite covering * ̃  +    ̃ of   ̃ such that for each       

 ̃,  ̃   is fuzzy ω-open set in 1X  and  ̃      ̃   therefore      ω-cl( ̃  ) for each        ̃ . Hence   ̃= 

t

t

y

y F

G


and   ̃= 1X - 
t

t

y

y F

cl(G )


 Therefore there exist two disjoint fuzzy ω-open sets of  1X containing 

   and  ̃  
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5.4 Corollary   

If  ̃ is fuzzy ω-paracompact subset of a fuzzy topological ω- ̃  space (X,T )  then  ̃ is fuzzy ω-Normal 

subspace of 1X. 

Proof : Obvious 

5.5 Proposition   

If a fuzzy topological space (X,T ) is fuzzy ω-regular space and  ̃ is fuzzy subset of 1X which is fuzzy 

ω-paracompact subset of 1X then for each fuzzy ω-open set  ̃ containing  ̃ there exist fuzzy ω-closed 

set  ̃ containing  ̃ and it is contained in  ̃ furthermore  ̃ is is fuzzy ω-Normal subspace of 1X. 

Proof: Since a fuzzy topological space (X,T ) is fuzzy ω-regular space so by (3.22 Proposition) and 

(5.3 Proposition)  ̃ fuzzy ω-closed subset of 1X. And by (5.4 Corollary)  it is fuzzy ω-Normal 

subspace of 1X, therefore for each       ̃ there exist fuzzy ω-open set  ̃   such that       ̃     ω-

cl( ̃  )    ̃ since  ̃ is fuzzy ω-paracompact subset of 1X so there exist an fuzzy ω-locally finite 

family * ̃ +    of  ̃ by fuzzy ω-open sets of 1X which refines * ̃  +    ̃ and covers  ̃ therefore  ̃=  

cl(G )


  is the required fuzzy ω-closed set  

5.6 Theorem  

Let (X,T ) be a fuzzy ω-disconnected space then the statements are equivalent: 

1- (X,T ) is  fuzzy ω-paracompact space 

2- Every fuzzy proper ω-closed subset of 1X is fuzzy ω-paracompact subset of 1X  

3-  Every fuzzy proper ω-closed subset of 1X is fuzzy ω-paracompact subspace 

4- Every fuzzy proper ω-clopen subset of 1X is fuzzy ω-paracompact 

5- There exist a fuzzy proper ω-clopen subset  ̃ of 1X such that both  ̃ and  1X -  ̃ are fuzzy ω-

paracompact. 

Proof :(1 2) Follows from 5.2 Proposition  

(2 3) Follows from 5.1 Proposition  

(3 4) Obvious  

(4 5) Clear. 

(5 1) let (X,T ) be a fuzzy topological space contains a fuzzy proper  

ω-clopen subset  ̃ in which both  ̃ and 1X -  ̃ are fuzzy ω-paracompact and let * ̃ +    be any fuzzy 

ω-open cover of 1X , then * ̃ ⋂ ̃ +    and *      ̃  ⋂  ̃ +    Covering  ̃ and 1X -  ̃ respectively 

therefore there exist fuzzy ω-locally finite refinement * ̃ +    and * ̃ +    of  * ̃ ⋂ ̃ +    and 

*      ̃  ⋂  ̃ +     Covering  ̃ and 1X -  ̃ respectively such that  ̃  is fuzzy ω-openset in  ̃ for each 

    and  ̃  is fuzzy ω-open set in 1X -  ̃  for each     ,  

then both  ̃  and  ̃  are fuzzy ω-open sets  in 1X for each     and     

Therefore { ̃ }     
 is fuzzy ω-locally finite ω-open refinement of  { ̃ }   

 which covers 1X , hence 

(X,T ) is  fuzzy ω-paracompact space  

Remark  

In the above theorem if (X,T ) is fuzzy ω-connected space then the only fuzzy ω-clopen subset of 1X 

are fuzzy empty set and 1X itself so the condition that (X,T ) is fuzzy ω-disconnected space is essential. 
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5.8 Proposition  

Let  ̃ be a fuzzy ω-clopen subset of a fuzzy topological space (X,T ) then  ̃ is fuzzy ω-paracompact 

subset if and only if   ̃ is fuzzy ω-paracompact subspace. 

Proof: In view of (5.1 Proposition), we need only to prove the only if part. 

Let  ̃ be a fuzzy ω-clopen ω-paracompact subspace of  a fuzzy topological space (X,T ) and let 

{ ̃ }    be fuzzy covering of   ̃ by fuzzy ω-open subset of 1X , then { ̃     ̃ }    is a fuzzy covering 

of   ̃ by fuzzy ω-open subset of   ̃, since  ̃ be a fuzzy ω-paracompact subspace of  a fuzzy 

topological space (X,T ) therefore by (4.4 Corollary)  there exist an fuzzy ω-locally finite  

ω-open covering * ̃ +    of  ̃ such that for each λ   Λ ,     ̃     ̃     ̃     ̃  and  ̃  is fuzzy  

ω-open set in  ̃ so for each λ   Λ   ̃  is fuzzy ω-open set in 1X, since  ̃ and  1X -  ̃ are fuzzy  

ω-open sets in 1X this implies that * ̃ +    is fuzzy ω-locally finite in 1X   

 

5.9 Proposition  

Let  ̃ and  ̃ be two fuzzy subset of a fuzzy topological space (X,T ) if  ̃ is fuzzy ω-closed and  ̃ is 

fuzzy ω-paracompact subset to 1X then  ̃ ∩  ̃ is fuzzy ω-paracompact subset to 1X furthermore it is 

fuzzy ω-paracompact subset to  ̃   

Proof: Let * ̃ +    be any fuzzy covering of  ̃ ∩  ̃ by fuzzy ω-open subset of 1X since 1X -  ̃ is 

fuzzy  

ω-open set in 1X and  ̃ -  ̃   1X -  ̃ then for each       ̃ -  ̃ there exist fuzzy ω-open set  ̃ in 1X 

such that       ̃    ̃ -  ̃ and * ̃ +    ⋃ * ̃+    ̃    ̃ is a fuzzy covering of   ̃ by fuzzy ω-open 

subset of 1X, since  ̃ is fuzzy ω-paracompact subset to 1X, Therefore this cover has fuzzy  

ω-locally finite refinement { ̃ }   
 , Which covers  ̃ and  ̃  is fuzzy ω-open set  in 1X for each     

that is the fuzzy ω-locally finite subfamily { ̃ }    
 where   ={    ;  ̃    ̃  for some    } is 

fuzzy ω-open refinement of  * ̃ +    which covers  ̃ ∩  ̃ too, thus  ̃ ∩  ̃ is fuzzy  

ω-paracompact subset to 1X, since  ̃ is fuzzy ω-paracompact subset to 1X so by 5.1 Proposition it is 

fuzzy ω-paracompact subspace of 1X since  ̃ fuzzy ω-closed in 1X hence  ̃ ∩  ̃ is fuzzy  

ω-closed subset of  ̃ and then by 5.2 Proposition   ̃ ∩  ̃ is fuzzy ω-paracompact subset to  ̃ 

5.10 Proposition  

Let  : (X, ̃)   (Y, ̃) be a fuzzy ω-continuous surjection which maps Fuzzy ω-open sets onto Fuzzy 

open sets, if  ̃ is fuzzy ω-paracompact subset to 1X then  ( ̃) is fuzzy paracompact subset to 1Y. 

Proof: Let * ̃ +    be any fuzzy covering of   ( ̃) by fuzzy open sets of 1Y since   is fuzzy ω-

continuous function then {   ( ̃ )+   is fuzzy covering of   ̃ by fuzzy ω-open subset of 1X. But  ̃ is 

fuzzy ω-paracompact subset to 1X therefore there exist a fuzzy ω-locally finite ω-open family { ̃ }   
 

of subset of  1X which refines {   ( ̃ )+    and cover  ̃ since   surjection and maps fuzzy ω-open 
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sets onto fuzzy open sets then { ( ̃ )}   
 is fuzzy locally finite open family { ̃ }   

 of subset of  1Y 

which refines * ̃ +    and cover  ( ̃) this shows that ( ̃) is fuzzy paracompact subset to 1Y  

5.11 Corollary  

Let   : (X, ̃)   (Y, ̃) be a fuzzy ω-continuous surjection which maps fuzzy open sets onto fuzzy 

open sets, if (X, ̃) is fuzzy ω-paracompact space then (Y, ̃) is fuzzy paracompact space. 

Proof : Obvious 

5.12 Proposition  

Let   : (X, ̃)   (Y, ̃) be a fuzzy ω-irresolute pre- ω-open surjection function if  ̃ is fuzzy  

ω-paracompact subset to 1X then  ( ̃) is fuzzy ω-paracompact subset to 1Y. 

Proof: Similar to the proof of 5.10 Proposition. 

5.13 Corollary  

Let   : (X, ̃)   (Y, ̃) be a fuzzy ω-irresolute open surjection function if  ̃ is fuzzy  

ω-paracompact subset to 1X then  ( ̃) is fuzzy ω-paracompact subset to 1Y. 

Proof : Obvious 

5.14 Corollary  

Let   : (X, ̃)   (Y, ̃) be a fuzzy ω-irresolute (pre- ω-open) open surjection function if (X, ̃) is fuzzy 

ω-paracompact space then (Y, ̃) is fuzzy ω-paracompact space. 

Proof: Obvious 
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Abstract Let   (     ) be the space of measurable functions defined on measure space (     ) 
,where we consider any two functions in which are equal almost everywhere (a .e). Then   (     ) 

is complete metric space with respect to metric functions defined by  (    )  ∫ 
     

       
   for all 

       (     ).This paper includes two main parts , the first part we prove this space   (     ) 
in general is not a normed space, and second we prove norm on    (     ) achieved if and only if 

she was    is the finite union of disjoint atom .  

 

 
1. Introduction  

In the measure theory ,we deal with different types of convergence of sequences of measurable 

functions ,especially convergence in measure and convergence almost everywhere(a. e) ,and study the 

relationships between them ,for example ,is that each sequence convergence  measure is convergence  

(a .e)?and is the converse is true? ,and under what condition is that achieved  ?There are many sources 

that  have studied  this topic from them  Marczewiski was  showed in [4] 1955 convergence in 

measure implies convergence everywhere (a. e) and  thomasian proved in [8] (1957) convergence in 

metric equivalent to convergence a .s ( in probability) if and only if   is the union of finite of disjoint 

atoms. Eugene was introduced in [2] 1975 several different definitions for the stochastic on 

convergence of sequence of random variables . And  Jordan was  proved in[3] 2015   (     ) is a 

complete metric space . Noori and Asawer were  proved in [6] 2020   (     ) is a complete metric 

space using another metric function .In this paper ,we are discussed the relationship between 

convergence in measure and convergence almost everywhere (a.e.) ,and what condition that must be 

set for equivalence to be achieved between them . After that we set  with proof the necessary and 

sufficient condition for the existence of the norm on   (     ) .  
.  

2.Topology of convergence in measure  

 Let   (     ) be the space of measurable functions defined on measure space (     ) are equle 

almost everywhere (a .e). Then   (  ,F, ) is a linear space under the following addition and scalar 

multiplication 

1.(   )( )   ( )   ( ) for all      ( ) 
 2.(  )( )   ( ) for all    ( ) and for     

 

 

Theorem(2.1) 

Let     (     ) be the space of measurable functions which is defined on  measure space (a .e) 
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Define ‖ ‖    (     )     by ‖ ‖  ∫ 
   

      
   for  all f    (     )  ,then 

1.‖ ‖     for all  f     (     )  
2.‖ ‖  =0 iff  f=0   a .e . 

3.‖   ‖  ‖ ‖  ‖ ‖   for all  f ,g    (     )  
Proof: 

1.Since        for all   f     (     )  ,then 
   

     
    for all      (     )  ∫ 

   

     
   

   ‖ ‖     

2. let     (     )  

If  f=0   a .e  . i .e   *     ( )   } = 0   
   

     
           ∫ 

   

     
      ‖ ‖    

If  ‖ ‖     then ∫ 
   

     
       since 

   

     
     

   

     
                         

3.Let  f , g    (     )  

Since 
   

     
 

   

     
 

   

         
 

   

         
 

       

         
  

 
   

     
 

   

     
 

 

 
       

  
 

 

 
     

  
 

     

       
 

     

       

 
   

     
 

   

     
 

 ∫ 
     

       
     ∫ 

   

     
   ∫ 

   

     
   ‖   ‖  ‖ ‖  ‖ ‖  

Remark : ‖ ‖ is not norm on    (     ) ,since if     (     ) ,then ‖  ‖  ∫ 
    

      
   

∫ 
   ‖ ‖

     ‖ ‖
     ‖ ‖   

 In order to discuss the compatibility of convergence in measure and a norm we have to introduce a 

definition from the theory of summability 

 Theorem(2.2) :[6] 
The metric space   (     ) is complete 

Definition(2.3) : [2] 

The sequence of real numbers {  + is called Cesaro summable of order 1 to x and write  

  
       (   )      
→          if       

 

 
∑      
    . 

The following result is very important  

Lemma (2.4)   

Let {  +  be a convergent sequence of real numbers if      , then   
         (   )     
→         .The converse 

not true 

Proof: 

Let       since      ,then is       such that |      
 

 
  for all     . 

Let     
 

 
∑   
 
     ,then       

 

 
∑      

 

 
∑ (    ) 
    

 

 
∑ (    ) 
     

 
    

Let      *       +  and select n so large that 
 

 
 

 

   
   then  

       
 

   
 (  )  

 

 
(
   

 
*  

 

 
 
 

 
   

Therefore      . 

 

Example(2.5):[2] 

Let    
  (  )   

 
   for all       

Clearly                   ,so that the sequence is divergent ,but   
    (   )    
→     
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 Remark :  

In similar manner we can introduce (c ,1)_summability for sequence of measurable functions (c,1) 

to f , 

and write   
 (    )     
→         if       

 

 
∑      
    .Here     may be proper or a degenerate 

measurable function  
Theorem  (2.6):  

If   (     ) is a normed space which is  compatible with s-convergence ,and {  + is a sequence 

in   (     ) such that   
      
→   ,then    

    (   )        
→             

Proof: 

Let     
 

 
∑    
 
      ‖  ‖  ‖

 

 
∑   
 
   ‖  

 

 
∑       
 
    

Since   
         
→             ‖  ‖     by theorem (2.4 ) ,we have ‖  ‖

    (    )  
→       ,so that 

      
 

 
∑ ‖  ‖
 
              ‖  ‖    

 Using the equivalent of norm convergence and s-convergence ,we conclude that   
     
→   ,therefore  

  
  (    )    
→          

Remark : 

We construct an example ( example 2.5) of a sequence {  + which converge in measure to zero but 

for which    not converge to zero in (c ,1)-          

 If    
  (  )   

 
  for all      .Then   

      
→     ,but      not converge to zero in (c ,1)-   

We can then use theorem (2.6) to prove the following statement 

Theorem ( 2.7): [2] 

Convergence in measure is in general incompatible with the existence of a norm . 

The reason is that the existence of a norm which is compatible with converge in measure ispossible 

if the basic measure space  (Ω     )has a certain property  

 3.The necessary and sufficient condition for the existence of the norm on   (     )         

Definition (3.1):[4 ] 

1.A set      is called an atom ,if there no proper subset    of  A such that     

2.An atom of a measure space (Ω    ) is set     with  ( )    such that     and     

imply that either  ( )        ( )   ( )   i.e 

A set     is called atom of   if  0  ( )    and for every      with     either  ( ) 
      ( )   ( )   

A set     is called atom of   if  ( )    and for any     and      with  ( )  
 ( )  then 

 ( )    
3. A measure without any atoms is called nonatomic (or atomless or diffuse ).In other words  

A measure   is called nonatomic or diffuse ,if there are no atoms . 

A measure   is nonatomic if for any     with  ( )    there exists     and     such that 

 ( )   ( )     
A measure   is nonatomic if there are no atoms for    . This means that every measurable set of 

positive measure can be split in to two disjoint measurable sets ,each having positive measure . 

4.   is called purely atomic or simply atomic if every measurable set of positive measure contains 

an atom .In other words A measure space ( Ω,   ) ,or the measure   is called purely atomic if 

there is a family   of atoms of    such that for each       ( )  is the sum of the numbers of 

 ( ) for all     such that  (   )   ( ) . 
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5. Let (Ω,   ) be a measure space such that all singleton {x}    .A point     

Is called an atom for the measure  (* +)       
 

Example(3.2):[4] 

 

1.Let Ω={1,2,3,…,10} and let    ( ) be the power set of Ω .Define the measure   of a set to 

be 

cardinality ,that is , the number of elements in the set . Then ,each of the singletons {x} for      

is an atom. 

2.The singleton {x} with positive finite measure are atoms of   . 

3.If      is an atom for   and  (   )    , then     is also an atom for     
4. A set of positive finite measure is an atom if its only measurable subsets are itself and      
Here is a less trivial atom. 

5.Let Ω be an uncountable set and let   be family of set which either countable ,with 

  ( )    or have countable complement ,with  ( )    .then   is a measure and Ω is an atom . 

6.Lebesgue measure is nonatomic . 

7.If   is  finite measure ,the set of atom of   is countable . 

8.The zero measure is the only measure which is both purely atomic and nonatomic  

Theorem(3.3): 

Let (Ω    ) be a measure space  
1.A measurable function is a. e. constant on an atom . 

2. There is decomposition of Ω in to disjoint sets ,Ω  ⋃   
 
     where      is  either empty or an  

atomless set of positive measure ,and each of the sets             is either a empty set or an atom 

3. 

 If      is atomless ,then every        ,and every  number c with      ( ) ,there is  a set     

  such that     and   ( )                

4. If    is atomless  and  ( )     ,then for every  sequence      with        ,there exists a  

sequence {  +   of stochastically independent sets with  (  )         

Proof: 

1.let (Ω,F, ) be a measure space and        be  a measurable function  

If     is called atom of    ,then    is constant on A 

If      and   (*     ( )   +)      ,then   (*     ( )   +)    for all       . 

Let       *      (*     ( )   +)+      Then  

 (*     ( )   +)   (⋃ *     ( )   +)            

 If     ,then  (*     ( )   +)     hence  (*     ( )   +)      since A is an atom 

of  .Thus  (*     ( )   +)   (⋃ *     ( )   +)           

It follows  that        a .e. on A. 

4.Let                     for every      

BY (3) , there is a set     with  (  )     . If     are already defined for      ,and if they are 

stochastically independents sets with  (  )       then there is ,in view of (3) ,a set      such that 

(⋂   
  )       (⋂     

   
   

   
   ) for every system             of number 0 and I .it is easy that 

*  + is the required sequence 

Definition(3,4)[7] 
Let {  +  be a sequence of subsets of a set Ω  .The set of all points which belong to infinitely 

many  
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sets of the sequence {  +  is called the upper limit (or limit superior )of {  + and is denoted  by  

   and defined by                *                          +  ⋂ ⋃    
 
   

 
   

      ⋃   
 
    

Thus          iff  for  all n ,then       for some k   

The lower limit (or limit inferior) of {  + , denoted by      is the set of all points which belong to 

almost all sets of  the sequence {  +  , and defined by  

               *                                +  ⋂ ⋃   
 
     

   

      ⋃   
 
     

Thus       iff  for some n ,then x      for all   K    

Definition (3.5):[1]  

 A sequence {  + of subsets of a set Ω is said to 

1.converge if                                 and A  is said to be the limit of {   + ,we 

write 

           or      . in other terms ,       iff          

2.Converges in measure to set A ,write   
 
   if    

 
     in other terms ,if   (    ) 

                       

3.Converges  a .e  to  set A ,write   
    
→     if    

    
→     .in other terms ,if   

 (  (           ))   (  (           ))    

Theorem(3.6) 

  1 .If    
 
     ,then    

   
→  f  on every atom set A  of   

2.If   is atomless ,then there is a sequence {  + of measurable sets convergence to the void set in 

measure and such that             =    ,              . 
3.If the sequence convergence in measure on measurable sets implies their convergence  a .e. ,then 

   is purely atomic . 

 Proof: 

1.Let {  + be a sequence of measurable sequence defined on (Ω    ) such that   
 
   

Let  A be an atom of    ,then there is an atom        such that  (    )     and that            

are constant on    ,then f(x)=c ,   ( )     for      
That             are constant on     ,then   ( )        ( )     for       

Let     ,since   
 
    ,then there is      such that |  ( )   ( )     for all      outside 

a 

set    with  (  )   (  ) 

Consequently |        for all     which implies   
    
→    on A. 

2.Without any  loss of generally we may suppose that  ( )      
By(4)  theorem (3.3),  there  exists a sequence {  + of  stochastically independent sets with 

 (  )  
 

 
  for all n .the sequence  

      ,           
                          

     ,            
  ,          

    
  ,    

             ,        
           

Obviously satisfies the conditions of (2) . 

Theorem(3.7) 

If   is finite ,then     (⋃   )
 
     ,where all of the sets in the decomposition are disjoint and 

each     is the empty set or an atom ,and for every measurable subset   of   ,   takes every value 

between 0 and  ( ) for measurable subset of B . 
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Proof : 

There is only a countable numbers of   equivalence classes of such    of these classes and let 

      ⋃   
 
     . Select representation inductively sets       such that  (  )  

    ( )  
 

 
  for all C     ,where    is the class of all     ⋃    

   
     for with  ( )    

 (⋃   ) 
   
    . Then  ( )     for C=⋃   

 
    . 

Definition(3.8)[1] 

1.Converge in norm is said to be equivalent to convergence  a .e .if for every sequence {  +  in 

  (     ) ,‖  ‖     ,iff    
   
→   . 

2.Converge in norm is said to be equivalent to convergence in measure if ,for every sequence 

{  + in   (     ) ,‖  ‖    iff    
 
   . 

Theorem(3.9)  

If (Ω,   ) is finite measure .Then there exists a norm on   (     ) which is compatible with 

convergence in measure iff  Ω  is the finite union of disjoint atoms . 

Proof: 

Suppose there exists a norm ‖ ‖ on   (     ) which is compatible with convergence in measure    

Assume  that Ω is not finite union of disjoint atoms . 

Then there exists a sequence *  +  in Ω with 0  (  )     

Let     be the in indicator function of the set     ,i.e.        

If ‖   ‖    ,then    
 
   ,contradicting  (   )    ,then ‖  ‖     for all n 

Since‖
  

‖  ‖
‖  

‖  ‖

‖  ‖
   for all n ,so that the sequence of measurable function     

  

‖  ‖
  cannot 

converge to 0 in measure .However ,it must ,because  (  )    contradiction  

Conversely suppose that   is the finite union of disjoint atoms . 

Define ‖ ‖ :  (     )    by ‖ ‖=∫       for all     (     )  

In clear ‖ ‖  is a norm on   (     )  
 

Theorem(3.10)  

If (     ) is finite measure .Then convergence in measure implies almost everywhere  

convergence for all sequence in   (     ) iff     is the union of countable number of disjoint atoms . 

Proof : 

Suppose that convergence in measure implies almost everywhere convergence for all sequence in 

  (     ) . 
Assume that Ω is not finite union of disjoint atoms  

Thus in the decomposition of theorem (2.4)  ( )    and for each n ,   ⋃     
 
    , 

Where  (   )=
 

 
 ( )  for k=1,2,…,n ,and                are disjoint . 

Let     be the indicator function of the set       . The sequence of measurable function  {   + 
converge to 0 in measure but not  a .e . .This contradiction . 

Conversely : suppose that Ω  is the finite union of disjoint atoms  

Let {  +  in   (     )  such that   
 
      To prove   

    
→     

By theorem (3.9) , there exists a norm on   (     ) which is compatible with convergence in 

measure  If  ‖  ‖    then there exists a subsequence  {    }  ,and an      such that ‖   ‖     

.    But     
 
    so that it has a subsequence     

      
→     Thus        

     
→     contradicting ||              

therefore ,||     must converge to 0 ,hence   
      
→   . 
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Abstract. The objective of this paper are , first , a new study of fuzzy  -algebra and we      discuss the   

properties of this family , second, introduce concepts related to the fuzzy  -algbra such as fuzzy measure on 

fuzzy  -algebra , and we obtained some important results deal with these concepts . 

 

1. Introduction  

Sugeno in (1975) [5] discusses many details about fuzzy measure define on  -field and prove some 

important results in fuzzy measure theory , Ralescu and Adams in (1980) [2] generalized the 

concepts of fuzzy measure . the concept of fuzzy  -field was studied by (1980) [3],(1987) [7] , 

where   is a family of fuzzy sets defined on a nonempty set Ω , satisfied the conditions : Ω,Ø    

and   closed under complement and countable union , this paper is organized as follows : in section 

2 we give the essential definitions and results pertinent to fuzzy  -algbra . In section 3 we introduce 

the notion of fuzzy measure defined on fuzzy  -algebra and investigate some of their properties. 

 

2. Main Results 

The main results of this paper is to introduce and study the concept of fuzzy  -algebra , fuzzy 

measure defined on fuzzy  -algebra and we give basic properties and examples of these concepts. 

2.1.fuzzy  - algebra 

In this section, we will discuss concept of fuzzy  -algbra and we give basic properties and examples 

of these concepts . 

 

Definition  2.1.1. A family   of a fuzzy set on a set Ω is called fuzzy  -algebra on a set Ω if  

a.    

b.if A is a nonempty fuzzy set in   and A   ,and B is a fuzzy set on Ω, then B   

c. if                 , then 

 
 

   
       

A    fuzzy measurable space is a pair (Ω , ) where Ω is a non- empty set and    is a fuzzy 

δ          on Ω 

A fuzzy set A on Ω is called   fuzzy measurable (  fuzzy measurable with respect to  the fuzzy 

δ-algbra  if A  ) i.e  any member of    is called a   fuzzy measurable set . 

Example 2.1.2. The family     of all fuzzy sets on the set Ω is a fuzzy δ-algebra  

Solution .Suppose that   ={A : A is fuzzy set on Ω} 

a. since                           then       

b. let A  , such that      . and  B fuzzy set on Ω, hence B     

mailto:sybzqoa@gmail.com
mailto:nfam60@yahoo.com
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c. let               ,hence         are fuzzy sets on Ω, Consequently, we have 

 
 

   
      

and hence               -algbra . 

Remark 2.1.3. The family  ={Ø , Ω} is a fuzzy  -algebra. 

 

Theorem 2.1.4. Let *  +    be a collection of fuzzy δ-algbra on Ω . then 
 

   
                

             

Proof . (1) since     is fuzzy  -algebra       then Ø ,Ω         , hence  ,Ω      
    

   (2)let A          such that                                 hence A                 

  ,     and                            we get B         , hence B        

 (3)let                      , then                       ,since                       

   hence     
                , 

it follows that     
             

thus          is a fuzzy  -algebra . 

Remark 2.1.5. The union of fuzzy  δ –algebra  not necessary to be fuzzy δ-algebra as in the next 

example. 

 

Example 2.1.6.  Let Ω=[0,1] and A, B, C are fuzzy sets on a set Ω   such that 

 A(x)=>
               

 

 

              
 

 
    

   

 B(x)=>
                 

 

 

              
 

 
    

 

  C(x)= >
                 

 

 

                 
 

 
       

 

Let      ={  , A , B , Ω }  ,     *            +  are two fuzzy  

δ                                             

Solution: First, we must prove that                      -algebra . 

To prove              -algebra. 

1.                  

2. (i) A               ,  B     . 

   (ii) B                 ,and Ω     

3. (i) if             0   
 

  
  

(A  ) ( )      * ( )  ( )+ = 0 

(a)if    x=0 

(A  ) ( )       * ( )  ( )+     ( )     

(b)if    x=
 

 
 

(A  )(
 

 
)      * .

 

 
/   (

 

 
)+ 

= 0= ( )      
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3. (ii) if          
 

 
     

 

(A  )( )       * ( )  ( )+= 1 =Ω(x)      

Then                -algebra. 

In the same way. we can prove that                         

Now to prove that       is , not fuzzy  - algebra. 

      *            + 

( ) if            0   
 

 
  

(   )( )   min {B(x) , C(x) } 

  min {x , 1-x } = x  

 ( ) if     x=
 

 
 

(   ) .
 

 
/   min {B(

 

 
)   (

 

 
)+   

 

 
          

Hence        is not fuzzy  -algbra . 

Definition 2.1.7. Let Ω be a nonempty set and let G be a family of fuzzy sets on Ω .then the 

intersection of all fuzzy   –algebra of Ω which contain G he claims the fuzzy δ-algebra generated by 

G and symbolizeit  δ( ) that is 

δ( )    *                                    G            +. 

Lemma 2.1.8. Let G be a family of fuzzy sets on Ω ,then δ( ) is the smallest fuzzy δ –algebra of Ω 

which contain G. 

Proof: Since δ( )   *                                                 +  

it follows that  δ( )                                     (     ) 

T.p  G  δ( ) 

Since    is a fuzzy δ                            . 

Hence  G                       ( )  

Now let   is a fuzzy δ                            

Then δ( )   *                                     

G          +  

Hence , δ( )                ( )                                  

Of Ω which contain G. 

In the example (2.1.6) , Ω=[0,1] assume G={A} then δ( )  *      + is the smallest fuzzy 

                                    . 

Proposition 2.1.9. Let G be a family of fuzzy sets on Ω ,then G is a fuzzy  

δ                                      ( ). 

Proof: assume  G is a fuzzy δ                       

Since δ( )                                               

G it follows that G δ( ), But G is a fuzzy δ                          

δ( )                                           it follows that  

δ( )   , and thus G=δ( )  

 Conversely: let G be a family of  fuzzy sets of Ω and  

Let G=δ( ).  Since δ( )                                 

It follows that G is a fuzzy δ                     
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Definition 2.1.10. Let  be a fuzzy δ                                  empty fuzzy set on Ω ,then 

the restriction of   on A is  symbolizeit                   

   *             +. 

Theorem  2.1.11. Let  be a fuzzy δ           of a set Ω and  A   . Then    

     =  { N         +  

Proof : Let        then      ,     .thus      Hence ,   *          + and 

   *         +  

Let C  *        +  it follows that C    and C    

Thus  C=C    ,but C   ,then      which implies that  {        }      

There fore,     *        +  

 Corollary 2.1.12. Let   be a fuzzy δ         of a set Ω and   be a non empty fuzzy  set of Ω    

   . then       

Proof: by theorem (2.1.11) 

  ={       +               Then                          

Proposition 2.1.13. Let   be a fuzzy  δ         of a set Ω and let   be a non-empty fuzzy set of Ω 

        then    is a fuzzy δ        on  . 

Proof: 1.since   is a fuzzy δ         of Ω ,then Ø,Ω    ,  

since A   Ω, then        ,hence       . 

Since       .then        

 2. let       such that Ø        . then by corollary (2.1.12) we get B   ,but B    

                          and   is a fuzzy δ         of a set Ω ,it follows that D       and D     

Then by theorem (2.1.11) we have D      

3. let                   , then there exist            such                          

                   
    (       

     )                         -algebra , then  

    
       , hence     

            there for    is a fuzzy                      . 

 In the example (2.1.6) ,  let   * ( )+  

then     *   ( )  ( )+                                                    

Definition 2.1.14. Let Ω be a nonempty  set and G be a family of fuzzy set of Ω and Ø  

                        ,then the restriction of G on A is symbolizeit                    

   *               G }. 

Proposition 2.1.15. Let Ω be a nonempty  set and G be a family of fuzzy  set of    and  Ø  

      A is a fuzzy set of Ω, if    is a fuzzy δ  algbra of Ω which contain G and       then 

δ( )  is a fuzzy δ        of A  

Proof: the proof by using (2.1.8) and (2.1.13) . 

 

Theorem 2.1.16. Let Ω be anon empty set and G is family of the fuzzy  set of Ω and  Ø   such that 

A is a fuzzy set of  Ω        is the restriction of G on A then δ (   ) is the smallest fuzzy δ 

        of a set A which contain            

 (  )    *                                                      + . 

Proof :From lemma (2.1.8) we get δ(  ) is a fuzzy δ                    

T. P        (  ) 

Since for each     is a fuzzy δ        of a set A and  

                 , then               , thus       (  )      



288 
 

Let     is a fuzzy  -algbra of a set A         . thus  (  )     

             (  )                                                        . 

 

Lemma 2.1.17. Let Ω be a nonempty set and G be a family of the fuzzy set of Ω and Ø   ,and K 

fuzzy set on Ω define the family         {           (  )}  

Then                                   

Proof: 1. δ(  )                                 hence 

,N  δ(  )  Since     ,it follows that      , hence Ω     , 

also                   

2.let                                              

Then (A  )    (  )                ( ⋂ )  (   ) 

But δ(  )                                 then (B  )   (  ) , 

hence        

3. if                                  (    )   (  ) For all j=1,2,…  hence      
    

      , (    
     )   (  ) , hence     

        

                                          . 

Proposition 2.1.18. Let Ω be a non-empty  set and G be a family of a fuzzy set of Ω and Ø   

   and δ( )                         a set N then δ(  )   ( )    

Proof :let                           

But G   ( )  hence   δ( ),      ( )     hence     ( )   

,But δ(  )   the smallest fuzzy δ           a set N, which contain    and δ( )  is a fuzzy 

δ         of a set N Which contain           (  )   ( )   

Assume that  ={A    ⋂    (  )+  . from lemma (2.1.17) we get   

      is a fuzzy δ                                  

(A  )              (  ) , it follows that   

(A  )   (  )  thus A   and G    Let B δ( ) , 

Then B=A   , A δ( ) But δ( )   ,then  

A  ,thus B δ(  ) ,and δ( )    (  )        (  )   ( )    

 

2.2    -Fuzzy  Measure 

In this section, we will introduce the notion related with respect to fuzzy  -algbra such as fuzzy 

measure on fuzzy  -algbra .  

Definition 2.2.1.[5]. Let (Ω,  ) be a   -fuzzy measurable space" a set function  

μ   ,   - is said to be a " -fuzzy measure" on (Ω, ) if it  

Satisfied the following properties: 

1.μ( )   . 

2.if     and                                 

μ( )   ( ) 

∎                                     (     )  where 

(Ω,  ) is   fuzzy measurable space and μ is a   fuzzy measure On (Ω,  ). 

∎                        (   )                         

μ( )     
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Remark 2.2.2. Every measure on a measurable space (Ω,  ) is a   fuzzy measure  

But  the converse need not true as follows: 

Let Ω=[0,1], and     fuzzy sets on Ω define as follows  

A(x)=>
           

 

 

       
 

 
    

         ,    B(x)=>
           

 

 

        
 

 
    

 

Then    ={Ø, A, B, Ω } is fuzzy  -algebra ,(Ω, ) is a  -measurable space .  

Define μ   ,   -      μ( )   ( )    μ( )= 0 

μ( )   . μ is   fuzzy measure but not  measure on (Ω, )  

because of A,B disjoint sets in   and   

  (   )   (     * ( )  ( )+  ) = ( )     

 ( )    ( )                   (   )   ( )   ( ) . 

Definition 2.2.3. [1]. Let (Ω,  ) be a measurable space a set function μ   ,   - 

Is said to be : 

1.finite , if μ( )             

2.Semi-finite ,if             ( )    there exists     

With     and 0  μ( )    

3.Bounded ,if sup{  ( )     +     

4.σ        ,if       ,there is sequence {  + of sets in   

  A     
    and μ(  )        

5.Additive ,if μ(   )   ( )   ( ) 

Whenever A,B    ,and A     

6. Finitly additive if μ (    
    )      

  (  )                       

Whenever              are disjoint sets in   

7. σ           (sometimes called completely additive or a countable additive) if  μ (    
   )  

    
  (  )                   

Whenever {  + is a sequence of disjoint sets in   

8.Null additive if μ(   )   ( ) ,whenever A,B    such that A            ( )    

9.Measure if μ is σ          and ( )    ,       

10.probability if μ    a measure and μ( )    

11.continuous from below at A     if 

                        (  )   ( )  

Whenever {  + is a sequence of sets in   and       

12.continuous from  above at  A       

                        (  )   ( )  

Whenever {  + is a sequence of sets in    and        

13.continuous at A             continuous both from below and from above at A. 

 

Theorem 2.2.4. [6]. Let (Ω,  ) be a fuzzy measurable space if μ    a finite fuzzy measure , then we 

have  

   
   

 (  )  μ(    
   

  )                             

For any sequence {  +    sets is  whose lim it exists. 
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Theorem 2.2.5. Let (Ω,  ) be   fuzzy measurable space and μ   be a   fuzzy measure on Ω, 

then μ     which defined by (μ  )( )   ( )    ( )  is a   fuzzy measure on Ω   

proof :(1) ' 

since μ     be   fuzzy measures , then μ( )    and ω( )    

 Hence  (μ   )( )   ( )    ( ) =0 

(2) if      and       , then     

Since μ     are   fuzzy measure then  

μ( )   ( )……….(1) 

ω( )   ( )………(2)             hence 

 (    )( )   ( )    ( )   ( )   ( )  

                          =(    )( ) 

So μ    is a   fuzzy measure . 

Theorem 2.2.6. Let (Ω,  ) be a   measurable space ,μ    a    fuzzy measure" on Ω and λ  

(   ) define a set function  

(λ  )( )     ( )  ,then       is a   fuzzy measure on Ω. 

Proof: 1.since                       , we have μ( )    

And   (   ) , then (λ  )( )     ( )    

2.if              , hence        

Since μ      fuzzy measure, then μ( )   ( ) 

(λ  )( )     ( )    ( )  (  )( )  , So λ    is a   fuzzy measure. 

 

Corollary 2.2.7. Let               are   fuzzy measure on   and  

   (   )              

 If      
         ,   - is defined by  

(    
     )( )      

     ( )       ,then  

    
       is a    fuzzy measure" on     

Remark 2.2.8. Let μ be a "  fuzzy measure" on   and let A,B fuzzy set then  

1.μ(   )   ( )     (   )   ( )   

  Whenever A             

2.μ(   )   ( )     (   )   ( )  

Whenever        

Proposition  2.2.9. Let μ   ,   -                                  

Measure then μ    non-negative . 

Proof: Let        Ø       

Since μ       fuzzy measure"  then   ( )   ( ) 

μ( )     ,  then     is non-negative. 

Definition 2.2.10. [4]. Let (Ω, ) be a  -fuzzy measurable  space .a set function   is called : 

1.  Upper semi-continuous   -fuzzy measure" if and only if   

                  (  )   (    
   ) 

          Whenever {  + is increasing sequence.  

2. Lower semi-continuous  -fuzzy measure if and only if    
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       (  )   (    
   )     

           whenever {  + is decreasing sequence . 

3. Semi-continuous  -fuzzy measure  if it is both upper and lower semi-continuous  -fuzzy measure. 

 

Theorem 2.2.11. Let (Ω, ) be a  -fuzzy measurable space and let  :  ,   - be a function , if 

  is additive ,non-decreasing and upper semi-continuous ,then   is  -fuzzy measure . 

Proof :1. Since Aِ=A   ,   also   is additive we have . 

 ( )   (   )   ( )   ( ) 

     ( )    

    let A   ,such that A   then B   .we have B=A (  ⁄ )     and A (  ⁄ )    ,  since 

     additive we have , 

  ( )   ( )   (  ⁄ )   ( ) 

Consequently    ( )   ( )  

So   is  -fuzzy measure. 

Theorem 2.2.12. Let (Ω, ) be a  -fuzzy measurable space , let {  + be sequence of disjoint fuzzy 

sets in   and it is  decreasing ,if  (  )    and   is lower semi-continuous  -fuzzy measure at     

            (  )    

Proof: Since {  + is lower continuous  -fuzzy measure at  , we have          (  )   ( ) , But 

 ( )    consequently we have        (  )    . 

 

Definition 2.2.13.[4]. Let (Ω, ) be a   -fuzzy measurable space" .a set function     ,   - is 

said to be . 

1.  Exhaustive if        (  )    ,for any sequence {  + of disjoint sets in  . 

2. Order-continuous if        (  )    ,whenever        n=1,2..  and         

Theorem 2.2.14. Let (Ω, ) be a  -fuzzy measurable space . if   is a finite upper semi-continuous 

  fuzzy measure , then it is exhaustive . 

Proof: Let {  + be a disjoint sequence of sets in   if we write        
    ,then {  + is a 

decreasing sequence of sets in   and,            ⋂    
 
   =              , since   is a 

finite upper semi-continuous " -fuzzy measure" , then by using the finiteness and the continuity 

from above of   , we have        (  )   (        )   ( )    , Noting that 0  (  )  

 (  ) 

We obtain        (  )   . So    is exhaustive . 

Theorem 2.2.15. [6]. Let (Ω, ) be a measurable space .if     ,   - is a non decreasing set 

function , then the following statement are equivalent : 

1.   is null additive . 

2.  (   )   ( ) whenever A,B    and  ( )     

3.  (  ⁄ )   ( )  whenever A,B   such that B   and  ( )     

4.  (  ⁄ )   ( )  whenever A,B    and  ( )    

5.  (   )   ( )  whenever A,B    and  ( )    . 

 

Theorem2.2.16. Let (Ω, ) be a  -measurable space ,A   if   is null additive ,then        (  

  )   ( ) for any decreasing sequence {  +  of sets in   for which        (  )    and there 

exists at least one positive integer    such that  (     )        ( )     

Proof: it is sufficient to prove this theorem for  ( )     
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If we write B=    
    ,we have  ( )         (  )     Since A          it follows 

,from the continuity and null additivity of   ,that        (    )   (   )   ( ) . 

Theorem2.2.17. Let (Ω, ) be a  -fuzzy measurable space ,A   if   is null additive ,then 

       (   ⁄ )   ( ) for any decreasing sequence {  + of sets in   for which 

       (  )    

Proof :Since A       (    
   ) and  (    

   )    by the theorem (2.2.15) continuity of   , 

it follows that         (   ⁄ )   ( (    
   )⁄ )   ( )  

Definition 2.2.18 [ 7 ]. Let (Ω, ) be a  -fuzzy measurable space .a set function     ,    - is 

said to be   

1. Autocontinuous from above ,if        (    )   ( ) Whenever A        ,A       

n=1,2 … and        (  )     

2. Autocontinuous from below ,if        (   ⁄ )   ( ) whenever A             , n=1,2 

… and        (  )   . 

3. Autocontinuous , if it is both autocontinuous from above and autocontinuous from below . 

Theorem 2.2.19.let (   ) be  -fuzzy measurable space ,and     ,    - be a set function .if 

there exists     such that   ( )    for any A        then   is autocontinuous .  

proof: under the condition of this theorem ,if {  + is a sequence of sets in   such that 

       (  )    ,then there must be some    such that      whenever n    ,and therefore 

       (    )         (   ⁄ )         ( )   ( )   

Theorem 2.2.20. let (Ω, ) be  -fuzzy measurable space ,if     ,    - is autocontinuous from 

above ,then it is null additive . 

proof:For any A,B    ,A  =  and  ( )    ,take        n=1,2…, we have        (  )  

 ( )    , since   is autocontinuous from above , then  (   )         (    )   ( ) ,and 

  is null additive as well .  

Theorem 2.2.21. Let (Ω, ) be  -fuzzy measurable space , and let     ,    - be non 

decreasing set function , then      autocontinuous if and only if        (    )   ( ) whenever 

{  + is a sequence of sets in   such that        (  )     

Proof: Suppose that   is autocontinuous  

For any A   and {  + is a sequence of sets in   such that        (  )     ,noting A    

      ⋃   , by monotonicity of   , we have  

 (   ⁄ )   (    )   (    ) , since   is both autocontinuous from above and autocontinuous 

from below m we have        (    )   ( )       

       (   ⁄ )   ( )  thuse we have 

        (    )   ( )  

Conversely .for any A   and {  + is a sequence of sets in   such that        (  )    ,we 

have        and  (   ⁄ )   (  )  so we have        (   ⁄ )    

and there fore , by the condition given in this theorem , we have 

       (    )         (  (   ⁄ ))   ( )  

that is ,  aoutocontinuous from above . similarly , from 

       (    )                           (   ⁄ )         (  (    ))   ( ) , 

that is   aoutocontinuous from below . 

Remark 2.2.22. The following theorem indicates the relation between the outocontinuity and the 

continuity of nonnegative set function . 
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Theorem 2.2.23. Let (Ω, ) be  -fuzzy measurable space .if     ,   - is continuous from above 

at   and autocontinuous from above , then   is continuous from above  

Proof: If {  + is a decreasing sequence of sets in   and     
             ⁄     from the 

finiteness and the continuity from above at   of                 (   ⁄ )     and therefore by 

using the autocontinuity from above of   we have   

       (  )         (  (   ⁄ ))   ( ) , that is   is continuous from above s not fuzzy 

 -field. 
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Abstract: This study aims to redefine the weak topology  (  
    

  ) on a specific topological dual space 

(modular dual space   
 ) this is weak topology generated by all linear bounded functional on   

 , but we 

interested in a subspace of this topology generated by    called weak* topology on   
 , it follows from that 

the modular space    over the field   can be embedded in   
   by using the canonical map, we denoted to this 

topology by  (  
    ). After that, we checked the weak* topology is Hausdorff and investigated some 

properties, finally, we showed that under which condition the strong topology and the weak* topology 

coincided. 

Keyword: weak topology on modular space, weak-star topology, weak* topology on modular 

space, modular space, weak topology, 

1. Introduction  

The initials definitions and basic concepts of modular space, weak topology and weak topology on 

modular spaces were indicated in preliminaries. Nakano's assumption of modular functions 

appeared in the 1950s [13], who introduced a family of functions from any vector space   over a 

field   (where          ) into the interval ,   -       ,   - with conditions, the vector 

space   with modular   is called modular space [4]. It will be metric space when the distance 

between any two points     in     is defined by  (   )   (   ) [2]. That is,   generates a 

topology for    . After that, The preliminaries introduced weak topology on any set in a general 

view, see coherent topology as well as [7,16]. Moreover, there is research that especially talks about 

weak topology on modular space which has recently been published 2020, see [12]. Finally, the weak 

topology  on a specific topological dual space (modular dual space   
 ) is redefined by the family   

   

of all linear bounded functions from   
  into  . But, the interest will be focused on weak topology 

generated by a subspace    of   
  ; this weak-star topology of   

  

2. Preliminaries: 

This section is divided into three parts, let's begin with: 

 

mailto:murtda01@gmail.com
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2.1. Modular space  

In this part, basic definitions and descriptions of the concept of the modular space 

2.1.1 Definition : [4] 

     Let   be a linear space over afield  . A map      ,   - called a modular if      ( )    if 

and only if    . 

     (  )   ( ) with      , for    ,      

     (     )   ( )   ( ) when             and       

    Space is given by    *      (  )    when       + is called modular space, as follows. 

     If condition 3 above replaced by  

 (     )    ( )    ( ), for               for all         then   called a convex 

modular.  

    If     then  (  )   .
  

 
   /   (  )                Thus   increasing map.. 

2.1.2. Remarks:  

1. If     is a modular space, then    is a metric space by defined the distance function as follow 

 (   )    (   )  for all        See [2-4] 

2. every modular space is topological vector space and it is Hausdorff [11]  

Now, For the definition of topological vector space 

2.1.3. Definition: [1,2,10]  

In the modular space    

 - The  -open ball   ( ) with centre      and radius     as  

   ( )  *      (   )   +. 

 - The  -closed ball    ( ) centred       with radius     as  

   ( )  *      (   )   +  

 - The family of all  -balls in     generates the topology makes    Hausdorff  

 - Since every  -ball is convex, then every modular space is locally convex topological linear space.  
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 - Let    be a modular space and      we say that   is   open set if for every     there 

exist        ( )      

 - A subset   of    is said to be   closed if its complement is   open, that is,         is 

  open. 

2.1.4. Definition: 

Let    be a modular space over the field  , then the space of all continuous linear functional from 

   into the field   called the dual modular space and denoted by   
  

2.1.5. Remark: 

The space   
  is also modular space. 

 By defining       
  ,   - as   ( )      * ( ( )  ( )        + 

2.2. The weak topology   

In this part, introduced notion of weak topology and some properties we needed it   

2.2.1. Definition:[9] 

Let   be a nonempty set and let *(     )     + be a nonempty family of topological spaces. For 

each    , let    be a map of   into   . Then the topology   on   generated by the family 

  *  
  ( )         + is called the initial (weak) topology on   determined by the family 

*      +.   is defining subbase of   and the family    of all finite intersections of members of   is 

called a basis of  . 

2.2.2. Remark:[7] 

Let   a nonempty set with *(     )    + be a nonempty collection of topological spaces indexed 

by  . The weak (initial) topology generated by a collection of functions   *            + is 

the topology generated by the subbasis   *  
  (  )          +  Denoted to the topology 

generated by   on   by  (   )   

2.2.3. Definition: [8] 

A set   in   is said to be open in a topology  (   ) if for all     , there exists a finite subset   of   

and open sets *  +    such that        for all     ,  ⋂   
   

  (  ) that means that 

        ( )    . 

2.2.4. Definition: [7] 

In this part,    modular space over the field   where,       or    , we don't assume that it is 

   complete. 
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suppose           be a function and      and let   *       +, and let   *       

finite +. 

Then the weak topology on    denoted by  (     
 ) such that generated by   has the defining 

  *⋂      
  (    )           +  

So, a set   is a weak open in    if and only if given  , there exists                with 

  ⋂   
    

  (    )    that is  |   ( )|      for all            

A subbasis of the weak open set containing        is of the form  

  
  (  (  )      ( )   ) 

   for all        and each    . Hence it can be as  the form  

 (               )  *         ( )    (  )   +  for       ,                  .  

 

3. The main resulet 

Let    be any modular space over a field   ( where     or     ), then by definition of modular 

in   
  and by remark (2.1.5)   

  is a modular space. Therefore, a weak topology can be defined on 

  
  and generated by the family of all bounded linear function from   

  in to the field   ; that’s 

nothing but the weak topology  (  
    

  ). But, we interested in a weak topology generated by    

i.e. the topology  (  
  ,   ), where    is a subspace embedded in   

   such that every element of 

    is written as a bounded linear function from  (  
    

  ) into   by the canonical map      

  
   and given by  ( )     where   ( )   ( ) for every     

   with  (  )      *  ( )    

   +   ( ) for each     . Since   is an isometry, then can be concluded that    is 

isometrically-isomorphic  (  ). 

If   (  )    
  , then    called reflexive.  

In the following, we introduced a definition of the open and close sets in   (  
  ,   ). 

3.1. Definition: A set   in the modular space   
  is said to be weak-star open set  (  -open) if 

and only if for each function     there is     and               such that *  

  
   (   )(  )    +    where           and    . A set   is called   -closed if the 

complement is   -open set. 

3.2. Definition: Let    be a modular space, the weak topology  (  
  ,   ) consist of all weak-

star open sets in   
  is called weak-star topology (  -topology) on   

  and denoted by  (  
  ,   ).   

Note that: Since      
  , then the   -topology  (  

  ,   ) is weaker than the topology 

 (  
    

  )  
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3.3. Remark: If    is reflexive, then then the weak topology on   
  and the weak-star 

topology of   
 , are the same;  (  

    
  
)   (  

    ).  

Now we introduce the local base of the weak-topology of   
  in next theorem  

3.4.Theorem: Let      
 . A local base of    for the weak-star topology of   

  is given by the 

collection of open balls of the form  (            )  *    
                      (  )  

  (  )   +                      

Proof: Since the weak-star topology of   
  generated by    has the basis 

  *⋂      
  (    )           +  where   *       finite + . and   any index for   . 

Thus a set   is   -open in   
  iff given  , there exists                with 

  ⋂   
    

  (      )    implies that |   ( )|       for          . A sub basis open set 

containing a point         is of the form   
  (  (  )      (  )   ) for all     and each    . 

Hence it can be of the form  (            )  *    
                      (  )    (  )  

 +      ,                

The following theorem is very important to study the properties of the topology  (  
  ,   )  

because it shows whether the limit point is unique or not. 

3.5. Theorem: Let    be a modular space over the field  , then the   -topology of   
  is 

Hausdorff.  

Proof: Let         
  with    , then   ( )   ( ) for some     .  

Let   *      ( )   ( )+, then either  ( )   ( ) or  ( )   ( ) and in both cases can be 

founded     such that either      ((    )) and      ((   )) or converse. 

Thus there are two disjoint sets in  (  
  ,   ) separate   and  , hence the weak-star topology is 

Hausdorff space.  

3.6. Definition: a sequence  *  + in the dual modular space   
  is   -convergent to a function   

and denoted by     
     if it converges to   in the topology  (  

  ,   ). 

The next theorem is to redefine the convergence property in   -topology of   
 . 

3.7. Theorem: Let    be a modular space, a sequence  *  +  in the dual space of the modular 

space    is said to be   -convergent to a function     
  if and only if for every     and for each 

element   in   , there exists      such that    ( )   ( )     for all    ; this     
     if 

and only if     ( )   ( ). 

Proof: suppose that  *  +  is a sequence in   
 .  

Firstly, take      
    . Let     and    (  

  ,   ) s.t.   *    
    ( )   ( )   + for 

each   in   . Since     
    , then by definition of   -convergent can be shown there is       
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such that    ( )   ( )     for all     and each element in   . Thus for each   -open set   

containing  ( ), there is      with   ( )    for all    ;    ( )   ( ). 

Conversely, when    ( )   ( ) for all   in   . Let    (  
  ,   ) such that   containing  ( ). 

There exists     and a finite number of elements            of     with *    
    (  )  

 (  )             +   . 

Since   (  )   (  ) for          , then there exists      where            with 

   (  )   (  )    for all     . 

By choosing   *          +. Then for each          , we have    (  )   (  )    for all 

   . Thus      for all    : that is     
    . 

Here some properties of   -topology of   
  

3.8. Proposition: let    be a modular linear space and *  + be a sequence in   
  then the 

following properties are holding; 

1. if      in   
 , then        in   -topology. 

2. if     
     and *  + a sequence in    with        , then   (   )   ( ) as    .  

Proof: 

1.  suppose that *  + be a sequence in the dual modular space   
  with     , that’s mean for all 

     the limit point by *  + is exists, unique and equal to  ( ). Thus by (3.6)     
     

2. suppose that *  +    
  and *   +     such that     

     and     . Let     then there 

exists    and       such that         ,        

and for all         ( )   ( )   . Choose       *      +, then we have    (   )   ( )  

 . Thus   (   )   ( ). 

And the next theorem showed that  under which condition the strong modular topology and the   -

topology are coincided, as following 

3.9. Theorem: let    be a modular space, if    finite-dimensional, then the weak-star topology 

of   
  and the modular topology on   

  are coinciding. 

Proof: Since the weak –star topology of   
  is weaker than the modular topology on   

 , The proof: 
will be limited to proving the opposite side: every open set in the modular space   

  is   -open set. 

Let   be open in the modular space   
  and     . Then can be founded     such that 

      ( )     where     ( ) is an open ball at the origin with radius     in   
 . Since    

finite-dimensional, then it has a basis   consists of an only finite number of elements. Now define 

  ( )      *  ( )     + for all     
 , then      

  ,   ) is a modular space. Since all 
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modulars on a finite-dimensional are equivalent, there is     with   ( )   , we have  ( )   . 

Then the   -open *    
       ( )   ( )       + is contained in *    

   (   )   +. 

Hence    is   -open. 
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        .  

In this paper, the notions of      soft closed sets
 
were introduced    using     soft ideal 

and      soft semi-open sets, which are      soft-ℐ-semi- -closed sets " - ℐ  closed" where many 

of the properties of these sets were clarified. Using many figures and proposition have been studied 

the relationships among these kinds of      soft sets with some examples were explained. 

 

        . 

Nano soft space ,      soft open set ,      soft closed set,      soft semi open set ,  -

 ℐ    ( )ℋ      - ℐ    ( )ℋ. 

 

1.               

In 2011, Shaber [1] established introduced soft topological spaces .They various studies have been 

introduced to study many topological properties by using soft set like derived sets, compactness, 

separation axioms and other properties. [2], [3], [4]. Also, use the soft ideal which is a family of soft 

sets that meet hereditary and finite additively property of   to study the notion of soft logical function 

[5], which was the starting point for studying the properties of soft ideal topological spaces 

(     ℋ ℐ) and defined new types of near open soft sets and study their properties as [6], [7], [8]. 

                                                              [9]. Based on that,                 

[10]                                                                   set equivalence relation on 

the universal set. Also, the notion of      soft continuity and weaker               soft 

                                               pre-open,      soft α-                   β-

open sets in      soft topological spaces are introduced and studied in [10] and [11]. 

 

2. Preliminaries 

 

Definition 2.1. [12] Let       and ℋ                         Such that is ( )     collection of   

         such that   ℋ (  ℋ) ( briefly  𝓗) is a soft set over   whenever,   is a function such 

that    ℋ   ( ). So,   𝓗  *  ( )          ℋ    ℋ    ( ) +.     collection of each soft 

sets ( briefly   ( )𝓗). 

 

Definition 2.2. [7]     (   ), (   )     ( )𝓗 , (  ℋ)    (   )    ̃  (   ) where  ℋ         

and       ℋ , 
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 ( ) =  >

  (   )            

  (   )             

       ( )   ( )       
 

 

Definition 2.3. [7] Let (   ) (   )     ( ) (  ℋ)  (   )   ̃(   ). Where, ℋ      and 

for each      ℋ   ( )    ( )    ( )   

 

Definition 2.4. [1] Let   be a collection of soft sets over χ with same ℋ, then       (χ)𝓗 is a soft 

topology on χ if;  

i.  ̃ ,  ̃     where,  ̃( )      and   ̃( )        for each      ℋ 

ii. ⋃      
   ( α  ℋ)       whenever, ( α  ℋ)                   Ʌ , 

iii. ((  ℋ)   ̃(  ℋ))       for each  (  ℋ)  (  ℋ)      .  

(     ℋ) is a soft topological space if (  ℋ)       then (  ℋ)                       

 

              . [5]     ℐ ≠  , then ℐ  ̃    (χ) 𝓗 is a soft ideal whenever,  

i. If (  ℋ)  ̃ ℐ and (  ℋ)  ̃ ℐ implies, (   ℋ)  ̃ (   ℋ)  ̃ ℐ  

ii. If (  ℋ)  ̃ ℐ and (  ℋ)  ̃ (  ℋ) implies, (   ℋ)    ̃ ℐ   

 

Definition 2.6. [5] Any (     ℋ) with a soft ideal ℐ is namely a soft ideal topological space 

(briefly (     ℋ, ℐ)). 

 

Definition 2.7. [12] Let  (  ℋ)  (  ℋ)      ( )𝓗. Then (  ℋ) is a soft subset of (  ℋ), 

(briefly(  ℋ)    ̃ (  ℋ)), if  ( )  ̃  ( ) , for all      ℋ . Now (  ℋ)                     

 (  ℋ)     (  ℋ)is a soft super set of (  ℋ), (  ℋ)  ̃   (  ℋ). 

Definition 2.8. [13] The complement of  (  ℋ) (briefly (  ℋ)  ) (  ℋ)   (   ℋ)       ℋ  

  ( ) is a function such that   ( )        ( ) , for all     ℋ and    is namely the soft 

complement of  . 

 

                [1] Let (  ℋ)                             Then   ̃ (  ℋ)  whenever     ( ) 

 for each     ℋ. 

  

Definition 2.10. [12] (  ℋ)  is a NULL soft set (briefly   ̃or  𝓗) whenever       ℋ   ( )   

    . 

 

Definition 2.11. [12] (  ℋ) is an absolute soft set (briefly   ̃ or χ𝓗) whenever       ℋ    ( )   

    . 

 

Definition 2.12. [14]. Let ( , ),(𝒲, )    (χ) 𝓗,                               ( ,  ) and (𝒲,Ɓ) 

is defined as ( ,  ) × (𝒲,  ) = (Ħ,  × ), where Ħ :  ×  →  (χ × χ) and for each (  ,  )     ×   

, Ħ(  ,  ) = {(   ,    ) :       ( ) and      𝒲( )} =  ( ) ×  ( ). 
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Theorem 2.13. [14]. Let ( ,  ) and (𝒲,  ) be two soft sets over a universe χ. Then a soft set 

relation from ( ,  ) to (𝒲,  ) is a soft subset of ( ,  ) × (𝒲,  ). In other words, a soft set relation 

from ( ,  ) to (𝒲,  ) is of the form (Ħ1,S), where S     ×   and Ħ1(  ,  ) = Ħ(  ,  ), for all (  , 

 )   S, where (Ħ,  × ) = ( ,  )×(𝒲,  ) as in the above definition. In an equivalent way, we can 

define the soft set relation   on ( ,  ) in the parameterized form as follows: if ( ,  ) = {( ),( ),...}, 

then  ( )  ( )    ( ) ×  ( )    . 

 

           2.14. [14]. Let   be a relation on (F,ℋ). 

i.   is          , if Ħ1(  ,  )     ,      ℋ 

ii.   is          , if Ħ1(  ,  )       Ħ1(  ,  )     , (   ,  )    ℋ × ℋ 

iii.   is           , if Ħ1(  ,  )     , Ħ1(  ,  )       Ħ1(  ,  )    ,     ,   ,       ℋ. 

  

           2.15. [14]. A soft set relation   on a soft set ( ,  ) 

                                        

                                        

 

        2.16. [14]. Consider a soft set ( ,ℋ) over χ, where χ = {c1 ,c2 ,c3 ,c4} ℋ = { 1 , 2 } and 

F( 1) = {c1 ,c3 },F( 2 ) = {c2 ,c4}. Consider a relation   defined on ( ,ℋ) as follows:   = 

{ ( 1)× ( 2), ( 2)× ( 1), ( 1)× ( 1), ( 2)× ( 2)}. Then   is a                              . 

 

           2.17. [14]. Let ( ,ℋ) be a soft set.                  class of  ( )            [ ( )] 

is            follows:  

[ ( )] = { ( ) :  ( )  ( )}. 

 

Definition 2.18. [10]. Let χ be a non-empty finite set which called the universe and ℋ 

                                  soft equivalence relation on χ. Then (χ,  , ℋ) is called the soft 

approximation space. Let     χ. 

i. The soft                     of   w. r. t.   and the set of parameters  ℋ is the set of all 

objects, which can be for certain classifieds   w. r. t.   and it is denoted by (L ( ),ℋ), 

equivalently  

(L ( ),ℋ) =  { ( ) :  ( )     } 

where  ( ) denotes the equivalence class determined by     χ. 
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ii. The soft                     of   w. r. t.   and the set of parameters ℋ is the set of all 

objects, which can be possibly classified as   w. r. t.   and it is denoted by (U ( ),ℋ), 

equivalently 

(U ( ),ℋ) =  { ( ) :  ( ) ∩      }. 

iii. The soft boundary region of   w. r. t.   and the set of parameters ℋ is the set of all objects , 

which can be classified neither inside   nor as outside   with respect to   and is denoted by  

(B ( ),ℋ), equivalently  

(B ( ),ℋ) = (U ( ),ℋ)   (L ( ),ℋ). 

 

Definition 2.19. [10]. Let       and ℋ be a set of parameters. Let   be a soft equivalence relation on 

χ. Let     χ and let   ( ) = { ̃ ,  ̃ , (L ( ),ℋ) , (U ( ),ℋ) , (B ( ),ℋ)}. Then   ( ) is a soft 

topology on (χ ,ℋ). In this case,   ( ) is called the      soft topology with respect to A . Elements 

of the      soft topology are known as the      soft open sets and (  ( ),χ ,ℋ) is called a      

soft topological space. The complements of       soft open sets are called as      soft closed sets 

in (  ( ),χ ,ℋ). 

 

Definition 2.20. [11]. Let (  ( ),χ ,ℋ)                                  and ( ,ℋ) be any soft set 

over χ. Then ( ,ℋ) is said to be      soft semi-open if ( ,ℋ)    -  ( -   ( ,ℋ)). Here  -

   ( ,ℋ) is the      soft interior of ( ,ℋ), which is the union of all      soft open sets contained 

in ( ,ℋ) and  -  ( ,ℋ) is the      soft closure of ( ,ℋ), which is the intersection of all      soft 

closed sets containing ( ,ℋ). Also, here  -   (χ ,ℋ) denotes the family of all      soft semi-open 

sets over χ with respect to an equivalence relation   and parameter set ℋ. 

 

Example 2.21. Let χ = {1,2,3,4}, ℋ = {  1,  2,  3} and let ( ,ℋ) = {(  1,{1}),(m2,{3}) 

,(m3,{2,4})}                                      equivalence relation on ( ,ℋ)                  : 

  = {  ( 1)× ( 2) ,  ( 2)× ( 1) ,  ( 1)× ( 1) ,  ( 2)× ( 2) ,  ( 3) × ( 3) }. Then the soft 

                                    

[F( 1)] = {F( ) : F( ) F( )} = {F( 1),F( 2)} = [F( 2)], and [F( 3)] = {F( 3)}. Now,  

let χ /    = {F( 1) , F( 2) , F( 3)} = {{1},{3},{2,4}} . Let   = {1,2}   χ. Then (L ( ),ℋ) = {( 

 1,{1}),(  2,{1}),(  3,{1})}, (U ( ),ℋ) = {(  1,{1,2,4}),(  2,{1,2,4}),(  3,{1,2,4})}, (B ( ),ℋ) = 

{( 1,{2,4}),( 2,{2,4}),( 3,{2,4})}. 

Thus (   ( ), χ , ℋ) ={ ̃ ,  ̃ , (L ( ),ℋ) , (U ( ),ℋ) , (B ( ),ℋ)}. is a soft      topology on χ. 

So soft      open sets are { ̃ ,  ̃ , (L ( ),ℋ), ℋ) , (U ( ),ℋ) , (B ( ),ℋ)}.  and soft      semi 

open sets are  ̃ ,  ̃ ,( 1,ℋ),( 2,ℋ),( 3,ℋ),( 4,ℋ) and  ( 5,ℋ) where  
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( 1,ℋ) = {( 1,{1}) , ( 2,{1}) , ( 3,{1})}, ( 2,ℋ) = {( 1,{1,3}) , ( 2,{1,3}) , ( 3,{1,3})},  

( 3,ℋ) = {( 1,{2,4}) , ( 2,{2,4}) , ( 3,{2,4})}, ( 4,ℋ) = {( 1,{1,2,4}) , ( 2,{1,2,4}) , 

( 3,{1,2,4})}, ( 5,ℋ) = {( 1,{2,3,4}) , ( 2,{2,3,4}) , ( 3,{2,3,4})}. 

 

Example 2.22. Let χ = {1,2,3}, ℋ = { 1, 2} and let ( ,ℋ) = {( 1,{1}),( 2,{2})} 

                                     equivalence             (  ℋ)                  :   = 

{F( 1)×F( 2) , F( 2)×F( 1) , F( 1)×F( 1) , F( 2)×F( 2)}. Now let χ /  = {F( 1),F( 2)} = 

{{1},{2}}. Then as the following table: 

 

 

 

  

 

(L ( ),ℋ) 

 

(U ( ),ℋ) 

 

(B ( ),ℋ) 

 

  ( ) 

 

  

 

 ̃ 

 

 ̃ 

 

 ̃ 

 

{  ̃   ̃ + 

 

χ 

 

( 3,ℋ) 

 

( 3,ℋ) 

 

 ̃ 

 

{  ̃   ̃ ,( 3 ℋ)+ 

 

{1} 

 

( 1,ℋ) 

 

( 1,ℋ) 

 

 ̃ 

 

{ ̃   ̃  ( 1 ℋ)+ 

 

{2} 

 

( 2,ℋ) 

 

( 2,ℋ) 

 

 ̃ 

 

{ ̃   ̃  ( 2 ℋ)+ 

 

{3} 

 

 ̃ 

 

 ̃ 

 

 ̃ 

 

{  ̃   ̃ + 

 

{1,2} 

 

( 3,ℋ) 

 

( 3,ℋ) 

 

 ̃ 

 

{ ̃   ̃  ( 3 ℋ)+ 

 

{2,3} 

 

( 2,ℋ) 

 

( 2,ℋ) 

 

 ̃ 

 

{ ̃   ̃  ( 2 ℋ)+ 

 

{1,3} 

 

( 1,ℋ) 

 

( 1,ℋ) 

 

 ̃ 

 

 ̃   ̃  ( 1 ℋ)+ 

 

Table 1 

Such that ( 1,ℋ) = {( 1, {1}),( 2, {1})}, ( 2,ℋ) = {( 1, {2}),( 2, {2})} and  ( 3,ℋ) = {( 1, 

{1,2}),( 2, {1,2})}. 
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3. On          - -    - -       set. 

 

Definition 3.1. In (     ( ) ℐ), the subset (  ℋ)     (χ)𝓗 is a      soft-ℐ-semi- -closed set 

(briefly,  - ℐ        ), if   ((  ℋ)) – (  ℋ)  ℐ          (  ℋ) – (  ℋ)  ℐ     (  ℋ) is 

     soft semi-open set. The complement of (  ℋ) is      soft-ℐsemi open set (briefly,  -

 ℐ  open). The summaries  - ℐ   ( )ℋ and  - ℐ   ( )ℋ are the family of all  -sℐ  closed 

and  - ℐ   open sets respectively. 

 

Example 3.2. From table 1 let ℐ  * + is the ideal, the family of all  - ℐ  closed (respectively,  -

 ℐ       ) sets can be determined, according to the given   ( ) and  -   ( ) in the previous 

table as the following table; 

 

 

A 

 

  (A) 

 

 -  O(χ) 

 

 -     -c(χ)ℋ 

 

 -     -o(χ)ℋ 

  *  ̃    ̃ + *  ̃    ̃ +   ( )𝓗   ( )𝓗 

Χ *  ̃    ̃ + *  ̃    ̃ +   ( )𝓗   ( )𝓗 

{1} { ̃   ̃  ( 1 ℋ)+ { ̃   ̃  (  ℋ)  

  ̃  ( )   + 

{ ̃   ̃  (  1 ℋ)+ { ̃   ̃  ( 1 ℋ)+ 

{2} { ̃   ̃  ( 2 ℋ)+ { ̃   ̃  (𝒲 ℋ)  

  ̃ 𝒲( )   + 

{ ̃   ̃  (  2 ℋ)+ { ̃   ̃  ( 2 ℋ)+ 

{3} {  ̃   ̃ + {  ̃   ̃ +   ( )𝓗   ( )𝓗 

{1,2} { ̃   ̃  ( 3 ℋ)+ { ̃   ̃  (  ℋ)  

*   +  ̃  ( )   + 

{ ̃   ̃   ( '
3,ℋ)} * ̃   ̃  ( 3 ℋ)+ 

{2,3} { ̃   ̃ , ( 2,ℋ)} { ̃   ̃  (  ℋ)  

{2} ̃  ( )   + 

{ ̃   ̃   ( '
2,ℋ)} * ̃   ̃  ( 2 ℋ)+ 

{1,3} { ̃   ̃  ( 1 ℋ)+ { ̃   ̃  (  ℋ)  

{1} ̃  ( )   + 

{ ̃   ̃   ( '
1,ℋ)} * ̃   ̃  ( 1 ℋ)+ 

Table 2 
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Remark 3.3. 

i. Every  -soft closed set in (    ( ),ℋ) is  - ℐ  closed in (    ( )  ℋ,ℐ). 

ii. Every  -                 (    ( ),ℋ)  is  - ℐ          (    ( )  ℋ,ℐ). 

Proof: 

i. Let (  ℋ) be any soft closed set in (     ( ) ℋ ℐ) and (  ℋ) be a               -         

such that (  ℋ)  – (  ℋ)    ℐ , but   (  ℋ)    (  ℋ)       (  ℋ) is a soft closed set so, 

  (  ℋ) – (  ℋ)  (  ℋ) – (  ℋ)    ℐ this implies ( , ℋ) is a nano soft-ℐ-semi- -closed set. 

ii. Let (  ℋ) be any soft open set in (     ( ) ℋ ℐ) then  ̃ – (  ℋ) is a soft closed set this 

implies by (i) (  ̃ – (  ℋ)) is a  - ℐs -closed set thus (  ℋ) is a  - ℐ  -open soft set . 

In this remark, the opposite is not true.  By Example 3.2 , if the set    χ then   ( )  { ̃   ̃ + 

and  - ℐ    ( )ℋ     ( )𝓗 and   - ℐ    ( )ℋ =   ( )𝓗 . 

 

4.                           . 

 

Definition 4.1. In (    ( ) ℋ), if (  ℋ)    ̃ , then  - -   ((  ℋ)) = ⋂̃{( ,ℋ) ; ( ,ℋ)  ̃ 

( ,ℋ), ( ,ℋ)     ( )} which is shortcut for      soft-       of  (  ℋ). 

 

Example 4.2. Let χ = {1,2}, ℋ = {  1,  2 } and let ( ,ℋ) = {(  1,{1}),(m2, {2}) } be a soft set over 

χ. Let   be a                           on ( ,ℋ) defined as follows: 

  = { F( 1)×F( 2) , F( 2)×F( 1) , F( 1)×F( 1) , F( 2)×F( 2) }. Then the soft                     

are as follows: 

Now, let χ /    = {F( 1) , F( 2) } = {{1},{2}} . Let   = {1}   χ. Then (L ( ),ℋ) = {(  1,{1}),( 

 2,{1})}, (U ( ),ℋ) = {(  1, {1}),(  2, {1}) }, (B ( ),ℋ) = {( 1, ),( 2, )}. Thus   ( ) = {  ̃ , 

 ̃ , (  ℋ) = {(  1,{1}),(  2,{1})}, then according to the given (  ℋ)     ( )𝓗,    -   ( ) can 

be determined in the following table: 

 

(𝓑 ℋ)     ( )𝓗  - -   ((𝓑 𝓗)) 

 ̃  ̃ 

 ̃  ̃ 

( 1 ,ℋ) ={( 1, {1}),( 2,{1})} ( 1,ℋ) 

( 2 ,ℋ) ={( 1, {2}),( 2,{2})}  ̃ 
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( 3 ,ℋ) ={( 1, { }),( 2,χ)}  ̃ 

( 4 ,ℋ) ={( 1, { }),( 2,{1})} ( 1,ℋ) 

( 5 ,ℋ) ={( 1, { }),( 2,{2})}  ̃ 

( 6 ,ℋ) ={( 1, χ),( 2,{ })}  ̃ 

( 7 ,ℋ) ={( 1, χ),( 2,{1})}  ̃ 

( 8 ,ℋ) ={( 1, χ),( 2,{2})}  ̃ 

( 9 ,ℋ) ={( 1, {1}),( 2,{ })} ( 1,ℋ) 

( 10 ,ℋ) ={( 1, {1}),( 2,{2})}  ̃ 

( 11 ,ℋ) ={( 1, {1}),( 2,χ)}  ̃ 

( 12 ,ℋ) ={( 1, {2}),( 2,{ })}  ̃ 

( 13 ,ℋ) ={( 1, {2}),( 2,{1})}  ̃ 

( 14 ,ℋ) ={( 1, {2}),( 2,χ)}  ̃ 

 

Table 3 

 

 

Definition 4.3. In (    ( ) ℋ), if ( ,ℋ) =  - -   ((   ℋ)), where given (  ℋ)     ( )𝓗, then 

  is namely             set and in briefly    -  set. 

From table 2 the sets  ̃ ,  ̃  and ( 1,ℋ) are  -    sets since every one of those sets is equal to it's 

     soft-      . 

Remark 4.4. For (    ( ) ℋ), (  ℋ)      ( )𝓗, if (  ℋ) is a  -       set, then ( , ℋ) is a 

   -  set. 

 

Definition 4.5. In (    ( ) ℋ), if (  ℋ)  ( ,ℋ)  ̃ ( , ℋ) where (  ℋ)      ̃ , ( ,ℋ) is  -

 -closed set and (  ℋ) is     set, then (  ℋ) is namely      soft   closed set and in briefly    -

  closed set. 

From table 3 where   = {1} then   ( ) = {  ̃   ̃ ( 1,ℋ)+ then the family of all     closed sets 

is * ̃   ̃ ,( 1,ℋ)+. 

 

Proposition4.6. 

i. Every  -    set is  -    closed set. 
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ii. Every  - -open set is  -    closed set. 

iii. Every  - closed set is  -    closed set. 

Proof:  

i. Let ( ,ℋ) is       set. Since  ̃      closed set such that ( ,ℋ)  ( ,ℋ)  ̃  ̃, then ( ,ℋ) is 

      closed set. 

ii. Let ( ,ℋ) is      soft open set, by remark 4.4 then ( ,ℋ) is       set then ( ,ℋ) = 

      ((  ℋ)), and       closed set by (i). 

iii. Let (  ℋ)      closed set. Since  ̃ is       set and (  ℋ)  (  ℋ)  ̃  ̃, then (  ℋ) is 

             set. 

The opposite of Proposition 4.6, is not true by the following example. 

 

Example 4.7. From table 3 if (  ℋ) = ( 2 ℋ) where   = {1}, then   ( )  * ̃   ̃ ( 1 ℋ)+ 

 then  - -   (( 2 ℋ)) =   ̃ , then ( 2 ℋ) is not    -  set and not  -  open set, but ( 2 ℋ)  is  -

           set since ( 2 ℋ)  ( 2 ℋ)  ̃   ̃. If we suggest (  ℋ)  = ( 1 ℋ)  with the same set 

then  - -   (( 1 ℋ)) = ( 1 ℋ) then ( 1 ℋ) is  -    set and ( 1 ℋ) is  -    closed set since 

( 1 ℋ)  ( 1 ℋ)  ̃   ̃ , but ( 1 ℋ) is not  -  closed set. 

 

Remark 4.8. In (χ   ( ) ℋ), if (  ℋ)    ̃   (  ℋ) is  -    closed set, then (  ℋ)    -

     ((  ℋ) )  ̃ (  ℋ) , where (  ℋ) is  -  closed set. 

Proof: Since (  ℋ) is a       closed set, then (  ℋ)  (  ℋ)  ̃ (  ℋ) such that (  ℋ) is a 

    closed set and (  ℋ) is a       set. Implies, (  ℋ) ̃ (  ℋ)         ((  ℋ)) and (  ℋ) 

̃       ((  ℋ)) which is the smallest     open set containing (  ℋ). So, 

     ((  ℋ))        ((  ℋ))  (  ℋ)and (  ℋ)= (  ℋ)  ̃ (  ℋ)   Therefore,  

(  ℋ)        (( ,ℋ)  ̃ (  ℋ)  

 

5.             - -    - -             . 

 

Definition 5.1. In (    ( ) ℋ ℐ), if  (  ℋ)      (χ)𝓗 , then  - ℐ     ((  ℋ))   

⋂*(  ℋ)   (  ℋ)   ̃ (  ℋ) (  ℋ)     ℐ    ( )+ which is shortcut for      

soft ℐ semi   kernal of (  ℋ). It is clear that if (  ℋ)      (χ) is    ℐ   open set, then (  ℋ)  

 - ℐ     ((  ℋ)). 

Example 5.2. 

From the Example 4.2, if the set   = {1} then   ((  ℋ)) = *  ̃   ̃ ( 1  ℋ) = {( 1  {1}), 
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( 2,{1})} and ℐ = { ̃,( 4 ℋ),( 12 ℋ),( 13 ℋ)+. Then   O(χ) = {{ ̃   ̃  (  ℋ)   ̃  ( )  

  + . Then 

 -    -c(χ)ℋ = {  ̃ , ̃, ( 2  ℋ),( 3  ℋ),( 5  ℋ),( 8  ℋ),( 10  ℋ),( 11  ℋ),( 14  ℋ)} and 

 -    -o(χ)ℋ = {  ̃ , ̃, ( 1  ℋ),( 6  ℋ),( 7  ℋ),( 4  ℋ),( 13  ℋ),( 12  ℋ),( 9  ℋ)}. 

 

Example 5.3.  

From the Example 5.2, if the set   = {1} then   ( )  *  ̃   ̃ ( 1  ℋ)   *( 1,{1})  

( 2 {1})}} then  - ℐ   ( )  { ̃ ,  ̃ ,( 1  ℋ),( 6 ,ℋ), ( 7 ,ℋ),( 4 ,ℋ),( 13,ℋ)  

( 12  ℋ) ( 9  ℋ)+ according to the given (  ℋ)     (χ), we can determine  - ℐ     ((  ℋ)) 

in the following table: 

 

 

(𝓑 ℋ)     ( )𝓗  - -   ((𝓑 𝓗))  -       ((𝓑 𝓗)) 

 ̃  ̃  ̃ 

   ̃  ̃  ̃ 

( 8 ,ℋ) ={( 1, {1}),( 2,{1})} ( 8,ℋ) ( 8,ℋ) 

( 0 ,ℋ) ={( 1, {2}),( 2,{2})}  ̃  ̃ 

( 3 ,ℋ) ={( 1, { }),( 2,χ)}  ̃ ( 14,ℋ) 

( 4 ,ℋ) ={( 1, { }),( 2,{1})} ( 8,ℋ) ( 4,ℋ) 

( 5 ,ℋ) ={( 1, { }),( 2,{2})}  ̃ ( 2,ℋ) 

( 6 ,ℋ) ={( 1, χ),( 2,{ })}  ̃ ( 6,ℋ) 

( 7 ,ℋ) ={( 1, χ),( 2,{1})}  ̃ ( 7,ℋ) 

( 8 ,ℋ) ={( 1, χ),( 2,{2})}  ̃  ̃ 

( 9 ,ℋ) ={( 1, {1}),( 2,{ })} ( 8,ℋ) ( 9,ℋ) 

( 12 ,ℋ) ={( 1, {1}),( 2,{2})}  ̃  ̃ 

( 18 ,ℋ) ={( 1, {1}),( 2,χ)}  ̃  ̃ 

( 10 ,ℋ) ={( 1, {2}),( 2,{ })}  ̃ ( 10,ℋ) 

( 13 ,ℋ) ={( 1, {2}),( 2,{1})}  ̃ ( 13,ℋ) 

( 14 ,ℋ) ={( 1, {2}),( 2,χ)}  ̃ ( 14,ℋ) 
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Table 4 

 

Proposition 5.4. In (χ    ( ) ℋ ℐ), if (  ℋ)      (χ) , then  - ℐ     ((  ℋ))    - -

   ((  ℋ)). 

Proof: Let   ̃  - -   ((  ℋ)).     χ then   ̃ ⋂̃{( , ℋ) ; ( , ℋ)  ̃ ( , ℋ) ,  ( , ℋ)   

  ( )}. Implies,   (  ℋ)    ( ) (  ℋ)  ̃ (  ℋ)    (  ℋ). Then there exist  

( ,ℋ)     ℐ  o(χ)ℋ,  (  ℋ)  ̃ (  ℋ)    ̃ (  ℋ), so   ̃ ⋂̃{( ,ℋ) ; ( ,ℋ)  ̃ ( ,ℋ),  ( ,ℋ)   

  ℐ  o(χ)ℋ}. Hence   ̃  - ℐ     ((  ℋ)). 

The phrase ( - -   ((  ℋ)) ̃  - ℐ     ((  ℋ))) is not true by table 4 if we suggest the 

set (  ℋ)  ( 5 ℋ) then  - -   (( 5 ℋ)) =  ̃ , but  - ℐ     (( 5 ℋ))  ( 2 ℋ) then  - -

   ((  ℋ))  ̃  - ℐ     ((  ℋ)). 

Remark 5.5. For ( χ    ( ),ℋ,ℐ), if   is a finite space then (  ℋ)      (χ)𝓗   is a    ℐ        

set, if and only if (  ℋ)    - ℐ     ((  ℋ)). 

 

Definition 5.6. In (χ    ( ),ℋ,ℐ), if (  ℋ)    - ℐ     ((  ℋ) ), where (  ℋ)      (χ)𝓗, 

then (  ℋ)  is namely      soft ℐ semi     set and in (briefly    ℐ     set). 

From Example 5.3, the sets { ̃,  ̃, (   ℋ) and    {,8.4,6,7,9,12,13,14} are    ℐ     sets. 

 

Remark 5.7. For (χ    ( ),ℋ,ℐ), (  ℋ)      (χ)𝓗 , if (  ℋ) is a    ℐ   open set, then (  ℋ) is 

   ℐ     set. 

 

Definition 5.8. In (χ    ( ),ℋ,ℐ), if (  ℋ)  ( ,ℋ)  ̃ ( ,ℋ) where (  ℋ)    ̃ , ( ,ℋ) is  -

 ℐ  closed set and ( ,ℋ) is    ℐ     set, then (  ℋ) is namely      soft ℐ semi     closed set 

and briefly    ℐ     closed set. 

 

Example 5.9. 

From Example 5.3, where   = {1} then   ( )  *  ̃   ̃ ( 3 ℋ)  *( 1 * +) ( 2  {1})++ then 

 - ℐ  c(χ) = {  ̃ , ̃, ( 0  ℋ),( 3  ℋ),( 5  ℋ),( 8  ℋ),( 12  ℋ),( 18 ℋ),( 14 ℋ)}, then every 

subset (  ℋ) of   ̃ is    ℐ     closed since (  ℋ) = ( ,ℋ)  ̃ ( ,ℋ) , such that ( ,ℋ) is  -

 ℐ  closed set and ( ,ℋ) is    ℐ     set. 

 

Theorem 5.10. 
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i. Every    ℐ     set is    ℐ     closed set. 

ii. Every    ℐ  open set is    ℐ     closed set. 

iii. Every    ℐ  closed set is    ℐ     closed set. 

Proof:  

i. Let ( ,ℋ) is    ℐ     set. Since  ̃      ℐ   ( ) such that ( ,ℋ)  ( ,ℋ)  ̃  ̃, then ( ,ℋ) is 

   ℐ     closed set. 

ii. Let ( ,ℋ) is nano soft ℐ semi   open set, by remark 5.5 then ( ,ℋ)       ℐ      

((  ℋ)), then ( ,ℋ) is    ℐ     set and    ℐ     closed set by (i). 

iii. Let (  ℋ)      ℐ   ( ). Since  ̃ is    ℐ     set and (  ℋ)  (  ℋ)  ̃  ̃, then (  ℋ) is 

   ℐ            set. 

The opposite of Theorem 5.10, is not true. 

 

Example 5.11. From Example 5.2  if  (  ℋ)    ( 1 ℋ) where     {1} and   ( )  

*  ̃   ̃ ( 3  ℋ)  *( 1 * +) ( 2  {1})++. Then  - ℐ  c(χ) = {  ̃ , ̃,( 2 ℋ),( 3 ℋ),( 5 ℋ), 

( 8 ℋ),( 10 ℋ),( 11  ℋ),( 14  ℋ)},  - ℐ     (( 1 ℋ))  ( 1 ℋ). Thus ( 1 ℋ) is neither 

   ℐ     set nor    ℐ   open set, but ( 1 ℋ) is a    ℐ     closed set since ( 1 ℋ)  

( 1 ℋ)  ̃  ̃. In other hand; if (  ℋ)    ( 1 ℋ) with the same set A then    ℐ     (( 1 ℋ))  

( 1 ℋ). Implies, ( 1 ℋ) is    ℐ     set, so ( 1 ℋ) is    ℐ      

closed set but ( 1 ℋ) is not    ℐ   closed set. 

 

Proposition 5.12. In (     ( ) ℋ ℐ), if χ is a finite set and (  ℋ)    ̃   (  ℋ) is a 

    ℐ     closed set, then (  ℋ)     ℐ     ((  ℋ))  ̃ ( ,ℋ) where ( ,ℋ) is 

   ℐ   closed set. 

Proof: Since (  ℋ) is a    ℐ     closed set, then (  ℋ)  (  ℋ)  ̃ (  ℋ) such that (  ℋ) is 

a    ℐ   closed set and (  ℋ) is a    ℐ     set. Implies, (  ℋ) ̃    ℐ     ((  ℋ)) = (  ℋ) 

and (  ℋ) ̃    ℐ     ((  ℋ)) which is the smallest    ℐ   open set 

containing(  ℋ). So,   ℐ     ((  ℋ))     ℐ     ((  ℋ)) 

 (  ℋ) and (  ℋ)  (  ℋ)  ̃ (  ℋ). Therefore, (  ℋ)  (  ℋ)  ̃    ℐ     (( , 

ℋ)  
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Abstract: We introduce in this paper some new concepts in soft topological spaces such as soft simply 

separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply connected 

spaces, and we presented soft simply Paracompact spaces and studying some of its properties in soft topological 

spaces. In addition to introduce  a new types of functions known as soft simply   -continuous which are defined 

between two  soft topological spaces. 
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1. Introduction: 

    In 1999 the concept of soft set theory was used for the first time as a mathematical tool 

by          [1] to deal with confusion. He determinant the primal upshots of this new theory and 

successfully applied the soft set theory in many ways such as theory of measurement smoothness of 

functions, game theory, etc. In last year research work on soft set theory is taking place rapidly. In 

2003      et al, presented many basic notions of soft set theory like universe soft set and empty soft 

set [2]. In 2011        and     discussed the theory of soft topological spaceand  many fundamental 

concepts of soft topological spaces including soft open, soft closed sets, soft nbd oft subspace,  and 

soft separation axioms [3]. In 2012           and       mentioned soft continuity of soft 

function,  and theystudied soft product topology, etc  in soft topological spaces [4]. In 2011     

discussed some findings on soft topological spaces [5].In 1975 the concept of simply-open sets was 

introduced  by             [6] if (       such that     is open set and    is 

             (  is               if (  (     )    [7])), it symbolizes by    ( ).In 2013 El. 

      and         presented transformed definition of simply open set [8]   if (   (   ) is 

simply open set if    (  ( ))    (   ( )). In 2017          and           introduce a new class 

of simply open sets as a generalization and modification for soft open sets  called soft simply open set 

[9]. In 2014              et al [10] have studied soft connectedness in soft topological spaces and 

         [11] continued studying some properties of soft semi-open sets. We built on some of the 

results in [15], [16], [17], [18], [19]. [20] and [21]. 

mailto:sarah.asas90@gmail.com
mailto:yoyayuosif@yahoo.com
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The purpose of this paper is to introduce new concepts in soft topological spaces like soft simply 

disjoint, soft simply separated, soft simply division,             , soft simply   -continuous, 

soft simply limit point,  and defined  soft simply Paracompact spaces. 

1.preliminaries: 

The following concepts and definition with some results are need it later on 

Definition 1.1: [1] Let  defined as a universe set and   as a parameter set with  power set of   is 

denotes by  ( )and      . Then  (   ) is said to be a soft set, such that        ( );  ( )   

  ( ),     . 

Definition 1.2:[2]We say (   )is a null set and it symbolizes by ̃, if ( )   ,     . 

Definition 1.3:[2] We say (   ) is a absolute soft set and it symbolizes by ̃     ( )          

Definition 1.4:[2]Let (   )and (   ) are two soft set then (   )  ̃ (   )=(   ); (    the union of 

these sets are also soft set), where     ̃    and for each     

H(e)=>

 ( )                              

 ( )                                 

 ( )   ( )                  

 

Definition 1.5:[2] Let (   )and (   ) be  two soft set then (   )  ̃ (   )= (   ); (    the 

intersection of these sets are also soft set), where      ̃   and for each    such that ( )  

 ( )   ( ). 

Definition 1.6:[2] Let (   ) and (   ) be two soft sets over  , then(   )  ̃ (   ), if    and 

 ( )   ( )      ,  

Definition 1.7:[12] The soft topology    defined as follows: 

1.  ̃ and  ̃     

2. Thesoft  union of any number of soft sets in       . 

3. The soft intersection of any two soft sets in      . 

Then the triplet (      )is said to be  a soft topological space,  and the elements of  

                       and their complements are soft closedand we denoted of each closed soft sets 

by   ̃. 

Definition 1.8:[12] Assume that (   ) be a soft set of (      ) is called soft neighborhood (briefly 

soft     ) subset(   )if   (   )  ̃   ; (   )  ̃ (   )  ̃ (   ). 

Definition 1.9:[12] (   )  or     ((   )) is the soft interior of the set (   ), is adefined as follows: 

    ((   ))   ̃ *(   )  (   )  ̃ (   ) (   )  ̃   +. 

Definition 1.10:[12] (   )̅̅ ̅̅ ̅̅ ̅̅ is a soft closure of  a(   ), is a soft set defined as follows: 
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   ((   ))   ̃ *(   )  (   )  ̃ (   ) (   )  ̃   +. 

Definition 1.11:[12]We say(      ) is a soft indiscrete space if    * ̃  ̃+, and it symbolizes by      . 

Definition 1.12:[12] We say(      ) is a soft discrete space if    is the family of all soft sets that  can 

be defined over  and it symbolizes by      . 

Definition 1.13:[4] A family of soft set is called a cover of a soft set (   ) if 

(   )  ̃ ̃  *(    )  (    )  ̃        +.  is said to be soft open cover if every members of   is a soft 

open set. 

Definition 1.14:[4]We say (      ) is a soft compact if every soft open cover has a finite sub 

cover (      ). 

Definition 1.15:[8]A soft subset (   ) of soft topological space (      )is called Soft simply-open 

(for short         ) set if     .   ((   ))/  ̃     (    ((   ))). It is symbolizes by      ( ). 

The complement of a soft simply open set is a soft simply closed set (for short,           ), and it 

symbolizes  by     ( ). 

Definition 1.16:[13] We say  (      )is a             ̈ , if every cover of  has a countable sub 

cover. 

Definition 1.17:[4]Let(      )be a softtopological space. A sub collection   of  is said to be a base 

for   if every member of   can be expressed as a union of members of  . 

Proposition 1.18:[4] Each soft compact is soft        ̈  and each soft        ̈  is soft paracompact. 

Definition 1.19:[12] We say that(      ) is a               if for any two distinct points       ̃  , 

there exist(   ) and (   )  ̃   , such that   ̃ (   ),   ̃ (   )  and (   )  ̃ (   )   ̃. 

Definition 1.20:[12] We say that(      )is a                    if for all (   )  ̃     (   (   ) is 

soft closed in  ) and any points   ̃   such that   ̃ (   ),then there exist(   ) and (   )  ̃   , 

such that [  ̃ (   )  and(   )  ̃ (   )  and (   )  ̃ (   )   ̃]. 

Definition 1.21:[12] We say that(      ) is a                  if for each(   ) and (   )  ̃     

(   (   )     (   ) are soft closed in  ) such that (   )  ̃ (   )   ̃, then there exist(   ) and 

(   )  ̃   , such that [(   )  ̃ (   ) (   )  ̃ (   )  and (   )  ̃ (   )   ̃]. 

2. Soft Simply Connected Spaces: 

In the section, we introduce a new concepts which is called soft simply connected spaces. 

Definition 2.1: Let (      ) be a soft topological space, and (   ) ,(   )  be twosoft simply 

setsover  . The soft simply sets are said soft simply disjoint (for short        ) if 

(   )  ̃ (   )   ̃. 
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Definition 2.2:Let (      ) be a soft topological space, and (   ) ,(   )  be twosoftsimply 

setsover  . The soft simply sets are said soft simply separated (for short        ) if  

(   )  ̃     (  (   ) )   ̃ and    (  (   ) )  ̃ (   )   ̃. 

Remark 2.3: Two disjoint soft simply open sets may not be a soft simply separated, for example: 

Example 2.4 : Consider ={1,2,3} and  E=*     +, let   ̃={ ̃,  ̃  ,(    )
   (    )

 ,(    )
  

,(    )
 , (    )

  (    )
 } are soft simply sets defined as follows: 

(    )
 = {(   * +) (   * +)+ 

(    )
 ={(   * +) (   * +)+ 

(    )
 ={ (   *   +) (   *   +)+ 

(    )
 ={(   *   +) (    ̃+ 

(    )
 ={ (   *   +) (   *   +)+ 

(    )
 ={ (    ̃) (   * +)+ 

Then the  triplet(      ) is a soft topological space, it is easy to see that (    )
  ̃ (    )

   . 

Hence    (  (    )
 ) =(    )

  and    (  (    )
 )  ̃ (    )

   . 

Definition 2.5: Let (      ) be a soft topological space. If there exist two non-empty soft simply 

separated sets (   )  and (   )  such that (   )  ̃ (   ) =(   )  , then (   )  and 

(   )  are said to be soft simply division(for short        )for soft simply topological space 

(      ). 

Definition 2.6 : Let (      ) be a soft topological space, then (      ) is said to be soft simply 

disconnected spaces if (      ) has a soft simply division. Otherwise (      ) is said  to be soft 

simply connected spaces. 

Example 2.7 : It is easy to see that each soft simply indiscrete space is soft simply connected and that 

each soft simply discrete non-trivial space is not soft simply connected. 

Theorem 2.8:Let (      ) be a soft topological space. Then the following conditions are equivalent: 

a) (      ) has a soft simply division. 

b) There exist two disjoint soft simply closed sets (   )  and (   )  such 

that(   )  ̃ (   ) =(   ) . 

c) There exist two disjoint soft simply open sets (   )  and (   )  such 

that(   )  ̃ (   ) =(   ) . 

d) (      )  has a proper soft simply open and  soft simply closed set in  . 

Proof: ( )  ( )Let(      ) have a soft simply division(   )  and (   ) . Then  

(   )  ̃  (   )    

and   

   (  (   ) )     (  (   ) )  ̃ ((   )  ̃ (   ) ) 

     (   (  (   ) )  ̃ (   ) )  ̃ (    (  (   ) )  ̃ (   ) ) 
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    (   ) . 

There for (   )  is a soft simply closed set in   . Similar , we can see that (   )  is also a soft 

simply closed set in   . 

( ) ( )Let(      ) have a soft simply division(   )  and (   )  such that 

(   )       (   ) are soft simply closed. Then the soft simply complement of (   )  and 

(   )  are soft simply open in  . Then (   ) 
 
 ̃ (   ) 

 
   and  (   ) 

 
 ̃ (   ) 

 
 

 . 

( )  ( )Let(      ) have a soft simply division(   )  and (   )  such that 

(   )       (   ) are soft simply open in  . Then (   )  and (   )  are also soft simply 

closed in  . 

( )  ( )Let(      ) has a proper soft simply open and soft simply closed set(   ) . Then 

(   ) 
 

 and (   ) are non-empty soft simply closed set, (   ) 
 
 ̃ (   )    and 

(   ) 
 
 ̃ (   )   . Then (   )  and (   ) 

 
 is a  soft simply division of   . 

Theorem 2.9 :Let (      ) be a soft topological space. Then the following conditions are equivalent: 

a) (      ) has a soft simply connected. 

b) There exist two disjoint soft simply closed sets (   )  and (   )  such 

that(   )  ̃ (   ) =(   ) . 

c) There exist two disjoint soft simply open sets (   )  and (   )  such 

that(   )  ̃ (   )  (   ) . 

d) (      ) at most has two soft simply open and  soft simply closed sets in  ,that is   and 

(   ) . 

Remark 2.10: By (Theorem 2.9) , the soft topological space in Example 2.20 is a     

             spaces since the soft simply set (   )  is soft simply open set and soft simply closed 

set in  . 

Lemma 2.11: Let (      ) be a soft topological spaceover  , and   be a non-empty subset of 

(   ) . If (    )
  and (    )

  are soft simply sets in (   ) , then (    )
  and (    )

  are a 

soft simply separation of(   ) . 

Proof: We have ,   (  (    )
 )  ̃ (   ) -   ̃ (    )

     (  (    )
  ̃ (    )

 . 

Similar we have ,   (  (    )
 )  ̃ (   ) -   ̃ (    )

     (  (    )
  ̃ (    )

   

Therefor the lemma is hold. 

Lemma 2.12: Let (      ) be a soft topological space over (   ) , and   be a non-empty subset of 

 such that (   ̃  ) is soft simply connected. If (    )
  and (    )

  are soft simplyseparation 

of(   )  such that (   )  ̃ (    )
  ̃ (    )

 ,then (   )  ̃ (    )
  or 

(   )  ̃ (    )
 . 

Proof: Since(   )  ̃ (    )
  ̃ (    )

 ,we ̃ have 

((   )  (   )   ̃ (    )
 )  ̃ ((   )  ̃ (    )

 ).By (Lemma 2.11) 
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(   )  ̃ (    )
  and (   )  ̃ (    )

  are a soft simply separation of(   ) .  Since 

(   ̃  ) is soft simply connected, we have (   )  ̃ (    )
    or (   )  ̃ (    )

   . 

There for,(   )  ̃ (    )
  or (   )  ̃ (    )

   

Definition 2.13 : Let(      ) be a soft topological space, (   )  be soft simply subset of  and 

  
  ̃  . If every         of  

 soft simply intersects (   )  in some point other 

than  
 itself, then   

  is called soft simply limit point of (   )  ( for short         ). We 

denoted of the set of all soft simply limit point of (   ) by (   )  . 

Lemma 2.14: Let {(         )     }be a family non-empty soft simply connected subspaces of soft 

topological space (      ). If ̃   
 (    )

   , then  

( ̃   
       ̃      

  ) is a soft simply connectedsubspace of (      ). 

Proof: Let    ̃   
     Choose a soft simply point   

  (   )   Let (   )  and (   )  be a soft 

simply division of . ̃   
       ̃   

   
  /, then   

  (   )  or   
  (   ) . Without loss of 

generality, we may assume that   
  (   ) , for each    , since (         ) is a soft simply 

connected it follows from (Lemma 2.12) that (    )
  ̃ (   )  or (    )

  ̃ (   ) . 

Therefore, we have (   )  ̃ (   )  since   
  (   ) , and then (   )   , which is a 

contradiction. Therefor . ̃   
       ̃   

   
  / is a soft simply connected subspace of (      )  

Theorem 2.15: Let {(         )     }  be a family non-empty soft simply connected subspaces of 

soft simply topological space (      ). If    ̃
      for arbitrary      ̃   , then ( ̃   

    

   ̃   
   

  ) is a soft simply connected subspace of (      ). 

Proof: Fix an      . For arbitrary     , put        ̃
   ,(by Lemma 2.14) each (         ) is 

soft simply connected. Then 2(          )      3 is a family non-empty soft simply connected 

subspaces of softtopological space (      ), and   ̃   
    (     )

 
  . Obvious, we have 

 ̃   
      ̃   

    It follows from (Lemma 2.14) that ( ̃   
       ̃      

  )is a soft simply 

connected subspaceof(      )  

Theorem 2.16 :Let (      ) be a soft topological spaceover  and (   ̃  ) is soft simply connected 

subspace of (      )  If (   )  ̃ (   )  ̃    (  (   ) )  then (       )is asoft simply 

connectedsubspace of(      )  In particular    (  (   ) ) isa soft simply connected subspace 

of(      )  

Proof : Let (   )  and (   )  be a soft simply division of (       ) By (Lemma 2.12) we have 

(   )  ̃ (   )  or (   )  ̃ (   )  Without loss of generality, we may assume 

that(   )  ̃ (   ) . By (Lemma 2.11) we have   (  (   ) )  ̃ (   )   , and hence 

(   )  ̃ (   )   , which is a contradiction. 

Definition 2.17 : Let(      ) and (   ̃  ̀) be two soft topological spaces, let       and      

 ̀be a mapping, let     (   )
   (   ̀)  be a function and   

  ( ̃  )  
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a)     is soft simply    continuous (for short           ) at   
  ( ̃  ) , if for all  

(   ̀)   ̃
 ̃ 
 (   (  

 ))  there exists a (   )   ̃
 ̃ 
 (  

 ) such that 

   (   )
  ̃ (   ̀) . 

b)     is          on ( ̃  ) , if     is           at each soft simply point in 

( ̃  )   

Theorem 2.18 : The image of soft simply connected spaces under a soft simply continuous map are 

soft simply connected. 

Proof: : Let(      ) and (   ̃  ̀) be two soft topological spaces, where (      ) is soft simply 

connected and   be a           function from (      ) to  (   ̃  ̀), the restricted function  is 

soft simply continuous, and without loss of generality, we may assume that ( )   ( )      ( )  

 ̀  Suppose that (   ̃  ̀) is soft simply disconnected. By (Theorem2.9), there exists a proper soft 

simply open and soft simply closed set(   ) in  . Since  soft simply continuous function then 

   (   )  is a proper soft simply open and soft simply closed set in   by (Theorem 6.3 in [15]), 

which is a contradiction. 

Proposition 2.19: [11] Let(      )  be a soft topological space, then the collection    

* ( )  (   )    + for each     , define a topology on  . 

Remark 2.20: There exists soft simply connected soft topological space(      ) such that (       ) 

is a soft simply disconnected softtopological space for some        

  Example 2.21: Consider ={1,2,3} and  E=*     +, let   ={ ̃,  ̃  

,(    )
   (    )

 ,(    )
 (    )

 , (    )
  (    )

  (    )
 }  are soft simply sets defined as 

follows: 

(    )
 = {(   *   +) (    ̃)+ 

(    )
 ={(   *   +) (    ̃)+ 

(    )
 ={ (   * +) (    ̃)+ 

(    )
 ={(   *   +) (    ̃+ 

(    )
 ={ (   *   +) (   *   +)+ 

(    )
 ={ (   * +) (    ̃)+ 

(    )
 ={ (    ̃ ) (    ̃)+ 

Then  is defines a soft topological on  ̃ and hence (      )is a soft topological spaces over  ̃. Then 

(      ) is a soft simply connected spaces, however (       )  is soft simplydiscrete spaces, then 

(       ) is soft simply disconnected. 

Definition 2.22 : Let(      )be a soft topological spaces. A sub collection  ̃  of   is said to be soft 

simply base for    if every member of   can be expressed as a soft simply union of members of  ̃ . 

Definition 2.23: Let*(          )+   be a family of soft topological spaces. Let us take as a basis for 

soft topology on the product spaces (∏   
    ∏        ∏      ) the collection of all soft simply 

sets{(∏   
 

    ∏   
 

   ); there is a finite set     such that (     )
  (     )

  for each 

     }. 
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Theorem 2.24: A finite product of soft simply connected spaces is soft simply connected. 

Proof :We prove the theorem first for the product of two soft simply connected spaces (      ) and 

(   ̃  ̀) choose a fix point        . Obvious, (        ̃        ̀) is a soft simply 

connected. For each     (        ̃        ̀) is also soft simply connected, and put    

(   )  ̃  (   ), then each  (       ̃       ̀) is a soft simply connected (Lemma 2.14). 

Since              it follows from (Theorem 2.15) that ( ̃   
        ̃  ̃   

   
    ̀) is a 

soft simply connected. The proof for any finite product of soft simply connected spaces follows by 

induction, using the fact that (∏   
 
         ∏    

 
      ∏   

 
   ) is soft simply homeomorphic with 

(∏   
   
   )     (∏   

   
   (   )      (∏   

   
   )    )  

Definition 2.25 : Let(      )be a softtopological spaces, define an equivalence relation on   by 

setting   
       

   if there exists a soft simply  connected subspace of  (      ) containing both soft 

simply points   
         

 . The equivalence classes are called the soft simply components of  (for 

short               ) or (the soft simply connected components) of . Reflexivity and symmetry 

of the relation are obvious. Transitivity follows by noting if    is a soft simply connected subspaces 

containing soft simply points   
         

 , and if     is a soft simply connected subspaces containing 

soft simply points   
          

 , then    ̃
    is a subspace containing soft simply points 

  
          

 , that is soft simply connected because           have the soft simply point  
   in 

common. 

Theorem 2.26: The soft simply components of soft topological space (      )are soft simply 

connected disjoint soft simply subspace of   whose union is   such that each non-empty soft simply 

connected subspace of intersects only one of them. 

Proof: Being equivalence classes, the soft simply components of  are disjoint and their union is 

 .  Let    be an arbitrary soft simply connected subspace. Then   intersects only one of them. For if 

    intersects the soft simply components    and    of  , say in soft simply points  
          

 , 

respectively, then  by definition, this cannot happen unless      . Next we shall show the soft 

simply component   is soft simply connected. Choose a soft simply point   
 of   . For each soft 

simply point   
 of   , we know that  

       
  , hence there exists a soft simply connected 

subspace  
  
 

 containing  
  and   

 . Obvious, each   
  
 

 ̃   .Therefore,      ̃     
   

  
 

. Since 

the soft simply subspace  
  
 

are soft simply connected and have the soft simply point  
  in common, 

  is soft simply connected by Theorem 2.15. 

 

3.SOFT SIMPLY PARACOMPACT SPACES: 

In this section, we introduce a new concepts which is called soft simply paracompact spaces. 

Definition 3.1: Let (      )be a soft topological space and   be a collection of soft simply sets of 

(   )   then : 

1.   is said to be soft simply locally finite in (   )  (for short                    ), if each soft 

simply point of (   )  has a        that intersects only finitely many elements of  . 
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2. A collection   of soft simply sets of (   )   is said to be a soft simply refinement(for short 

       )of   if for each element      there exists an element    containing  , if the 

elements of  are soft simply open sets, we call   a soft simply open refinement of  , if they are 

soft simply closed, we call   a soft simply closed refinement. 

Proposition 3.2: Let   be a soft simply locally finite collection of soft subsetsof  (   ) . Then: 

1) Any subcollection of   is soft simply locally finite . 

2) The collection   *(   (  (   ) )  (   )    +is soft simply locally finite . 

3)   (  ( ̃ 
(   )    (   )

 ))   ̃ 
(   )       

 (  (   ) ) . 

Proof: (1) Is trivial by definition of soft simply locally finite. 

(2)Note that any soft simply open set (   )  that intersects the soft simply set    (  (   ) ) 

necessarily intersects(   ) . Thus if (   ) is a        of            
 that intersects only 

finitely many elements (   ) of  , then (   )  can intersect at must the same number of soft 

simply sets of the collection    

(3) Let ̃(   )    
 (   )  (   ) . Obvious  ̃(   )    

    (  (   ) )      (  (   ) )  We 

prove the reverse inclusion under the assumption of soft simply locally finiteness. Let   
  

   (  (   ) )  let (   ) is a        of            
 that intersects only finitely many 

elements (   ) of  , say (    )
     (    )

 . Then   
 belongs to one of the soft simply sets 

   (  (    )
        (  (    )

   For otherwise, the soft simply set 

(   )  ̃ ( ̃ *   (  (    )
        (  (    )

 +) would be a         of   
  that 

intersects no element of  , and therefore it does not intersect (   ) , which is a contradiction with 

  
     (  (   )   

Definition 3.3: Let (      )be a soft topologicalspace is said to be  soft simply paracompact (for 

short                 ) if each soft simply open covering   of (   )  has a soft simply locally 

finite soft simply open refinement  that covers (   )   

Remark 3.4 : Any             is            ̈ , and any            ̈  is     

           . 

Proposition 3.5 :Let (      )be a               space. If  * +  then (      ) is     

            if and only if the collection   * ( )   (   )      + is a     

            topology on  . 

It is well known that a        ̈  spacemay not compact and a paracompact space may not        ̈ . 

Therefore, it follows from Proposition 3.5 that a            ̈  space may not            and 

a                 space may not            ̈ . 

Theorem 3.6 :Each               and              is                 . 

Proof: Let (      )  be a                 and             . First one proves soft simply 

regularity. Let   
  be a          of (   )  and let (   )  be a           set of(   )  
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disjoint from   
   The       condition enable us to take,           

  in (   )  an      

open set .   
 
  /

 
 about   

  whose            is disjoint from  
 . Let   *.   

 
  /

 
   

  

(   ) +   ̃ *(   ) 
 
 +. Then   is a         covering of (   )   Since (      ) is a     

            there exists a                              refinement   that covers (   ) . 

Form the subcollection    of   consisting of each element of   that intersects (   )   Then   covers 

(   )   Moreover, if         then the             of   is disjoint from   
  Since   interects 

(   )  it lies in some          set .   
 
  /

 
, whose             is disjoint from  

 . Let 

(   )    ̃   
   (   )  is a          in (   )  containing (   ) . Since   is     

                   (  (   ) )    ̃   
    (  ( ))by (Proposition 3.2). Then    (  (   ) ) is 

disjoint from  
 . Thus soft simply regularity is proved . 

To prove soft simply normality, one only repeats the same argument, replacing   
 by a     

       set throughout and replacing the       condition bysoft simply regularity. 

Theorem 3.7 : Each           subspace of a                 is               . 

Proof:Let (      )be a                 space, and   ̃    such that (   )  is     

       in (   ) , let η be a soft simply covering of (   )  by          in (   ) . For every 

(   )   , take          set ( ̀  )
 

 of (   )  such that ( ̀  )
 
 ̃ (   )  (   ) . 

Cover (   )  by the         ( ̀  )
 

,along with the          set (   ) 
 
. Suppose that   

is  a                            refinement of this              that covers (   ) . 

Then the collection   *(   )  ̃ (   )   (   )   + is the required locally finite soft simply 

open refinement of η. 

Remark 3.8 : By Proposition 3.5 , it is easy to see the following two facts: 

1) A                 sub space of a            (      )need do not be     

       in (   ) . 

2) A              of a                 need not by               . 

Lemma 3.9:Let (      )be a softtopological space.If each          covering of (      ) has a 

    locally finite           refinement, then every          covering of (      ) has 

    locally finite        refinement. 

Proof: Let η be a          covering of (      ), and let   *(    )
     +,be a     locally 

finite           refinement of η. For each            
  (   ) , choose a     

         (      )
 

of   
 such that (      )

 
 intersect finitely many elements of  .Let  

2(      )
 
    

   (   ) 3  and let   be a      locally finite           refinement of . For 

each   ,put (    )
  ( ̃ *(   )   (   )     (   )  ̃ (    )

   +) . Obvious, each 

(    )
  is          and contains(    )

 . Moreover, for each     and each (   )    , we 

have (    )
  ̃ (   )    if and only if (    )

  ̃ (   )   . For each    , choose a  

(    )
   such that(    )

  ̃ (    )
  , and let (    )

  (    )
  ̃ (    )

 . Then 
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*(    )
      + is a          covering and refines η. It is easy to see that each element of   

intersects only finitely many (    )
 . Therefore *(    )

     + is a     locally finite  

Lemma 3.10 :Each  locally finite soft simply open covering has a soft simply locally finite 

refinement. 

Proof :Let    ̃   
   be a   locally finite soft simply open covering for some soft topological 

space, where each    is      locally finite. Put      ,    *(   )  ̃ ( ̃   
   

 )  : 

(   )      }, where   
   ̃ *(   )   (   )     +. Then it is easy to see that     ̃   

    

is a      locally finite  soft simply open covering and refines  . 

Lemma 3.11 : Let(      ) be a            , if each soft simply open covering of (      ) has a 

    locally finite refinement, then it has a     locally finite    closed refinement. 

Proof: Let   *(    )
       + be an arbitrary soft simply open covering. Then, for each 

           
   , there exists some (    )

    such that   
  (    )

 . By soft simply 

regularity, there is an        (   
   ) such that 

  
  (   

   )  ̃    (  (   
   )

 
 ̃ (    )

  . Put   {(   
   )    

   }. Then   is a soft 

simply open covering and refines  . By the assumption, there is a     locally finite soft simply 

covering 𝒲  *(𝒲   )
      +, such that 𝒲 refines  . Then {   (  (𝒲   )

 )     + is a 

    locally finite soft simply closed covering and refines  . 

By Lemma 3.9, 3.10, and 3.11, we have the following theorem: 

Theorem 3.12:Let(      ) be a            . Then the following conditions on   are equivalent: 

1) (      ) is a                  

2) Every soft simply open covering has a   locally finite soft simply open refinement. 

3) Every soft simply open covering has a locally finite soft simply refinement. 

4) Every soft simply open covering has a locally finite soft simply closed refinement. 

Conclusion: 

The aim of this research is using the class of soft simply open set to define soft simply connected 

spaces. we study basic definitions and theorems about it. Further, we introduce the notion Soft Simply 

Paracompact Spaces, and we present soft simply pu-continuous defined between two soft topological  

spaces and study their properties in detail. Finally, we hope is togeneralize these notions by using 

other open sets. 
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Abstract. In this paper we study and introduce the concept of preompactness of a fuzzy 

topological space and also, we attain a number of important characterizations of a fuzzy 

precompact space. The notion of precompactness that can be extended to arbitrary fuzzy 

sets. So, this paper explains the relationship between fuzzy precompact space and fuzzy 

precompact subspace. Finally, we give necessary and sufficient conditions for a fuzzy pre 

regular space to be fuzzy precompact.  

Key words and phrases: Fuzzy precompact space, Fuzzy pre q-nbd, Fuzzy pre cluster 

point. 

 

1. Introduction 

The fuzzy concept has invaded almost all branches of mathematics, since the introduction the 

fundamental concept of fuzzy sets by Zadeh [9] in 1965. Chang [4] in 1968, introduced the definition 

of fuzzy topological spaces and extended in a straight forward manner some concepts of crisp 

topological spaces to fuzzy topological spaces. The fuzzy topology was originating with Chang's 

article [9] in 1968, also may be considered as a new branch of mathematics, then many additional 

structures were studied by using fuzzy sets and the related problems in pure and applied mathematics. 

While Wong [16] in 1974 discussed and generalized some properties of fuzzy topological spaces. 

Ming, p.p. and Ming, L.Y. [11] in 1980 used fuzzy topology to define the neighborhood structure of 

fuzzy point. Shahna A. S. Bin [13] in 1991 defined the concept of pre open in fuzzy topological space. 

      In what follows, a fuzzy topological space (   ) as defined by Chang [4], we shall denote for its  

by a     (   ) or simply by a      . The concepts closure [4], interior [4] and complement [15] of a 

set   in a fuzzy topological space (   ) are denoted by   ( ),    ( ) and       respectively. A 

fuzzy set   in   is said to be fuzzy pre open if     (  ( ))). The fuzzy pre closed     is a 

complement of a fuzzy pre open set  . The notation    ( ) stands for the fuzzy pre closure, which is 

the union of all fuzzy points   , when any fuzzy pre open set   containing   with  ⋀   , every 

fuzzy open in a fts   is fuzzy pre open.   

2. Preiminaries 

     First, we recall the following definitions, theorems, propositions, corollaries, remarks and lemmas 

that are needed in the next section.  

2.1. Definition [10, P.211-220] 

Let     and let   be the unite interval, that means   ,   -. A fuzzy set   in   is a function from   

into the unit interval  . (that means    ,   - be a function).   

A fuzzy set   in    can be explain by the set of pairs:    *(   ( ))    +. The notation    stand 

for the family of all fuzzy sets in  .  

 

2.2. Definition [10, P.211-220] 

Let   be a fuzzy mapping from a set   into Y. Let      and     . 

mailto:s.jaber@uowasit.edu.iq
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a- The image of   under  ,  ( ) is a fuzzy set in Y defined by for each    , 

 

, ( )-( )=>
     ( )         ( )    

             ( )

                                 

 

               Where    ( )  *     ( )   +. 
b- The inverse image of    under    ,     (B) is a fuzzy set in   defined by for each    , 

            ,   ( )-( ) =  ( ( )). 
 

2.3. Definition [10, P.211-220],[3] 

A fuzzy point    in   is fuzzy set defined as follows: 

                                                                   ( )={
                        

 
                         

      

Where     ;   is called its value and   is support of    . 

The set of all fuzzy points in   will be denoted by  ( ). 
  

2.4. Definition [10, P.211-220], [1] 

A fuzzy point    in   is said to belong to a fuzzy set   (denoted by:     ) if and only if     ( )  

2.5. Definition [10, P.211-220],[1] 

A fuzzy set   in   is called quasi–coincident with a fuzzy set   in   denoted by     if and only if 

 ( )   ( ) , for some   . If   is not quasi–coincident with, then  ( )   ( ) , for every 

   and denoted by   ̃  . 

2.6. Lemma [3, P.137-150] 

Let   and   are fuzzy sets in  . Then:  

(a) If  ⋀           ̃  

(b)   ̃                       

2.7. Proposition [3, P. 137-150] 

If   a fuzzy set in  , then       if and only if     ̃ 
 . 

2.8. Definition [4, P.182-190] 

A fuzzy topology on a set   is a collection   of fuzzy sets in   satisfieding:  

(1)              
(2)                                  , 

(3)                                              ⋁        
If   is a fuzzy topology on  , then the pair (   ) is called a fuzzy topological space. Members of   

are called fuzzy open sets. Fuzzy sets of the forms       , where   is fuzzy open set are called 

fuzzy closed sets. 

2.9. Definition [13, P.303-308], [17] 

Let (   ) be a fuzzy topological space. Then: 

i) The fuzzy interior of  , denoted by    ( ) is the union of all fuzzy open sets in   wich 

are contained in  . (   ( )  ⋁*       +) 
ii) The fuzzy pre closure of  , denoted by   ( ) is the intersection of all fuzzy closed sets in 

  contains  . (  ( )  ⋀*        +) 
2.10. Definition [10, P.211-220]                                           

A fuzzy set   in    ( ) is called quasi-neighborhood of fuzzy point    in   if and only if there exists 

   such that         . 
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2.11. Definition [10, P.211-220] 

Let (   ) be a fuzzy topological space and    be a fuzzy point in  . Then the family     

 
 consisting 

of all quasi-neighborhood (q-nbd) of a fuzzy point    is said to be the system of quasi-neighborhood 

of   . 

2.12. Theorem [13, P.303-308], [17] 

Let (   ) be a fuzzy topological space and  ,  are two fuzzy sets in  . Then: 

i)     ( ),  
ii)   ( ∨  )    ( ) ∨   ( ) and   (   )    ( )    ( ) , 
iii)    (   )     ( )     ( )    ( ∨  )     ( ) ∨    ( ), 

iv)   (  ( ))    ( )    (   ( ))     ( ), 
v)    ( )      ( ), 
vi)                ( )     ( )       ( )    ( )  

2.13. Remark 

Let     are two fuzzy sets in    ( ), then: 

a-    ( )      (   ), 
b-     ( )       (   ). 

Proof: a- It is straightforward.      b- It is straightforward. 

2.14. Definition [4,P.182-190] 

Let (   ) be a fuzzy topological space and let   be any fuzzy set in  ,   is called fuzzy pre open set 

if      (  ( )). The complement of a fuzzy pre open set is called fuzzy pre closed set. 

The family of all fuzzy pre open sets in   will be denoted by    ( ). 

2.15. Definition [2, P.131-139] 

A fuzzy set   in    ( ) is said to be pre quasi-neighborhood (pre q-nbd) of     ( ) if and only if 

there exists      ( ) such that         . 

2.16. Definition [6, P.303-312] 

A fuzzy set   in    ( ) is said to be fuzzy pre quasi-neighborhood (pre q-nbd ) of     ( ), if 
there is a fuzzy pre open set   in  , such that       . The family of all pre quasi-neighborhood of 

fuzzy point   is said to be the system of pre quasi-neighborhood of    and denoted by     

  
 . 

2.17. Proposition 

Let   be a fuzzy set in    ( ).  Then: 

iii) The fuzzy pre interior of  , denoted by     ( ) is the union of all pre open subsets of   

wich are contained in  .   

iv) The fuzzy pre closure of  , denoted by    ( ) is the intersection of all fuzzy pre closed 

subset of   contains  . 

2.18. Proposition [12, P.1601-1608] 

Let (   ) be a fuzzy topological space and      .Then: 

i-    ( )      ( )   , 

ii-      ( )    ( ), 
iii-   is a fuzzy pre closed iff    ( )   , 

iv-    (   ( ))     ( ), 
v- If             ( )     ( ), 

vi- ⋁    (  )     (⋁ (  )   )   , 

vii-       ( ) iff  ⋀           ( )     . 

2.19. Remark 
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If     are fuzzy pre open sets, then   ⋀  is fuzzy pre open. 

Proof: It is clear. 

2.20. Remark [8,P.111-12] 

Let   be a fuzzy set in    ( ). Then   is a fuzzy pre open if and only if   is a fuzzy pre quasi-

neighborhood of its fuzzy points. 

2.21. Proposition  

Let   be a fuzzy set in    ( ). Then a fuzzy point      ( )  if and only if every fuzzy pre open 

    ( ), if       then     . 

Proof:  )Suppose that   be a fuzzy pre open set in   such that      and    ̃ . Then  (   ), 
but   (   ) (since     , then  (   )( ) ) and     is a fuzzy pre closed set in  . Thus 

     ( ). 
(⟸ Suppose that      ( ), then there exists a fuzzy pre closed set   in   such that    and  

   , therefor by (2.7.Proposition), we have       . Since   , then by (2.6.ii.Lemma), 

  ̃   . Hence      ( ) if      and    . 

2.22. Definition [8, P.111-121] 

In a    ( ), a mapping       ( ) is said to be a fuzzy net and denoted by * ( )    +,   is 

directed set. If  ( )     
  where    ,     and     (   -, then we shall denote it by *   

    

 + or simply  *   
 +. 

 2.23. Definition [8, P.111-121] 

A fuzzy net   *   
     + in   is called a fuzzy subnet of fuzzy net    *   

     + if and 

only if there is a mapping       such that: 

(a)      , that is     
     ( )

 ( )
 ,    . 

(b)     there is some    , such that  ( )      

A fuzzy sub net of a fuzzy net *   
     + denoted by *   ( )

 ( )
    +.  

2.24. Definition [8, P.111-121] 

Let   *   
     + be a fuzzy net in a fuzzy topological space (   ) and     , then: 

i-   is said to be eventually with   if and only if       such that    
          . 

ii-   is said to be frequently with   if and only if                 and    
   . 

2.25. Definition [8, P.111-121] 

Let   *   
     + be a fuzzy net in a fuzzy topological space (   ) and      ( ), then: 

(i)   is said to be convergent to    and denoted by  →  , if   is eventually with       

    

     is called a limit point of  . 

(ii)   is said to be has a cluster point    and denoted by     , if   is frequently with 

          
 

.  

 

 

2.26. Definition  

Let   *   
     + be a fuzzy net in a fuzzy topological space (   ) and      ( ). Then: 

(i)    is said to be p-convergent to    (denoted by:  
        
→    ), if   is eventually with 

          
  
     is called a pre limit point of  . 
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(ii)   is said to be called has a fuzzy p-cluster point    (denoted by:    
 
  ), if   is frequently 

with           
  

.  

2.27. Definition [8, P.111-121] 

A fuzzy filterbase on   is a non-empty subset   of    such that: 

(1)     , 

(2)  If    ,    , then      such that      ⋀    

2.28. Definition [8, P.111-121] 

A fuzzy point    in a fuzzy topological space (   ) is said to be a fuzzy pre cluster point of a fuzzy 

filterbase   on   if       ( ), for all    . 

 

2.29. Definition  

A fuzzy topological space (   ) is called fuzzy pre Hausdorff or pre   -space if and only if for every 

pair of distinct fuzzy points   ,    in  , there exist       

  
,       

  
 such that  ⋀   . 

2.30. Definition  

Let   be a fuzzy set in a        fuzzy topological space (   ), then    * ⋀     + is called a 

fuzzy relative topology and (    ) is said to be a fuzzy  topological subspace of  . 

2.31. Theorem 

In a fuzzy topological space (   ), if   is a fuzzy open set, then  ⋀   ( )    ( ⋀ ) for any fuzzy 

set   in  . 

Proof: Let      ( ) and   is a fuzzy open in  . If      ⋀   ( ), then           ⋀    
         . Since  ⋀  is fuzzy open set, therefore  ⋀( ⋀ )    and      ( ⋀ ). 
Hence  ⋀   ( )    ( ⋀ ). 

2.32. Definition  

In a fuzzy topological space (   ), if      , then a fuzzy set   is called fuzzy pre open in   if 

there exist a fuzzy pre open   in   such that    ⋀   

2.33. Proposition  

In a fuzzy topological space (   ), if      , then a fuzzy set   is a fuzzy pre open in  , if    is 

a fuzzy pre open in  . 

Proof: We have    ⋀ , but   is fuzzy pre open in  . Hence, by (2.32.Definition)   is a fuzzy pre 

open in  . 

2.34. Proposition  

Let      , where (   ) is a fuzzy topological space and   is a fuzzy pre open in  . Then   is a 

fuzzy pre open in   if and only if    ⋀ , where S is a fuzzy open in  .  

Proof:  ) To prove   is a fuzzy pre open in  , we must prove  ⋀  is a fuzzy pre open in   ( i.e. 

 ⋀     (  ( ⋀ ))). 

Since  ⋀   ⋀    (  ( ))     (   ( ))⋀    (  ( ))     (    ( )⋀   ( )) 

 by (2.31.Theorem)     (  (   ( )⋀ ))     (  ( ⋀ ). Thus  ⋀  is pre open in  . Hence   is 

a fuzzy pre open in   by (2.33.Proposition). 

(  We have    ⋀ , since   is fuzzy open in  , then   is a fuzzy pre open. Hence by 

(2.30.Definition)   is a fuzzy pre open in  . 

2.35. Definition [2,P.131-139] 

A family   of fuzzy sets has the finite intersection property if and only if the intersection of the 

members of the each finite subfamily of   is a non-empty.  

2.36. Definition [8,P.111-121]    

A family   of a fuzzy sets in a fuzzy topological space(   ) is  said to be a fuzzy pre open cover of a 
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fuzzy set   if and only if   ⋁*     + and each member of   is pre open fuzzy set. A sub cover 

of   is a sub family which is also cover.  

2.37. Definition [5, P.39-49] 

In a fuzzy topological space (   ), a fuzzy set   is said to be fuzzy dense if there exists no fuzzy 

closed set   in  , such that    . That is,   ( )   . 

 

2.38. Definition [5, P.39-49] 

In a fuzzy topological space (   ), a fuzzy set   is said to be fuzzy pre dense if there exists no fuzzy 

pre closed set   in  , such that    . That is,   ( )   . 

2.39. Theorem   

Let (   ) be a fuzzy topological space. A fuzzy set   in   is a fuzzy dense if and only if it is a fuzzy 

pre dense, with    ( )   . 

Proof: ) Suppose that   is a fuzzy dense in  . Let     ( ) and     ( ). but      ( ). So 

  (     ( )) by (2.13.Remark) implies that       (   ) (   )   (   ). So 

  (     ( )) by (2.13.Remark). Thus,      ( ) so there is no fuzzy open   (containing   ) 

such that    , and so  ⋀   , a contradiction that   is a fuzzy dense set. Therefor      ( ) 
and      ( ). Hence,    ( )   . 

(⟸It is straightforward. 

2.40. Definition [6, P.303-312] 

A fuzzy topological space (   ) is said to be fuzzy pre regular if for each fuzzy point    and each 

fuzzy pre q-nbd   of   , there exists a fuzzy pre open set   in   such that         ( )   . 

2.41. Theorem  

In a    ( ),      ( ) and     . Then       ( ) if and only if there exists a fuzzy net in   

pre converge to    . 

Proof:  ) Suppose that       ( ), then for every       

  
there is 

   ( )={
   (  )                 

 
                          

           such that  (  )   (  )   . 

Notice that (    
  
  ) is directed set, therefor       

  
   ( ) is a fuzzy net in   and defined as 

 ( )    
 . To show that     . Let       

  
, then there is     such that      and    . 

Since   (  
 )    

    and     then  (  
 )    

   . Thus   
   . Let    , therefor    . 

Since  (  
 )    

    and    , then  (  
 )    

   . Thus   
   ,     . Therefor 

 
        
→    . 

(⟸ Suppose that *   
     + is a fuzzy net in   where (   ) is directed set, such 

that    
 

        
→    .Then for every      

  
, there exists     such that    

    for all    . Since 

   
   , then by (2.7.Proposition)    

  ̃  , thus     and       ( ). 

 

 

 

2.42. Lemma 

In a      , a fuzzy point   is a fuzzy pre cluster point for the fuzzy net * ( )    + with a directed 

set (   ) if and only if it has a fuzzy subnet which fuzzy pre converges to   . 
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Proof:  ) Suppose that a fuzzy net *   
     + has the pre cluster point     Let     

  
 be the 

collection of all fuzzy pre q-nbd of   . Thus, for any       

  
 there exists *   

 + such that *   
 +  . 

All ordered pairs (   )  with the above character forms the set  , that means           
  
 and  

*   
 +  . Now, we will define a relation     on   given by (   ) (   ) iff     in D and   

 , then  (   ) is a directed set and it is clear to see that       ( ) given by  (   )  *   
 + is 

a fuzzy subnet of the assumed fuzzy net.   is a pre q-nbd of    thus, there exists     and therefor 

*   
 +   when (   )   . Now, (   )    and  (   ) (   )     (   )  *   

 +   and 

     (   )  . Hence   is pre converges to   . 

(⟸ Suppose that a fuzzy net *   
     + has not a pre cluster point. Therefor, for every fuzzy point 

   there exists a pre q-nbd of    such that    
  ̃  for all    ,   . Hence, clear no fuzzy net pre 

converge to   . 

2.43. Proposition  

In a fuzzy pre Hausdorff space  , any pre convergent fuzzy net has a unique limit point . 

 Proof: ) Suppose that    
  is a fuzzy net on   with directed set  , such that     

 
        
→    , 

   
 

        
→     and    . Since    

 
        
→    , we have        

  
      , such that *   

 +   ,     

  . Also,    
 

        
→    , we have        

  
       such that,  *   

 +  ,       . Now, then 

there exists    , such that,     and      then  *   
 + ( ⋀ ),     . Therefore 

 ⋀   . Hence   is not fuzzy pre Hausdorff.  

(⟸ Let   be a not fuzzy pre Hausdorff space, then there is         ( ), such that     and 

 ⋀   ,        
  

,        

  
. Put        

  
 * ⋀        

  
     

  
+. Therefore           

  
, 

there exists     , then *  +      

  is a fuzzy net in  . To prove that    
        
→     and   

        
→    . Let 

      
  

, then          

  
 (since    ⋀   ). Thus          , thus   

        
→     and 

  
        
→    . Hence, *  +      

  has two fuzzy limit point. 

2.44. Definition 

A fuzzy space   is called fuzzy precompact if every fuzzy pre open of cover   has finite sub cover. 

2.45. Theorem [8, P.111-121] 

 A fuzzy topological space (   ) is a fuzzy compact if and only if every fuzzy filter base on   has a 

fuzzy cluster point. 

 

3. Fuzzy precompact space 

3.1. Theorem  

A fuzzy topological space (   ) is a fuzzy precompact, if and only if any collection {     }of fuzzy 

pre closed sets in   having the finite intersection property. 

Proof:  ) Suppose that   is fuzzy precompact space and {     }is collection of fuzzy pre closed 

sets of   with the finite intersection property. To show  {     } has a non-empty intersection (i.e to 

show ⋀       ). 

Assume that ⋀       , then ⋁   
      and each   

  is fuzzy pre open set, thus there exist 

          such that ⋁    
  

      by (2.44.Definition), therefor ⋀    
    

    which is contradiction 

and therefor    ⋀       . 
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(⟸ Conversely, let {     }be a fuzzy pre open cover of   and every collection of fuzzy pre closed 

sets in   with the finite intersection property has a non-empty. To show that   is a fuzzy precompact 

space. Since ⋁   
     , then ⋀   

      and each   
  is fuzzy pre closed set which implies that 

{  
    }collection of fuzzy pre closed sets with empty intersection and so by hypothesis this 

collection does not have the finite intersection property. Thus, there exist a finite member of fuzzy 

sets    
 ,          , such that ⋀    

    
   , which implies ⋁    

  
      and {   

           +is 

finite sub cover of the space   belong to a fuzzy pre open cover {     }. Hence,   is a fuzzy 

precompact space. 

3.2. Theorem  

A fuzzy topological space (   ) is a fuzzy precompact, if and only if for every fuzzy filterbase on   

has a fuzzy pre cluster point. 

Proof:  )Suppose that   is a fuzzy precompact and    *      + is a fuzzy filterbase on   

having no fuzzy pre cluster point. Let    , then for each    (                   ), there 

exists a pre q-nbd   
  of    

 

  ( ) and   
    such that   

  ̃  
 . Now,   

 ( )       , since we 

have   
 ( )   , where   

  ⋁*  
     +. Therefore   *  

         + is a fuzzy pre open 

cover of  . When   is fuzzy precompact, then there exists    
      

        
   of   such that 

⋁    
   

     . If     such that      
      

        
  , then   ̃  Consequently,      and this 

contradicts the definition of a fuzzy filterbase.  

(⟸ Suppose that every fuzzy filterbase have a fuzzy pre cluster point. To prove that   is fuzzy 

precompact. Acollection of fuzzy pre closed sets   *      + having finite intersection property. 

Now, the set of finite intersections of members of   forms a fuzzy filterbase   on  . By assumed 

condition   has a fuzzy pre cluster point, which is   . Thus,   ⋀       (  )  ⋀      and 

⋀ *     +   . Hence by (3.1.Theorem),   is a fuzzy precompact.  

3.3. Theorem  

A fuzzy topological space (   ) is a fuzzy pre compact if and only if for every fuzzy net in   has a 

fuzzy pre cluster point. 

Proof :  ) Suppose that   is a fuzzy precompact and * ( )    + is a fuzzy net in   which has no 

pre cluster point. Thus, for any fuzzy point   , there is a fuzzy pre q-nbds    
  of    and an     

    

such that, for each    ,    
  ̃   

  with       
 . Since       

  then   
   ,         

 . Let   

be a symbol for the collection of all    
  and    is symbol  for all fuzzy points   ( ). Now, to shwo 

that   *     
     

   +  is a family of fuzzy pre closed sets in   having finite intersection 

property. At first notice that there exists       
       

          
   such that   

  ̃    
 for   

         and for all     (   ), that means      ⋁     
  

    =⋀ (      
 ) 

    for all    . 

Hence ⋀*       
            +   . Since   is a fuzzy precompact, then by (3.1.Theorem), there 

is      ( ) such that,    ⋀{     
     

   }    ⋁*   
     

   +. Therefor,    1-    
  , 

for all    
    and         

 , that means    ̃   
 . Since, for each fuzzy point   , there is 

   
     Such that       

 , then we  get a contradiction. 

(⟸ By (3.2.Theorem) we prove the converse, since every fuzzy filterbase on   has a fuzzy pre cluster 

point. Let   be a fuzzy filterbase in  , then for each      , we can select      ( ) such that 

    . Let   *      + with the relation "" be defined as follows       if and only if        

      in  , for        . Thus (  , ) is directed set. Ttus,   is a fuzzy net when ( , ) is 

directed set for its. From assumption,   has a cluster point   . Therefor, for every fuzzy pre q–nbd   

of    and for each    , there is     with     such that     . As       . It follows that 

    for each    , then by (2.21.Proposition),       ( ). Hence    is a fuzzy pre cluster point of 

 . 
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3.4. Corollary  

A fuzzy topological space (   ) is a fuzzy precompact if and only if for every fuzzy net in   has a 

pre convergent  fuzzy subnet. 

Proof : By (2.42. Lemma) and (3.3. Theorem). 

3.5. Proposition  

Let (   ) be a fuzzy topological space. If   and   are two Fuzzy precompact in  , then  ∨   is also 

fuzzy precompact. 

Proof: Suppose that {     } is a fuzzy pre open cover of  ∨  , then  ∨   ⋁   
 

  . Since       

   ∨   and    ∨  , thus {     } is a fuzzy pre open cover of   and fuzzy pre open cover of 

 . But   and   are two fuzzy precompact sets, thus there exists a finite sub cover {             } of 

{     } which covering  and a finite sub cover {             } of {     } which covering   

such that   ⋁    
  

    and   ⋁    
  

   , therefor,  ∨   ⋁    
    

     Hence  ∨   is fuzzy 

precompact. 

3.6. Proposition  

Every fuzzy precompact space is a fuzzy compact. 

Proof: Suppose that   {     } is a fuzzy open cover of fuzzy space   and   ⋁     . But, 

every fuzzy open set in   is a fuzzy pre open and   is a fuzzy precompact space, then there exists 

     ,…,     such that   ⋁    
 
   , thus   is fuzzy compact space. 

3.7. Corollary  

Let (   ) be a fuzzy topological space. If   is a fuzzy precompact in  , then   is fuzzy compact. 

Proof: It is straightforward. 

3.8. Proposition 

Let (   ) be a fuzzy topological space. If   is a fuzzy set in   and    , then   is a fuzzy 

precompact in   if and only if   is a fuzzy precompact in  . 

Proof:  ) Suppose that   {     } is a fuzzy cover of   by pre open sets in  . By 

(2.32.Definition),       ⋀  for each   , where    is a fuzzy pre open in  . Thus   {     } is a 

fuzzy cover of   by pre open sets in  , but   is a fuzzy pre compact in  , so there exists      ,…,      
such that    ⋁ ( 

      ⋀ )  ⋁ ( 
      ). Hence,   is a fuzzy precompact in  . 

(⟸ It is straightforward. 

3.9. Proposition 

Let (   ) be a fuzzy topological space. If   is a fuzzy pre open set in   and    , then   is a fuzzy 

compact in   if and only if   is a fuzzy precompact in  . 

Proof:  ) Suppose that   {     } is a fuzzy pre open cover of   in  . By (2.34.Proposition), 

     ⋀  for each   , where    is a fuzzy open in  . Thus   {     } is a fuzzy cover of   by 

fuzzy open sets in  , but   is a fuzzy compact in  , so there exists      ,…,     such that               

  ⋁ ( 
      ⋀ )  ⋁ ( 

      ). Hence,   is a fuzzy precompact in  . 

(⟸ Suppose that   {     } is a fuzzy open cover of   in  .Then   {  ⋀    }  is a fuzzy 

cover of  . But,    is a fuzzy open in   for all    and   is a fuzzy pre open in  , then by 

(2.34.Proposition)   ⋀  is a fuzzy pre open in   for all    . By assumption   is a fuzzy precompact 

in  , then there exists      ,…,     such that   ⋁ ( 
      ⋀ )  ⋁ ( 

      ). Hence,   is a fuzzy 

compact in  . 

3.10. Proposition  

Let (   ) be a fuzzy topological space. If   is a fuzzy pre open set in   and    , then   is a fuzzy 

compact in   if and only if   is a fuzzy compact in  . 

Proof: By (3.8. Proposition), (3.9. Proposition) and (3.7. Corollary). 
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3.11. Proposition  

Let (   ) be a fuzzy topological space. If   is a fuzzy set in   and    , then   is a fuzzy compact 

in   if   is a fuzzy compact in  . 

Proof: Suppose that   {     } is a fuzzy open cover of   in  . Since    and     , then   

  {  ⋀    }  is a fuzzy cover of  . But,    is a fuzzy open in   for all   , then by (2.30. 

Definition)   ⋀  is a fuzzy open in   for all    , by assumption   is a fuzzy compact in  , so there 

exists      ,…,     such that   ⋁ ( 
      ⋀ )  ⋁ ( 

      ). Hence,   is a fuzzy compact in  . 

3.12. Proposition  

A fuzzy pre closed subset of a fuzzy precompact space (   ) is a fuzzy precompact. 

Proof: Suppose that   is a fuzzy pre closed subset of a fuzzy precompact space   and {     } is a 

fuzzy open cover of   in  , which implies that   ⋁   
 

  . Thus,   has a fuzzy pre open cover 

{     }. Since   is pre open, then the family {     } ⋁ 
  is a fuzzy pre open cover of  , which is 

a fuzzy recompact space. Thus there exists             such thst ⋁    
  

   ⋁*  +  1. Since  

{               
 } is finite subcover of   and    ⋁    

  
   ⋁*  +, but     , therefor            

  ⋁    
  

   . Hence,   is a fuzzy precompact. 

 

3.13. Corollary  

A fuzzy closed subset of a fuzzy precompact space (   ) is fuzzy pre compact. 

Proof: It is clear. 

3.14. Corollary  

A fuzzy closed subset of a fuzzy pre compact space (   ) is fuzzy compact. 

Proof: It is clear. 

3.15. Theorem  

Every fuzzy precompact subset of a fuzzy pre Hausdroff  topological space is fuzzy pre closed. 

 Proof: Suppose that       ( ), then by (2.41.Theorem) there exists a fuzzy net    
  such that 

   
 

        
→    . Since   is fuzzy precompact and   is fuzzy pre Hausdroff space, then by (3.4.Corollary) 

and (2.43.Proposition), we have     which implies that    ( )   . Hence    is fuzzy pre closed 

set. 

3.16. Theorem   

In any fuzzy space, the intersection of a fuzzy precompact set with a fuzzy pre closed set is fuzzy 

precompact. 

Proof: Suppose that  ,   are two fuzzy sets such that   is a fuzzy precompact and   is a fuzzy pre 

closed. We must prove that  ⋀  is a fuzzy precompact. Let    
  is fuzzy net in  , since   is fuzzy 

precompact, then by (3.4.Corollary),    
 

        
→     for some      ( ) and by (2.41.Proposition), 

     ( ). Since   is fuzzy pre closed, then    . Hence     ⋀  and. Thus  ⋀  is fuzzy 

precompact. 

3.17. Definition  

In a      , a fuzzy set   is said to be precompactly fuzzy pre closed if   ⋀  is fuzzy precompact, for 

every fuzzy precompact set   in  .  

3.18. Proposition  

Every fuzzy pre closed subset of a fuzzy topological space   is precompactly fuzzy pre closed.  

Proof: Suppose that   is a fuzzy pre closed subset of a fuzzy space   and let   be a fuzzy precompact 

set. Then by (3.16.Theorem),  ⋀  is a fuzzy precompact. Thus   is a precompactly fuzzy pre closed 

set . 
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3.19. Theorem  

In a fuzzy pre Hausdorff space  , a fuzzy set   is precompactly fuzzy pre closed if and only if   is 

fuzzy pre closed. 

Proof:  ) Suppose that   is a precompactly fuzzy pre closed and        ( ). Then, by 

(2.41.Proposition), there is a fuzzy net     
  in  , such that    

 
           
→     , then by (3.4.Corollary),     

  *    
    + is a fuzzy precompact set. But   is precompactly fuzzy pre closed, then  ⋀  is a 

fuzzy precompact set, also   is a fuzzy pre Hausdroff space by assumption, then by 

(3.16.Theorem), ⋀  is fuzzy pre closed. Since     
 

           
→      and    

   ⋀ , then by 

(2.41.Theorem)     ⋀ , so     . Therefore,    ( )   . Hence   is a fuzzy pre closed set. 

 (   By (3.18. Proposition).  

3.20. Theorem  

A fuzzy pre regular space   is a fuzzy precompact if and only if there exist a fuzzy dense   of   such 

that any fuzzy filterbase in   have a fuzzy pre cluster point in  , with    ( )   . 

Proof:  ) By (3.2.Theorem). 

(⟸ we prove if there exist a fuzzy dense   in   such that any fuzzy filterbase in   have a fuzzy pre 

cluster point in  , then   is a fuzzy precompact. Let   be a fuzzy dense set and   is not fuzzy 

precompact, then there exist a cover {     }of fuzzy pre open set in   with no finite fuzzy subcover. 

Since   is a fuzzy pre regular, then there exists fuzzy pre open cover  *     + of   such that for each 

  there exist   such that    (  )    . By (2.39.Theorem)      ( ). Now, *     + is a fuzzy pre 

open cover of    ( ) with no finite subcover. Therefore, the collection   * ⋀(  ⋁   )    

       + is a fuzzy filterbase in  . But,   has a fuzzy pre cluster point   . Then       ( ) 
implies        for some   and so    is a fuzzy pre open set containing   . Then ( ⋀(    ))⋀   
  contradicts the fact that    is a fuzzy pre cluster point of  . Hence    ( )     is a fuzzy 

precompact. 

3.21. Corollary  

 A fuzzy pre regular space   is a fuzzy compact if and only if there exist a fuzzy dense   of   such 

that any fuzzy filterbase in   have a fuzzy pre cluster point in  , with    ( )   . 

Proof:  ) By (2.45. Theorem) and (2.39. Theorem). 

 (⟸ By (3.20.Theorem) and (2.7. Corollary). 
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1. Introduction. 

Rough set theory was introduced by Zdzislow Pawlak in 1982 [1]. He presented the 

conception of rough set inherently as a mathematical method to manipulate inexactness, uncertainty 

and vagueness in datagram analyses. This theory is an stretch of set theory for the studying of 

clearheaded systems diacritical by inadequate and incompletely information. The theory has found 

implementation in many domains, such as medicine, pharmacy, engineering and others. Furthermore, 

the prospered implementing of rough set theory in a diversity of problems has abundantly shown its 

benefit. A specific using of the theory  is that property depreciating in databases. Giving a dataset with 

discretionary property weightings, it is tolerable to existing a subset of the original property that are 

the bulk informative. Rough set theory treated with the approximating of an arbitrarily subset of 

universe by depending on two observable or defined subsets, these subsets are named lower 

approximation and upper approximations, by utilization the terminology of these subsets in rough set 

theory knowing furtive in info regimes may be unraveled and manifested in the format of resolution 

norms [2]. We built on some of the results in [3], [4], [5], [6], [7], [8] and [9]. 

2. Preliminaries 

In this part, we present some of essential notions in rough theory and peculiarities of lower 

approximation and upper approximation which are useful for our study.    

Definition 2.1. [10] Let X be non-empty set and   be a collection of subsets of P(X), the collection   is 

said to be a topology on X if   satisfies:  

(a) X     ,      .   

(b)   is closed within finite intersection.  

(c)   is closed within arbitrarily union.  

If   is a topology on X, then the pair (X,  ) is called a topological space. in this space, the 

subsets of X which belong to   are dubbed open sets, while the closed sets is represented by the 

supplement of the subsets of X which belong to   (that is the complement of open sets). 

mailto:samahsarmad0@gmail.com
mailto:yoyayuosif@yahoo.com
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The approximation of lower and upper of a set is the basic conception of rough set theory, the 

approximation of space is the formalized categorization of acquaintance regarding the interesting 

domain. The partitioning represents a topological space, that  topological space named approximation 

space and symbolized by K = (X, R), so that X is a set named space or universe while R   X   X is 

represented by an indescribable equivalence relation [2]. In the relation R, the equivalence classes are  

savvied blocks, grained or primary sets too. The equivalence class which includes x   X denoted by 

Rx. 

Definition 2.2. [11] Let K = (X, R) be an approximation space and S is a subset of X, then the lower 

and the upper approximation of S denoted consecutively by L(S), U(S) and defined by 

L(S) = {x   X; Rx   S}, U(S) = {x   X; Rx   S   }. 

According to the lower and upper approximations of a subset S of X. X can be dichotomizes in 

to three discrete areas, positive area (briefly POSR(S)),  negative area (briefly NEGR(S)) and boundary 

area (briefly BR(S)), where they are defined by 

POSR(S) = L(S), NEGR(S) = X   U(S), BR(S) = U(S)   L(S)  

If K = (X, R) be an approximation space, where S and F  be two subsets of the universe X, the 

following properties of the Pawlakʼs rough sets [1, 12]. 

(L1) L(S) = [U(S
ϲ
)]
ϲ 

(U1) U(S) = [L(S
ϲ
)]
ϲ 

(L2) L(X) = X (U2) U(X) = X 

(L3) L(S   F) =L(S)   L(F) (U3) U(S   F) = U(S)   U(F) 

(L4) L(S   F)   L(S)   L(F) (U4) U(S   F)   U(S)   U(F) 

(L5) If S    F then, L(S)   L(F) (U5) If S    F then, U(S)   U(F) 

(L6) L( ) =    (U6) U( ) =   

(L7) L(S)   S (U7) S   U(S) 

(L8) L(L(S)) = L(S) (U8) U(U(S)) = U(S) 

(L9) L(U(S)) = L(S)  (U9) U(L(S)) = U(S) 

Definition 2.3. [1] Let  K = (X, R) be an approximation space and S   X then the accuracy measure of 

E is symbolized by the symbol ΛR(S)  and is predefined by 

ΛR(S)     
  ( ) 

  ( ) 
 , wherein |U(S)|   . 

Also, the accuracy measure dubbed accuracy of approximation. 

Definition 2.4. [13] A directed graph (briefly d.g.) express a pair D = (V(D), E(D)) such that V(D) 

named vertex set which is non-empty set and E(D) named edge set represented by ordered pairs of 

elements of V(D). 

Definition 2.5. [14] A subdigraph Q = (V(Q), E(Q)) of a directed graph D = (V(D), E(D)) written Q   

D if V(Q)   V(D) and E(Q)   E(D).   
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3. Generalized Rough Digraphs and Related Topologies  

In this section, we present some of definitions and propositions  anent a new types of 

topologies and the implication among them. Also we give many results, examples were provided. 

Definition 3.1. Let D = (V(D), E(D))  is a finite digraph. The J-degree of  , where     V(D), for all J   

{O, I,  ,  , <O>, <I>, < >, < >} defined by 

(a) O-D( ) = {u   V(D); ( , u)   E(D)},     

(b) I-D( ) = {u   V(D); (u,  )   E(D)}, 

(c)  -D( ) = O-D( )   I-D( ), 
(d)  -D( ) = O-D( )   I-D( ), 
(e) <O>-D( ) =         ( ) O-D( ), 

(f) <I>-D( ) =         ( ) I-D( ),  

(g) < >-D( ) = <O>-D( )   <I>-D( ), 
(h) < >-D( ) =  <O>-D( )   <I>-D( ).  

Definition 3.2. Let D = (V(D), E(D)) is a finite digraph and   : V(D)   P(V(D)) be a mapping which 

assigns for all ɍ   V(D) its J-degree in P(V(D)). The pair (D,   ) is namable J-degree space (concisely 

J-DS). 

Theorem 3.3. If (    ) is J-DS, then the a family 

  =  * ( )   ( ); for each ɍ   ( ), J-D(ɍ)   ( )+, 

for all J   {O, I,  ,  , <O>, <I>, < >, < >} is a topology on D.  
Proof. For all J   {O, I,  ,  , <O>, <I>, < >, < >}. Clearly,   ( )      . 

Let         and ɍ    ( )    ( ), then ɍ   ( ) and ɍ   ( ), which implies that J-D(ɍ)  

 ( ) and J-D(ɍ)   ( ), therefore J-D(ɍ)     ( )   ( ) and then        .  

Let       for each    , and ɍ      (  ), which mean that there exists     I where ɍ    (   )   

   (  ), therefore J-D(ɍ)     (   )      (  ) this implies J-D(ɍ)      (  ) and so    (  ) 

   .     

Example 3.4. If D = (V(D), E(D)) is a finite digraph such that V(D) = {ɍ1, ɍ2, ɍ3, ɍ4}, E(D) = {(ɍ1, ɍ1), 

(ɍ1, ɍ4), (ɍ2, ɍ1), (ɍ2, ɍ3), (ɍ3, ɍ3), (ɍ3, ɍ4), (ɍ4, ɍ1)}. 

   ɍ1                              ɍ2 

  

 

                 Figure 1: digraph given in Example 3.4. 

                                   ɍ4                        ɍ3      

Then, O-D(ɍ1) = {ɍ1, ɍ4}, O-D(ɍ2) = {ɍ1, ɍ3}, O-D(ɍ3) = {ɍ3, ɍ4}, O-D(ɍ4) = {ɍ1}. 

I-D(ɍ1) = {ɍ1, ɍ2, ɍ4}, I-D(ɍ2) =   , I-D(ɍ3) = {ɍ2, ɍ3}, I-D(ɍ4) = {ɍ1, ɍ3}. 
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 -D(ɍ1) = {ɍ1, ɍ4},  -D-( ɍ2) =  ,  -D(ɍ3) = {ɍ3},  -D(ɍ4)  = {ɍ1}.   

 -D(ɍ1) = {ɍ1, ɍ2, ɍ4},  -D(ɍ2) = {ɍ1, ɍ3},  -D(ɍ3) = {ɍ2, ɍ3, ɍ4},  -D(ɍ4) = {ɍ1, ɍ3}. 

<O>-D(ɍ1) = {ɍ1}, <O>-D(ɍ2) =  , <O>-D(ɍ3) = { ɍ3}, <O>-D(ɍ4) = {ɍ4}. 

<I>-D(ɍ1) = {ɍ1}, <I>-D(ɍ2) = {ɍ2}, <I>-D(ɍ3) = {ɍ3}, <I>-D(ɍ4) = {ɍ1, ɍ2, ɍ4}. 

< >-D(ɍ1) = {ɍ1}, < >-D(ɍ2) =  , < >-D(ɍ3) = {ɍ3}, < >-D(ɍ4) = {ɍ4}. 

< >-D(ɍ1) = {ɍ1}, < >-D(ɍ2) = {ɍ2}, < >-D(ɍ3) = {ɍ3}, < >-D(ɍ4) = {ɍ1, ɍ2, ɍ4}. 

   = {V(D),  , {ɍ1, ɍ4}, {ɍ1, ɍ3, ɍ4}},    = {V(D),  , {ɍ2}, {ɍ2, ɍ3}},    = {V(D),  , {ɍ2}, {ɍ3}, {ɍ1, ɍ4}, 

{ɍ2, ɍ3}, {ɍ1, ɍ2, ɍ4}, {ɍ1, ɍ3, ɍ4}},    = {V(D),   },      = P(V(D)),      = {V(D),  , {ɍ1}, {ɍ2}, {ɍ3}, 

{ɍ1, ɍ2}, {ɍ1, ɍ3}, {ɍ2, ɍ3}, {ɍ1, ɍ2, ɍ3}, {ɍ1, ɍ2, ɍ4}},       = P(V(D)),      = {V(D),  , {ɍ1}, {ɍ2}, {ɍ3}, 

{ɍ1, ɍ2}, {ɍ1, ɍ3}, {ɍ2, ɍ3}, {ɍ1, ɍ2, ɍ3}, {ɍ1, ɍ2, ɍ4}}. 

Remark 3.5. From the above results, the implication among different topologies    are explained in the 

following diagram (where   implies   ) 

                                                                                                                      

                                                                                                                        

                                                                                                                     

Diagram 1 

By using the above topologies, we present eight methods for approximation rough diagraphs 

using interior and closure of the topologies  J for all J   {O, I,  ,  , <O>, <I>, < >, < >}.  

Definition 3.6. Let (D,   ) be J-DS. The subgraph Q   D is called J-open graph if V(Q)    J. While 

the complement of J-open graph is called J-closed graph. The family of every J-closed graphs of a J-

DS is predefined by: 

     {V(K)   V(D); [V(K)]
ϲ    }. 

Definition 3.7. Let (D,   ) be J-DS and Q   D. The J-lower approximation of Q and J-upper 

approximation of Q are predefined consecutively by 

LJ(Q) =    {V(M)     : V(M)   V(Q)} = J-interior of Q. 

UJ(Q) =    {V(M)     : V(Q)   V(M)} = J-closure of Q. 

Definition 3.8. Let (D,   ) be J-DS and Q   D. The, J-positive, J-negative and J-boundary areas of Q 

are defined as 

 POSJ(V(Q)) = LJ(V(Q)), NEGJ(V(Q)) = V(D)   UJ(V(Q)), 

BJ(V(Q)) = UJ(V(Q))   LJ(V(Q)) 

Definition 3.9. Let (D,   ) be J-DS. The subgraph Q is dubbed J-exact (definable) graph if 
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LJ(V(Q)) = UJ(V(Q)) = V(Q). 

Otherwise is called J-rough graph. 

Definition 3.10. Let (D,   ) is J-DS. The J-accuracy of the approximation of     is predefined by 

ɅJ( ( )) = 
   ( ( ))  

   ( ( )) 
 , where |  ( ( )|   . 

Remark 3.11. Clear that     ɅJ(V(Q))    and Q is  J-exact graph if BJ(V(Q)) =   and ɅJ(V(Q))   . 

Otherwise Q is J-rough. 

Remark 3.12. From above results, we have a concluding that using of     in construction the 

approximations of graphs is minutest than   ,    and   . Also the using  of      in construction the 

approximations of graphs is minutest than     ,      and     . Moreover, the topologies    and 

     are not necessarily comparable. 

Now, some properties of the operators J-lower approximation and J-upper approximation, 

will be presented in the next proposition.              

Proposition 3.13. If (D,  J) is J-DS and M, Q   D. Then 

(L1) LJ(V(Q) = [UJ(V(Q
ϲ
))]

ϲ
 (U1) UJ(V(Q)) = [LJ(V(Q

ϲ
))]

ϲ
 

(L2) LJ(V(D)) = V(D), LJ( ) =   (U2) UJ(V(D)) = V(D), UJ( ) =   

(L3) If V(M)   V(Q) then, 

LJ(V(M))    LJ(V(Q)) 

(U3) If V(M)   V(Q) then, 

UJ(V(M))    UJ(V(Q)) 

(L4) LJ(V(M)   V(Q)) =  

LJ(V(M)   LJ(V(Q)) 

(U4) UJ(V(M)   V(Q))    

UJ(V(M))   UJ(V(Q)) 

(L5) LJ(V(M)   V(Q)   

 LJ(V(M))   LJ(V(Q)) 

(U5) UJ(V(M)   V(Q)) =  

UJ(V(M))   UJ(V(Q)) 

(L6) LJ(V(Q))    V(Q) (U6) V(Q)    UJ(V(Q)) 

(L7) LJ(LJ(V(Q))) = LJ(V(Q)) (U7) UJ(UJ(V(Q))) = UJ(V(Q)) 

 

Proof. The proof is evident, by employing peculiarities of closure and interior.   

The next example explains the comparison between our approach and approach in Yousif and 

Sara approach [15, 16]. 

Example 3.14. Let (D,   ) be J-DS where D = (V(D), E(D)), V(D) = {ɍ1, ɍ2, ɍ3, ɍ4} and E(D) = {(ɍ1, 

ɍ3), (ɍ2, ɍ2), (ɍ3, ɍ1), (ɍ4, ɍ1)} 
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ɍ1                           ɍ2 

 

   

ɍ4                             ɍ3 

Figure 2: Digraph given in Example 3.14 

 -D(ɍ1) = {ɍ3},  -D(ɍ2) = {ɍ2},  -D(ɍ3) = {ɍ1},  -D(ɍ4) =  . 

 -D(ɍ1) = {ɍ3, ɍ4},   -D(ɍ2) = {ɍ2},  -D(ɍ3) = {ɍ1},  -D(ɍ4) = {ɍ1}. 

<O>-D(ɍ1) = {ɍ1}, <O>-D(ɍ2) = {ɍ2}, <O>-D(ɍ3) = {ɍ3}, <O>-D(ɍ4) =  . 

<I>-D(ɍ1) = {ɍ1}, <I>-D(ɍ2) = {ɍ2}, <I>-D(ɍ3) = {ɍ3, ɍ4}, <I>-D(ɍ4) = {ɍ3, ɍ4} 

< >-D(ɍ1) = {ɍ1}, < >-D(ɍ2) = {ɍ2}, < >-D(ɍ3) = {ɍ3}, < >-D(ɍ4) =   . 

< >-D(ɍ1) = {ɍ1}, < >-D(ɍ2) = {ɍ2}, < >-D(ɍ3) = {ɍ3, ɍ4}, < >-D(ɍ4) = {ɍ3, ɍ4}. 

     = P(V(D)),      = P(V(D)). 

     = {V(D),  , {ɍ1}, {ɍ2}, {ɍ1, ɍ2}, {ɍ3, ɍ4}, {ɍ1, ɍ3, ɍ4}, {ɍ2, ɍ3, ɍ4}},      = {V(D),  , {ɍ1}, {ɍ2}, {ɍ1, 

ɍ2}, {ɍ3, ɍ4}, {ɍ1, ɍ3, ɍ4}, {ɍ2, ɍ3, ɍ4}}. 

From Yousif and Sara approach [15, 16], we have 

    = {V(D),  , {ɍ2}, {ɍ3}, {ɍ4}, {ɍ1, ɍ3}, {ɍ2, ɍ4}, {ɍ1, ɍ2, ɍ3}},      = {V(D),  , {ɍ4}, {ɍ1, ɍ3}, {ɍ2, 

ɍ4}, {ɍ1, ɍ2, ɍ3}, {ɍ1, ɍ2, ɍ4}, {ɍ1, ɍ3, ɍ4}}. 

 

Table 1: LM(V(Q)), UM(V(Q)), L<O>(V(Q)), U<O>(V(Q)), L<I>(V(Q)) and U<I>(V(Q)) 

 for all Q   D,           Exact graph and           Rough graph.   

P(V(D)) LM(V(Q)) UM(V(Q)) L<O>(V(Q)) U<O>(V(Q)) L<I>(V(Q)) U<I>(V(Q)) 

{ɍ1}   {ɍ1, ɍ3} {ɍ1} {ɍ1} {ɍ1} {ɍ1} 

{ɍ2}   {ɍ2} {ɍ2} {ɍ2} {ɍ2} {ɍ2} 

{ɍ3}   {ɍ3} {ɍ3} {ɍ3} 
  

{ɍ3, ɍ4} 

{ɍ4} {ɍ4} {ɍ4} {ɍ4} {ɍ4} 
  

{ɍ3, ɍ4} 

{ɍ1, ɍ2}   {ɍ1, ɍ2, ɍ3} {ɍ1, ɍ2} {ɍ1, ɍ2} {ɍ1, ɍ2} {ɍ1, ɍ2} 

{ɍ1, ɍ3} {ɍ1, ɍ3} {ɍ1, ɍ3} {ɍ1, ɍ3} {ɍ1, ɍ3} {ɍ1} {ɍ1, ɍ3, ɍ4} 

{ɍ1, ɍ4} {ɍ4} V(D) {ɍ1, ɍ4} {ɍ1, ɍ4} {ɍ1} {ɍ1, ɍ3, ɍ4} 

{ɍ2, ɍ3}   {ɍ1, ɍ2, ɍ3} {ɍ2, ɍ3} {ɍ2, ɍ3} {ɍ2} {ɍ2, ɍ3, ɍ4} 
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{ɍ2, ɍ4} {ɍ2, ɍ4} {ɍ2, ɍ4} {ɍ2, ɍ4} {ɍ2, ɍ4} {ɍ2} {ɍ2, ɍ3, ɍ4} 

{ɍ3, ɍ4} {ɍ4} V(D) {ɍ3, ɍ4} {ɍ3, ɍ4} {ɍ3, ɍ4} {ɍ3, ɍ4} 

{ɍ1, ɍ2, ɍ3} {ɍ1, ɍ2, ɍ3} {ɍ1, ɍ2, ɍ3} {ɍ1, ɍ2, ɍ3} {ɍ1, ɍ2, ɍ3} {ɍ1, ɍ2} V(D) 

{ɍ1, ɍ2, ɍ4} {ɍ1, ɍ2, ɍ4} V(D) {ɍ1, ɍ2, ɍ4} {ɍ1, ɍ2, ɍ4} {ɍ1, ɍ2} V(D) 

{ɍ1, ɍ3, ɍ4} {ɍ1, ɍ3, ɍ4} V(D) {ɍ1, ɍ3, ɍ4} {ɍ1, ɍ3, ɍ4} {ɍ1, ɍ3, ɍ4} {ɍ1, ɍ3, ɍ4} 

{ɍ2, ɍ3, ɍ4} {ɍ2, ɍ4} V(D) {ɍ2, ɍ3, ɍ4} {ɍ2, ɍ3, ɍ4} {ɍ2, ɍ3, ɍ4} {ɍ2, ɍ3, ɍ4} 

V(D) V(D) V(D) V(D) V(D) V(D) V(D) 

              

 

Remark 3.14. The above proposition and example can be considered as one of the difference between 

our approaches and Yousif and Sara approach  [15]. So, we can say that our approach is the actual 

circularization of Yousif and Sara approach because the numbers of exact graph in our approach more 

than Yousif and Sara approach.    

Definition 3.15. Let (D,   ) be J-DS. Then for each J   {O, I,  ,  , <O>, <I>, < >, < >}, the 

subgraph Q   D is named: 

(a) J-regular open (shortly RJ-open) if V(Q) = IntJ(ClJ(V(Q))) 

(b) J-pre-open(shortly PJ-open) if V(Q)   IntJ(ClJ(V(Q))) 

(c) J-semi-open(shortly SJ-open) if V(Q)   ClJ(IntJ(V(Q))) 

(d) αJ-open if V(Q)   IntJ(ClJ(IntJ(V(Q)))) 

(e) bJ-open if V(Q)   IntJ(ClJ(V(Q)))   ClJ(IntJ(V(Q))) 

(f) βJ-open if V(Q)   ClJ(IntJ(ClJ(V(Q))))  

  

Remark 3.16.  

(a) The above graphs are dubbed J-supra open graphs and the collection of J-supra open graphs of D 

symbolized by the symbol KJO(D) for every K = R, P, S, b, α, β. 

(b) The J-supra closed graphs is the complement of the J-supra open graphs where      the families of 

J-supra closed graphs of D symbolized by the symbol KJC(D) for every K = R, P, S, b, α, β.  

(c) The family αJO(D) idealizes a topology on D, furthermore, the J-supra interior and the J-supra 

closure idealizes the J-interior and the J-closure respectively. 

Remark 3.17. The implication between the topologies   (consecutively   ) and the precedent 

collection of J-supra open graphs (consecutively J-supra closed graphs) are explained the next 

diagram (where   implies  ) 

                         PJO(D)(PJC(D)) 

 RJO(D)(RJC(D))            (  )         αJO(D)(αJC(D))                          bJO(D)(bJC(D))       βJO(D)(βJC(D)) 

                     SJO(D)(SJC(D)) 
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Diagram 2 

By usage the J-supra open graph, we can present new causeways for approximation rough 

graphs using the J-supra interior and the J-supra closure for all topology of  J as the next definitions 

Definition 3.18. Let (D,  J) is J-DS and Q   D. Then for all  J   {O, I,  ,  , <O>, <I>, < >, < >} 

and K   {R, P, b, S, α, β}, the J-supra lower approximation of Q and J-supra upper approximation of 

Q are predefined consecutively by 

  
 (V(Q))

 
=

   {V(M)   KJO(D); V(M)   V(Q)} = J-supra interior of Q, 

  
 (V(Q)) =   {V(M)   KJC(D); V(Q)   V(M)} = J-supra closure of Q. 

Definition 3.19. Let (D,   ) be J-DS and Q   D. Then for all J   {O, I,  ,  , <O>, <I>, < >, < >} 

and K   {R, P, b, S, α, β}, the J-supra positive, J-supra negative and J-supra boundary areas of Q are 

predefined consecutively by 

    
 (V(Q)) =   

 (V(Q)),     
 (V(Q)) = V(D)     

 (V(Q)), 

  
 (V(Q)) =   

 (V(Q))     
 

 (V(Q)) 

Definition 3.20. Let (D,   ) be J-DS and Q   D. Then for all J   {O, I,  ,  , <O>, <I>, < >, < >} 

and K   {R, P, b, S, α, β}, the J-supra accuracy of the J-supra approximations of Q   D is predefined 

by 

   
 (V(Q))  = 

    
 ( ( ))   

   
 ( ( )) 

, where |  
 ( ( ))|   . 

It is clear that        
 (V(Q))   . 

The essential properties of the J-supra approximations are mentioned in the  next proposition. 

Proposition 3.21. Let (D,   ) be J-DS and  Q, M   D. Then, for every J   {O, I,  ,  , <O>, <I>, < >, 

< >} and K = R, P, b, S, α, β. 

(L1)    
 (V(Q)) = [  

 (V(Q
ϲ
))]

ϲ
, (U1)   

 (V(Q)) = [  
 (V(Q

ϲ
))]

ϲ
, 

(L2)   
 (V(D)) = V(D),   

 ( ) =  , (U2)   
 (V(D)) = V(D),   

 (V( ) =  , 

(L3) If V(Q)   V(M) then, 

                 
 (V(Q))     

 (V(M)), 

(U3) If V(Q)   V(M) then, 

          
 (V(Q))     

 (V(M)), 

(L4)   
 (V(Q))   V(M)) = 

         
 (V(Q))    

  (V(M)), 

(U4)   
 (V(Q)   V(M))   

          
 ((V(Q)     

 (V(M)), 

(L5)   
 (V(Q)   V(M))   (U5)   

 (V(Q)   V(M)) = 
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 (V(Q))     

 (V(M))    
 (V(Q))     

 (V(M)) 

(L6)   
 (V(Q))   V(Q), (U6) V(Q)     

 (V(Q)),   

(L7)   
 (  

 (V(Q))) =   
 (V(Q)). (U7)   

 (  
 (V(Q))) =   

 (V(Q)). 

Remark 3.21. The collections of all regular open graphs of  D, RJO(D), are smaller than the topologies 

 J, (that is RJO(D) idealized a special case of the topologies  J) hence we will not using it in our 

approaches. 

The J-supra approximations are extremely interesting in rough context because the it can 

assists in the detecting of unobserved information in datagram collected from real life 

implementations. Furthermore, the utilization of the J-supra formats can assists for more 

developments in the notional and implementations of rough graphs, because the boundary area will 

decreased or abolished by increasing the lower approximation and decreasing the upper 

approximation, as the following results explained.        

Proposition 3.22. Let (D,   ) be J-DS and Q    D. Then, for every J   {O, I,  ,  , <O>, <I>, < >, 

< >} and K   {R, P, b, S, α, β} such that K   R, 

LJ(V(Q))    
 (V(Q))   V(Q)     

 (V(Q))   UJ(V(Q)) 

Proof. For each J   {O, I,  ,  , <O>, <I>, < >, < >} and K   {R, P, b, S, α, β} such that K ≠ R, 

LJ(V(Q)) =   {V(M)    J; V(M)   V(Q)} 

                                    {V(M)   KJO(D); V(M)   V(Q)} since  J    KJO(D) 

                                =   
 (V(Q))                                                                                 (1)             

By Proposition (2)   
 (V(Q))   V(Q)     

 (V(Q))                                                    (2)                   

  
 (V(Q)) =   {V(F)    KJC(D); V(Q)   V(F)}  

                     {V(F)    ΓJ; V(Q)   V(F)} since KJC(D)   ΓJ  

                        = UJ(V(Q))                                                                                    (3) 

From (1), (2) and (3) we get LJ(V(Q))    
 (V(Q))   V(Q)     

 (V(Q))   UJ(V(Q)) 

Corollary 3.23. Let (D,   ) be J-DS and Q   D. Then, for each J   {O, I,  ,  , <O>, <I>, < >, < >} 

and K   {P, b, S, α, β} such that K ≠ R  

(a) BJ(V(Q))     
 (V(Q)), (b) ΛJ(V(Q)      

 (V(Q)) 

We will presenting the next example to explain the prominence of using J-supra conception in 

rough context and to expressing  the precedent results. 

Example 3.24. Let (D,   ) be J-DS where D = (V(D), E(D)), V(D) = {ɍ1, ɍ2, ɍ3, ɍ4} and E(D) = {(ɍ1, 

ɍ1), (ɍ1, ɍ2), (ɍ2, ɍ1), (ɍ2, ɍ2), (ɍ3, ɍ1), (ɍ3, ɍ2), (ɍ3, ɍ3), (ɍ3, ɍ4), (ɍ4, ɍ4)}. 
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ɍ1                                                  ɍ2 

 

 

ɍ4                                           ɍ3 

Figure 3: digraph given in Example 3.24. 

O-D(ɍ1) = {ɍ1, ɍ2}, O-D(ɍ2) = {ɍ1, ɍ2}, O-D(ɍ3) = V(D), O-D(ɍ4) = {ɍ4}. 

   = {V(D),  , {ɍ4}, {ɍ1, ɍ2}, {ɍ1, ɍ2, ɍ4}}, and    = {V(D),  , {ɍ3}, {ɍ3, ɍ4}, {ɍ1, ɍ2, ɍ3}}. 

We shall calculate the J-supra approximations for J = O and K = P, b, β.  

POO(D) = {V(D),  , {ɍ1}, {ɍ2}, {ɍ4}, {ɍ1, ɍ2}, {ɍ1, ɍ4}, {ɍ2, ɍ4}, {ɍ1, ɍ2, ɍ4}, {ɍ1, ɍ3, ɍ4}, {ɍ2, ɍ3, ɍ4}}. 

POC(D) = {V(D),  , {ɍ1}, {ɍ2}, {ɍ3}, {ɍ1, ɍ3}, {ɍ2, ɍ3}, {ɍ3, ɍ4}, {ɍ1, ɍ2, ɍ3}, {ɍ1, ɍ3, ɍ4}, {ɍ2, ɍ3, ɍ4}}. 

boO(D) = {V(D),  , {ɍ1}, {ɍ2}, {ɍ4}, {ɍ1, ɍ2}, {ɍ1, ɍ4}, {ɍ2, ɍ4}, {ɍ3, ɍ4}, {ɍ1, ɍ2, ɍ3}, {ɍ1, ɍ2, ɍ4} , {ɍ1, ɍ3, 

ɍ4}, {ɍ2, ɍ3, ɍ4}}. 

boC(D) = {V(D),  , {ɍ1}, {ɍ2}, {ɍ3}, {ɍ4}, {ɍ1, ɍ2},  {ɍ1, ɍ3}, {ɍ2, ɍ3}, {ɍ3, ɍ4}, {ɍ1, ɍ2, ɍ3}, {ɍ1, ɍ3, ɍ4},  

{ɍ2, ɍ3, ɍ4}}. 

βOO(D) = {V(D),  , {ɍ1}, {ɍ2}, {ɍ4}, {ɍ1, ɍ2}, {ɍ1, ɍ3}, {ɍ1, ɍ4}, {ɍ2, ɍ3}, {ɍ2, ɍ4}, {ɍ3, ɍ4}, {ɍ1, ɍ2, ɍ3}, 

{ɍ1, ɍ2, ɍ4}, {ɍ1, ɍ3, ɍ4}, {ɍ2, ɍ3, ɍ4}}. 

βOC(D) = {V(D),  , {ɍ1}, {ɍ2}, {ɍ3}, {ɍ4}, {ɍ1, ɍ2}, {ɍ1, ɍ3}, {ɍ1, ɍ4}, {ɍ2, ɍ3}, {ɍ2, ɍ4},  {ɍ3, ɍ4}, {ɍ1, ɍ2, 

ɍ3}, {ɍ1, ɍ3, ɍ4}, {ɍ2, ɍ3, ɍ4}}. 

Table 2:          Exact graph and           Rough graph. 

P(V(D)) 

   PO bO βO 

LO(V(Q)) UO(V(Q))   
 (V(Q))   

 (V(Q))   
 (V(Q))   

 (V(Q))   
 

(V(Q))   
 

(V(Q)) 

{ɍ1}   {ɍ1, ɍ2, ɍ3} {ɍ1} {ɍ1} {ɍ1} {ɍ1} {ɍ1} {ɍ1} 

{ɍ2}   {ɍ1, ɍ2, ɍ3} {ɍ2} {ɍ2} {ɍ2} {ɍ2} {ɍ2} {ɍ2} 

{ɍ3}   {ɍ3}   {ɍ3}   {ɍ3}   {ɍ3} 

{ɍ4} {ɍ4} {ɍ3, ɍ4} {ɍ4} {ɍ3, ɍ4} {ɍ4} {ɍ4} {ɍ4} {ɍ4} 
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{ɍ1, ɍ2} {ɍ1, ɍ2} {ɍ1, ɍ2, ɍ3} {ɍ1, ɍ2} {ɍ1, ɍ2, ɍ3} {ɍ1, ɍ2} {ɍ1, ɍ2} {ɍ1, ɍ2} {ɍ1, ɍ2} 

{ɍ1, ɍ3}   {ɍ1, ɍ2, ɍ3} {ɍ1} {ɍ1, ɍ3} {ɍ1} {ɍ1, ɍ3} {ɍ1, ɍ3} {ɍ1, ɍ3} 

{ɍ1, ɍ4} {ɍ4} V(D) {ɍ1, ɍ4} {ɍ1, ɍ3, ɍ4} {ɍ1, ɍ4} {ɍ1, ɍ3, ɍ4} {ɍ1, ɍ4} {ɍ1, ɍ4} 

{ɍ2, ɍ3}   {ɍ1, ɍ2, ɍ3} {ɍ2} {ɍ2, ɍ3} {ɍ2} {ɍ2, ɍ3} {ɍ2, ɍ3} {ɍ2, ɍ3} 

{ɍ2, ɍ4} {ɍ4} V(D) {ɍ2, ɍ4} {ɍ2, ɍ3, ɍ4} {ɍ2, ɍ4} {ɍ2, ɍ3, ɍ4} {ɍ2, ɍ4} {ɍ2, ɍ4} 

{ɍ3, ɍ4} {ɍ4} {ɍ3, ɍ4} {ɍ4} {ɍ3, ɍ4} {ɍ3, ɍ4} ɍ3, ɍ4} {ɍ3, ɍ4} {ɍ3, ɍ4} 

{ɍ1, ɍ2, ɍ3} {ɍ1, ɍ2} {ɍ1, ɍ2, ɍ3} {ɍ1, ɍ2} {ɍ1, ɍ2, ɍ3} {ɍ1, ɍ2, ɍ3} {ɍ1, ɍ2, ɍ3} {ɍ1, ɍ2, ɍ3} {ɍ1, ɍ2, ɍ3} 

{ɍ1, ɍ2, ɍ4} {ɍ1, ɍ2, ɍ4} V(D) {ɍ1, ɍ2, ɍ4} V(D) {ɍ1, ɍ2, ɍ4} V(D) {ɍ1, ɍ2, ɍ4} V(D) 

{ɍ1, ɍ3, ɍ4} {ɍ4} V(D) {ɍ1, ɍ3, ɍ4} {ɍ1, ɍ3, ɍ4} {ɍ1, ɍ3, ɍ4} {ɍ1, ɍ3, ɍ4} {ɍ1, ɍ3, ɍ4} {ɍ1, ɍ3, ɍ4} 

{ɍ2, ɍ3, ɍ4} {ɍ4} V(D) {ɍ2, ɍ3, ɍ4} {ɍ2, ɍ3, ɍ4} {ɍ2, ɍ3, ɍ4} {ɍ2, ɍ3, ɍ4} {ɍ2, ɍ3, ɍ4} {ɍ2, ɍ3, ɍ4} 

V(D) V(D) V(D) V(D) V(D) V(D) V(D) V(D) V(D) 

                  

  

 From the above table we can notice that: 

(a) Implementing the J-supra approximations is extremely interesting for obliterating the 

abstruseness of rough graphs, and this would help to extract and detecting of furtive 

information in statements aggregated from real-life applications. 

(b) The best J-supra approach is βJ, (since βJ is minutest than the other kinds of J-supra open 

graphs. 

(c) There are many rough graphs in   , but it is J-supra exact such as the shadowed graphs.   

Conclusion. 

By employing the J-supra open graph, a newfound ways for approximation rough graphs for 

each topology of     are presented. Applying J-supra approximations helps to extract of unobserved 

information in datagram collected from real-life implementations. Example (3.24) show that there are 

many rough graphs in  
   it is J-supra exact. βJ is the best J-supra approach since it is more accurate  than the other types. 
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Abstract 

This paper is intended for investigating the effects of magnetohydrodynamic on the couple stress 

unsteady flow of incompressible Jeffrey fluid with varying temperature through a cylindrical porous 

channel. The analytical expression of the axial velocity, stream function and gradient pressure, was 

created taking into account the effect of thermal diffusion on the flow of the fluid. The analytical 

formulas of the velocity, temperature have been illustrated graphically for significant various 

parameters such as magnetic parameter, couple stress parameter, permeability parameter. 

Keywords: MHD, Jeffrey Fluid, peristaltic flow, couple stress, porous medium. 

List of symbols and meanings:  

Symbol The meaning 

A is the average radius of the undisturbed tube. 

B is the amplitude of the peristaltic wave. 

    is the wavelength. 

            is the wave propagation speed. 

  ̅ is the time. 

   
 

 

 

  
( 

 

  
* 

is the Laplace operator. 

 ̅  is the velocity field. 

   is the density. 

   is the dynamic viscosity. 

   is the permeability. 

 ̅  (      ) is the inclined magnetic field. 

   is the magnetic permeability. 

 ̅ is the Cauchy stress tensor. 

  ̅ is the constant associated with the couple stress. 

T is the temperature of the fluid. 

   is the thermal conductivity. 

   is the specific heat capacity at constant pressure. 

   is the fluid velocity gradient. 

   is the radiation heat flux. 

  is the heat generation. 

 ̅ is the pressure. 

mailto:samah85.samah85@gmail.com
mailto:dheia.g.salih@gmail.com
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1. Introduction 

Peristaltic flows received a broad study by researchers because of interest in physiology and 

industry. The movement of blood in the bodies of living organisms is one of the applications of 

peristaltic movement that occupied the ideas of many researchers of its importance in blood 

transfusion. The arterial segment was contracted and extended periodically by spreading the 

progressive wave. And as a result of this, the researchers presented their scientific results related to 

peristaltic flow engineering, and among the first of these researchers in this specialization are: 

Latham [1]. In [2] he presented a detailed analysis of the peristaltic flow fluid in circular cylindrical 

tubes, in [3] he along on experimental results with a long wave approximation is adopted to analyze 

the problem of peristaltic pumping in a circular cylindrical tube. Moreover, peristalsis subjected to 

magnetic field effects is important in the treatment of hyperthermia, arterial flow, cancer treatment, 

etc.  

We can consider detailed explanation of peristaltic fluids as well as experimental results with a 

long wave approximation dependent on a round cylindrical tube. It is very important to cast a 

magnetic field on peristalsis in the treatment of hyperthermia, arterial flow, cancer treatment, etc. 

Where the magnet is important in healing diseases of the uterus, ulcers, infections and intestine. On 

the other hand, the role of permeability is very important for the movement of the fluid, as is the case 

in extracting oil from wells and absorbing food in the intestine ... etc. Many researchers presented a 

study on the combined effect of the magnetic field and the presence of permeability the fluid flow 

channel, see [4-8]. At the present time, interest began to study the effect of temperature on the 

movement of liquids through a channel, as most researchers agreed that increasing the temperature 

increases the velocity of the fluid, see [9-14] for more details. 

The present analysis is interested in discussing the effects of MHD on a couple's stress on Jeffrey 

fluid through a cylindrical porous medium duct. To date, studies have not found the presence of a 

magnetic field and the effect of varying temperatures from a couple's stress on the flow of a Jeffrey 

liquid through a porous channel in the cylindrical coordinates. This paper was divided into seven 

sections. The first section contains the flow channel form with the formulation of the governing 

equations and the formula for the equation for liquids fluid. As for the second section, it includes 

reviewing the boundary conditions with including non-dimensional transformations to facilitate the 

governing equations that assume there is a very small number of Reynolds or a very large wavelength 

to solve. As for sections 3 and 4, it is to solve problems and find a formula for temperature, velocity 

function, high pressure, and frictional force using Bissell functions and the regular ultra-high pressure 

measurement function. Whereas, the fifth section includes a discussion of the effect of the parameters 

on temperature, speed velocity, and pressure through detailed illustrations. The sixth section examines 

the phenomenon of trapping and the factors affecting it, whether increasing or decreasing, and in the 

last section it briefly presents the most important factors affecting the shape. 

2. Mathematical Formulation 

Consider a peristaltic flow of an incompressible Jeffrey fluid in a coaxial uniform circular tube. The 

Jeffrey fluid is a non-Newtonian non-compressible liquid model and it is a real fluid in which shear 

stress does not match the shear stress rate (or velocity gradient). The cylindrical coordinates are 

considered, where   is along the radius of the tube and   coincides with the axes of the tube as 

shown in figure 1.see [12].  
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     The geometry of wall surface is described as: 

 ( ̅  ̅)        0
  

 
( ̅    ̅)1                                                                                                            

  (1) 

The basic equations governing of the problem (continuity, momentum and temperature equations) are 

given by:   

  ̅                                                                                                                                                            
(2) 

 (  ̅  ) ̅    ̅      ̅   ̅  
 

  
 ̅     

 
(    )    ̅   ̅,   see. [4], [12]                                           

(3)        

    (  ̅  )      
         (    )                                                                                                

(4) 

 

    The constitutive equations for an incompressible Jeffrey fluid are given by:  

 ̅    ̅ ̅   ̅                                                                                                                                                
(5) 

 ̅  
 

    
( ̅̇      ̅̈)                                                                                                                                       

  (6)   

where  ̅ is the extra stress tensor,  ̅ is the pressure,   ̅is the identity tensor,    is the ratio of relaxation 

to retardation times,  ̅̇ is the shear rate,  ̅̈ is material derivative, and    is the retardation time. 
 

3. Method of solution  

Let  ̅ and  ̅ be the respective velocity components in the radial and axial directions in the fixed 

frame, respectively. For the unsteady two - dimensional flow the velocity field, temperature function 

may be written as:  

 ̅  ( ̅( ̅  ̅)    ̅( ̅  ̅))                                                                                                                           
 (7)           

   (   ),                                                                                                                                                

 (8)  

     By using the constitutive relations (5), (6) the equations of the problem (2)-(4) take the form: 
  ̅

  ̅
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  ̅

  ̅
                                                                                                                                           

(9) 
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  ̅
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 ̅     

  ̅     ̅   ̅                                      

(10)           
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  ̅
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  ̅
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  ̅
( ̅ ̅ ̅ ̅)  

 

  ̅
( ̅ ̅ ̅)     
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(    )  
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 ̅ (11)  

Figure 1 Geometry of the problem 
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(12) 

     The flow in the fixed coordinates ( ̅, ̅) between the two tubes is unsteady, it becomes steady at 

moving coordinates (r, z) when the wave is the same speed in the Z -direction. The Transformations 

between the two frames is given by:  

 ̅     ̅   ̅     ̅      ̅                                                                                                                                   
(13) 

 ̅   ̅   ̅    ̅                                                                                                                                       
(14) 

Where ( ̅,  ̅) and ( ̅,  ̅) are the velocity components in the moving and fixed frames, respectively. 

The appropriate boundary conditions are:  
 ̅      ̅                ̅     ̅                                        

 ̅      ̅                 ̅     ̅( ̅  ̅)         (   ̅)
}                                                             

(15)        

     In order to simplify the governing equations of the problem, we may introduce the following 

dimensionless transformations as follows: 

  
 ̅  
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(16) 

where    the ―amplitude ratio‖,  ̅ the ―couple stress‖ fluid parameter indicating the ratio of the tube 

radius (constant) to material characteristic length (√  ⁄ , has the dimension of length),    the 

―Reynolds number is the ratio of inertia force to the viscous force‖,    the ―Prandtl number is ratio of 

kinematic viscosity to the thermal diffusivity‖,    the ―Darcy number is the ratio of the permeability 

of the medium to  the diameter of the particle‖,    the ―thermal radiation parameter‖,    the ―thermal 

Grashof number is a measure of buoyancy or free-convection effects in a flow‖,    the ―magnetic 

parameter is equal to the product of the square of the magnetic permeability, the square of the 

magnetic field strength, the electrical conductivity, and a characteristic length, divided by the product 

of the mass density and the fluid velocity‖,   the ―dimensionless wave number‖ and   ―heat 

source/sink parameter‖.  

    After using these transformations equations (13)-(14), substituting dimensionless equations (16) 

into problem equations (9)-(12) and boundary conditions (15), we get:   
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(24)         

     The related boundary conditions regarding to the dimensionless variables in the wave frame are 

given by:  
         ℋ                                              
         ℋ                      (   )    

}                                                                      

(25) 

It seems that the general solution of the equations (17) - (20) in the general case is impossible; 

therefore, we must limit the analysis to the assumption that the wavenumber is small (   ). 

Means, we studied long-wavelength approximation. Along with this assumption, equations (17) - 

(20) become: 
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where                      
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     Equation (27) shows that   dependents on z only, Replacing      from equation (30) in equation 

(28), we have: 
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(31)      
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Assuming the components of the couple stress tensor at the wall to be zero, when Couple-stress, 

denoted by  ̅ is defined as the ratio of the tube radius (constant) to material characteristic length (√
 

 
  

has the dimension of length ), mathematically:  

 ̅      √
 

 
                                                                                                                                       

(32) 

   Where,   is the dynamic viscosity,   is constant associated with couple stress, we can write The 

Couple-stress   ̅    ̅, see. [7], we have the following dimensionless boundary conditions: 

      
   

   
 

 ⏞
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                  (   )

?                                                                           

(33) 
Where  ⏞  

 ̅

 
  is a couple stress fluid parameter (   ̅and   are constants associated with the couple 

stress, when     (i.e.  ̅   ) no couple stress effects, see [4], [5], and [6]). 

 

 

4. Solutions of the Temperature Equations 

The temperature equation (29), can be written as; 

.
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ℋ                                                                                                                  

(34)   
Set     
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)
 , the equation (34) takes the form: 

  
  ℋ

   
  

 ℋ

  
    ℋ                                                                                                                        

(35) 

     The general solution of this equation ―modified Bessel equation of zero-order‖, with the boundary 

conditions equation (25) is:  

ℋ       , √ -      , √ -                                                                                                                
(36) 

where    
  , √ -

  , √ -  , √ -   , √ -  , √ -
    and     

  , √ -

  , √ -  , √ -   [ √ ]  [ √ ]
  

    The general solution of motion equation (31) is: 
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Where      
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/  

      Also   ,    are the modified Bessel functions of the first and second kind of zero order. By using 

the ―MATHEMATICA 11‖ program and the boundary conditions equations (25) and (33) we have a 
constants                  .   

5. Stream function  

The corresponding stream functions    
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5,     √    ,     √    ,     ̃   are the modified Bessel function 

of the second kind and Hypergeometric regularized function, respectively. 

    The instantaneous volume flow rate  ( )(  ∫     )
  
  

 is given by; 
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(39) 

    Following the analysis given by Shapiro et al.[14], the mean volume flow, q2 over a period is 

obtained as  
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(40) 

This on using Eq. (38) yields 
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(41)                                                           

   where    And  ̃   are the modified Bessel function of the second kind and hypergeometric 

function, respectively. 

    The pressure rise    and the friction force (at the wall) on the inner and outer tubes are    and   , 

respectively, in a tube of length L, in their non-dimensional forms, are given by: 
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(42) 

   =∫   
 ( 

  

  

 

 
)                                                                                                                                      

(43) 
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(44)  

Substituting from equation (41) in equations (42) - (44) with      , r2=1+      (   ), and then 

evaluating the integrations by using the language of series for several values of the parameters 

included, by the  ―MATHEMATICA 11‖ program, and the obtained results are discussed in the next 

section.   

6. Numerical Results and Discussion 

In this section the numerical and computational results are discussed for the problem of an 

incompressible non- Newtonian Jeffrey fluid through porous medium with heat and mass transfer 

through the illustrations figures (2-39). 
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       Based on equation (36), figures (2-3) shows that effects of the parameters          and   on the 

temperature function ℋ, in figure 2, we notice that ℋ increases with increasing   and  , while figure 

3, illustrates the temperature function increases with increasing    and ℋ decrease with increasing  . 

       Based on equation (37), figures (4-9), illustrate the effect of the parameters  ,  ,  ,  ,  ,   ,   , 

  ,  ,   ,    and    on the velocity distribution w vs. r. We noticed that the velocity distribution 

starts to decrease and when it reaches point r=0.05 it starts to increase and for this, the general shape 

of the velocity distribution is a concave upward curve. Figure 4, illustrates the influence of the 

parameters   and   on the velocity distribution function w vs. It is found that the velocity w increases 

with the increasing   when       , while w decreases with increasing of   when       , and w 

decreases with increasing  . In the fifth plot, shows the behavior of w under the variation of   and  , 

one can describe here that w increases with increasing of   and   at      , while w decreases with 

increasing of   and  , at      , Figure 6, we notice the rotation of the effects of the parameters    

and   on the velocity function, where the effect of parameter    is direct in the region        while 

in the region       the effect of parameter    is inversed, and vice versa for the parameter  , we 

notice the decrease in the velocity when increasing   in the region       and the increase in the 

velocity with increasing   in the region      . Figure 7 contains the velocity profile behavior under 

the parameters    and   , we see that the velocity profile goes down with the increases    and    

when      , and w increases with increasing of    and    when      . We notice the effect of the 

magnetic field and permeability on the velocity function in shape 8, we get the velocity decreases with 

an increase in   and    at      , while the velocity w increase with an increase in   and    at 

     . In the ninth plot, It is found that the velocity w increases with the increasing    and    in the 

region      , while w decreases with increasing of    and    in the region        
     Based on equation (41), figures (10-15), illustrate the effect of the parameters  ,  ,  ,  ,  ,   ,   , 

  ,   ,  ,    and    on the distribution of       vs. z. We noticed that       starts to increase and 

when it reaches point z=0.25 it starts to decrease and for this, the general diagram of the distribution of 

      is a concave downward curve. Figures 11, 13 and 14, illustrates the influence of the parameters 

 ,  ,       ,     and   on      . It is found that       increases with the increasing  ,  ,     
  ,     and  , respectively. Figures 10 and 15, illustrates the influence of the parameters  ,  ,    and 

   on      . It is found that       decreases with the increasing  ,  ,    and   , respectively. 

Figure 12, illustrates the influence of the parameters   and   , on      . It is found that       

increases with the increasing   while       decreases with the increasing   . 

      Based on equation (42), figures (16-19) illustrates the effects of the parameters  ,  ,   ,  ,   , 

  ,  ,   ,    and   on the pressure rise   . Figures (16-17) illustrates the effects of the parameters 

 ,   ,   and    on the    vs.  . We found that    increases with increasing   , and    decreases 

with increasing   in figure 16. In figure 17 we notice that    decreases with increasing   in the region 

(0,0.03) while    increases with increasing   when       , and    increases with increasing    

when        , while    decreases with increasing    when        . Figures (18-19) illustrates 

the effects of the parameters          and    on the pressure rise    vs.   , it is found that    

increases with the increasing for each         and   . 

      Based on equation (43), figures (20-23) illustrates the effects of the parameters  ,  ,   ,  ,   , 

  ,  ,   ,     and   on   . Figures (20-21) illustrates the effects of the parameters  ,   ,   and    

on    vs.  . We found that    decreases with increasing   , and    increases with increasing   in 

figure 20. In figure 21 we notice that    increases with increasing   in the region (0,0.022) while    

decreases with increasing   when        , the    decreases with increasing    when         
    at       , and    increases with increasing    when           at        , while    

increases with increasing    otherwise.  Figures (22-23) illustrates the effects of the parameters        
  and    on    vs.   , it is found that    decreases with the increasing for each         and      
     Based on equation (44), figures (24-27) illustrates the effects of the parameters  ,  ,   ,  ,   ,   , 

 ,   ,    and   on   . Figures (24-25) illustrates the effects of the parameters  ,   ,   and    on    

vs.  . We found that    decreases with increasing   , and    increases with increasing   in figure 



361 
 

24. In figure 25 we notice that    increases with increasing   and    in the region (0,0.023) while    

decreases with increasing   and    when        . Figures (26-27) illustrates the effects of the 

parameters          and    on    vs.   , it is found that    decreases with the increasing for 

each         and   .  

7. Trapping phenomena 

     The formation of an internally circulating bolus of fluid by closed streamlines is called trapping and 

this trapped bolus is pushed ahead along with the peristaltic wave. The effects of                     

     ,   ,       and   on trapping can be seen through 28-39. Figure 28 shows that the size of the 

trapped bolus decreases with the increase   gradually in the middle of the channel while when we 

approach at the upper wall we notice the increase of the wave with the increase of  .The wave near the 

upper wall of the channel decreases with an increase of   in figure 29. In the Thirty plot shows that the 

size of the trapped bolus located in the center of the channel increases with the increase   while when 

it is close to the upper wall we notice the decrease of the wave with the increase  . By figure 31 the 

size of the trapped bolus grow increase of    when it is close to the upper wall of the channel 

gradually. The effect of parameter    on the trapped bolus in figure 32 is similar to the effect of 

parameter   on the trapped bolus in figure 29. By figure 33, we notice two trapped boluses, one in the 

center of the channel and the other at the upper wall both are decreases until it disappears with the 

increase   . In figure 34 the size of the trapped bolus decreases with the increase    gradually at the 

upper wall. In figure 35 we notice the emergence and growth of the size of the trapped boluses, in 

addition to an increase in the wave at the upper wall of the channel when the value of   increases. In 

figure 36, the size of the trapped bolus decreases with the increase    gradually at the upper wall of 

the channel while its beginning to grow in the center with increase of   . Figure 37 shows the effect 

of the parameter    on the trapped bolus, as with the increase of    the wave near the upper wall 

increases with the emergence of a new trapped bolus that caused the bolus to grow in the center of the 

channel. In figure 38 the size of the trapped bolus decreases with increase   in the wave near the upper 

wall. Finally in figure 39 we notice the effect of parameter   on trapped bolus similar to that of trapped 

bolus    in figure 36. 
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8. Concluding Remarks: 

      We briefly discuss the effect of different temperature on peristalsis MHD flow from a couple-

stress Jeffrey fluid through the porous channel. Where we discussed the various parameters 

affecting the movement of the liquid and the pressure generated by the fluid movement, we list 

below the main points that we reached: 

1. The velocity of the fluid increases with the increasing   and    when        and decreases 

otherwise. 

2. The velocity of fluid decreases with the increasing    ,      ,            and    when 

      and increases otherwise. 

3. The velocity of the fluid increases with the increasing   and    when       and 

decreases otherwise. 

4. The pressure variation       increases with the increasing  ,  ,   ,       and   , while 

      decreases with the increasing  ,  ,    ,  ,    and   . 

5. The pressure rise    increases with the increasing  ,   ,   and   ,    decreases with the 

increasing    and     while    decreases with the increasing   and    when         

while     increases with the increasing   and    when       . 

6. The friction force at the wall    and    decreases with the increasing  ,   ,   and   ,    

increases with the increasing   and   , while    increases with the increasing   and    

when         and     decreases with the increasing   and    when       . 

7. The size of the trapped bolus decreases with the increasing  ,   and     gradually in the 

middle of the channel while when we approach at the upper wall we notice the increase of 

the wave with the increasing  ,   ,   and   , respectively.  

8. The size of the trapped bolus increases with the increasing  ,        and   in the middle of 

the channel while when we approach at the upper wall we notice the decrease of the wave 

with the increasing  ,          ,           and  , respectively.  
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Abstract. In this paper, the concept of soft closure spaces is defined and studied its basic properties. We show 

that the concept soft closure spaces are a generalization to the concept of  ̌ech soft closure spaces introduced by 

Krishnaveni and Sekar. In addition, the concepts of subspaces and product spaces are extended to soft closure 

spaces and discussed some of their properties. 

1. Introduction 

There are many mathematical tools obtainable for dealing with an imperfect knowledge or for 

modelling complex systems such as probability theory, fuzzy set theory, rough set theory and also in 

computer science, engineering, physics, social sciences, economics, and medical sciences, etc. All 

these tools require the pre-specification of some parameters to start with. To conquer these obstacles, 

in 1999 Molodtsov [12] proposed a new mathematical tool, namely soft set theory to model 

uncertainty, which associates a set with a set of parameters. After Molodtsove’s activity work, in 2003 

Maji et al. [10] presented and studied several basic notions of soft set theory and some operation 

between two soft sets. The Applications of the theory of soft sets have been in many areas of 

mathematics. In 2011, Shabir and Naz [14] defined and studied the soft topological space. In 2014, 

El-Sheikh and Abd El-Latif [5] initiated the notion of supra soft topological spaces, which is wider 

and more general than the class of soft topological spaces. 

 

The concept of closure space (   ) were introduced by  ̌ech [3] in 1968, where    ( )   ( ) 
is a mapping defined on the power set  ( ) of a set   satisfying: (  ) ( )    (  )   ( ) 
and (  )     ( )   ( ), the mapping   called closure operator on  . A closure operator 

  is called  ̌ech closure operator, if   satisfies: (  ) (   )   ( )   ( ) and then (   ) 
is called  ̌ech closure space.  ̌ech closure spaces studied by several authors and in several directions. 

In 1985, Mashhour and Ghanim [11] introduced the concept of  ̌ech closure spaces in fuzzy setting. 

Independently, in 2014, Gowri and Jegadeesan [7] and Krishnaveni and Sekar [8] defined and studied 

 ̆ech closure spaces in soft setting. Recently, Majeed [9] using fuzzy soft sets to define the concept of 

 ̆ech fuzzy soft closure spaces. 

 

In this work, motivated by the theory of soft sets we introduced the notion of soft closure spaces. In 

Section 3, the concept of soft closure spaces is defined. Also, the notion of closed (respectively, open) 

soft sets in soft closure spaces is defined and give the basic properties of them with several examples 

to explain these concepts. In addition, we show our notion of soft closure space in more general than 

the notion of  ̆ech soft closure spaces that defined by Krishnaveni and Sekar [8] (see Proposition 3.4). 

Moreover, we find for every soft closure space there exists a supra soft topology associative with it 

(see Remark 3.18). In Section 4, the soft closure subspace of a soft closure space is defined and 

studied with details. We discuss the relationships between the closed (respectively, open) soft sets in 

the soft-cs and its soft-c.subsp (see Proposition 4.7 and Theorems 4.10 and 4.12) Finally, Section 5 is 

devoted to introduce the notion of the product of soft closure spaces and studied its basic properties. 
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d) Preliminaries 

In this section we recall some basic definitions and results of soft set theory defined and discussed by 

various authors. Throughout this paper,   refers to the initial universe,  ( ) denote the power set 

of   and   is the set of all parameters for  . 

 

Definition 2.1 [12] A soft set     (   ) over the universe set   is defined by a mapping     

 ( ). Then     can be represented by the set     *(   ( ))          ( )   ( )+. We 

denote the family of all soft sets over   is denoted by   (   ). 

 

Definition 2.2 [10] A null soft set, which denoted by  ̃ , is a soft set    over   such that for all 

   ,  ( )    (empty set). 

 

Definition 2.3 [10] An absolute soft set, which denoted by  ̃, is a soft set    over   such that for 

all    ,  ( )   . 

 

Definition 2.4 [6] Let    and    be two soft sets over  . Then,    is called a soft subset of   , 

denoted      , if  ( )   ( ) for all    .     equals   , denoted by       if       and 

     . 

 

Definition 2.5 [10] The union of two soft sets    and    over   is the soft set ℋ  defined as b 

ℋ( )   ( )   ( ) for all    . This is denoted by      . And the soft intersection of    and 

   is the soft set ℋ  given by ℋ( )   ( )   ( ) for all     and denoted by,      . 

 

Definition 2.6 [14] Let    and    be two soft sets over  , the difference ℋ  of    and    is 

denoted by      , and defined as ℋ( )   ( )   ( ) for all    . 

 

Definition 2.7 [14] The relative complement of a soft set    is denoted by   
 , where       

 ( ) defined as   ( )     ( ), for all    . Clearly,   
   ̃    . 

 

Definition 2.8 [4, 15] The soft set      (   ) is called soft point in  , denoted by   , if for the 

element    ,  ( )  * + and  (  )    for every      * +. 
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Definition 2.9 [4, 15] The soft point    is said to be in the soft set   , denoted by    ̃   , if for the 

element    , we have * +   ( ).  

 

Definition 2.10 [2] Let      (   ) and      (   ). The Cartesian product       is 

defined by (   )    where (   )   (   )   ( )   ( ), for all (   )     . 

According to this definition the soft set       is a soft set over     and its parameter 

universe is    . 

The pairs of projections         ,          and         ,      

    determine morphisms respectively (     ) from     to   and (     ) from     to 

 , where  

(     )(     )    (   )  (   ) and (     )(     )    (   )  (   ). [1]. 

 

Definition 2.11 [5] A supra soft topological space is the triple (      )  where   is universe set,   

is the fixed set of parameters and    is the collection of soft sets over    which are satisfies: 

1-   ̃   ̃    , 

2- The union of any number of soft sets in    belongs to   . 

The members of    are called supra open soft sets. A soft set    is called supra closed soft in 

  if,  ̃       . 

 

Definition 2.12 [14] Let   be a non-empty subset of   and    be a soft set over  . Then the 

subsoft set of    over   denoted by   
   

is defined as follows   ( )     ( ) for all    . 

In other words that is   
   

  ̃     where  ̃ denotes to the soft set    over   for which 

 ( )   , for all    . 

 

Definition 2.13 [13] Let (      ) be a supra soft topological space and   be a non-empty subset of 

 . Then,   
  *  

   
       + is called the supra soft relative topology on   and (    

   ) is 

called a supra soft subspace of (      ). 

 

e) The Basic Structures of Soft Closure Spaces 

This section is devoted to introduce the notion of soft closure spaces and discussed the basic 

properties of these spaces. 
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Definition 3.1 An operator   ̃   (   )    (   ) is called a soft closure operator (soft-   , for 

short) on  , if for all         (   ) the following axioms are satisfied: 

(  )  ̃   ̃( ̃ ), 

(  )     ̃(  ), 

(  )        ̃(  )   ̃(  ). 

The triple (   ̃  ) is called a soft closure space (soft-  , for short). 

 

Next, we give two examples to explain the notion in Definition 3.1. 

 

Example 3.2 Let   *     + and   *     +. Define a soft-co  ̃   (   )    (   ) as 

follows: 

 ̃(  )  

{
 
 

 
  ̃                                      ̃                          

{(   * +) (   * +)}              {(   * +) (   * +)}    

{(   * +) (   * +)}             {(   * +) (   * +)}     

 ̃                                                                

 

Clearly, the soft-co  ̃ satisfies the three axioms of Definition 3.1. Hence (   ̃  ) is a soft-cs. 

 

Example 3.3 Let   *     + and   {     }  Define a soft-co  ̃   (   )    (   ) as 

follows: 

 ̃(  )   >

 ̃                              ̃                   

{(   * +)}                *(   * +)+       

 ̃                                                

 

Then, it clear that the axiom (  ) of Definition 3.1 is not hold because there exists      (   ), 

where    *(   * ++ such that *(   * ++  {(   * +)}   ̃(  ) and hence (   ̃  ) is not soft-cs. 

 

Now we give the relationship between our definition of soft-cs and the definition of  ̌ech soft closure 

space introduced in [8]. 

 

Proposition 3.4 Every  ̌ech soft closure space is a soft-cs. 
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Proof: Let (   ̃  ) be a  ̌ech soft-cs. To show (   ̃  ) is soft-cs, it is sufficient to prove the soft-

co  ̃ satisfies the axioms (  ) in Definition 3.1. Now, let         (   ) such that      . It is 

clear that  ̃(  )   ̃(  )    ̃(  ). By the axiom (  ) of definition  ̌ech soft closure operator we 

get,  ̃(  )   ̃(     )   ̃(  ). This implies  ̃(  )   ̃(  ) and hence  ̃ is a soft-co and 

(   ̃  ) is soft-cs. 

 

Remark 3.5 The convers of Proposition 3.4 is not true as the following example shows  

 

Example 3.6 Let    *   +       {     }. Define a soft-co  ̃   (   )    (   ) as 

follows: 

 ̃(  )  

{
 
 

 
 

 ̃                                              ̃            

{(   *   +)}                        {(   * +)} 

{(   * +)}                             {(   * +)} 

{(   * +)}                            {(   * +)} 

 ̃                                                            

 

Then, (   ̃  ) is a soft-cs, but it is not  ̌ech soft closure space since there exist         (   ), 

where    {(   * +)} and    {(   * +)} such that  ̃(     )   ̃(  )    ̃(  )  

 

Definition 3.7 Let (   ̃  ) be a soft-cs. A soft subset    over   is said to be a closed soft set, if 

    ̃(  )  A soft subset    over   is called an open soft set if it is soft complement  ̃     is 

closed soft set. 

 

Example 3.8 In Example 3.6, it is clear that    {(   * +)}. is a closed soft set and its complement 

 ̃     *(   * +) (   *   +)+ is an open soft set. While, the soft set    {(   * +)} is not a 

closed soft set neither open soft set. 

 

Proposition 3.9 Let (    ̃  ) be a soft-cs and      (   ). If  ̃(  )    , then    is a closed 

soft set in (    ̃  ). 

Proof: The proof obtained directly from hypothesis and Definition 3.1. 

 

Theorem 3.10 Let (   ̃  ) be a soft-cs and let    ̃   (   ). Then,  ̃(  )     contains no non-

empty open soft subset. 
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Proof: Let    be a soft subset in (   ̃  ) and    be a nonempty open soft subset of  ̃(  )    . 

Then, there exists a soft point    ̃     ̃(  )     this implies    ̃  ̃    . Which is a closed 

soft set. Therefore,    ̃  ̃      ̃( ̃    ). That means,  ̃(  ) not contained in  ̃( ̃    ). 

Since     ̃(  )    , then     ̃(  )      ̃    . From (  ), we get  ̃(  )  

 ̃( ̃    ) and this is a contradiction. Therefore,  ̃(  )     contains no non-empty open soft set. 

 

Proposition 3.11 Let (   ̃  ) be a soft-cs and *(  )    ℐ+ be a family of soft subsets over  . 

Then: 

1-    ℐ  ̃((  ) )   ̃(   ℐ (  ) ). 
2-  ̃(   ℐ (  ) )     ℐ  ̃((  ) ). 

Proof: 

1- For all   ℐ we have, (   )     ℐ (   ) . From (  ) of Definition 3.1, we get for all 

  ℐ,  ̃((  ) )   ̃(   ℐ (  ) ). This implies,    ℐ  ̃((  ) )   ̃(   ℐ (  ) ). 
2- For all   ℐ  since    ℐ (  )  (  ) . Then, by (  ) of Definition 3.1, we have 

 ̃(   ℐ (  ) )   ̃((  ) ) for all   ℐ. Hence,  ̃(   ℐ (  ) )     ℐ  ̃((  ) ).  
 

Remark 3.12 The inclusion of Proposition 3.11 cannot be replaced by equalities in general as the 

following example shows. 

 

Example 3.13 Let Let   *     + and    *     +. Define a soft-co  ̃   (   )    (   ) as 

follows: 

 ̃(  )  

{
  
 

  
 

 ̃                               ̃           

{(   * +)}              {(   * +)} 

{(   * +)}              {(   * +)} 

{(   * +)}               {(   * +)} 

 ̃                                           
                                          

 

Then, (    ̃  ) is a soft-cs. Let     {(   * +)} and    {(   * +)}, then it is clear that  ̃(   

  )   ̃  {(   *   +)}   ̃(  )   ̃(  ). 

Also, if we take    {(   * +)} and    {(   *   +)}, then  ̃(      )   ̃  {(   * +)}  

 ̃(   )   ̃(  ). 

 

Proposition 3.14 The intersection of any collection of closed soft sets in a soft-cs is a closed soft set. 

Proof: Let *(  )    ℐ+ be a family of closed sets in a soft-cs (   ̃  ). We must 

prove  ̃(   ℐ (  ) )     ℐ (  ) . Since    ℐ (  )  (  )  for all    ℐ  then by (  ) of 

Definition 3.1, we get  ̃(   ℐ (  ) )   ̃((  ) )  (  )  (by (  )  is a closed soft set for all  ℐ 
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). This implies  ̃(   ℐ (  ) )     ℐ (  ) . On the other hand from (  ), it follows that 

   ℐ (  )    ̃(   ℐ (  ) ). Therefore,  ̃(   ℐ (  ) )     ℐ (  ) . Hence, the result. 

 

Corollary 3.15 The union of any collection of open soft sets in a soft-cs is an open soft set. 

 

Proof: Let *(  )    ℐ+ be a family of open sets in a soft-cs (   ̃  ). Clearly the complement of 

   ℐ (  )  is  ̃     ℐ (  )     ℐ (  ̃  (  ) ). Since (  )  is an open soft set for all   ℐ, 

then  ̃  (  )  is a closed soft set. By Proposition 3.14, we have    ℐ  ̃  (  )  is a closed soft 

set. Therefore,    ℐ (  )  is an open soft set. 

 

Corollary 3.16 Let *(  )    ℐ+ be a collection of closed soft sets in a soft-cs (    ̃  ). Then, 

 ̃(   ℐ (  ) )     ℐ  ̃((  ) ). 

 

Proof: The proof follows from Proposition 3.14 and definition of closed soft set. 

 

Remark 3.17 The intersection (respectively, union) of any family of open (respectively, closed) soft 

sets in a soft-cs (    ̃  ) need not to be an open (respectively, closed) soft set.  

To explain that, in Example 3.6, there exist    {(   * +)} and    {(   * +)} are closed 

soft sets but their union is not a closed soft set. In addition, there exist    *(   * +) (   *   +)+ and 

   *(   *   +) (   * +)+ are open soft sets but       *(   * +) (   * +)+ is not an open soft 

set in (    ̃  ).  

 

Remark 3.18 From Corollary 3.15 and Remark 3.17, it follows for each soft- cs there exists an 

underlying supra soft topological space that can be defined in a natural way: 

Let (   ̃  ) be a soft-cs, we denote the associative supra soft topology on   by   ̃. That is 

  ̃  * ̃      ̃(  )    +. 

The members of   ̃ are called supra open soft sets and the complements are called supra closed soft 

sets. 

i.e.,    is an open (respectively, closed) soft set in (   ̃  )    is a supra open (respectively, 

closed) soft set in (    ̃  ). 
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Example 3.19 In Example 3.2, the associative supra soft topology on   is 

  ̃  * ̃  *(   *   +) (   *   +)+ *(   *   +) (   *   +)+  ̃+ which is a supra soft topology on 

 . In addition,   ̃ is not necessarily to be a soft topology on   since there exist   ,      ̃, where 

   *(   *   +) (   *   +)+ and    *(   *   +) (   *   +)+. However,       

*(   * +) (   * +)+    ̃. 

 

Definition 3.20 Let  ̃  and  ̃  be two soft-co’s on  . Then  ̃  is said to be finer than  ̃ , or 

equivently,  ̃  is coarser than  ̃ , if  ̃ (  )   ̃ (  ) for all      (   ). 

 

Now, we give an example to explain the above definition. 

Example 3.21 Let   *     +  and   *     +. Define  ̃   ̃     (   )    (   ) as 

follows: 

 ̃ (  )  

{
  
 

  
 
 ̃                                       ̃              

{(   * +)}                          {(   * +)} 

{(   * +)}                          {(   * +)} 

{(   * +)}                          {(   * +)} 

 ̃                                                     
 

 

And,  

 ̃ (  )  

{
  
 

  
 

 ̃                                       ̃              

{(   *   +)}                          {(   * +)} 

{(   *   +)}                          {(   * +)} 

{(   * +)}                          {(   * +)} 

 ̃                                                     
 

 

Then, it is easy to verify that  ̃  and  ̃  are soft-co’s on   and  ̃  is finer than  ̃  since for all 

     (   ),  ̃ (  )   ̃ (  ). 

 

Theorem 3.22 Let  ̃  and  ̃  be two soft-co’s on  . Define  ̃   ̃ ,  ̃   ̃    (   )  

  (   ) as follows: for all      (   ), ( ̃   ̃ )(  )   ̃ (  )   ̃ (  ) and ( ̃  

 ̃ )(  )   ̃ (  )   ̃ (  ). Then,  ̃   ̃  and  ̃   ̃  are soft-co’s on  . 

 

Proof: We prove  ̃   ̃  is a soft-co on   and similarly one can prove  ̃   ̃  is soft-co on  . 

Now, we must prove  ̃   ̃  satisfies the axioms (  ) (  ) and (  ) of Definition 3.1. 



381 
 

(  ) ( ̃   ̃ )( ̃ )   ̃ ( ̃ )   ̃ ( ̃ )   ̃   ̃   ̃ . 

(  ) For all      (   ). Since  ̃  and  ̃  are soft-co’s on  , then     ̃ (  ) and    

 ̃ (  ). This implies     ̃ (  )   ̃ (  )  ( ̃   ̃ )(  ). 

(  ) Let          (   ) such that      . Since  ̃  and  ̃  are soft-co’s on  , then 

 ̃ (  )   ̃ (  ) and  ̃ (  )   ̃ (  ). It follows,  ̃ (  )    (  )   ̃ (  )   ̃ (  ) which 

implies, ( ̃    )(  )  ( ̃   ̃ )(  ). Hence,  ̃   ̃  is a soft-co on  . 

 

f) Soft closure subspaces 

In this section we introduce the notion of soft closure subspace of a soft-cs and investigate some 

properties of its.  

 

Theorem 4.1 Let (   ̃  ) be a soft-cs and let    . Let  ̃    (   )    (   ) defined by 

 ̃ (  )   ̃   ̃(  ). Then,  ̃  is a soft-co on  . 

 

Proof: We must prove  ̃  satisfying the axioms (  )  (  ) of Definition 3.1. 

(  )  ̃ ( ̃   )   ̃   ̃ ( ̃   )   ̃   ̃     ̃   . 

(  ) For all      (   ), we have     ̃ and      ̃(  ). This implies      ̃   ̃(  )  

 ̃ (  ). Thus,      ̃ (  ). 

(   ) Let          (   ) such that        . Since  ̃ is a soft-co, then  ̃(  )    ̃(  ). 

Therefore,  ̃    ̃(  )    ̃   ̃(  ) which means  ̃ (  )    ̃ (  ). 

 

Definition 4.2 Let (   ̃  ) be a soft-cs, and let    . The soft closure operator  ̃  (defined in the 

Theorem 4.1) is called the relative soft closure operator on   induced by  ̃. The triple (    ̃   ) is 

called a soft closure subspace (soft-c.subsp, for short) of (   ̃  ). 

 

Remark 4.3 The soft-c.subsp (   ̃   ) is a closed (respectively, open) soft subspace if  ̃( ̃)   ̃ 

(respectively,  ̃( ̃   ̃)  ( ̃   ̃)). 

 

In the next we give an example to explain the notion of soft-c.subsp. 
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Example 4.4 Let (   ̃  ) be a soft-cs as defined in Example 3.2, where   *     +,   *     + 

and  ̃   (   )    (   ) defined by 

 ̃(  )  

{
 
 

 
  ̃                                            ̃                             

{(   * +) (   * +)}            {(   * +) (   * +)} 

{(   * +) (   * +)}           {(   * +) (   * +)} 

 ̃                                                                          

 

Let   *   +     then  ̃    (   )    (   ) defined as follows: for all      (   ) 

 ̃ (  )  

{
 
 

 
 

 ̃                      ̃       

*(   * +)+           {(   * +)} 

*(   * +)+          {(   * +)} 

 ̃                                

 

Then, (   ̃   ) is soft-c.subsp of (   ̃  ). 

 

Remark 4.5 Let (   ̃  ) be a soft-cs and (   ̃   ) be a soft-c.subsp of (   ̃  ). If (    ̃  ) 

and (    ̃   ) be the supra soft topological spaces induced form (   ̃  ) and (   ̃   ) 

respectively. Then (    ̃   ) is a supra soft subspace of the supra soft topological space (    ̃  ). 

We can use Example 4.4 to explain Remark 4.5. Therefore,  

  ̃  * ̃   ̃ *(   *   +) (   *   +)+  *(   *   +) (   *   +)+ and since   ̃  {  
       ̃}, 

then it follows   ̃  * ̃   ̃ *(   * +) (   *   +)+ *(   *   +) (   * +)+. 

 

Theorem 4.6 Let (   ̃  ) be a soft-cs and     . Then the relative supra soft topology 

(  ̃)  on   induced by   ̃ is coarser than the associative supra soft topology   ̃  on  . 

 

Proof: We must prove (  ̃)    ̃ . Let    be a (  ̃) -closed soft set over  . Then, there exists a   ̃-

supra closed soft set    such that     ̃    . Since      , then  ̃(  )   ̃(  )    . This 

implies  ̃ (  )   ̃   ̃(  )   ̃       . Therefore,  ̃ (  )     and this implies    is a 

supra closed soft set in (    ̃   ). Hence, (  ̃)    ̃   

Proposition 4.7 Let (   ̃   ) be a soft-c.subsp of (   ̃  ). If      (   )  and    is a closed 

soft set in    then    is a closed soft set in (   ̃   )  
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Proof: Let      (   )  such that  ̃(  )    . Now,  ̃ (  )   ̃   ̃(  )   ̃       . 

Hence,    is a closed soft set in (   ̃   ). 

 

Remark 4.8 The convers of Proposition 4.7 is not true as the following example shows. 

 

Example 4.9 In Example 4.4, consider    *(   * +)+ which is a closed soft set in ( , ̃   ) but it is 

not a closed soft set in   since  ̃(  )  *(   * +) (   * +)+    .  

 

The following Theorem give the condition to be the converse of Proposition 4.7 is hold in general. 

 

Theorem 4.10 Let (   ̃  ) be a soft-cs and ( , ̃   ) be a closed soft subspace of (   ̃  ). If 

  is a closed soft set of (   ̃   )  then    is a closed soft set of (   ̃  )  

 

Proof: To prove    is a closed soft set of (   ̃  ) we must show  ̃(  )=  . Since    is a closed 

soft set of (   ̃   ), then  ̃ (  )    , which means  ̃   ̃(  )    . From hypothesis we have 

 ̃( ̃)   ̃. Thus, it follows  ̃( ̃)   ̃(  )    . From Proposition 3.11(2), we have  ̃( ̃    )  

 ̃( ̃)   ̃(  )    . This yield,  ̃(  )    . On the other hand,     ̃(  ). Therefore, we obtain 

 ̃(  )=   and hence    is a closed soft set of (   ̃  )  

 

Remark 4.11 In Theorem 4.10, the soft set  ̃ is a closed soft set in   is a necessary condition for 

this theorem. We can explain that in more details. In Example 4.4,  ̃  *(   *   +) (   *   +)+ is 

not a closed soft set in (   ̃  ) (because  ̃( ̃)   ̃). Let    *(   * +)+ be a closed soft set 

( , ̃   ). Then, it is clear that    is not a closed soft set in (   ̃  ) since 

 ̃(  )  {(   * +) (   * +)}      

 

Theorem 4.12 Let ( , ̃   ) be a soft- c.subsp of a soft-cs (   ̃  ). If    is an open soft set in 

(   ̃  ), then  ̃     is an open soft set in ( , ̃   ). 

 

Proof: To prove  ̃     is an open in ( , ̃   ), we must show  ̃  ( ̃    ) is a closed soft set in 

( , ̃   ), i.e., we must show  ̃ ( ̃  ( ̃    ) )   ̃  ( ̃    ). Now, 

 ̃ ( ̃  ( ̃    ) )   ̃   ̃( ̃  ( ̃    ))    ̃   ̃( ̃    )  
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                                                                  =  ̃  ( ̃    ) 

                                                                  = ̃  ( ̃    ). 

 

Remark 4.13 The convers of Theorem 4.12 is not true as the following example shows. 

 

Example 4.14 In Example 4.4, consider the soft set    *(   * +) (   *   +)+ is an open soft set in 

( , ̃   ) since  ̃ ( ̃    )   ̃      But    is not an open soft set in (   ̃  ). because  ̃     

is not a closed soft set in  . 

 

g) The product of soft closure spaces 

In this section we define the product of a collection of soft-cs’s and gives the properties of open and 

closed soft sets in the product soft-cs.  

 

Theorem 5.1 Let *(    ̃    )   ℐ+ be a family of soft-cs’s. Define a soft operator 

  ̃   (∏     ℐ  ∏     ℐ )    (∏     ℐ  ∏     ℐ ), where ∏     ℐ  and ∏     ℐ  denotes to 

the Cartesian product of the sets    and   ,   ℐ, respectively as follows: 

  ̃( ∏     ℐ
)  ∏  ̃   ℐ ((   

    )( ∏     ℐ
)),    ∏     ℐ

   (∏     ℐ  ∏     ℐ ). 

Then, the operator   ̃ is a soft closure operator on ∏     ℐ . 

 

Proof: We must prove   ̃ satisfies the axioms (  )- (  ) of Definition 3.1. 

(  )   ̃( ̃∏     ℐ
)  ∏  ̃   ℐ ((   

    )( ̃∏     ℐ
))=∏  ̃   ℐ ( ̃  )  ∏  ̃    ℐ   ̃∏     ℐ

. 

(  ) Let  ∏     ℐ
   (∏     ℐ  ∏     ℐ ). For all   ℐ, since  ̃  is a soft-co on   , then it 

follows (   
    )( ∏     ℐ

)   ̃ ((   
    )( ∏     ℐ

)). This implies 

∏  ℐ(   
    )( ∏     ℐ

)  ∏  ̃   ℐ ((   
    )( ∏     ℐ

)). Since 

 ∏     ℐ
 ∏  ℐ(   

    )( ∏     ℐ
), then we have  ∏     ℐ

 ∏  ̃   ℐ ((   
    )( ∏     ℐ

))  

  ̃( ∏     ℐ
). Therefore,  ∏     ℐ

   ̃( ∏     ℐ
). 

(  ) Let   ∏     ℐ
  ∏     ℐ

. Then, for all   ℐ, (   
    )( ∏     ℐ

)  (   
    )( ∏     ℐ

). 

This implies,  ̃ ((   
    )( ∏     ℐ

))   ̃ ((   
    )( ∏     ℐ

)).  

Thus, ∏  ̃   ℐ ((   
    )( ∏     ℐ

))  ∏  ̃   ℐ ((   
    )( ∏     ℐ

)) and that means 

  ̃( ∏     ℐ
)    ̃( ∏     ℐ

). Hence, we get the result. 
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Definition 5.2 Let *(    ̃    )   ℐ+ be a family of soft-cs’s. and let   ̃ be the soft-co defined as 

in Theorem 5.1. Then the triple (∏     ℐ    ̃ ∏     ℐ ) is said to be the product soft-cs of the 

family *(    ̃    )   ℐ+. 

 

Example 5.3 Let    *   +,    *     +,    *     + and    *     +. Define soft-co’s  ̃  and 

 ̃  on    and    respectively as follows: 

 ̃    (     )    (     ) defined as 

 ̃ (   )  

{
  
 

  
 
 ̃                                  ̃                

{(   *   +)}                   {(   * +)}    

{(   * +)}                      {(   * +)}      

{(   * +)}                     {(   * +)}      

 ̃                                                      

 

And,  ̃    (     )    (     ) defined as 

 ̃ (   )  { 

 ̃                          ̃                 

{(   * +)}              {(   * +)}    

 ̃                                            

 

 

Then, (    ̃    ) and (    ̃    ) are soft-cs’s. Let    
         ,              

and    
         ,              be the projection maps. Then, (        ̃    

  ) is the product soft-cs of (    ̃    ) and (    ̃    ), where   ̃   (           )  

  (           ) defined as: for all          (           ),   ̃(      )  

 ̃ ((   
    )(      ))   ̃ ((   

    )(      )). For example, if we take        

*((       ) *(   )+)+. Then,  

  ̃(      )   ̃ ((   
    )(      ))   ̃ ((   

    )(      )) 

                        ̃ ({(   * +)})    ̃ ({(   * +)}) 

                       {(   *   +)}  {(   * +)} 

                       *((       ) *(   ) (   )+)+ 

It is clear that,            ̃(      ). 
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Theorem 5.4 Let *(    ̃    )   ℐ+ be a family of soft-cs’s. Then,     is a closed soft set in 

(    ̃    ) for all   ℐ if and only if ∏  ℐ    is a closed soft set in (∏     ℐ    ̃ ∏     ℐ ). 

 

Proof: Let   ℐ and     be a closed soft set of (    ̃    ). Then,  ̃ (   )      for all   ℐ. 

From the definition of soft projection map, it follows, (   
    )(∏  ℐ   )     . Hence, 

∏  ℐ    ∏  ̃   ℐ (   )  ∏  ̃   ℐ ((   
    )(∏  ℐ   ))    ̃(∏  ℐ   ). That means, 

∏  ℐ      ̃(∏  ℐ   ). Hence, ∏  ℐ    is a closed soft set in (∏     ℐ    ̃ ∏     ℐ ). 

Conversely, Let   ℐ and       (     )  to prove  ̃ (   )       From hypothesis 

we have ∏  ℐ    is a closed soft set in (∏     ℐ    ̃ ∏     ℐ ). This means ∏  ℐ    

  ̃(∏  ℐ   )  ∏  ̃   ℐ .(   
    )(∏  ℐ   )/. By compute the soft projection, we get 

(   
    )(∏  ℐ   )  (   

    ) .∏  ̃   ℐ (   
    )(∏  ℐ   )/. It follows,  

     ̃ .(   
    )(∏  ℐ   )/   ̃ (   ). Therefore,     is a closed soft set in (    ̃    ) 

for all   ℐ. 

 

Lemma 5.5 Let *(    ̃    )   ℐ+ be a collection of soft-cs’s and   ℐ. If  ∏     ℐ
 ∏     ℐ̃  

and ((  )(  ))  ℐ  ̃  ∏     ℐ
, then *    +  ∏   

  ℐ  

{(   
    )((  )(  ))  ℐ+  ∏     ℐ̃   ∏     ℐ

  

for all      ̃   ̃  (   
    )( ∏     ℐ

). 

Proof: Let  ∏     ℐ
 ∏     ℐ̃  and ((  )(  ))  ℐ  ̃  ∏     ℐ

. Let   ℐ and      ̃   ̃  

(   
    )( ∏     ℐ

). Then,      ̃ (   
    )( ∏     ℐ

). Since ((  )(  ))  ℐ  ̃  ∏     ℐ
, then 

(   
    )(((  )(  ))  ℐ)  ̃  (   

    )( ∏     ℐ
) for all   ℐ. That 

means, ∏  ℐ*(   
    )(((  )(  ))  ℐ)+  ∏  ℐ*(   

    )( ∏     ℐ
)+. Thus, *    +  

∏   
  ℐ  

{(   
    )(((  )(  ))  ℐ)+  (   

    )(  ∏     ℐ
)  ∏   

  ℐ
*(   

    )( ∏     ℐ
)+  

∏  ℐ*(   
    )(  ∏     ℐ

)+. Clearly from the properties of the projection maps,  ∏     ℐ
 

∏  ℐ*(   
    )(  ∏     ℐ

)+. Consequently, *    +  ∏   
  ℐ  

{(   
    )(((  )(  ))  ℐ)+  

 ∏     ℐ
. But, *    +  ∏   

  ℐ  

{(   
    )(((  )(  ))  ℐ)+ is a soft point. Thus, *    +  

∏   
  ℐ  

{(   
    )(((  )(  ))  ℐ)+  ̃ ∏     ℐ̃   ∏     ℐ

. ■ 

 

Lemma 5.6 Let *(    ̃    )   ℐ+ be a collection of soft-cs’s and let   ℐ. If  ∏     ℐ
 

∏     ℐ̃ , then  ̃  (   
    )( ∏     ℐ

)  (   
    )(∏     ℐ̃   ∏     ℐ

). 
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Proof: Let   ℐ and  ∏     ℐ
 ∏     ℐ̃ . If  ∏     ℐ

  ̃∏     ℐ
, then (   

    )(∏     ℐ̃  

 ∏     ℐ
)  (   

    )(∏     ℐ̃   ̃∏     ℐ
)   ̃ . Since  ̃  (   

    )( ∏     ℐ
)   ̃   then 

 ̃  (   
    )( ∏     ℐ

)  (   
    )(∏     ℐ̃   ∏     ℐ

). If  ∏     ℐ
  ̃∏     ℐ

   then there 

exists a soft point ((  )(  ))  ℐ  ̃   ∏     ℐ
. Let       ̃   ̃  (   

    )( ∏     ℐ
). Then by 

Lemma 5.5 we have {    +  ∏   
  ℐ  

*((   
    )(((  )(  ))  ℐ)+  ∏     ℐ̃   ∏     ℐ

. It follows 

that (   
    )(*    +  ∏   

  ℐ  

*(   
    )((  )(  ))  ℐ)+)  (   

    )(∏     ℐ̃   ∏     ℐ
).  

This implies       ̃ (   
    )(∏     ℐ̃   ∏     ℐ

). Therefore,  ̃  (   
    )( ∏     ℐ

)  

(   
    )(∏     ℐ̃   ∏     ℐ

).  

 

Theoorem 5.7 Let *(    ̃    )   ℐ+ be a family of soft-cs’s. If  ∏     ℐ
 is an open soft set in the 

product soft closure space (∏     ℐ    ̃ ∏     ℐ )  then(   
    )( ∏     ℐ

) is an open soft set in 

(    ̃    ) for all   ℐ. 

 

Proof: Let  ∏     ℐ
 be an open soft set of (∏     ℐ    ̃ ∏     ℐ ). Then, ∏     ℐ̃   ∏     ℐ

 is a 

closed soft set in (∏     ℐ    ̃ ∏     ℐ ). That is mean,   ̃(∏     ℐ̃   ∏     ℐ
)  ∏     ℐ̃  

 ∏     ℐ
. From the definition of   ̃ we obtain,  ∏  ℐ ̃ ((   

    )(∏     ℐ̃   ∏     ℐ
)  

∏     ℐ̃   ∏     ℐ
. 

Suppose that there exists   ℐ such that(   
    )( ∏     ℐ

) is not open soft set in (    ̃    ). 

Since  ̃  is an open soft set in (    ̃    ) and (   
    )( ∏     ℐ

)   ̃  this implies 

(   
    )( ∏     ℐ

)   ̃ , which means  ̃  (   
    )( ∏     ℐ

)   ̃∏     ℐ
. Hence, there 

exists a soft point     
 ̃  ̃  (   

    )( ∏     ℐ
). From (  ) of Definition 3.1, we have  ̃  

(   
    )( ∏     ℐ

)   ̃ . ̃  (   
    )( ∏     ℐ

)/. Thus,  ̃ . ̃  (   
    )( ∏     ℐ

)/ is 

not contained in  ̃  (   
    )( ∏     ℐ

). Hence, there exists soft point      
 such that 

     
 ̃  ̃ . ̃  (   

    )( ∏     ℐ
)/ and      

 ̃  ̃  (   
    )( ∏     ℐ

), i.e., 

     
 ̃ (   

    )( ∏     ℐ
). Hence, there exists a soft point ((  )(  ))  ℐ  ̃  ∏     ℐ

 such that 

(   
    )(((  )(  ))  ℐ)       

. For all      
 ̃  ̃  (   

    )( ∏     ℐ
) we have {    

+  

∏   
  ℐ  

*(   
    )(((  )(  ))  ℐ)+  ∏     ℐ̃   ∏     ℐ

. By compute the soft projection for the 

last inclusion we get 

(   
    )(*    

+  ∏   
  ℐ  

*(   
    )(((  )(  ))  ℐ)+)  (   

    )(∏     ℐ̃   ∏     ℐ
) this 

implies 

(   
    )(((  )(  ))  ℐ)  (   

    )(∏     ℐ̃   ∏     ℐ
)   ̃ .(   

    )(∏     ℐ̃  

 ∏     ℐ
)/. From Lemma 5.6, we have  ̃  (   

    )( ∏     ℐ
)  (   

    )(∏     ℐ̃  
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 ∏     ℐ
). From (  ) of Definition 3.1, we have 

 ̃ . ̃  (   
    )( ∏     ℐ

)/   ̃ ((   
    )(∏     ℐ̃   ∏     ℐ

)). Since      
 ̃  ̃ . ̃  

(   
    )( ∏     ℐ

)/, then  

     
 ̃  ̃ (   

    )(∏     ℐ̃   ∏     ℐ
). Thus, it follows 

*     
+  ∏   

  ℐ  

*(   
    )(((  )(  ))  ℐ)+  ∏  ℐ ̃ ((   

    )(∏     ℐ̃   ∏     ℐ
)). 

But      
 (   

    )(((  )(  ))  ℐ) this yields 

*     
+  ∏   

  ℐ  

{(   
    )(((  )(  ))  ℐ)}

 *(   
    )(((  )(  ))  ℐ)  ∏   

  ℐ
{(   

    )(((  )(  ))  ℐ)}+ 

 

                        ∏  ℐ{(   
    )(((  )(  ))  ℐ)} 

                        *((  )(  ))  ℐ+ 

Consequently, *((  )(  ))  ℐ+  ∏  ℐ ̃ (   
    )(∏     ℐ̃   ∏     ℐ

). Therefore, 

((  )(  ))  ℐ  ̃ ∏  ℐ ̃ (   
    )(∏     ℐ̃   ∏     ℐ

)  ∏     ℐ̃   ∏     ℐ
. But 

((  )(  ))  ℐ  ̃  ∏     ℐ
, then ((  )(  ))  ℐ  ̃ ∏     ℐ̃   ∏     ℐ

 which implies 

∏  ℐ ̃ ((   
    )(∏     ℐ̃   ∏     ℐ

))  ∏     ℐ̃   ∏     ℐ
. That means  ∏     ℐ

 is not an 

open soft set in (∏     ℐ    ̃ ∏     ℐ )which is a contradiction. Therefore, (   
    )( ∏     ℐ

) is 

an open soft set in (    ̃    ) for all   ℐ. 

 

Remark 5.8 The converse of Theorem 5.7 is not hold in general as the following example shows: 

 

Example 5.9 Let    *     +    *     + and    *     +    *     +. Define soft-co’s  ̃  

and  ̃  on    and    respectively as follows: 

 ̃ (   )  

{
 
 

 
 
 ̃                         ̃                                       

                           *(   * + ) (   * +)+            

                         {(   * +) (   * + )+           

  ̃                                                                    

 

And  
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 ̃ (   )  

{
 
 

 
 

 ̃                          ̃                                            

                           {(   * +) (   * + )}                

                          {(   * +) (   * +)}                   

  ̃                                                                             

 

Then, (    ̃    ) and (    ̃    ) are soft-cs’s. Let (   
    ) and (   

    ) be the soft 

projection maps. Consider          (           ), where 

       *((     ) *(   ) (   ) (   ) (   )+) ((     ) *(   ) (   ) (   ) (   )+)  

((     ) *(   ) (   ) (   ) (   )+) ((     ) *(   ) (   ) (   ) (   )+)+.  

Then, (   
    )(      )  *(   *   +) (   *   +)+, and 

(   
    )(      )  *(   *   +) (   *   +) are open soft sets in (    ̃    ) and (    ̃    )  

respectively. But        is not an open in (        ̃      ). Since      
̃         is not 

closed soft set in (        ̃      ). 
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Application of Algebraic Geometry In Three Dimensional projective space 

PG (3,7) 
 

 

 
Keywords: complete arcs and surfaces in three dimensional projective space PG(3,q) ; (k,ƪ)-span; spread. 

 

Abstract  

 The main goal of this work is to construct surfaces and complete arcs in the projective 3 – space PG (3, q) over 

Galois fields GF (p), p=7. Which represents applications of algebraic geometry in three-dimensional projective 

space PG (3, P), where p=7 which is a (k, ƪ)-span. We get the following results. First, we found the points, lines 

and planes in PG (3,7) and we construct (k, ƪ)-span which is a set of k lines no two of which intersect. We prove 

that the maximum complete (k, ƪ)-span in PG (3,7) is (50, ƪ)-span, which is the equal to all the points of the 

space that is called a spread. Second in general we prove geometrical rule the total number of Spread in 

projective space PG (3, p) where p is prime,              . 

 

1. Introduction 

Hirschfeld, J.W.P. (1998) studied the basic definition and theorems of projective geometrics over finite 

fields[20]. In2008, Al-Mokhtar study the complete arcs and surface in three-dimensional projective space over 

Galois field GF(P), p=2, 3[3]. Kareem viewed (k, ƪ)-span in PG(3,p) over Galois field GF (p), p=4 in 2013[2]. In 

three-dimensional projective space,  the control problem is how to construct and finding the whole space spread 

which is (50,ƪ)-span in PG (3, 7) and prove it in general when              . 

This paper include three sections, first section consider the preliminaries of projective 3-space which contains 

some definition and theorems for the concept, whereas the second section consists of the subspace in PG (3, p).  

Finally, the third section construction on maximum complete (k, ƪ)-span in PG (3, 7) is spread, and in general 

prove that Geometric rule theorem (2.3)      . The total number of (k, ƪ)-span in PG (3, q) is p²+1, P ≥ 2. 

 

 

2. Preliminaries 

 

Definition 1.1: "Plane π", [1] 

A plane π in PG (3, p) is the set of all points  (           ) satisfying a linear equation      
                  . This plane is denoted by   ,           -  
Space which consists of points, lines and planes with the incidence relation between them.  

 

Theorem 1.2: [1] 

A projective 3-space PG (3, k) over a field K is a 3-dimensional projective PG (3, k) satisfying the following 

axioms: 

1. Any two distinct points are contained in a unique line. 

2. Any three distinct non-collinear points, also any line and point not on the line are contained in a unique plane. 

3. Any two distinct coplanar lines intersect in a unique point. 

4. Any line not on a given plane intersects the plane in a unique point. 
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5. Any two distinct planes intersect in a unique line. 

A projective space PG (3, p) over Galois field GF (p), where        For some prime number q and some 

integer m, is a 3-dimensional projective space. 

 

Any point in PG (3, p) has the form of a quadruple (           ), where              are elements in GF(p) 

with the exception of the quadrable consisting Lines must be arranged four zero elements. Two quadrable 

(           ) and (           ) represent the same point if there exists λ in GF(p)/{0} such that 

(           )   (           ). Similarly, any plane in PG (3, p) has the form of a quadrable [           ], 

where            , are elements in GF(p) with the exception of the quadrable consisting of four zero elements. 

Two quadrable [           ] and[           ] represent the same plane if there exists λ. in GF(p)\{0} such 

that ,           -      ,           -  
Finally, a point   (           ) is incident with the plane  ,           - iff  
                     . 

 

Theorem 1.3: [1,19] 

The points of PG (3, p) have a unique forms which are 

(       ) (       ) (       ) (       ) for all       in GF(p). 

There exists one point of the form (       )  
There exists   points of the form (       ). 
There exists    points of the form (       ). 
There exists    points of the form (       ). 
Theorem 1.4: [19] 

The planes of PG(3.p) have a unique forms which are ,       - ,       - ,       - ,       - for all 

      in GF(p). 

There exists one plane of the form ,       -  
There exists   planes of the form ,       -. 
There exists    planes of the form ,       -. 
There exists    planes of the form ,       -  
Theorem 1.5: [1] 

In PG (3.p) satisfies the following: 

A) Every line contains exactly      points and every point is on exactly     lines. 

B) Every plane contains exactly        points (lines) and every point is on exactly        planes. 

C) There exist           of points and there exists           of planes. 

D) Any two planes intersect in exactly     points and any line is on exactly     planes. So, any two points  

 are on exactly      planes. 

Theorem 1.6: [1]  

There exists (    )(      ) of lines in PG (3, p).  

 

Definition 1.7: [1,19]  

A (   )-span,       is a set of k spaces πƪ no two of which intersect. 

Definition 1.8: [1,19] 

A maximum (   )-span is a set of k spaces   which are every points of 

PG (3, p) lies in exactly one line of the, and every two lines of πƪ are disjoint. 

Definition 1.9: [1,19] 

Every maximum (   )  span is a spread. 

9-The projective space and the(   )  span in PG(3,7). 

9.1 The projective space in PG(3,7). 

 PG(3,7) contains 400 points and 400 planes such that each point is on 57 planes and every plane 

contains 57 points, any line contains 8 points and it is the intersection of 8 planes, all the points,planes and lines 

of PG(3,7) are given in table 2 and 3. 

9.2 The(k,ƪ)-span in PG(3,p). 

 In table (1) below Any two non-intersecting lines can be taken in PG(3,7). 
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Table (1) Spread in PG(3,7). 

ƫi        ƪi       (ki,ƪ)-span 

ξ 1 2 3 4 5 6 7 8 (1,ƪ)-span 

ν 9 58 107 156 205 254 303 352 (2,ƪ)-span 

μ 10 65 115 165 215 265 315 365 (3,ƪ)-span 

ζ 11 72 123 174 225 269 320 371 (4,ƪ)-span 

ε 12 79 131 183 228 280 325 377 (5,ƪ)-span 

δ 13 86 139 185 238 284 337 383 (6,ƪ)-span 

ε 14 93 147 194 241 295 342 389 (7,ƪ)-span 

δ 15 100 155 203 251 299 347 395 (8,ƪ)-span 

γ 16 61 117 173 229 285 341 397 (9,ƪ)-span 

β 17 68 125 182 239 289 346 354 (10,ƪ)-span 

α 18 75 133 184 242 300 309 360 (11,ƪ)-span 

ϑ 19 82 141 193 252 255 314 366 (12,ƪ)-span 

ϐ 20 89 142 202 206 266 319 379 (13,ƪ)-span 

ώ 21 96 150 162 216 270 324 385 (14,ƪ)-span 

ύ 22 103 109 164 219 281 336 391 (15,ƪ)-span 

ό 23 64 127 190 253 267 330 393 (16,ƪ)-span 

ϋ 24 71 128 192 207 271 335 399 (17,ƪ)-span 

ϊ 25 78 136 201 217 275 340 356 (18,ƪ)-span 

ω 26 85 144 161 220 286 345 362 (19,ƪ)-span 

ψ 27 92 152 163 230 290 308 368 (20,ƪ)-span 

ζ 28 99 111 172 233 301 313 374 (21,ƪ)-span 

ς 29 106 119 181 243 256 318 380 (22,ƪ)-span 

ϡ 30 60 130 200 221 291 312 382 (23,ƪ)-span 

Ђ 31 67 138 160 231 302 317 388 (24,ƪ)-span 

ϟ 32 74 146 169 234 257 329 394 (25,ƪ)-span 

ϝ 33 81 154 171 244 261 334 358 (26,ƪ)-span 

Ϙ 34 88 113 180 247 272 339 364 (27,ƪ)-span 

ϖ 35 95 114 189 208 276 351 370 (28,ƪ)-span 

ϱ 36 102 122 191 218 287 307 376 (29,ƪ)-span 

Ϭ 37 63 140 168 245 273 350 378 (30,ƪ)-span 

Ϫ 38 70 148 170 248 277 306 384 (31,ƪ)-span 

Ϧ 39 77 149 179 209 288 311 390 (32,ƪ)-span 

Ϣ 40 84 108 188 212 292 323 396 (33,ƪ)-span 

Ͼ 41 91 116 197 222 296 328 353 (34,ƪ)-span 

Б 42 98 124 199 232 258 333 359 (35,ƪ)-span 

Џ 43 105 132 159 235 262 338 372 (36,ƪ)-span 

Ў 44 59 143 178 213 297 332 367 (37,ƪ)-span 

Ѝ 45 66 151 187 223 259 344 373 (38,ƪ)-span 

Ћ 46 73 110 196 226 263 349 386 (39,ƪ)-span 

Њ 47 80 118 198 236 274 305 392 (40,ƪ)-span 

Љ 48 87 126 158 246 278 310 398 (41,ƪ)-span 

Ђ 49 94 134 167 249 282 322 355 (42,ƪ)-span 

Л 50 101 135 176 210 293 327 361 (43,ƪ)-span 
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In table(1) above any elements of the set ƫi= { ξ, ν, μ,………, Ѡ} except the first element can be representing by 

union of below set and non- intersecting of them. 

Finally, the line Ѡ={57,104,145,186,227,268,316,357} cannot intersect any line of the set (ƫi) and (Ѡ) is 

(50,ƪ)-span, which is the maximum (k,ƪ)-span of PG(3,7) can be obtained. Thus Ѡ is called a Spread of fifty 

lines of PG(3,7) which partitions PG(3,7); that every point of PG(3,7) lies in exactly one line of ƫi.. and every 

line are disjoint. From the above results the number of the planes in the projective space 

PG(3,7) are 400 planes and each plane contains 57 lines, therefore the total number of the lines in PG(3,7) are 

22800.We found that the number of the lines do not intersect with some of them are fiftylines ,these lines 

contains the whole points of the projective space PG(3,7), and called him a (50,ƪ)-span ,i.e. 

(50,ƪ)-span={ƪ1,ƪ2,..., ƪ50}=PG(3,7)={1,2,3,…..,400} 

Moreover, we found that a (50,ƪ)-span is a maximum (k, ƪ)-span inPG(3,7). 

 

 Table (2) Points and Plane of PG(3,7) 

I pi πi 

 

1 

 

(1,0,0,0) 

2  9  16  23  30  37  44  51  58  65  72  79  86  93  100  107  114  121  128  135  142  

149  156  163  170  177  184  191  198  205  212  219  226  233  240  247  254  261  

268  275  282  289  296  303  310  317  324  331  338  345  352  359  366  373  380  

387  394 

 

2 

 

(0,1,0,0) 

1  9  10  11  12  13  14  15  58  59  60  61  62  63  64  107  108  109  110  111  112  

113  156  157  158  159  160  161  162  205  206  207  208  209  210  211  254  255  

256  257  258  259  260  303  304  305  306  307  308  309  352  353  354  355  356  

357  358 

 

. . 
 

. 

. 

. 

. 

. 

. 

. 

. 

 

 

400 

 

(6,6,6,1) 

8  15  21  27  33  39  45  51  59  65  78  84  90  96  102  107  120  126  132  138  144  

150  162  168  174  180  186  192  198  210  216  222  228  234  240  253  258  264  

270  276  282  295  301  306  312  318  324  337  343  349  354  360  366  379  385  

391  397 

Щ 51 62 153 195 237 279 321 363 (44,ƪ)-span 

Ю 52 69 112 204 240 283 326 369 (45,ƪ)-span 

Ы 53 76 120 157 250 294 331 375 (46,ƪ)-span 

ж 54 83 121 166 211 298 343 381 (47,ƪ)-span 

ц 55 90 129 175 214 260 348 387 (48,ƪ)-span 

Ƣ 56 97 137 177 224 264 304 400 (49,ƪ)-span 

Ѡ 57 104 145 186 227 268 316 357 (50,ƪ)-span 
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Table (3) Plane and lines of PG(3,7) 

 
2 2 2 2 2 2 2 2 9 9 9 9 9 9 9 16 16 16 16 16 16 16 23 23 23 23 23 23 23 30 30 30 30 30 30 30 

 
9 58 107 156 205 254 303 352 58 65 72 79 86 93 100 58 65 72 79 86 93 100 58 65 72 79 86 93 100 58 65 72 79 86 93 100 

 
16 65 114 163 212 261 310 359 107 114 121 128 135 142 149 114 121 128 135 142 149 107 121 128 135 142 149 107 114 128 135 142 149 107 114 121 

1 23 72 121 170 219 268 317 366 156 163 170 177 184 191 198 170 177 184 191 198 156 163 184 191 198 156 163 170 177 198 156 163 170 177 184 191 

 
30 79 128 177 226 275 324 373 205 212 219 226 233 240 247 226 233 240 247 205 212 219 247 205 212 219 226 233 240 219 226 233 240 247 205 212 

 
37 86 135 184 233 282 331 380 254 261 268 275 282 289 296 282 289 296 254 261 268 275 261 268 275 282 289 296 254 289 296 254 261 268 275 282 

 
44 93 142 191 240 289 338 387 303 310 317 324 331 338 345 338 345 303 310 317 324 331 324 331 338 345 303 310 317 310 317 324 331 338 345 303 

 
51 100 149 198 247 296 345 394 352 359 366 373 380 387 394 394 352 359 366 373 380 387 387 394 352 359 366 373 380 380 387 394 352 359 366 373 

 

37 37 37 37 37 37 37 44 44 44 44 44 44 44 51 51 51 51 51 51 51 

58 65 72 79 86 93 100 58 65 72 79 86 93 100 58 65 72 79 86 93 100 

135 142 149 107 114 121 128 142 149 107 114 121 128 135 149 107 114 121 128 135 142 

163 170 177 184 191 198 156 177 184 191 198 156 163 170 191 198 156 163 170 177 184 

240 247 205 212 219 226 233 212 219 226 233 240 247 205 233 240 247 205 212 219 226 

268 275 282 289 296 254 261 296 254 261 268 275 282 289 275 282 289 296 254 261 268 

345 303 310 317 324 331 338 331 338 345 303 310 317 324 317 324 331 338 345 303 310 

373 380 387 394 352 359 366 366 373 380 387 394 352 359 359 366 373 380 387 394 352 

 

 
1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 10 10 10 10 10 10 10 11 11 11 11 11 11 11 12 12 12 12 12 12 12 

 
9 58 107 156 205 254 303 352 58 59 60 61 62 63 64 58 59 60 61 62 63 64 58 59 60 61 62 63 64 58 59 60 61 62 63 64 

 
10 59 108 157 206 255 304 353 107 108 109 110 111 112 113 108 109 110 111 112 113 107 109 110 111 112 113 107 108 110 111 112 113 107 108 109 

2 11 60 109 158 207 256 305 354 156 157 158 159 160 161 162 158 159 160 161 162 156 157 160 161 162 156 157 158 159 162 156 157 158 159 160 161 

 
12 61 110 159 208 257 306 355 205 206 207 208 209 210 211 208 209 210 211 205 206 207 211 205 206 207 208 209 210 207 208 209 210 211 205 206 

 
13 62 111 160 209 258 307 356 254 255 256 257 258 259 260 258 259 260 254 255 256 257 255 256 257 258 259 260 254 259 260 254 255 256 257 258 

 
14 63 112 161 210 259 308 357 303 304 305 306 307 308 309 308 309 303 304 305 306 307 306 307 308 309 303 304 305 304 305 306 307 308 309 303 

 
15 64 113 162 211 260 309 358 352 353 354 355 356 357 358 358 352 353 354 355 356 357 357 358 352 353 354 355 356 356 357 358 352 353 354 355 

 

13 13 13 13 13 13 13 14 14 14 14 14 14 14 15 15 15 15 15 15 15 

58 59 60 61 62 63 64 58 59 60 61 62 63 64 58 59 60 61 62 63 64 

111 112 113 107 108 109 110 112 113 107 108 109 110 111 113 107 108 109 110 111 112 

157 158 159 160 161 162 156 159 160 161 162 156 157 158 161 162 156 157 158 159 160 

210 211 205 206 207 208 209 206 207 208 209 210 211 205 209 210 211 205 206 207 208 

256 257 258 259 260 254 255 260 254 255 256 257 258 259 257 258 259 260 254 255 256 

309 303 304 305 306 307 308 307 308 309 303 304 305 306 305 306 307 308 309 303 304 

355 356 357 358 352 353 354 354 355 356 357 358 352 353 353 354 355 356 357 358 352 
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.  

. 

. 

 
8 8 8 8 8 8 8 8 15 15 15 15 15 15 15 21 21 21 21 21 21 21 27 27 27 27 27 27 27 33 33 33 33 33 33 33 

 
15 59 107 162 210 258 306 354 59 65 78 84 90 96 102 59 65 78 84 90 96 102 59 65 78 84 90 96 102 59 65 78 84 90 96 102 

 
21 65 120 168 216 264 312 360 107 120 126 132 138 144 150 120 126 132 138 144 150 107 126 132 138 144 150 107 120 132 138 144 150 107 120 126 

400 27 78 126 174 222 270 318 366 162 168 174 180 186 192 198 174 180 186 192 198 162 168 186 192 198 162 168 174 180 198 162 168 174 180 186 192 

 
33 84 132 180 228 276 324 379 210 216 222 228 234 240 253 228 234 240 253 210 216 222 253 210 216 222 228 234 240 222 228 234 240 253 210 216 

 
39 90 138 186 234 282 337 385 258 264 270 276 282 295 301 282 295 301 258 264 270 276 264 270 276 282 295 301 258 295 301 258 264 270 276 282 

 
45 96 144 192 240 295 343 391 306 312 318 324 337 343 349 343 349 306 312 318 324 337 324 337 343 349 306 312 318 312 318 324 337 343 349 306 

 
51 102 150 198 253 301 349 397 354 360 366 379 385 391 397 397 354 360 366 379 385 391 391 397 354 360 366 379 385 385 391 397 354 360 366 379 

 

39 39 39 39 39 39 39 45 45 45 45 45 45 45 51 51 51 51 51 51 51 

59 65 78 84 90 96 102 59 65 78 84 90 96 102 59 65 78 84 90 96 102 

138 144 150 107 120 126 132 144 150 107 120 126 132 138 150 107 120 126 132 138 144 

168 174 180 186 192 198 162 180 186 192 198 162 168 174 192 198 162 168 174 180 186 

240 253 210 216 222 228 234 216 222 228 234 240 253 210 234 240 253 210 216 222 228 

270 276 282 295 301 258 264 301 258 264 270 276 282 295 276 282 295 301 258 264 270 

349 306 312 318 324 337 343 337 343 349 306 312 318 324 318 324 337 343 349 306 312 

379 385 391 397 354 360 366 366 379 385 391 397 354 360 360 366 379 385 391 397 354 
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Conclusion: - 

 

 We have inferred and demonstrated the following geometrical rule. 

 

Theorem 9.3 

 

 The total number of Spread in projective space   (   ) where p is prime,           . 

Proof : 

        In   (   ), there exist           planes, but each line is on    planes, then there exist exactly 

(         )

(   )
   (    ) spread in PG(3,p). 
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Abstract : In this work, the complete (k, n) arcs in PG(3,4) over Galois field GF(4) can be created by removing 

some points from the complete arcs of degree m, where m = n + 1, 3 n q2 + q is used. In addition, where k ≤ 85, 

we geometrically prove that the minimum complete (k, n)—arc in PG(3,4) is (5,3)-arc. A(k, n)—arcs is a set of 

k points no n+1 of which collinear. A(k, n)—arcs is complete unless it is embedded in an arc (k+1,n). 

 1-Introduction: 

This paper divided into three sections, section one consists of the basic theorems and definitions of a 

projective 3-space PG(3,q). In section two the addition's and multiplication operations of GF(4). The 

Reverse of complete (k, n)-arcs, for 3  n  21 explained in section three.  

1.1 Definition1[3]:  

PG(3,q)", A projective 3-space PG(3,q) over Galois field GF(q),where q =p
m
 for some prime number 

(p) and some integer m is a three-dimensional projective space which consists of points, planes and 

lines with incidence relation between them. PG(3,q) is satisfying the following axioms: 

a. Within a single line are found every two distinct points. 

b. In a single plane are found all three distinct non-collinear points, even any line and point not on it. 

c. Each two distinct lines of coplanar converge in one single point. 

c. Any line which is not on a given plane intersects the plane at a single point. 

e. The intersection of any two distinct planes in a single line. 

Any point in PG(3,q) has the shape of a quadrable (U1,U2,U3,U4), where U1,U2,U3,U4 are elements 

in GF(q) except the quadrable composed of four zero elements. Two quadrables (U1,U2,U3,U4) and 

(V1,V2,V3,V4) represent the same point if, in GF(q)\{0}, there is (t) such that (U1,U2,U3,U4) = 

t(V1,V2,V3,V4). Similarly, every plane in PG(3,q) has the form of a quadrable [U1,U2,U3,U4], 

where U1,U2,U3,U4 are elements in GF(q) except the quadrable composed of four zero elements. 

Two quadrables [U1,U2,U3,U4] and [V1,V2,V3,V4] represent the same plane if, in GF(q)\{0}, there 

is (t) such that [U1,U2,U3,U4] = t[V1,V2,V3,V4]. A point N(U1,U2,U3,U4) is incident with the plan. 

1.2 Definition2[3]: "Plane  " 

 A plane   in PG(3,q) is the set of all points N(U1,U2,U3,U4) satisfying a linear equation 

 U1X1 + U2X2 + U3X3 + U4X4 = 0. This plane is denoted by   [X1,X2,X3,X4],where X1,X2,X3,X4 are 

elements in GF(q) with the exception of the quadrable consisting of four zero elements. 

mailto:eidanalkhatony@gmail.com
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1.3 Theorem1[4]:  

PG(3,q) points have special shapes that are (1,0,0,0), (U,1,0,0), (U, V,1,0) and (U, V, W,1) for all U, 

V, W in GF(q), which are (1,0,0,0) is one point, (U,1,0,0) q points, (U, V,1,0) q2 points, and (U, V, 

W,1) q3 points, for all U, V, W in PG(q) points. 

1.4 Theorem2[4]:  

The PG(3,q) planes have special shapes [1,0,0,0],[U,1,0,0], [U, V,1,0], [U, V, W,1] for all u, v,w in 

GF(q ). which are [1,0,0,0] is one plane,[U,1,0,0] are q planes,[U,V,1,0] are q
2
 planes, and [U,V,W,1] 

are q
3
 planes, for all U, V, W in PG(q). 

1.5 Corollary1[4]:  

There exists q
3
+ q

2
+ q + 1 of points in PG (3,q) and there exist q

3
+ q

2
+ q + 1 of planes. 

1.6 Theorem3[4]:  

Every plane in PG(3,q) contains exactly q
2
+ q + 1 points (lines) and every point is on exactly q

2
+ q + 

1 planes. 

1.7 Theorem4[4]:  

Every line in PG(3,q) contains exactly q + 1 points and every point is on exactly q + 1 lines. 

1.8 Corollary2[4]: 

Every two PG(3,q) aircraft intersects in exactly q + 1 points and every two points are on exactly q + 1 

planes. Any line is also on precisely q + 1 planes. 

1.9 Definition3[1] :"(k,n)-arcs" 

 A (k, n)—arc A in PG(3,q) is a set of k points such that at most n points of which lie in any plane, n  

3. n is called degree of the (k, n)—arc. 

1.10 Definition4[1]: 

 In PG(3,q), if k is any k-set, then an n-secant of k is a line(a plane) ℓ such that |ℓ  k|=n.  

 A 0—secant is called an external line (plane) of k, a 1—secant is called a unisecant line (plane), 

 a 2—secant is called a bisecant line and 3—secant is called a trisecant line. 

1.11 Definition5[1]:  

A point N not on a (k, n)—arc has index i if there are exactly i (n-secant) of K through N, one can 

denoted the number of point N of index i by Ci. 

1.12 Remark1[2]: A (k, n)—arc A is complete iff C0=0. Thus the k-set is complete iff every point of 

PG(3,q) lies on some n-secant of the (k, n)—set. 

1.13 Definition6[2]: 

 Let T i be the total number of the i-secant of a (k, n)—arc A, then the type of A with respect to its 

planes denoted by (T n, T n – 1, T n – 2, …, T0). One can also say that A is of type m where m = mi ; that 

is m is the smallest integer i for which T i  0. 

1.14 Definition7[4]:  

Let (k1,n)-arc A is of type (T n, T n – 1, …, T0) and (k2,n)-arc B of type (Sn, Sn – 1, …, S0), then A and B 

have the same type iff T i = S i, for all i, in this case they are projectively equivalent. 

1.15 Theorem5[4]:  

Let T i represents the number of i-secants (planes) for the arc A in PG(3,q), that is T2 is the number of 

bisecants, T1 is the number of unisecants, and T0 is the number of external line b = q + 2 – k, then ; 
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1. T1 = k b 

2. T2 =k(k– 1)/2 

3. T3 =k(k– 1)(k– 2)/3! 

4. T n =k(k –1)… (k– n +1)/n! 

5. T0 = q
3
+ q

2
+ q + 1 – k b –k(k– 1)/2–k(k– 1)(k– 2)/3!–… –k(k– 1)(k– 2)… (k– n +1)/n! 

1.16 Theorem6[4]: 

 Let Ci be the number of points of index i in PG(3,q) which are not on a (k, n)-arc A, then the 

constants Ci of A satisfy the following equations: 

(1) ∑   
 
  = q

3
+q

2
+ q + 1 – k  

(2) ∑    
 
 =k(k– 1)… (k– n+1) (q

2
+ q + 1 – n) /n! where α is the smallest i for which Ci   0, β be the 

largest i for which Ci  0. 

1.17 Theorem7[1]: 

 A (k, n)-arc A is maximum if and only if every line in PG(3,q) is a 0—secant or n secant. 

2- The Addition's and Multiplication's Operations of GF(4)[5]:  
 In order to find the addition and multiplication tables in GF(4), we have order pairs (U1,U2) so that 

U1,U2 in GF(2), as follows: 0≡(0,0), 1≡(1,0), 2≡(0,1), 3≡(1,1). Placed these points in one orbit, at 

(1,0) the first point and by (1,0) A
i
, i=0,1,2,3 and A=0

  
  

1, (1,0)A = (0,1) and (1,0)A
2
= (1,1),  

so  

 (1,0)=0
  
  

1 
(   )
(   )

. 

Currently, on the left of the table below, m is the multiplication operation and on the right n is the 

addition operation, on the multiplication side we write the numbering of points as second, and the 

addition side takes the usual sequence.   

m(*)  (+)n = f(m) 

1 (1,0) 0 

2 (0,1) 1 

3 (1,1) 2 

Mod 3   

   

In addition table, we have the following relation:(U1,U2) + (V1,V2) = (W1,W2) where Wi = (Ui + Vi) 

mod(2), for i = 1, 2. In multiplication table, we have the following relation 

 ((1,0)A 
f(m

1
)
)A 

f(m
2
 )

  m1   m2 =m3  

 =(1,0)A
(
 
f(m

1
)+f(m

2
)
 
)(mod 3)

 

 = (U1,U2) 

For example: 2 3=1  ((1,0)A
1
)A

2
=(1,0)A

3
=(1,0)A

0
=(1,0) 

where (1,0) equal to 1 in multiplication side. 

 Now we have addition and multiplication tables: 

 Table(1) Table(2)  

 

 

 

 

 

3. The Reverse construction of complete (k, n)–arcs in PG(3,4):  

The complete (k, n)-arcs in PG(3,4) can be constructed from the complete arcs of degree m, m = n + 

1, 

 3  n  21, through the following: 

+ 0 1 2 3 

0 0 1 2 3 

1 1 0 3 2 

2 2 3 0 1 

3 3 2 1 0 

* 1 2 3 

1 1 2 3 

2 2 3 1 

3 3 1 2 
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3.1 The complete (k,21) – arc in PG(3,4) :  

The projective space PG (3,4) contains 85 points and 85 planes in such a way that each point is on 21 

planes and each plane contains 21 points, each line has 5 points and is the intersection of 5 planes. 

And there's the maximal complete (k,21)–arc A exists when k = 85. This arc contains all the points of 

PG(3,4) since it intersects every plane in exactly 21 points and hence there arc no points of index zero 

for A.  

So A = {1, …, 85} is the complete (85,21)–arc. 

 3.2 The Construction of Complete (k,20) – arc in PG(3,4) : 

 A complete (k,20)–arc B is constructed from the complete (85,21) – arc A by eliminating some points 

from A which are: 18,26,38,46,54,58,70,82. to obtain a complete (77,20)–arc B, since  

1. B intersects any plane in at most 20 points. 

2. every point not in B is on at least one 20 – secant of B, 

B = {1,…,17,19,…,25,27,…,37,39,…,45,47,…,53,55,56,57,59,…,69,71,…,81,83,84,85}. 

3.3 The Construction of Complete (k,19) – arc in PG(3,4) : 

A complete (k,19) – arc C in PG (3,4) can be constructed from the complete (77,20) – arc B by 

eliminating some points from B, which are: 10,30,62,66,78. 

Then a complete (72,19)–arc C is obtained, 

C={1,…,9,11,…,17,19,…,25,27,28,29,31,…,37,39,…,45,47,…,53,55,56,57,59,…61,63,64,65,67,68,6

9,71,…,77,79,80,81,83,84,85} since each point not in C is on at least one 19 – secant, hence there are 

no points of index zero for C and C intersects any plane of PG(3,4) in at most 19 points. 

3.4 The Construction of Complete (k,18) – arc in PG(3,4) : 

A complete (k,18)–arc D in PG(3,4) can be constructed from the complete (72,19)–arc C by 

eliminating four points from C, which are the points 14,34,50,74. then a complete (68,18)–arc D is 

obtained, 

D={1,…,9,11,12,13,15,…,17,19,…,25,27,28,29,31,32,33,35,36,37,39,…,45,47,48,49,51,52,53,55,56,

57,59,…,61,63,64,65,67,68,69,71,72,73,75,76,77,79,80,81,83,84,85} since each point not in D is on 

at least one  

18 – secant of D and hence there are no points of index zero and D intersects each plane in at most 18 

points. 

3.5 The Construction of Complete (k,17) – arc in PG(3,4) : 

A complete (k,17)–arc E in PG(3,4) can be constructed from the complete (68,18) – arc C by 

eliminating five points from D, which are the points 21,32,42,55,65. then a complete (63,17)–arc E is 

obtained,E={1,…,9,11,12,13,15,…,17,19,20,22,23,24,25,27,28,29,31, 

33,35,36,37,39,40,41,43,44,45,47,48,49,51,52,53,56,57,59,…,61,63,64,67,68,69, 

71,72,73,75,76,77,79,80,81,83,84,85} since each point not in E is on at least one 17–secant of E and 

hence there are no points of index zero and E intersects each plane in at most 17 points. 

 3.6 The Construction of Complete (k,16) – arc in PG(3,4) : 

A complete (k,16) – arc F in PG(3,4) can be constructed from the complete (63,17) – arc E, by 

eliminating six points from E, which are: 8,25,45,71,80,85.then  

F={1,…,7,9,11,12,13,15,16,17,19,20,22,23,24,27,28,29,31,33,35,36,37,39,40,41,43,44,47,48,49,51,5

2,53,56,57,59,60,61,63,64,67,68,69,72,73,75,76,77,79,81,83,84}, F is a complete (57,16)–arc, since1. 

F intersects any plane in at most 16 points and 

2. every point not in F is on at least one 16 – secant of F. 

3.7 The Construction of Complete (k,15) – arc in PG(3,4) : 

 A complete (k,15)–arc G constructed from the complete (57,16)–arc F, by eliminating four points 

from F, which are : 19,27,52,60. then G ={1,…,7,9,11,12,13,15,16,17,20,22,23,24, 28, 29, 31, 33, 35, 

36, 37, 39, 40, 41,43,44,47,48,49,51,53,56,57,59,61,63,64,67,68,69,72,73,75,76,77,79,81,83,84}, G is 

a complete (53,15) – arc, since 

G intersects any plane in at most 15 points and 
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every point not in G is on at least one 15 – secant of G. 

3.8 The Construction of Complete (k,14) – arc in PG(3,4) : 

A complete (k,14)–arc H can be constructed from the complete (53,15)–arc G, by eliminating four 

points, which are: 5,20,59,77. from G, then H ={1,2,3,4,6,7,9,11,12,13,15,16,17,22,23,24, 28, 29, 31, 

33, 35, 36, 37, 39,40,41,43,44,47,48,49,51,53,56,57,61,63,64,67,68,69,72,73,75,76,79,81,83,84},H is 

a complete (49,14)–arc, since 

1. H intersects any plane in at most 14 points and 

2. every point not in H is on at least one 14–secant of H. 

3.9 The Construction of Complete (k,13) – arc in PG(3,4) : 

A complete (k,13)–arc I can be constructed from the complete (49,14)–arc H, by eliminating five 

points from H, which are: 36,44,67,72,73. then  

I={1,2,3,4,6,7,9,11,12,13,15,16,17,22,23,24,28,29,31,33,35,37,39,40,41,43,47,48,49,51,53,56,57,61,6

3,64,68,69,75,76,79,81,83,84},I is a complete (44,13)–arc, since I intersects any plane in at most 13 

points and every point not in I is on at least one 13–secant of I. 

3.10 The Construction of Complete (k,12) – arc in PG(3,4) : 

A complete (k,12)–arc J can be constructed from the complete (44,13)– arc I, by eliminating five 

points from I, which are: 17,28,41,51,79. then J ={1,2,3,4,6,7,9,11,12,13,15,16,22,23,24, 

29,31,33,35,37,39,40,43,47,48,49,53,56,57,61,63,64,68,69,75,76,81,83,84},J is a complete (39,12)–

arc, since J intersects any plane in at most 12 points and 

every point not in J is on at least one 12–secant of J. 
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3.11 The Construction of Complete (k,11) – arc in PG(3,4) : 

A complete (k,11)–arc K in PG(3,4) can be constructed from the complete (39,12)–arc K, by 

eliminating three points from J, which are : 16,35,64. then 

K={1,2,3,4,6,7,9,11,12,13,15,22,23,24,29,31,33, 

37,39,40,43,47,48,49,53,56,57,61,63,68,69,75,76,81,83,84},K is a complete (36,11) – arc, since 

K intersects any plane in PG(3,4) in at most 11 points and 

every point not in K is on at least one 11– secant of K. 

3.12 The Construction of Complete (k,10) – arc in PG(3,4) : 

A complete (k,10)–arc L can be constructed from the complete (36,11)–arc K, by eliminating five 

points from K, which are : 9,23,31,33,69. then L={1,2,3,4,6,7,11,12,13,15,22,24,29, 

37,39,40,43,47,48,49,53,56,57,61,63,68,75,76,81,83,84} is a complete (31,10)–arc, since 

1. L intersects any plane in PG(3,4) in at most 10 points and 

2. every point not in L is on at least one 10–secant of L. 

3.13 The Construction of Complete (k,9) – arc in PG(3,4) : 

A complete (k,9)–arc M can be constructed from the complete (31,10)–arc L, by eliminating three 

points from L, which are : 4,11,48. then M ={1,2,3,6,7,12,13,15,22,24,29,37,39,40,43,47, 

49,53,56,57,61,63,68,75,76,81,83,84} is a complete (28,9)–arc, since 

1. M intersects any plane in PG(3,4) in at most 9 points and 

2. every point not in M is on at least one 9–secant of M. 

3.14 The Construction of Complete (k,8)–arcs in PG(3,4) : 

A complete (k,8)–arc N in PG(3,4) can be constructed from the complete (28,9)–arc M, by 

eliminating four points from M, which are : 13, 29, 39,,56. then  

N ={1,2,3,6,7,12,15,22,24,37,40,43,47,49,53,57,61,63,68,75,76,81,83,84} is a complete (24,8)–arc, 

since1. N intersects any plane in PG(3,4) in at most 8 points and 

2. every point not in N is on at least one 8–secant of N. 

3.15 The Construction of Complete (k,7) – arcs in PG(3,4) : 

A complete (k,7)–arc O in PG(3,4) can be constructed from the complete (24,8)–arc N, by eliminating 

four points from N, which are : 37,47,76,83, then  

O ={1,2,3,6,7,12,15,22,24,40,43,49,53,57,61,63,68,75,81,84}is a complete(20,7)–arc, since 

1. O intersects any plane in at most 7 points and 

2. every point not in O is on at least one 7–secant of O. 

3.16 The Construction of Complete (k,6) – arcs in PG(3,4) : 

A complete (k,6)–arc P in PG(3,4) can be constructed from the complete (20,7)–arc O, by eliminating 

five points from O, which are : 12,24,53,61,84, then  

P ={1,2,3,6,7,15,22,40,43,49,57,63,68,75,81} is a complete(15,6)– arc, since 

1. P intersects any plane in at most 6 points and 

2. every point not in P is on at least one 6–secant of P. 

3.17 The Construction of Complete (k,5) – arcs in PG(3,4) : 

A complete (k,5)–arc Q in PG(3,4) can be constructed from the complete (15,6)–arc P, by eliminating 

three points from P, which are : 3,7,81, then  

Q ={1,2,6,15,22,40,43,49,57,63,68,75} is a complete(12,5)– arc, since 

1. Q intersects any plane in at most 5 points and 

2. every point not in Q is on at least one 5–secant of Q. 

3.18 The Construction of Complete (k,4) – arcs in PG(3,4) : 

A complete (k,4)–arc R in PG(3,4) can be constructed from the complete (12,5)–arc Q, by eliminating 

three points from Q, which are : 49,57,75, then  

R ={1,2,6,15,22,40,43,63,68} is a complete(9,4)– arc, since 

1. R intersects any plane in at most 4 points and 
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2. every point not in R is on at least one 4–secant of R. 

3.19 The Construction of Complete (k,3) – arcs in PG(3,4) : 

A complete (k,3)–arc S in PG(3,4) can be constructed from the complete (9,4)–arc R, by eliminating 

four points from R, which are : 15,40,63,68 then  

S ={1,2,6,22,43} is a complete(5,3)– arc, since 

1. S intersects any plane in at most 3 points and 

2. every point not in S is on at least one 3–secant of S.(table below) 

Conclusions :  

Form the above results, the complete (k,n)-arcs in PG(3,4),21 n 3,as follows: 

 (k,21)–arc, where k=85, is a complete.               (k,11)–arc, where k=36, is a complete. 

(k,20)–arc, where k=77, is a complete.  (k,10)–arc, where k=31, is a complete. 

(k,19)–arc, where k=72, is a complete.  (k,9)–arc, where k=28, is a complete. 

(k,18)–arc, where k=68, is a complete.  (k,8)–arc, where k=24, is a complete. 

(k,17)–arc, where k=63, is a complete.                 (k,7)–arc, where k=20, is a complete. 

(k,16)–arc, where k=57, is a complete.   (k,6)–arc, where k=15, is a complete. 

(k,15)–arc, where k=53, is a complete.  (k,5)–arc, where k=12, is a complete. 

(k,14)–arc, where k=49, is a complete.  (k,4)–arc, where k=9, is a complete. 

(k,13)–arc, where k=44, is a complete.                (k,3)–arc, where k=5, is a complete. 

(k,12)–arc, where k=39, is a complete.  

Notation: - 

   A (l, t)- blocking set S in PG(2, q) is a set of L points such that every line of PG(2, q) intersects S in 

at least n points, and there is a line intersecting S in exactly n points. Note that a (k, r)-arc is the 

complement of a (q
2
+q+1-k, q+1− r)-blocking set in a projective plane and conversely. A linear code 

C of length n and dimension k over GF(q) is a k-dimensional subspace of V (n ,q). Such a code is 

called [n, k, d ;p]- code if its minimum Hamming distance is d. There is exists a relationship between 

(k, r)-arc in PG(2,q) and [n,3,d]q codes ,given by the following  theorem . 

Theorem [6]  

There exists a projective [k,3,d]q code if and only if there exists an (n, n−d)-arc in PG(2, q).  
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 Table for the related between (k,n)-arcs and{l,t}- blocking sets and linear codes 

q Arc Blocking set Linear code 

4 

(85,21)–arc ………………….. [85,4,64]4 

(77,20)–arc (8,1)–Blocking set [77,4,57]4 

(72,19)–arc (13,2)–Blocking set [72,4,53]4 

(68,18)–arc (17,3)–Blocking set [68,4,50]4 

(63,17)–arc (22,4)–Blocking set [63,4,46]4 

(57,16)–arc (28,5)–Blocking set [57,4,41]4 

(53,15)–arc (32,6)–Blocking set [53,4,38]4 

(49,14)–arc (36,7)–Blocking set [49,4,35]4 

(44,13)–arc (41,8)–Blocking set [44,4,31]4 

(39,12)–arc (46,9)–Blocking set [39,4,27]4 

(36,11)–arc (49,10)–Blocking set [36,4,25]4 

(31,10)–arc (54,11)–Blocking set [31,4,21]4 

(28,9)–arc (57,12)–Blocking set [28,4,19]4 

(24,8)–arc (51,13)–Blocking set [24,4,16]4 

(20,7)–arc (65,14)–Blocking set [20,4,13]4 

(15,6)–arc (70,15)–Blocking set [15,4,9]4 

(12,5)–arc (73,16)–Blocking set [12,4,7]4 

(9,4)–arc (76,17)–Blocking set [9,4,5]4 

(5,3)–arc (80,18)–Blocking set [5,4,2]4 

 

Notation: - 

The points of PG(3,q) have unique forms which are (1,0,0,0),(U,1,0,0), (U,V,1,0) and (U,V,W,1) 

for all U, V, W  in GF(q).which are (1,0,0,0) is one point,(U,1,0,0) are q  points,(U,V,1,0) are q2 

points, and (U,V,W,1) are q3 points, for all U,V,W  in PG(q). 

Notation: - 

There exists q
3
+q

2
+q+1 of points in PG(3,q) and there exist q

3
+q

2
+q+1 of planes. 

Notation: - 

Every plane in PG(3,q) contains exactly q2+q+1 points (lines) and every point is on exactly 

q
2
+q+1 planes. 

Notation: - 

Every line in PG(3,q) contains exactly q + 1 points and every point is on exactly q + 1 lines. 

Notation: - 

Any two planes in PG(3,q) intersect in exactly q+1 points, and any two points are on exactly q + 1 

planes. Also any line is on exactly q+1 planes. 

 

 

The Points and Plans of PG(3,4) 

L1 (1,0,0,0) 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 

L2 (0,1,0,0) 1 6 7 8 9 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 

L3 (1,1,0,0) 3 6 11 16 21 22 26 30 34 39 43 47 51 56 60 64 68 73 77 81 85 

L4 (2,1,0,0) 5 6 13 15 20 22 26 30 34 41 45 49 53 55 59 63 67 72 76 80 84 
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L5 (3,1,0,0) 4 6 12 17 19 22 26 30 34 40 44 48 52 57 61 65 69 71 75 79 83 

L6 (0,0,1,0) 1 2 3 4 5 22 23 24 25 38 39 40 41 54 55 56 57 70 71 72 73 

L7 (1,0,1,0) 2 7 11 15 19 22 27 32 37 38 43 48 53 54 59 64 69 70 75 80 85 

L8 (2,0,1,0) 2 9 13 17 21 22 29 31 36 38 45 47 52 54 61 63 68 70 77 79 84 

L9 (3,0,1,0) 2 8 12 16 20 22 28 33 35 38 44 49 51 54 60 65 67 70 76 81 83 

L10 (0,1,1,0) 1 10 11 12 13 22 23 24 25 42 43 44 45 62 63 64 65 82 83 84 85 

L11 (1,1,1,0) 3 7 10 17 20 22 27 32 37 39 42 49 52 56 61 62 67 73 76 79 82 

L12 (2,1,1,0) 5 9 10 16 19 22 29 31 36 41 42 48 51 55 60 62 69 72 75 81 82 

L13 (3,1,1,0) 4 8 10 15 21 22 28 33 35 40 42 47 53 57 59 62 68 71 77 80 82 

L14 (0,2,1,0) 1 18 19 20 21 22 23 24 25 46 47 48 49 66 67 68 69 74 75 76 77 

L15 (1,2,1,0) 4 7 13 16 18 22 27 32 37 40 45 46 51 57 60 63 66 71 74 81 84 

L16 (2,2,1,0) 3 9 12 15 18 22 29 31 36 39 44 46 53 56 59 65 66 73 74 80 83 

L17 (3,2,1,0) 5 8 11 17 18 22 28 33 35 41 43 46 52 55 61 64 66 72 74 79 85 

L18 (0,3,1,0) 1 14 15 16 17 22 23 24 25 50 51 52 53 58 59 60 61 78 79 80 81 

L19 (1,3,1,0) 5 7 12 14 21 22 27 32 37 41 44 47 50 55 58 65 68 72 77 78 83 

L20 (2,3,1,0) 4 9 11 14 20 22 29 31 36 40 43 49 50 57 58 64 67 71 76 78 85 

L21 (3,3,1,0) 3 8 13 14 19 22 28 33 35 39 45 48 50 56 58 63 69 73 75 78 84 

L22 (0,0,0,1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

L23 (1,0,0,1) 2 6 10 14 18 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 

L24 (2,0,0,1) 2 6 10 14 18 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 

L25 (3,0,0,1) 2 6 10 14 18 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 

L26 (0,1,0,1) 1 2 3 4 5 26 27 28 29 42 43 44 45 58 59 60 61 74 75 76 77 

L27 (1,1,0,1) 2 7 11 15 19 23 26 33 36 39 42 49 52 55 58 65 68 71 74 81 84 

L28 (2,1,0,1) 2 9 13 17 21 25 26 32 35 41 42 48 51 57 58 64 67 73 74 80 83 

L29 (3,1,0,1) 2 8 12 16 20 24 26 31 37 40 42 47 53 56 58 63 69 72 74 79 85 

L30 (0,2,0,1) 1 2 3 4 5 34 35 36 37 50 51 52 53 66 67 68 69 82 83 84 85 

L31 (1,2,0,1) 2 8 12 16 20 23 29 32 34 39 45 48 50 55 61 64 66 71 77 80 82 

L32 (2,2,0,1) 2 7 11 15 19 25 28 31 34 41 44 47 50 57 60 63 66 73 76 79 82 

L33 (3,2,0,1) 2 9 13 17 21 24 27 33 34 40 43 49 50 56 59 65 66 72 75 81 82 

L34 (0,3,0,1) 1 2 3 4 5 30 31 32 33 46 47 48 49 62 63 64 65 78 79 80 81 

L35 (1,3,0,1) 2 9 13 17 21 23 28 30 37 39 44 46 53 55 60 62 69 71 76 78 85 

L36 (2,3,0,1) 2 8 12 16 20 25 27 30 36 41 43 46 52 57 59 62 68 73 75 78 84 

L37 (3,3,0,1) 2 7 11 15 19 24 29 30 35 40 45 46 51 56 61 62 67 72 77 78 83 

L38 (0,0,1,1) 1 6 7 8 9 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 

L39 (1,0,1,1) 3 6 11 16 21 23 27 31 35 38 42 46 50 57 61 65 69 72 76 80 84 

L40 (2,0,1,1) 5 6 13 15 20 25 29 33 37 38 42 46 50 56 60 64 68 71 75 79 83 

L41 (3,0,1,1) 4 6 12 17 19 24 28 32 36 38 42 46 50 55 59 63 67 73 77 81 85 

L42 (0,1,1,1) 1 10 11 12 13 26 27 28 29 38 39 40 41 66 67 68 69 78 79 80 81 

L43 (1,1,1,1) 3 7 10 17 20 23 26 33 36 38 43 48 53 57 60 63 66 72 77 78 83 

L44 (2,1,1,1) 5 9 10 16 19 25 26 32 35 38 45 47 52 56 59 65 66 71 76 78 85 

L45 (3,1,1,1) 4 8 10 15 21 24 26 31 37 38 44 49 51 55 61 64 66 73 75 78 84 

L46 (0,2,1,1) 1 14 15 16 17 34 35 36 37 38 39 40 41 62 63 64 65 74 75 76 77 
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L47 (1,2,1,1) 3 8 13 14 19 23 29 32 34 38 44 49 51 57 59 62 68 72 74 79 85 

L48 (2,2,1,1) 5 7 12 14 21 25 28 31 34 38 43 48 53 56 61 62 67 71 74 81 84 

L49 (3,2,1,1) 4 9 11 14 20 24 27 33 34 38 45 47 52 55 60 62 69 73 74 80 83 

L50 (0,3,1,1) 1 18 19 20 21 30 31 32 33 38 39 40 41 58 59 60 61 82 83 84 85 

L51 (1,3,1,1) 3 9 12 15 18 23 28 30 37 38 45 47 52 57 58 64 67 72 75 81 82 

L52 (2,3,1,1) 5 8 11 17 18 25 27 30 36 38 44 49 51 56 58 63 69 71 77 80 82 

L53 (3,3,1,1) 4 7 13 16 18 24 29 30 35 38 43 48 53 55 58 65 68 73 76 79 82 

L54 (0,0,2,1) 1 6 7 8 9 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 

L55 (1,0,2,1) 4 6 12 17 19 23 27 31 35 41 45 49 53 56 60 64 68 70 74 78 82 

L56 (2,0,2,1) 3 6 11 16 21 25 29 33 37 40 44 48 52 55 59 63 67 70 74 78 82 

L57 (3,0,2,1) 5 6 13 15 20 24 28 32 36 39 43 47 51 57 61 65 69 70 74 78 82 

L58 (0,1,2,1) 1 18 19 20 21 26 27 28 29 50 51 52 53 62 63 64 65 70 71 72 73 

L59 (1,1,2,1) 4 7 13 16 18 23 26 33 36 41 44 47 50 56 61 62 67 70 75 80 85 

L60 (2,1,2,1) 3 9 12 15 18 25 26 32 35 40 43 49 50 55 60 62 69 70 77 79 84 

L61 (3,1,2,1) 5 8 11 17 18 24 26 31 37 39 45 48 50 57 59 62 68 70 76 81 83 

L62 (0,2,2,1) 1 10 11 12 13 34 35 36 37 46 47 48 49 58 59 60 61 70 71 72 73 

L63 (1,2,2,1) 4 8 10 15 21 23 29 32 34 41 43 46 52 56 58 63 69 70 76 81 83 

L64 (2,2,2,1) 3 7 10 17 20 25 28 31 34 40 45 46 51 55 58 65 68 70 75 80 85 

L65 (3,2,2,1) 5 9 10 16 19 24 27 33 34 39 44 46 53 57 58 64 67 70 77 79 84 

L66 (0,3,2,1) 1 14 15 16 17 30 31 32 33 42 43 44 45 66 67 68 69 70 71 72 73 

L67 (1,3,2,1) 4 9 11 14 20 23 28 30 37 41 42 48 51 56 59 65 66 70 77 79 84 

L68 (2,3,2,1) 3 8 13 14 19 25 27 30 36 40 42 47 53 55 61 64 66 70 76 81 83 

L69 (3,3,2,1) 5 7 12 14 21 24 29 30 35 39 42 49 52 57 60 63 66 70 75 80 85 

L70 (0,0,3,1) 1 6 7 8 9 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 

L71 (1,0,3,1) 5 6 13 15 20 23 27 31 35 40 44 48 52 54 58 62 66 73 77 81 85 

L72 (2,0,3,1) 4 6 12 17 19 25 29 33 37 39 43 47 51 54 58 62 66 72 76 80 84 

L73 (3,0,3,1) 3 6 11 16 21 24 28 32 36 41 45 49 53 54 58 62 66 71 75 79 83 

L74 (0,1,3,1) 1 14 15 16 17 26 27 28 29 46 47 48 49 54 55 56 57 82 83 84 85 

L75 (1,1,3,1) 5 7 12 14 21 23 26 33 36 40 45 46 51 54 59 64 69 73 76 79 82 

L76 (2,1,3,1) 4 9 11 14 20 25 26 32 35 39 44 46 53 54 61 63 68 72 75 81 82 

L77 (3,1,3,1) 3 8 13 14 19 24 26 31 37 41 43 46 52 54 60 65 67 71 77 80 82 

L78 (0,2,3,1) 1 18 19 20 21 34 35 36 37 42 43 44 45 54 55 56 57 78 79 80 81 

L79 (1,2,3,1) 5 8 11 17 18 23 29 32 34 40 42 47 53 54 60 65 67 73 75 78 84 

L80 (2,2,3,1) 4 7 13 16 18 25 28 31 34 39 42 49 52 54 59 64 69 72 77 78 83 

L81 (3,2,3,1) 3 9 12 15 18 24 27 33 34 41 42 48 51 54 61 63 68 71 76 78 85 

L82 (0,3,3,1) 1 10 11 12 13 30 31 32 33 50 51 52 53 54 55 56 57 74 75 76 77 

L83 (1,3,3,1) 5 9 10 16 19 23 28 30 37 40 43 49 50 54 61 63 68 73 74 80 83 

L84 (2,3,3,1) 4 8 10 15 21 25 27 30 36 39 45 48 50 54 60 65 67 72 74 79 85 

L85 (3,3,3,1) 3 7 10 17 20 24 29 30 35 41 44 47 50 54 59 64 69 71 74 81 84 
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Abstract The aim of this work is to study The reverse construction of complete (k, n)- arcs in PG(2,q) where 

q=2,4,8 is related to linear codes, and n = q, q-1, ..., 2. And n = q, q-1, ... By removing points from the complete 

arc (K, n) to get a full arc (K, m) where m < n. 

.Introduction: 

" A projective plane PG(2,q) above Galois field GF(q), Where q is a prime number, it shall consist of 

of  

q
2
 + q + 1 points and q2 + q + 1 lines; each line has q+1 points and each point is on q+1 lines[2]; each 

point of the plane has the shape of a triple line; (U0,U1,U2), where U0,U1,U2 are elements in PG (q) 

except a triple composed of three zero elements. If t occurs in GF(q)\{0}, s, then two triples 

(U0,U1,U2) and (V0,V1,V2) are the same. t. (V0,V1,V2)= t(U0, 

U1,U2) Points have in PG(2,q) different shapes which are (1,0,0), (U,1,0), (U, V,1) for all GF(q) U 

and V. Similarly each line in PG(2,q) has one point of shape (1,0,0), q points of shape (U,1,0) and q2 

points of shape (U, V,1)." 

 

Definition 1[8]:  

" A (K, n)-arc is a sequence of K points in PG(2,q) and there are no collinear n+1 points to them. A 

(K,2)- the arc known as the K- arc is a sequence of K arcs, and no three collinear axes exist." 

Definition 2[8]:  

" A (K, n) -arc is complete except for an (K+1,n)- arc." 

Definition 3 [6]:  

" The maximum number of points a(K,2)-arc holds is m(2,q), and an(K,2)-arc is an oval with that 

number of points. In the case of only finishing ovals. 

Theory of relativity 1 [6]:  

"M(2,q) =q+1 for q is odd or M(2,q) =q +2 for q is even" 

Theorem 2 [2]:  

"In PG(2,q), every oval is a conic, with q odd." 
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Definition 4 Includes [8]:  

"" The I of a (K, n)-arc is a line that intersects the arc in exactly I points, a 0-secant is called an 

external line from anywhere, a 1-secant is called a unisecant line, 2-secant is called a bisecant line and 

3-secant is called a trisecant line. 

Corollary 1 [8]:  

"A(K, n) –arc  is a maximum if and only if each PG(2,q) line is a 0–secant or a n – secant." 

 

Definition 5[8]:  

" Let Q be an element not on the PG(2,p) K-arc. Let Si(Q) be the one I list over Q. The number of 

bisecants S2(Q) is referred to as the Q index for q, and the unisecant number S1(Q) is referred to as 

the Q for q." 

Lemma 1 [8]:  

"For any point Q in PG (2,p)\, then S1(Q) +2 S2(Q)=k.  

 

Proof: Because any unisecant of the ubiquitous. Passes one point of the arc and each bisect passes 

through two arc points, the number of arc points is k, then S1(Q) + 2S2(Q)=k." 

Lemma 2 [7]:  

""Let Ci be index Q number of points i. Then 

 1) ∑  
 
 Ci=q

2
+q+1-k 

 2) ∑  
 
    Ci = K(k-1)(q-1)/2, Of which α is smallest I Ci ≠ 0, and β is the largest i for which Ci≠ 0. 

Proof: 1) ∑ Ci Its all the points of the aircraft not in k.because The total number of points on the plane 

is q
2
+q+1, then ∑  

 
 Ci = q

2
+q+1-k. 2) ∑   

 
 Ci = C1 + 2C2 + 3C3 + …  

This equation express the cardinality of the following set { (Q, ℓ ) /Q € ℓ \, ℓ is abisecant of  } each 

bisecant contains q-1 points not in . There are k!/ 2!(k-2)! Bisecant of . Then there exist k(k-1) (q-

1) /2 of points satisfying the equation 

∑   
 
 C i= k(k-1) (q-1) /2."  

Remark [2]:  

" The (k, n) –arc current configuration ٗػه C0=0, Thus, if each point of PG(2,q) is on any n-secant of 

any ." 

Definition 6[12]:  

"A( k, n)-arc K in PG(2. p) is maximal arc if k =(n-1)p+ n."  

 Definition 7[8]:  

" The maximum number of points which could be a (K, 2)-arc in PG(2, p) is m(2, p)- this arc called an 

oval." 

 Definition 8 [12]:  

"A polynomial F in k[X1,X2,…,X n] is called homogenous or a form of degree d if all its terms have 

the same degree d. A subset V of PG (n, k) is variety over K if there exists forms F1,F2,…,FR  

 in k[X1,X2,…,X n] such that V = {P(A) in PG(n, k),F1(A)=F2(A)=…=FR(A)=0}=V(F1,F2,…,FR)." 

Definition 9[12]:  

"A variety V(F) of PG(2,q) is a subset of PG(2,q) such that V(F)={P(A)   PG(2,q) | F(A) =0}."  

Definition10 [12]:  
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" A (k, n)-arc is complete unless it is found in an arc (k+1,n). The maximum number of points you can 

have (k,2)-arc is m(2,q) and this arc is an oval." 

Definition 11[11]:  

"A (k, n)-arc is a set of k points of a projective plane such that some r, but no n+1 of them, are 

collinear." 

Definition 12[11]:  

" A (l, t)-blocking set S in PG(2,q) is a set of l points such that each PG(2,q) line intersects S in at 

least t points, and a line intersects S in exactly t points. 

Remember that a (k, n)-arc is a complement to a (q2 + q + 1 − k, q + 1 − n)-block set in a projective 

plane, and vice versa. 

Theorem 5 [11]:  

"There exists a projective [n, 3, d]q code if and only if there exists an (n, n−d)-arc in PG(2,q)" 

 "1- The construction of complete (k,n) – arcs, where n=2,3,…,q+1, in PG(2,2) over GF(2)  
The PG(2,2) projective plane contains (7) points and (7) lines and each line contains (3) points, with 

each point in (3) lines. In PG(2,2), you can construct any line using the variety v. let Ni and Li, i=1,2, 

... 7 The points and lines given for in PG(2,2) shall be respectively. Let me reflect point Ni I for line 

Li, the co-ordinates of which are the same point Ni co-ordinates and all points and lines of PG(2,2) 

are given in table (1). 

"A- The construction of (k,3)-arc: If i=3, then m(3,2)=7 and (7,3)-arc is the maximum arc, since 

each line in PG(2,2) is a 3-section arc (K3,2). This arc covers all of the PG(2,2) plane stages, so it's a 

complete arc. We are going to create the (K, m) -arcs, now m=2,3. 

"B. The construction of (k,2) – arc, from the (k, 3) –arc:"  
 We delete one line (K,3)–arc, say, from L7=[3,5,6]. On the other hand, every two distinct lines are 

intersected in a single point in the projective plane, the removing line intersects each line of PG(2,2) 

in exactly one point, so we subtract one point from each line in the plane PG(2,2). The line removed is 

a K2 0- secant, and the remaining (6) is the 2-sectants k2=[1,2,4,7] arc.so. In PG(2,2) we find: 1- K2 

is a maximum (4,2)-arc, since each line in PG(2,2) is either 0–secant or 2–secant of K2, as shown in 

table (2). 

2-K2 is a complete (4,2) –arc since there is no zero index point for ÿ2, i.e. The oval value is C0 = 0, 

and k2. 

2-The construction of complete (k,n) – arcs, where n=2,3,…,q+1, in PG(2,4) over GF(4)" 

The projective plane PG(2,4) includes (21) points and (21) lines, each line having (5) points, and each 

point being on (5) lines. -- line can be constructed in PG(2,4) using variety v. Let Ni and Li, i=1,2, ... , 

21, be the PG(2,4) Points and lines, respectively. Let me stand for point Ni[i] is for line Li, the 

coordinates of which are identical to point Ni, and all points and lines of PG(2,4) are given in table 

(1). 

"A. The construction of (k,5)-arc:" 

 If i=5, then the maximum arc is m(5,4)=21 and (21,5)–arc, since each line in PG(2,4) is a 5 –secant 

of the (K5,4) –arc. This arc includes all of the PG(2,4) plane points, so it's a complete arc . Now we're 

going to create the (K, m)-arcs, m= 2,3,4,5. 

"B. The construction of (k,,4) – arc, from the (k, 5) –arc:"  

One row (K,5)–arc is subtracted, say, L12=[5,9,10,16,19]. In the other hand, if two distinct lines are 

intersected in a single point in the projective plane, each line of PG(2,4) is intersected in exactly one 

point by the removing line, so we deduct one point from each line in plane PG(2,4). The missing line 

is a K5 0-secant, and the remaining lines (20) are four arc-secants. We find: 1- K4 is a maximum 

(16,4) –arc in PG(2,4), since each line in PG(2,4) is either 0–secant or a 4–secant of K4, as shown in 

table (2). 

2-K4 is a complete arc (16,4), since there is no zero index point for k4, i.e. C0 = No. 

C. The construction of (k,,3) – arc, from the (k, 4) –arc:"  
By removing (7) points which are: 3,8, 13,14,15,17,21 we create a (k,3) –arc from K4. Then we find: 

1- (9,3) –arc is not a full arc because there are some lines in PG(2,4) that are neither 3–secant nor 0–

secant 2- The K3 is a complete (9,3)-arc since zero points are not indexed for K3, i.e., C0=0. 

"D. The construction of (k,,2) – arc, from the (k, 3) –arc:"  
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By removing (5) points which are: 4,7,12,18,20 we create a(K,2)arc from K3. 

So then K2 = [1,2,6,11]. We find: 1- K2 arc is not a complete arc because there are some 0–secant, 1–

secant, and 2–secant lines in PG(2,4). 2. K2 is a complete (4,2) –arc As there is no index point zero 

for k2,i, e., C0=0, and k2 is oval. 

"3-The construction of complete (k,n) – arcs, where n=2,3,…,q+1, in PG(2,8) over GF(8)" 

The PG(2,8) projective plane contains (73) points and (73) lines, and each line has (9) points, and 

each point is on (9) lines. You can create any line in PG(2,8) using variety v. Let Ni and Li, i=1,2, ... 

The PG(2,8) points and lines shall be, respectively, 73. Let me represent point Ni[i] stands for line Li 

with the same point Ni coordinates, and all points and lines of PG(2,8) are shown in table (1). 

"A. The construction of (k,9)–arc:" 
 If i=9, then m(9,8)=73 and (73,9)-arc is the maximum arc, since each line in PG(2,8) is a 9-section 

(K8,7) arc. This arc includes all of the PG(2,8) plane points, so it's a complete arc. Let's construct the 

(K, m)- arcs, m= 2,3,4,5,6,7,8,9. 

"B. Building of (k,,8) – arc from the (k, 9) –arc:  
One segment we deduct, say, from (K,9)–arc L19=[3,11,18,32,38,45,57,60,71]. On the other hand, if 

two distinct lines are intersected in a single point in the projective plane, each line of PG(2,8) is 

intersected in exactly one point by the removal line, so that we deduct one point from each line in the 

PG(2,8). The missing line is a segment of K9 0 and the remaining lines (72) are the eight sections of 

the arc. We find: 1- K8 is a maximum (64,8) –arc in PG(2,8), since each line in PG(2,8) is either 0–

secant or 8–secant of K8, as shown in table (2). 

2-K8 is a complete (64,8) –arc k8, i.e., C0 = 0. 

C. Building (k,,7) – arc, from the (k, 8) –arc:  
By removing (15) points which are: 8,16,20,26,27,28,29,30,31,33,36,43,65,65,69, we create a (k,7) –

arc from K8. Therefore we find: 1- (49,7) -arc is not a full arc since there are some lines in PG(2,8) 

which are neither 7–secant nor 0– secants 2- K7 is a complete (49,7)-arc K6, i.e. C0=0." 

"D. Building (k,,6) – arc, from the (k, 7) –arc:  

By removing (8) points, we create a (k,6) –arc from K7 which are: 6, 15,25,34,48,52,61,70. Therefore 

we find: 1- (41,6) –arc is not a full arc since in PG(2,8) there are some lines that are neither 5–secant 

nor 0–secant 2-K6 is a complete (41,6) –arc K6, i.e. C0=0." 

"E. Building (k,5) – arc, from the (k, 6) –arc:  

We construct a (k,5) –arc out of K6 by removing (9) points that are:7,13,24,40,46,50,58,59,67. Then 

we find: 1-(32,5) –arc is not a full arc because in PG(2,8) there are some lines that are neither 5–

secant nor 0–secant 2-K5 is a complete (32,5)-arc K5, i.e. C0=0." 

"F. Building (k,4) – arc, from the (k, 5) –arc:  

We Build a (k,4) –arc from K5 by removing (9) points that are:9,14,22,39,47,54,62,66.73.Then we 

find: 1- (23,4)–arc is not a full arc because there are some lines in PG(2,8) that are neither 4–sectant 

nor 0–sectors 2– K4 is a complete (23,4)–arc K4, i.e., C0=0." 

"G. Building (k,3) – arc, from the (k,4) –arc:  

We Build a (k,3) –arc from K4 by removing (9) points that are:5,12,21,35,37,41,44,53,56.Then we 

find: 1- (14,3) –arc is not a full arc because there are some lines in PG(2,8) that are neither 3–sectant 

nor 0–sectors 2-K3 is a complete (14,3)-arc K3, i.e., C0=0." 

"H. Building (k,2) – arc, from the (k, 3) –arc:  

We construct a (k,2) –arc from K3 by removing (7) points that are:4,17,23,42,51,64,72.so 

k2=[1,2,10,19,49,63,68].Then we find: 1- (7,2) –arc is not a full arc because there are some lines in 

PG(2,8) that are 0–sectant, 1–sectors and 2–sectors." 

2- K2 is a complete K3 (7,2)-arc, i.e., C0=0. And then k2 is oval. 

 

1-Tables for PG(2,2) 

Table(1) 

i Ni Li 

1 (1,0,0) 2 4 6 

2 (0,1,0) 1 4 5 



413 
 

Tables for PG(2,4) 

 

 

 

 

3-Tables for PG(2,8) 

Table(1) 

i Ni Li 

1 (1,0,0) 2 10 18 26 34 42 50 58 66 

2 (0,1,0) 1 10 11 12 13 14 15 16 17 

3 (1,1.0) 3 10 19 28 37 46 55 64 73 

4 (2,1,0) 9 10 25 27 36 45 54 63 72 

5 (3,1,0) 8 10 24 33 35 44 53 62 71 

6 (4,1,0) 7 10 23 32 41 43 52 61 70 

7 (5,1,0) 6 10 22 31 40 49 51 60 69 

8 (6,1,0) 5 10 21 30 39 48 57 59 68 

9 (7,1,0) 4 10 20 29 38 47 56 65 67 

10 (0,0,1) 1 2 3 4 5 6 7 8 9 

11 (1,0,1) 2 11 19 27 35 43 51 59 67 

12 (2,0,1) 2 17 25 33 41 49 57 65 73 

13 (3,0,1) 2 16 24 32 40 48 56 64 72 

14 (4,0,1) 2 15 23 31 39 47 55 63 71 

15 (5,0,1) 2 14 22 30 38 46 54 62 70 

3 (1.1,0) 3 4 7 

4 (0,0,1) 1 2 3 

5 (1,0,1) 2 5 7 

6 (0,1,1) 1 6 7 

7 (1,1,1) 3 5 6 

Table(2) 

i Ni Li 

1 (1,0,0) 2 4 6 

2 (0,1,0) 1 4 5 

3 (1.1,0) 3 4 7 

4 (0,0,1) 1 2 3 

5 (1,0,1) 2 5 7 

6 (0,1,1) 1 6 7 

7 (1,1,1) 3 5 6 

Table(1) 

i Ni Li 

1 (1,0,0) 2 6 10 14 18 

2 (0,1,0) 1 6 7 8 9 

3 (1,1,0) 3 6 11 16 21 

4 (2,1,0) 5 6 13 15 20 

5 (3,1,0) 4 6 12 17 19 

6 (0,0,1) 1 2 3 4 5 

7 (1,0,1) 2 7 11 15 19 

8 (2,0,1) 2 9 13 17 21 

9 (3,0,1) 2 8 12 16 20 

10 (0,1,1) 1 10 11 12 13 

11 (1,1,1) 3 7 10 17 20 

12 (2,1,1) 5 9 10 16 19 

13 (3,1,1) 4 8 10 15 21 

14 (0,2,1) 1 18 19 20 21 

15 (1,2.1) 4 7 13 16 18 

16 (2,2,1) 3 9 12 15 18 

17 (3,2,1) 5 8 11 17 18 

18 (0,3.1) 1 14 15 16 17 

19 (1,3,1) 5 7 12 14 21 

20 (2,3,1) 4 9 11 14 20 

21 (3,3,1) 3 8 13 14 19 

 

Table(2) 

i Ni Li 

1 (1,0,0) 2 6 10 14 18 

2 (0,1,0) 1 6 7 8 9 

3 (1,1,0) 3 6 11 16 21 

4 (2,1,0) 5 6 13 15 20 

5 (3,1,0) 4 6 12 17 19 

6 (0,0,1) 1 2 3 4 5 

7 (1,0,1) 2 7 11 15 19 

8 (2,0,1) 2 9 13 17 21 

9 (3,0,1) 2 8 12 16 20 

10 (0,1,1) 1 10 11 12 13 

11 (1,1,1) 3 7 10 17 20 

12 (2,1,1) 5 9 10 16 19 

13 (3,1,1) 4 8 10 15 21 

14 (0,2,1) 1 18 19 20 21 

15 (1,2.1) 4 7 13 16 18 

16 (2,2,1) 3 9 12 15 18 

17 (3,2,1) 5 8 11 17 18 

18 (0,3.1) 1 14 15 16 17 

19 (1,3,1) 5 7 12 14 21 

20 (2,3,1) 4 9 11 14 20 

21 (3,3,1) 3 8 13 14 19 
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16 (6,0,1) 2 13 21 29 37 45 53 61 69 

17 (7,0,1) 2 12 20 28 36 44 52 60 68 

18 (0,1,1) 1 18 19 20 21 22 23 24 25 

19 (1,1,1) 3 11 18 32 38 45 57 60 71 

20 (2,1,1) 9 17 18 31 37 44 56 59 70 

21 (3,1,1) 8 16 18 30 36 43 55 65 69 

22 (4,1,1) 7 15 18 29 35 49 54 64 68 

23 (5,1,1) 6 14 18 28 41 48 53 63 67 

24 (6.1,1) 5 13 18 27 40 47 52 62 73 

25 (7,1,1) 4 12 18 33 39 46 51 61 72 

26 (0,2,1) 1 66 67 68 69 70 71 72 73 

27 (1,2,1) 4 11 24 30 37 49 52 63 66 

28 (2,2,1) 3 17 23 29 36 48 51 62 66 

29 (3,2,1) 9 16 22 28 35 47 57 61 66 

30 (4,2,1) 8 15 21 27 41 46 56 60 66 

31 (5,2,1) 7 14 20 33 40 45 55 59 66 

32 (6,2,1) 6 13 19 32 39 44 54 65 66 

33 (7,2,1) 5 12 25 31 38 43 53 64 66 

34 (0,3,1) 1 58 59 60 61 62 63 64 65 

35 (1,3,1) 5 11 22 29 41 44 55 58 72 

36 (2,3,1) 4 17 21 28 40 43 54 58 71 

37 (3,3,1) 3 16 20 27 39 49 53 58 70 

38 (4,3,1) 9 15 19 33 38 48 52 58 69 

39 (5,3,1) 8 14 25 32 37 47 51 58 68 

40 (6,3,1) 7 13 24 31 36 46 57 58 67 

41 (7,3,1) 6 12 23 30 35 45 56 58 73 

42 (0,4,1) 1 50 51 52 53 54 55 56 57 

43 (1,4,1) 6 11 21 33 36 47 50 64 70 

44 (2,4,1) 5 17 20 32 35 46 50 63 69 

45 (3,4,1) 4 16 19 31 41 45 50 62 68 

46 (4,4,1) 3 15 25 30 40 44 50 61 67 

47 (5,4,1) 9 14 24 29 39 43 50 60 73 

48 (6,4,1) 8 13 23 28 38 49 50 59 72 

49 (7,4,1) 7 12 22 27 37 48 50 65 71 

50 (0,5,1) 1 42 43 44 45 46 47 48 49 

51 (1,5,1) 7 11 25 28 39 42 56 62 69 

52 (2,5,1) 6 17 24 27 38 42 55 61 68 

53 (3,5,1) 5 16 23 33 37 42 54 60 67 

54 (4,5,1) 4 15 22 32 36 42 53 59 73 

55 (5,5,1) 3 14 21 31 35 42 52 65 72 

56 (6,5,1) 9 13 20 30 41 42 51 64 71 

57 (7,5,1) 8 12 19 29 40 42 57 63 70 

58 (0,6,1) 1 34 35 36 37 38 39 40 41 

59 (1,6,1) 8 11 20 31 34 48 54 61 73 

60 (2,6,1) 7 17 19 30 34 47 53 60 72 

61 (3,6,1) 6 16 25 29 34 46 52 59 71 

62 (4,6,1) 5 15 24 28 34 45 51 65 70 

63 (5,6,1) 4 14 23 27 34 44 57 64 69 

64 (6,6,1) 3 13 22 33 34 43 56 63 68 

65 (7,6,1) 9 12 21 32 34 49 55 62 67 

66 (0,7,1) 1 26 27 28 29 30 31 32 33 

67 (1,7,1) 9 11 23 26 40 46 53 65 68 

68 (2,7,1) 8 17 22 26 39 45 52 64 67 
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69 (3,7,1) 7 16 21 26 38 44 51 63 73 

70 (4,7,1) 6 15 20 26 37 43 57 62 72 

71 (5,7,1) 5 14 19 26 36 49 56 61 71 

72 (6,7,1) 4 13 25 26 35 48 55 60 70 

73 (7,7,1) 3 12 24 26 41 47 54 59 69 

 Table(2) 

i Ni Li 

1 (1,0,0) 2 10 18 26 34 42 50 58 66 

2 (0,1,0) 1 10 11 12 13 14 15 16 17 

3 (1,1.0) 3 10 19 28 37 46 55 64 73 

4 (2,1,0) 9 10 25 27 36 45 54 63 72 

5 (3,1,0) 8 10 24 33 35 44 53 62 71 

6 (4,1,0) 7 10 23 32 41 43 52 61 70 

7 (5,1,0) 6 10 22 31 40 49 51 60 69 

8 (6,1,0) 5 10 21 30 39 48 57 59 68 

9 (7,1,0) 4 10 20 29 38 47 56 65 67 

10 (0,0,1) 1 2 3 4 5 6 7 8 9 

11 (1,0,1) 2 11 19 27 35 43 51 59 67 

12 (2,0,1) 2 17 25 33 41 49 57 65 73 

13 (3,0,1) 2 16 24 32 40 48 56 64 72 

14 (4,0,1) 2 15 23 31 39 47 55 63 71 

15 (5,0,1) 2 14 22 30 38 46 54 62 70 

16 (6,0,1) 2 13 21 29 37 45 53 61 69 

17 (7,0,1) 2 12 20 28 36 44 52 60 68 

18 (0,1,1) 1 18 19 20 21 22 23 24 25 

19 (1,1,1) 3 11 18 32 38 45 57 60 71 

20 (2,1,1) 9 17 18 31 37 44 56 59 70 

21 (3,1,1) 8 16 18 30 36 43 55 65 69 

22 (4,1,1) 7 15 18 29 35 49 54 64 68 

23 (5,1,1) 6 14 18 28 41 48 53 63 67 

24 (6.1,1) 5 13 18 27 40 47 52 62 73 

25 (7,1,1) 4 12 18 33 39 46 51 61 72 

26 (0,2,1) 1 66 67 68 69 70 71 72 73 

27 (1,2,1) 4 11 24 30 37 49 52 63 66 

28 (2,2,1) 3 17 23 29 36 48 51 62 66 

29 (3,2,1) 9 16 22 28 35 47 57 61 66 

30 (4,2,1) 8 15 21 27 41 46 56 60 66 

31 (5,2,1) 7 14 20 33 40 45 55 59 66 

32 (6,2,1) 6 13 19 32 39 44 54 65 66 

33 (7,2,1) 5 12 25 31 38 43 53 64 66 

34 (0,3,1) 1 58 59 60 61 62 63 64 65 

35 (1,3,1) 5 11 22 29 41 44 55 58 72 

36 (2,3,1) 4 17 21 28 40 43 54 58 71 

37 (3,3,1) 3 16 20 27 39 49 53 58 70 

38 (4,3,1) 9 15 19 33 38 48 52 58 69 

39 (5,3,1) 8 14 25 32 37 47 51 58 68 

40 (6,3,1) 7 13 24 31 36 46 57 58 67 

41 (7,3,1) 6 12 23 30 35 45 56 58 73 

42 (0,4,1) 1 50 51 52 53 54 55 56 57 

43 (1,4,1) 6 11 21 33 36 47 50 64 70 

44 (2,4,1) 5 17 20 32 35 46 50 63 69 
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 Conclusions: 

Form the above results, the complete (k,n)-arcs in PG(2,q) where q=2,4,8 as follows: Table(3)  

Notation: - 

   A (l, t)- blocking set S in PG(2, q) is a set of L points such that every line of PG(2, q) intersects S in 

at least n points, and there is a line intersecting S in exactly n points. Note that a (k, r)-arc is the 

complement of a (q
2
+q+1-k, q+1− r)-blocking set in a projective plane and conversely. A linear code 

C of length n and dimension k over GF(q) is a k-dimensional subspace of V (n ,q). Such a code is 

called [n, k, d ;p]- code if its minimum Hamming distance is d. There is exists a relationship between 

(k, r)-arc in PG(2,q) and [n,3,d]q codes ,given by the following  theorem . 

Theorem [6]  

There exists a projective [k,3,d]q code if and only if there exists an (n, n−d)-arc in PG(2, q).  

Table (3)T he relation between(k,n)- arcs and{l,t }-blocking set and linear codes in the projective 

planes over Galois field(q) for PG(2,q),q=2,,4,8 

45 (3,4,1) 4 16 19 31 41 45 50 62 68 

46 (4,4,1) 3 15 25 30 40 44 50 61 67 

47 (5,4,1) 9 14 24 29 39 43 50 60 73 

48 (6,4,1) 8 13 23 28 38 49 50 59 72 

49 (7,4,1) 7 12 22 27 37 48 50 65 71 

50 (0,5,1) 1 42 43 44 45 46 47 48 49 

51 (1,5,1) 7 11 25 28 39 42 56 62 69 

52 (2,5,1) 6 17 24 27 38 42 55 61 68 

53 (3,5,1) 5 16 23 33 37 42 54 60 67 

54 (4,5,1) 4 15 22 32 36 42 53 59 73 

55 (5,5,1) 3 14 21 31 35 42 52 65 72 

56 (6,5,1) 9 13 20 30 41 42 51 64 71 

57 (7,5,1) 8 12 19 29 40 42 57 63 70 

58 (0,6,1) 1 34 35 36 37 38 39 40 41 

59 (1,6,1) 8 11 20 31 34 48 54 61 73 

60 (2,6,1) 7 17 19 30 34 47 53 60 72 

61 (3,6,1) 6 16 25 29 34 46 52 59 71 

62 (4,6,1) 5 15 24 28 34 45 51 65 70 

63 (5,6,1) 4 14 23 27 34 44 57 64 69 

64 (6,6,1) 3 13 22 33 34 43 56 63 68 

65 (7,6,1) 9 12 21 32 34 49 55 62 67 

66 (0,7,1) 1 26 27 28 29 30 31 32 33 

67 (1,7,1) 9 11 23 26 40 46 53 65 68 

68 (2,7,1) 8 17 22 26 39 45 52 64 67 

69 (3,7,1) 7 16 21 26 38 44 51 63 73 

70 (4,7,1) 6 15 20 26 37 43 57 62 72 

71 (5,7,1) 5 14 19 26 36 49 56 61 71 

72 (6,7,1) 4 13 25 26 35 48 55 60 70 

73 (7,7,1) 3 12 24 26 41 47 54 59 69 

P Arcs Blocking set Linear codes 

2 
(7,3)–arc ……… [7,3,4]2 

(4,2)–arc (3,1)–blocking set [4,3,2]2 
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Abstract: in this paper we introduce generalized (α, β) derivation on Semirings and extend some results of 

Oznur Golbasi on prime Semiring. Also, we present some results of commutativity of prime Semiring with these 

derivation. 

 

1. Introduction  

     Semirings was first introduced in 1934 by vandiver [1]. In 1992 Golan discuss Semirings and their 

applications and mentioned about the derivation on Semirings [2]. Thereafter, many researchers interested in 

derivations on Semirings and generalized it in different directions.  

     Chandramouleeswarn and Thiruveni studied derivations on Semirings, and introduced the notion of (   ) 

derivations on semirings, see [3] and [4]. 

       

     A Semiring is a nonempty set S together with two binary operations (usually denoted by   and  ) such that 

(   ) is commutative Semigroup, (   ) Semigroup and addition distributive with respect to multiplication on 

 , we say   is commutative Semiring if and only if           for all         [2]. A Semiring S is called 

additively cancellative if               implies       for all          , and it is called multiplicatively 

cancellative if           implies       for all          , so S is called cancellative Semiring if and only if it 

is both additively and multiplicatively cancellative [5]. Moreover,   is called prime if whenever           

implies either       or       for all        . 

     Let S be any Semiring, an additive map        is called derivation on S if   (   )      ( )         ( ) 

holds for all         [6]. Now, if we suppose that α and β are two nonzero automorphisms on S and d is a 

derivation on S, then d is said to be (   ) derivation on S if   (   )     ( )  ( )     ( )  ( ) holds for all 

        [6]. 

     In this paper we introduce the notion of generalized (α, β) derivation on Semirings and extend some 

important results of Oznur Golbasi [7] on prime Semirings and when these Semirings become commutative.   

 

2. Results 

Definition 2.1: - Let S be a Semiring and     are two automorphisms on S. An additive map        is called 

left generalized (   ) derivation if there exist nonzero left (   ) derivation        such that  (   )   

   ( )   ( )      ( )   ( ) for all        , and is called right generalized (α, β) derivation if there exist nonzero 

right (α, β) derivation d: S S such that  (   )      ( )   ( )      ( )   ( ) for all        .  

     If F is both left and right generalized (α, β) derivation then it is called generalized (α, β) derivation that is 

  (   )      ( )   ( )      ( )   ( )      ( )   ( )      ( )   ( ) for all x, y   S. 
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mailto:ahmajeed6@yahoo.com
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Lemma 2.2: - Let S be a prime Semiring and I be a nonzero ideal of S. If           for all        , then either 

      or      . 

Proof: - Let           for all x, y   S, hence             for all        . 

By primness of S we have either       or        . 

Now, either       or          . By primness of S and since I ≠ 0, we get     .      

 

Theorem 2.3: - Let S be a prime Semiring and I be a nonzero ideal of S. Suppose that        is a 

generalized (α, β) derivation on S with   ( )     . If   ( )      (S) then S is commutative. 

Proof: - Let   ( )      ( ), then   ( )      ( ) for all u   I. 

Replace u in above relation by    , where s   S, we get: 

  (   )      ( )   ( )      ( )   ( )      ( )  

Then,  

,  ( )   ( )      ( )   ( )   ( )-     . 

,  ( )   ( )   ( )-    ,  ( )   ( )   ( )-     . 

  ( ),   ( )   ( )-   ,  ( )   ( )-  ( )     ( ),   ( )    ( )-   ,  ( )   ( )-   ( )      

Hence, 

  ( ) ,  ( )   ( )-    ,  ( )   ( )-   ( )      

  ( )   ( )   ( )      ( )   ( )   ( )      ( )   ( )   ( )      ( )   ( )   ( )      

                                        ( )   ( )   ( )      ( )   ( )   ( )                                                           … (1) 

Replace   by     in (1), where      . We obtain, 

  ( )   (   )   ( )      ( )   ( )   (   )      

                                 ( )   ( )   ( )    ( )      ( )   ( )   ( )   ( )                                               … (2)  

By using (1) we get, 

  ( )   ( )   ( )   ( ) –    ( )   ( )   ( )   ( )       

Then, for all u   I implies,  

  ( )   ( ) ,  ( )   ( )-      

  ( )   ,  ( )   ( )-        

By Lemma 2.2 and since       then for all v   I we get, 

,  ( )   ( )-     . 

,    ( )-       

Then,       ( )  by [8, Lemma 2.22] we get S is commutative.   
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  Lemma2.4: - Let S be a prime semiring and I be a nonzero ideal of S. Suppose that        is a nonzero 

generalized (α, β) derivation and let x   S:  

1- If x   ( )      for all u   I then      . 

2- If   ( )       for all u   I then      . 

Proof: 1- Let     ( )      for all u   I.  

Replace u in above equation by s u, where s   S. Then for all s   S we have,  

    (   )     . 

  (  ( )   ( )      ( )   ( ))        ( )   ( )        ( )   ( )      

Hence,  

    ( )   ( )      

   ( )      ( ( ))     

By Lemma 2.2 and since d ≠ 0 we have,    ( )     Then, x = 0. 

Similarly we can prove (2). 

 

Remark 2.5: - Let S be a semiring and α is an automorphism on S. If       on I then α = 0 on S 

Proof: - Obvious.  

 

Lemma 2.6: - Let S be a prime semiring and I be a nonzero ideal of S. Suppose that        is a nonzero 

generalized (α, β) derivation with nonzero automorphisms α and β. If       on I then       on S. 

Proof: - Let   ( )      for all u   I. Take s   S then, 

  (   )      ( )   ( )      ( )   ( )     . 

Hence, 

  ( )   ( )     . 

By [8, Lemma 2.27] and since α ≠ 0 then d = 0 on S.  

 

Lemma 2.7: - Let S be a semiring and I be a nonzero ideal of S. Suppose that        is a generalized (α, β) 

derivation with nonzero automorphisms α and β. If       on I then       on S. 

Proof: - Let   ( )      for all u   I. Take s   S then, 

  (   )      ( )   ( )      ( )   ( )     . 

By Lemma 2.6 we get α (u) F (s) = 0. 

Now, replace u in above equation by u r, where r   S we get, 

  (   )   ( )      ( )   ( )   ( )     . 
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Since   is automorphism (onto) Hence,  ( )     ( )     . 

By primness and since α ≠ 0 on S then       on S. 

  Lemma 2.8: - Let S be a prime semiring and        be a generalized (α, β) derivation. Suppose that I is an 

ideal of S. If 0 ≠ r   S with      ( )      for all x   S, then     on S. 

Proof: - Let      ( )      for all x   S. Put          where y   I we get, 

     (   )      

     ( )   ( )       ( )   ( )    

Then, 

     ( )   ( )      

      ( )     . 

So, by primness of S and since r ≠ 0 hence, d (y) = 0 for all y   I.  

That means, d = 0 on I. So,  

  (   )      ( )   ( )      ( )   ( )      ( )   ( ). 

Now,      (   )      ( )   ( ) Implies: 

    ( )   ( )      

      ( )     

By primness of S and since r ≠ 0 we get, F = 0 on S. 

 

Theorem 2.9: - Let S be a prime semiring and I be a nonzero ideal of S. Suppose that F: S S is a nonzero 

generalized (α, β) derivation such that           and          . If ,  ( )   ( )-      for all u, v   I, then S is 

commutative.  

Proof: - Let ,  ( )   ( )-      for all u, v   I. 

Replace v in above equation by v s, where s   S we get,  

,  ( )   (   )-    ,  ( )   ( )   ( )      ( )   ( )-      

,  ( )   ( )   ( )-    ,  ( )   ( )   ( )-      

  ( ) ,  ( )   ( )-   ,  ( )   ( )-   ( )    ( ) ,  ( )   ( )-  ,  ( )   ( )-   ( )       

Hence for all u, v   I we have,  

  ( ) ,  ( )   ( )-      

By Lemma 2.8 and since F ≠ 0 on I (Lemma 2.7). So, for all u   I implies,  

,  ( )   ( )-      

Therefore,   ( )      ( ), and by Theorem 2.3 we have S is commutative.  
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Theorem 2.10: - Let S be a cancellative prime semiring and I be a nonzero ideal of S. Suppose that F: S S is a 

generalized (α, β) derivation with nonzero automorphisms α and β. If F acts as homomorphism on S then d = 0 

on S. 

Proof: - Since F acts as homomorphism on S then for all x, y   S,    

                                                           (   )      ( )   ( )                                                                             ... (1) 

Since F is generalized (α, β) derivation then for all x, y   S, 

                                                 (   )      ( )   ( )      ( )   ( )                                                              … (2) 

From (1) and (2) we get,  

                                             ( )   ( )      ( )   ( )      ( )   ( )                                                            … (3) 

Replace y by y s in (3), where s   S we obtain,  

  ( )   (   )      ( )   (   )     ( )   (   )  

  ( )   ( )   ( )      ( )   ( )   ( )     ( )   ( )   ( )  

                                                                 (   )  ( )  

                                                                                                         ( )  ( )  ( )     ( )  ( )  ( ) 

Since S is cancellative we get,   ( )      ( ) for all s   S. 

Now, replace s by r s in the above equation, where r   S, w obtain, 

  (   )      (   ) 

  ( )   ( )      ( )   ( )      ( )   ( )  

                                                                                                    ( )   ( ). 

Since S is cancellative we get,   ( )   ( )      for all r, s   S.  

By [8, Lemma 2.27] and Since       on S then       on S. 

 

Theorem 2.11: - Let S be a cancellative prime semiring and I nonzero ideal of S. Suppose that F: S S is a 

generalized (α, β) derivation with nonzero automorphisms α and β such that           and          . If F acts 

as anti-homomorphism on S then d = 0 on S. 

Proof: - Since F acts as homomorphism on S then for all x, y   S,  

                                                                          (   )      ( )   ( )                                                           ... (1) 

Since F is generalized (α, β) derivation then,  

                                                                 (   )      ( )   ( )      ( )   ( )                                          … (2) 

From (1) and (2) we get,  

                                                              ( )   ( )      ( )   ( )      ( )   ( )                                       … (3) 
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Replace y by y s in (3), where s   S, we obtain  

  ( )   (   )      ( )   (   )     ( )   (   )  

  ( )   ( )   ( )      ( )   ( )   ( )     ( )   ( )   ( )  

                                                                    ( )  (   )   

                                                                                                                            ( )   ( )   ( )      ( )   ( )   ( ).  

Since           and S is cancellative we have,  

  ( )   ( )   ( )      ( )   ( )   ( ) 

Now, since           and S is cancellative we have,  

  ( )      ( ) for all s   S. 

Replace s by r s in the above equation, where r   S, we get  

  (   )      (   ) 

  ( )  ( )     ( )  ( )     ( )  ( ) 

                                                  ( )   ( ) 

Since S cancellative then,   ( )   ( )      for all r, s   S.  

By [8, Lemma 2.27] and Since       on S then d = 0 on S. 

 

Theorem 2.12: - Let S be a cancellative prime semiring and I be a nonzero ideal of S. Suppose that        is 

a generalized (α, β) derivation with nonzero automorphisms α and β. If F acts as homomorphism on I then 

      on S. 

Proof: - Since F acts as homomorphism on I. Then for all u, v   I,  

                                                                                (   )     ( )  ( )                                                                 ( ) 

Since F is generalized (α, β) derivation then, 

                                                                      (   )      ( )   ( )      ( )   ( )                                        … (2) 

From (1) and (2) we get, 

                                                                   ( )   ( )      ( )   ( )      ( )   ( )                                     … (3) 

Replace v by v s in (3), where s   S, we obtain 

  ( )   (   )      ( )   (   )      ( )   (   ). 

  ( )   ( )   ( )      ( )   ( )   ( )      ( )   ( )   ( ) 

                                                                   (   )  ( )  

                                                                                                            ( )  ( )  ( )     ( )  ( )  ( )  

Since S is cancellative we have,   ( )      ( ) for all s   S. 
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Now, replace s by r s in the above equation, where r   S we get, 

  (   )      (   ) 

  ( )   ( )      ( )   ( )      ( )   ( ) 

                                                    ( )  ( )  

Since S is cancellative we get,   ( )   ( )      for all r, s   S.  

By [8, Lemma 2.27] and Since α ≠ 0 on S then d = 0 on S. 

 

Notation: - Throughout the following Theorem we use alpha-beta commutator such that ,     -       ( )   

    ( )      

Theorem 2.13: - Let S be a prime semiring, I nonzero ideal of S and F: S S generalized (α, β) derivation. If α 

and β commute with d and   (   )      (   ) for all u, v   I, then S is commutative. 

Proof: - Let u, v   I such that ,   - is constant element say c with   ( )      and   ( )     . 

Let z   I hence,  

 (   )      ( )   ( )      ( )   ( ) 

                                      ( )  ( )     ( )  ( )     (   )  

That gives,   ( )   ( )      ( )   ( ) for all z   I. 

Since α and β are commute with   then for all z   I yields that, 

,  ( )   -      

Replace z in the above equation by w z, where w   I we get, 

,  (   )  -    ,   ( )  ( )    ( ) ( )  -    

                                            ,   ( )  ( )  )-    ,   ( ) ( )  -     

               

Now, by add and subtract the terms:   ( )   ( )   ( ) an    ( )   ( )   ( ) we obtain, 

  ( )   ( )   ( )      ( )   ( )   ( )      ( )   ( )   ( )     ( )    (  )   ( )      ( )   ( )   ( )   

    ( )   ( )   ( )      ( )   ( )   ( )      ( )   ( )   ( )      ( )   ( )   ( )     ( )   ( )   ( )   

   ( )   ( )   ( )      ( )   ( )   ( )     . 

Hence for all w, z   I, 

  ( )   ,   -   ,    (   )-       ( ) ,  ( )   -        ,   -   ( )      ( )   ,   -     ,   -   ( )     . 

Replace z in above equation by c then for all w   I we get, 

  ,   -   ( )     

,   -     ( ( ))      
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Replace w in above equation by s w, where s   S we obtain, 

  ,     -   ( )      

Thus, ,   -       ( ( ))      for all w   I. Now, by lemma 2.2 and since d (c) ≠ 0 we get, 

,   -      for all s   S. 

Then, I is commutative and by [8, Lemma 2.22] implies S is commutative.    
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Abstract. This article is devoted to the study of the geometric properties of curvature tensor on certain classes 

of almost Hermitian manifolds. In particular, we studied the platitude property of  M-projective on G1-manifold 

and found a link between   -manifold, ℋ-manifold and   -manifold.  

1. Introduction 

Almost Hermition manifold classifies it as one of the most important topics in differential geometry, 

which made it one of the most prominent topics addressed by the researchers. This subject is 

categorized into different composites in an attempt to assign its specifications and characteristics 

accurately. The first practical study was conducted by Koto 1960 [17]. In 1980 [6], a new study on 

almost hermit collection types was conducted by Gray and Hervella. In-depth studies have been 

conducted of these types. In 2010[2], Abood and Mohammed proved that if M is a locally compliant 

multiple Kahler of pointwise holomorphic sectional curvature and flat projective compliance plan 

with J-invariant Richi tensor, then M is a manifold  Einstein. In 2016 [1], Abood and Abd Ali are 

given application about the projective-recurrent of Viasman Gray manifold. In 2017 [8], 

aIgnatochkina and Abood investigateda the geometricala meaning of  flata conharmonicly atensor of 

VaismanGray manifold. In 2018 [18], Mohammed and Abood are found the anecessary and adequate 

aconditions that aa projective tensor is avanishes. The   - manifold that will be addressed in this study 

is one of the sixteen classes of almost Hermitian manifold. In 1976 [7],  Hervella and Vidal studied 

the geometry of   -manifold. The aforementioned manifold designated by         , where 

  ,     and    respectively denote the nearly Kahler manifold (  -manifold), the simi Hermitian 

manifold ( 𝓗-manifold) and locally Kahler manifold (   -manifold). In 2000 [13], Kirichenko and 

Tretiakova proved that the   -manifold of zero constant type coincides with the class of  -

dimensional   -manifold of nonintegrable structure.  By using the aadjoined   - astructure space 

amethod, we were able to astudy the ageometry properties of  one atypes of AH-a manifold called M- 

aProjective tensor. Before us, the researchers ainterested in studying athis type. In 1971[22],  

Pokhariyal and Mishra have interested in the study of Riemannian manifold and they also have 

identified a tensor of type (4.0) as M-projective. In 1975 and 1986 [19] [20],  Ojha identified the 

properties of M-projective tensor in Sasakian and Kahler manifolds. In 2014[4],  De and Mallick In 

are studied M-projective curvature tensor on an N(k)-quasi-Einstein manifold. In 2015[5], aDevi and 

aSingh are proved that aglobally ϕ-M-aprojectively symmetric aKenmotsu manifold to be an Einstein 

manifold. In 2016 [9], aJaiswal and aYadav are found the adequate condition for generalized M-

projective ϕ-recurrent trans-aSasakian amanifold to be an Einstein. 

2. Preliminaries  

Suppose that  aX(M) ais amodule aof avector afield.   ( ) be the set of smooth function. An  almost 

Hermition manifolda(AH-manifold) is the treble *             +   where M is even dimensional 

greater than 1; smootha manifolda;    is ana endomorphisma of   ( ) where (  )
 
      and  

         is Riemann metric on M sucha that                    ( ) [16]. The   ( ) aat the 

pointa        has  a basis defined by  *                 +  aand is a called a areal adept abasis or 

RA-basis. The image of RA-basis is construct a new basises *          ̅      ̅+ on    
 ( ) which 
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called A- basis[22]. We will use the indexes as following             in the range          and the 

indices             in the range          and  ̂      

The matrices of the        in a frame are given as follows[12]: 

                             (  
 )  4

√     

  √    
5  (   )  (

   
   

*                                                         

Definition 2.1 [3]. According to Banaru's classification, an     manifold in athe aadjoined G-a 

structure aspace, is called: 

1)   -manifold if        ,   -.   

2) aNearly  aKahler amanifold (  - amanifold)  if               aand         
    ; 

3) Hermition  manifold (ℋ-manifold)  if        ; 

4) quasi manifold (  -manifold)  if         
    , 

Where        
√  

 
 [ ̂  ̂]
              

    
√  

 
  ̂  
  and      ( )  and the bracket [  ] denote to the Lie 

bracket. 

Theorem2.1 [14]: The family of the equations of   - amanifold in athe aadjoined  - astructure aspace, 

agiven by the afollowing aforms: 

1)        
           

                 ; 

2)        
        

         
       

    ; 

3)    
    

    
  (             

  )     (    , 
    -   

     
 )       .    

   , 
  -     

   /     , 

where *  + and *  
 + are the acomponents of athe differential aform and the acomponents of the 

aRiemannian  metric   respectively, {   
  } the components of holomorphic sectional tensor, 

{    
     

   } are some tensors on adjoined  -structure space. 

Definition 2.2[15]: A aRiemannian acurvature tensor    is a atensor of atype (4,0)      (   )  

  (   )    (   )    (   )    which is defined as:   (       )   ( (   )   ),  

where   (   )  (,     -   ,   -) ;           ( ) and satisfies athe next properties: 

 ) (       )    (       ); 

 ) (       )    (       ); 

 ) (       )   (       )   (       )   ; 

 ) (       )   (       )  

      The following theorem establishes the aexpression for the acomponents of the aRiemannian atensor 

of    - amanifold in the aadjoined  -astructure aspace. 

Theorem 2.2 [14]: The acomponents of athe Riemannian curvature atensor of    - amanifold are agiven 

by the afollowing aforms: 

1)         (   ,  -     
     ); 

2)   ̂         
 ; 
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3)  ̂ ̂     (          ,  -
  ); 

4)   ̂   ̂     
                   

     
    , 

The aremaining acomponents of   are aconjugate or vanishing. 

Definition 2.3 [23]. A Richi tensor is a tensor (2, 0) which is defined as          
            . 

Definition 3.2.8  [11]:  AH- amanifold  has     invariant   Richi  atensor  when                

Lemma 3.2.9  [11] : The necessary and adequate conditions AH-manifold  has  J invariant   Richi  

tensor in the aadjoined G-astructure aspace is 0
ˆ
a

br  . 

Theorem 2.3[10] a The acomponents of the Richi atensor of   -amanifold are agiven by athe following 

aforms: 

i)       (  ) 
 ; 

ii)    ̂               ,  -
      

     
     

 ,  

3. The main results.   

   The main idea in this paper, is to astudy the avarious geometric aproperties ofa the M-projective of                

  - amanifold. The anecessary and adequate condition for athe   -manifold to be an Einstein manifold 

have been found. 

Definition 3.1[22] The a M-projective a tensor is a atensor afield of atype (4.0), which is define 

onRiemann  manifolda by the aform:                   

  (   )   (   )  
 

 (   )
( (   )   (   )   (   )    (   )  ) ), 

where   is Riemannian curvature tensor,   is Richi tensor,   is Richi operator and   is Riemannian 

metric. 

      Now, we can aredefine the aM-projective atensor on AH- amanifold by the acomponents form as 

follows:                        

                                         
 

 (   )
(                           )                                        

(3.1)        

    Let us astart with the afollowing theorem, which adetermined the acomponents of the aM-

projective of     - amanifold.           

Theorem 3.1: The acomponents of the aM-projective tensor of    - amanifold are agiven by the 

afollowing forms: 
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1)         (   ,  -     
     ); 

2)    ̂         
  

 

   
(  (  ) 

   
    (  ) 

   
 ); 

3)    ̂ ̂     (          ,  -
  )  

 

 (   )
(  

   
    

   
    

   
    

   
 ); 

4)    ̂   ̂     
                  

     
     

 

 (   )
(  

   
    

   
 ), 

Proof: 

1) put             and      , we get 

             
 

 (   )
(                           )  

Makinga use of the aequation (   ) , we aobtain 

                                                  (   ,  -     
     ) 

2) put    ̂         and      , we have 

   ̂      ̂    
 

 (   )
(     ̂    ̂       ̂          ̂ )  

                                             ̂         
  

 

   
(  (  ) 

   
    (  ) 

   
 )  

3) put    ̂    ̂     and      , we obtain  

                                             ̂ ̂     ̂ ̂   
 

 (   )
(  ̂   ̂    ̂   ̂    ̂   ̂    ̂   ̂ )  

                                             ̂ ̂     (          ,  -
  )  

 

 (   )
(  

   
    

   
    

   
  

  
   

 ) 

4) put    ̂         and      ̂, it follows that 

                                          ̂   ̂    ̂   ̂  
 

 (   )
(     ̂ ̂    ̂    ̂    ̂ ̂       ̂  ̂ )  

                                          ̂   ̂     
                  

     
     

 

 (   )
(  

   
    

   
 )               □ 

 

     In the following theorem, we found the relationship between   -manifold and   -manifold. 

Theorem 3.2: Let    be    - amanifold with avanishing  aM- aprojective atensor, then    is    -

amanifold if M has avanishing Richi tensor. 

Proof: 
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      aSuppose that    is    - amanifold with vanishing M- aprojective curvature tensor. 

Taking into account athe Theorem 3.2, we get 

   
                  

     
     

 

 (   )
(  

   
    

   
 )                 

Since the  Richi tensor is vanishing,  then we obtain 

                                                                                       
                  

     
       

From the symmetrizing and anti-symmetrizing  the indices (   ), we obtain 

                                                                                                                       
     

       

Contracting by the indices (   ) and (   ), consequently we get 

             
     

      , which implies that       
   ̅    

     ∑ |      
  |

 
              

     

Therefore, by the Banaru's classification, we get that   is   -manifold.          □ 

      The anext  theorem gives the anecessary and adequate acondition for the    - amanifold to be the 

holomorphic sectional atensor identicala equala to zero.         

Theorem 3.3: aSuppose that   ia a    - amanifold with vanishing M-projective curvature tensor, then 

  hasa vanishinga holomorphica sectionala tensora if, and aonly aif,    ahas vanishing Richi curvature 

tensor. 

Proof: 

      Suppose that   is    - amanifold  with avanishing  M- aprojective.  

Taking into account Theorem 3.1, a we aobtain 

                  
                  

     
     

 

 (   )
(  

   
    

   
 )                                                         

(   ) 

Suppose that   has vanishing holomorphic sectional curvature tensor, consequently we have 

                
     

     
 

 (   )
(  

   
    

   
 )                                                                            

(   ) 

Symmetrizing and anti-symmetrizing by the indices (   ), it follows that 

 

 (   )
(  

   
    

   
 )                                                                            (   ) 
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Contracting by the indices  (   ), so the equation (   ) becomes 

                                                                                       

(   )
  
    

Hence, the Richi curvature tensor vanishes. 

Conversely, Let the Richi curvature tensor vanishes 

By using the equation (   ), we obtain  

                                                      
                  

     
       

Symmetrizing and anti-symmetrizing by the indices (   ), immediately we have 

                                                                                            
    . 

Therefore,   has vanishing holomorphic sectional curvature tensor.                           □   

 

Definition 3.2 [21]:  An aRiemannian amanifold is acalled an Einstein amanifold if Richi tensor meets 

athe equation                                                                                                      , 

where   is cosmological constant. 

       aThe anecessary and adequate acondition for the    - amanifold to be an aEinstein amanifold is 

agiven in the next theorem.   

Theorem 3.4: If    is    - amanifold with avanishing M- aprojective tensor and   -  ainvariant Richi atensor, 

then The anecessary and adequate acondition for the M to abe an Einstein amanifold   is      
   

  

(   )
  
  ,  

awhere e is  acosmological aconstant.  

Proof: 

      Suppose that    is    - amanifold with avanishing M-aprojective tensor. Then by using the 

aTheorem 3.1, we geta  

                               
                  

     
     

 

 (   )
(  

   
    

   
 )    

Symmetrizing and anti-symmetrizing by the indices (   ), we get 

   
   

 

 (   )
(  

   
    

   
 )                                                             (   ) 

Since   is Einstein manifold , consequently, we get  

   
   

 

 (   )
(  

   
    

   
 )    
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Contracting by the indices (   ), we obtain 

   
     

(   )
  
 . 

Conversely, by using the equation (   ), we have 

                                                                        
    

 (   )
(  

   
    

   
 )    

Contracting by the indices (   ), we obtain 

                                                                                              
    

(   )
  
    

Substituting    
   in the equation (   ), we get  

                                                                                       

(   )
  
   

(   )
  
    

  
     

  

Since   has  - invariant Richi tensor, it follows that   is aEinstein amanifold.           □ 

Theorem 3.5: aLet    be a    - amanifold of avanishing M-projective atensor and  - ainvariant Richi 

tenor, if   is Einstein manifold, then   is    - amanifold. 

Proof:   aSuppose that    is a    - amanifold of avanishing M-aprojective atensor. 

Taking into account the Theorem 3.1, we have 

                          
                  

     
     

 

 (   )
(  

   
    

   
 )    

Contracting by the indices (   ), we get 

                                                  
              

     
   

(   )
  
     

By amaking usea of the aTheorem 3.4, we obtaina  

           
     

     

Symmetrizing by the indices (   ), it follows that  

                 
     

    

Contracting by the indices (   ), we deduce 

                                                                                               
     

      ,  

which implies that:      ̅     
        

     ∑ |      
  |

 
              

      

Therefore,   is   -manifold.    
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    Finally, we were able to find a link between   -manifold, ℋ-manifold and   - manifold.   

Theorem 3.6: aSuppose that    is    - amanifold with avanishing M-aprojective curvature atensor and 

vanishing Richi curvature tensor, then   is ℋ-manifold if, a and aonly if,    is   -amanifold.  

Proof: 

      Suppose that   is   -manifold  with vanishing M-projective curvature tensor and vanishing Richi 

curvature tensor, so according to the Theorems 3.1and 3.3 we obtain 

               
     

                                                                                 (   ) 

Since   is   -manifold, so the equation (   ) becomes 

                
     

                                                                                 (   ) 

Let   be ℋ-manifold, we deduce  

      
     

       

Contracting by the indices (   ) and (   ), we obtain 

                                                          
     

      
   ̅ 

     ∑ |  
  |

 
          

     

Hence,   is   -amanifold. 

aConversely, asuppose that    is   -amanifold, so the aequation  (   ), abecomes 

            

Contracting by the indices (   ) and (   ), we have  

                                                                                              

                                                                                             ,  

which implies that                      ̅      ∑ |    |
 

               

Therefore, according to the Banaru's classification,   is ℋ-manifold.               □ 

4. References 

 

 

[1] Abood H. M. and Abd Ali H. G., Projective-recurrent Viasman-Gray manifold, Asian J.  

      Math. Comp.    Research, V. 13, N.3, p.184-191,  2016. 

 [2]  Abood H. M. and Mohammed  N. J., Locally conformal K ̈hler manifold of pointwise  



435 
 

      holomorphic sectional curvature tensor, International Mathematical Forum, V. 5, N. 45., p.  

      2213-3334, 2010.  

[3]  Banaru M., A new characterization of the Gray-Hervella classes of almost Hermitian 

     manifold, 8
th
International Conference  on  differential  geometry. 

[4]  De U. C. and Mallick S., M-Projective Curvature Tensor on N(k)-quasi-Einstein Manifolds,  

      Differential Geometry Dynamical Systems, V.16, p.98-112, 2014. 

[6]  Devi M. S. and Singh J. P., On A Type of M-Projective Curvature Tensor on Kenmotsu  

      Manifold, International J.of  Math. Sci. and Engg. Appls., V. 9, N. III, p. 37-49, 2015. 

[6]  Gray A. and Hervella L. M., Sixteen classes of almost Hermitian manifold and their  linear   

      invariants, Ann Math. Pure  and  Appl., Vol. 123 , N.3, p. 35-58, 1980. 

[7] Hervella L. M. and Vidal E., Nouvelles geometries pseudo-k ̈hleriennes   et   , C. R.  

     Acad. Sci. Paris, V.283, p.15-118, 1976. 

[8] Ignatochkina L. A.  and  Habeeb Mtashar Abood H. M., On  Vaisman-Gray manifold with  

    vanishing conharmonic curvature tensor, Far East Journal of Mathematical Sciences  

   (FJMS) Far East Journal of Mathematical Sciences (FJMS), V. 101, N. 10, p. 2271- 

    2284, 2017.   

[9] Jaiswal J. P. and Yadav A. S., On Generalized M-projective _-recurrent Trans- Sasakian  

     Manifolds, FactaUniversities  (NIS), Ser. Math. Inform, V. 31, N. 5, p. 1051-1060, 2016. 

[10] Jumaah S. Q., Certain Curvature Tensors of Almost Hermitian Manifolds  M.  Sc. 

      thesis,  University  of  Basrah, College of Education for Pure Sciences,  

     Department of Mathematics, 2018. 

[11] Kirichenko  V. F.   "  New   results  of  K – spaces  theory "Ph. D. thesis ,  Moscow  state  

University, 1975. 

[12] Kirichenko V. F. " K – spaces of constant type " Seper.  Math. J., V.  T.17 ,  N. 2 ,   

        p. 282-289 , 1976 . 

[13] Kirichenko V. F. and Tretiakova I. V., On the Constant Type of Almost Hermitian Manifolds, 

Mathematical Notes, V. 68, N. 5, 2000. 

[14] Kirichenko V. F. and Vlasova L. I., Concircular geometry of  nearly K ̈h-ler manifolds, Sbornik 

Mathematics, V. 193:5, p.685-707, 2002. 

[15] Kobayashi S. and Nomizu K., Foundations of  Differential Geometry, John Wily and Sons, V.1,  

       1963. 

[16]  Kobayashi  S.   and   Nomizu     K.    "  Foundations    of    differential  geometry  "  V2 , John 

Wiley 

         and  Sons , 1969 . 

[17] Koto S., Some theorems on almost Kahlerian spaces, J. Math. Soc. Japan, V.12, p.422-433, 1960.  

[18] Mohammed N. J. and Abood H. M., , Some results on projective curvature tensor of  

        nearly cosymplectic Manifold, European  Journal of  Pure and  Applied Mathematics, V.  

        11, N. 3, p. 823-833, 2018. 

[19] Ojha R. H., A note on The M-projective Curvature Tensor, Indian J. Pure Appl. Math., V.8, 

N.12, p. 1531-1534, 1975. 

[20] Ojha R. H., M-projectively Flat Sasakian Manifolds, Indian J. Pure Appl. Math., V.17, N.4, p. 

481-484, 1986. 

[21] Petrov A.Z., Einstein Space, Phys-Math. Letr. Moscow, p. 463, 1961.  



436 
 

[22] Pokhariyal G. P. and Mishra R. S., Curvature Tensor and Their Relativistic Significance II,  

       Yokohama Mathematical Journal, V.19, p. 97-103, 1971.  

[23] Raŝevskiĩ P. K., Riemmanian geometry and tensor analysis, M. Nauka, 1964. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



437 
 

Chaos in Beddington–DeAngelis food chain model with 

fear 

Hiba Abdullah Ibrahim and Raid Kamel Naji
 

Department of the Mathematics, College of Science, University of Baghdad, 

Baghdad, IRAQ 

haibrahim82@yahoo.com; rknaji@gmail.com 

 

Abstract.  In the current paper, the effect of fear in three species Beddington–DeAngelis food chain model is 

investigated. A three species food chain model incorporating Beddington-DeAngelis functional response is 

proposed, where the growth rate in the first and second level decreases due to existence of predator in the upper 

level. The existence, uniqueness and boundedness of the solution of the model are studied. All the possible 

equilibrium points are determined. The local as well as global stability of the system are investigated. The 

persistence conditions of the system are established. The local bifurcation analysis of the system is carried out. 

Finally, numerical simulations are used to investigate the existence of chaos and understand the effect of varying 

the system parameters. It is observed that the existence of fear up to a critical value has a stabilizing effect on 

the system; otherwise it works as an extinction factor in the system. 

 

 

1. Introduction 

It is well known that the study of the prey-predator systems is an important subject in ecology and 

biology, due to the wide existence of such type of interaction in the environment [1-2]. Such prey-

predator models have been extensively studied in literatures through previous yeas [3-5]. Most of 

these studies in literatures mainly concentrated on the local stability as well as persistence [6-7], while 

recent studies display a direction in exploring dynamical behaviors, for example, local bifurcation and 

chaos [8-11]. Food chain system is an ecological system that depends completely on the prey-predator 

interaction in which the energy transfers directly from one level to the higher level.  

The effect of predator on the prey population within ecological systems may be direct or indirect or 

both. In the state of direct effect, the predator preys upon prey through killing them directly [12]. 

While, in the state of indirect effect, predator motivate fear in prey and change prey's behavior due to 

decreasing of the prey growth rate [13]. The fear effect is appearance of stress on prey. Recent works 

presented that the fear is strong enough to affect into the dynamics of ecological systems [14-15]. 

Many researchers studied the effect of fear in the ecological models. For example, Wang et al [16] 

have suggested a prey-predator model, where the effect of fear plays important role in the growth of 

prey. They spotted that the fear can stabilize the system. Zhang et al [17] have investigated the effect 

of anti-predator behavior that resulting from the fear of predators. They adopted a Holling type-II 

prey-predator, which incorporating a prey refuge. Pal et al [18] have studied a two species prey-

predator model with a functional response of Beddington–DeAngelis type in case of existence of fear. 

Panday et al [19] investigated the role of fear in a food chain model consisting of three levels with a 

functional response of Holling type-II, they observed that fear effect can stabilize the system from 

chaos to stable. 

In the present study, we are particularly interested to the dynamics of a food chain model with 

Beddington–DeAngelis (BD) type of functional response that proposed in [20] in case of existence of 

mailto:haibrahim82@yahoo.com
mailto:rknaji@gmail.com
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fear. It is assumed that the growth rates of prey and middle predator are decreasing as a cost of fear of 

upper level predator. 

In Section (2) the mathematical model is formulated and then all the mathematical properties of the 

solution of the model are studied. Section (3) studied the stability analysis and determined the 

conditions of persistent of the model. Local bifurcation near each equilibrium point is discussed in 

section (4). However, numerical simulation is investigated in section (5). Eventually, in section (6) the 

discussion and conclusions are carried out from our obtained analytical. 

 

2.  Mathematical Model 

In this section, a BD food chain model with fear is suggested. The mathematical model is formulated 

according to the following hypotheses: 

 Let the densities of prey, middle predator and top predator at time   are given by  ( ),  ( ) 
and  ( ) respectively. 

 In the absence of middle predator  ( ), the prey grows according to logistic function with 

intrinsic growth rate     and carrying capacity    . While, the growth rate of prey decreases due 

to fear from the predation by middle predator with fear rate constant    . 

  The middle predator  ( ) consumes the prey according to BD functional response with 

maximum attack rate     , the half saturation level      and middle predator’s encounters rate 

    . However, The food converted to middle predator  ( ) with conversion rate       . It is 

assumed that, in the absence of the prey, the middle predator decays exponentially with natural death 

rate     . On the other hand, since the middle predator facing predation by top predator  ( ) too, 

the growth rate of middle predator decreases with fear constant    .  

 The top predator  ( ) consumes the middle predator according to BD functional response 

with maximum attack rate     , the half saturation level     , top predator’s encounters rate 

     and then the food consumed by top predator is converted with conversion rate       . 

However, in the absence of middle predator, it is decay exponentially with natural death rate      . 

According to the above mentioned hypotheses, the dynamics of BD food chain model with fear 

represented by the following set of differential equations.  

  

  

  
 .

   

    
/ .  

 

 
/  
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/ .

 

    
/  

      

        
              

  

  
 

         

        
                                                       

                                      (1) 

where  ( )     ( )          ( )   . 

Now, to simplify the model, the following dimensionless variables and parameters are used: 

 

        
 

 
    

    

   
    

      

      
     

     

  
     

    

  
     

  

 
          

   
     

 
    

     

    
    

    

  
    

     

   
      

  

   
    

     

 
    

  

   
 
                         (2) 

Therefore, system (1) reduced to: 

   

  

  
  0

(   )

(      )
 

  

        
1     (     )                               

  

  
  0

    

        
.

 

      
/  

 

        
   1     (     )  

  

  
  0

    

        
   1     (     )                                        

           (3) 

Theorem 1: System (3) has a uniformly bounded (UB) solutions. 
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Proof:  From the first equation, we get  

  

  
  ,   - 

By the usual comparison theorem the following is obtained: 

 ( )  
  

      (    )
 

where     ( )  and then for      we get  ( )   . 

Now, define the function  ( )    ( )   ( )   ( )  then the time derivative of  ( ) is determined 

by:  

  

  
 

 (   )

(      )
 

   

        
.  

  

      
/  

   (    )

        
        . 

Therefore, due to the biological meaning of the system’s parameters and the bound of  ( ), it is 

obtained that 

  

  
       

where       *       +. Hence, due to the Gronwall lemma [21], we obtain  ( )     
     

 

 
(       ). Thus, for      we have that    ( )  

 

 
. Hence all solutions of system (3) are UB 

and the proof is done.       

3. The stability analysis 

In this section, the existence and stability of the equilibrium points (EPs) are discussed. It’s observed 

that, system (3) has at most four EPs, which can be stated as follows: 

1- The trivial equilibrium point    (     ) always exists. 

2- The axial equilibrium point (AEP) that given by      (     ) always exists. 

3- The top predator free equilibrium point (TPFEP), which is given by    (     ), where  

     ̅  
   (    ̅   )

(     )
                    (4a) 

While,   is a unique positive root of the equation: 

        
                                (4b) 

where      (  
          (     )

 )    

          
                           

            
 . 

       
                   

    . 

So by DESCARTES' RULE of sign [22], equation (4b) has a unique positive root provided that:  

       (    )                                                                       

(5) 

Therefore,    exists uniquily under the above condition.  
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4- The positive equilibrium point (PEP), that given by    (        ), where  

     
    √  

      

 
 ;    

    
      ( 

    )

    
                      (6a) 

with       

            
       

                   (        
 )    .  

 However,     is a positive root of the following equation: 

                    
                                                                 (6b) 

here                (      
 )    , 

        
  (      

 )(   
 (       )    (           )) , 

  

   (     )(    
       

 )                                                      

 (      
 ),  (     )       (   

     )-

        
    (   

    )
 

So by DESCARTES' RULE of sign [22], equation (6b) has a unique positive root provided that:  

                    

(7a) 

Therefore, the PEP exists uniquely in the        
  provided that in addition to condition (7a) the 

following conditions hold. 

       (     
 )      

                                                   (7b) 

        ( 
    )     

                                                           (7c) 

Now the dynamical behavior of system (3) can be studied locally using linearization technique. 

Observed that it is simple to verify that, the Jacobian matrix (JM) of system (3) at    (     )  can 

be written in the form: 

      (  )  [

   
     
     

]                                                   

(8a) 

Thus, the eigenvalues of  (  ) are given by 

                   ,          .      (8b) 

Therefore, the trivial equilibrium point is a saddle point. 

The JM at the (AEP), that is given by     (     ), can be written as: 
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              (  )  

[
 
 
 
    .

 

    
/  

 
  

    
    

     ]
 
 
 
 

                                                   

(9a) 

Hence, the eigenvalues of  (  ) are given by 

         ,     
  

    
     and          .                  (9b) 

Clearly, the AEP is locally asymptotically stable (LAS) if the following condition holds: 

                     (    )                                                                

(10) 

Moreover, it is easy to verify that, the point    is a saddle point if the condition (5) holds. 

The JM at the (TPFEP),    ( ̅    ), can be written in the form: 

     (  )  [

       
         
     

]                                                

(11a) 

where      ̅ .
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 /,      .

 ̅ (   ̅ )  
(     ̅)
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  ,      .

       ̅ ̅ 
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/     

     
   ̅ 

    
     

Then the characteristic equation of  (  ) can be determined as follows: 

   (         ) (     )                                                       (11b) 

where 

               

                     

Consequently, the eigenvalues are written as: 

       
  

 
 

√  
     

 
,     

  

 
 

√  
     

 
,     

   ̅ 

    
                        

(11c) 

Hence the (TPFEP) is LAS provided the following conditions hold: 

     
   

(   ̅  ̅   )
  

 

     ̅
                                                          

(12a) 
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       ̅    (    )                                                            (12b) 

The JM at the PEP, that given by    (        ), can be written in the form 

     (  )  [   ]   
                                                               (13a) 

where 
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 /,     .
  (     )  
(     
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  (     ) 
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       )

 /    , 

     ,     
    

 (   
    )

(   
       )

   ,     
        

    

(   
       )

   . 

Then the characteristic equation of   (  ) is  

         
                                                                     (13b) 

where 

       (           )  

                                          

                                     

while 

   
             (       ),             -            

 (       ),             -        ,       -
 

Now, according to the Routh-Hawirtiz criterion [23], the roots of equation (13b) have negative real 

parts provided that                    . Direct calculation shows that these conditions hold 

provided that 

     
    

(   
       )

  
 

     
                                                       

(14a) 

    
  

(   
       )

  
      

 

(     
 )(   

       )
                                             

(14b) 

Therefore the PEP is LAS under the conditions (14a)-(14b). 

Obviously system (3) has only one possible subsystem lying in the first quadrant of    plane. This 

subsystem can be written as:    
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  0

(   )

(      )
 

  

        
1    (   )

  

  
  0

    

        
   1    (   )         

                                         (15) 

Now, in order to investigate the existence of periodic dynamics in the interior of the first quadrant of 

   plane, define the Dulac function as (   )  
 

   
 . Clearly  (   )            function in the 

      
  of the    plane . Further, we have  

                 (   )  
 (    )

  
 

 (    )

  
  

 

  (      )
 

       
(        )

  

Then  (   )  does not identically zero in the       
  of the    plane and does not change sign 

under one of the following two conditions: 

     
       

(        )
  

 

  (      )
                                                    

(16a) 

or 

     
       

(        )
  

 

  (      )
                                         

(16b) 

Therefore, by using Dulac-Bendixson criterion [24], there is no closed curve lying in the       
  of 

the    plane for all the trajectories satisfying condition (16a) or condition (16b). Hence according to 

the Poincare-Bendixon theorem [24], the unique equilibrium point in the       
  of the    plane 

that given by    will be a globally asymptotically stable (GAS) whenever it is LAS. 

Theorem 2: Assume that either conditions (16a) or (16b) holds and let the following conditions hold 

then system (3) is uniformly persistent. 

      (    )                                            (17a) 

      ( ̅    )      ̅                                                            (17b) 

 Proof:  Let us use the average Lyapunov method [25]. Consider the following function (     )  

            , where               are positive constants. Obviously  (     )            (     )  

      
  and  (     )    when     or     or    . Consequently, we obtain  

   

 (     )  
  (     )

 (     )
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(      )
 

  

        
1
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   1

    0
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Now, according to average Lyapunov method, the proof follows if  ( )    for any boundary 

equilibrium point  , with suitable choice of constants                    . 

     (  )    .
   

    
   /    (   )  
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     (  )    .
    ̅

 ̅   
   /  

Clearly,  (  )    under condition (17a) for appropriate choice of positive constants     and   , so 

that    is large enough with respect to the constant   . While,  (  )    under condition (17b). 

Hence the proof is complete.                          

Theorem 3:  Assume that the AEP is LAS, then it is a GAS in the       
  provided that the following 

condition holds. 

               
    

  
                                                                             

(18) 

Proof: Define the function 

    (     )  ∫
   

 
      

 

  
 

 

 
 

Clearly the function   is positive definite so that  (     )    and  (     )    for all (     )    
  

with (     )  (     ) and    . 

Now, straightforward calculations give that 
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 0   

    

        
 

   

(        )(     )
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(   ) 

     
 0    

    

  
1   

  

  
   

Hence under condition (18), we obtain that 
  

  
 will be negative definite. Then   is a Lyapunov 

function (LF). Therefore AEP is a GAS.              

Theorem 4: Assume that the PFEP is LAS, then it is a GAS in the       
  provided that the following 

conditions hold. 

       (     )                                                           (19a) 

       
                                                                         (19b) 

    
    

  
                                (19c) 

where all the symbols are described clearly in the proof. 

Proof: Consider the following function 

   (     )  ∫
   ̅

 
   

 

  
∫

   

 
   

 

 ̅
  

 

 ̅
. 

Obviously the function  (     )    is a continuously differentiable real valued function for all 

(     )    
  and (     )  ( ̅  ̅  ) with        , while  ( ̅  ̅  )   . 

Now, straightforward calculations give that 
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     (   ̅)     (   ̅)(   )     (   )        6   

     

  
7 

where      (     )       

     (     )     .  
     

(     )
/   .  

          ̅

(     )
/   , 

     
          ̅

(     )
  . 

with    (     )(     ) and    (         )(    ̅   ̅    ). Accordingly, by using the 

given conditions (19a)–(19c), we obtain 

  
  

  
  [√   (   ̅)  √   (   )]

 
       0   

     

  
1.  

Therefore, the derivative 
  

  
  is negative definite and then   is a LF. Thus the PFEP is a GAS.                                                                                                                                                                             

Theorem 5: Assume that the PEP is LAS in the       
  , then it is a GAS provided that the following 

conditions hold: 

       
                                                                          (20a) 

        
                                                                         (20b)  

                 
  

  
 

(     
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(20c) 
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(20d) 

 

where all the symbols are described clearly in the proof. 

Proof:  Consider the positive definite function 

  (     )   ∫
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∫

    

 
  

 

  
 

  
 

Clearly, the function   (     )    is a continuously differentiable real valued function for all 

(     )    
  with (     )  (        ) and            , while  (        )   . 

Now, the derivative of this function with respect to time can be written as 
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and      
      

 

   
. 

while    (     )(     
 ),     (         )(    

       ), 

    (     )(     
 ) and    (         )(    

       ). 

Accordingly, by using the given conditions (20a)–(20d) we obtain 

  

  
  6√   (    )  √

   
 

(    )7

 

 6√
   
 

(    )  √   (    )7

 

 

Therefore, the derivative 
  

  
 is negative definite and hence   is a LF. Thus, the PEP is a GAS.  

                                              

4. Local Bifurcation 

In this section, the local bifurcation near the possible EPs of system (3) is discussed with the help of 

Sotomayor’s theorem [21]. It is well known that the existence of non-hyperbolic equilibrium point 

represents a necessary but not sufficient condition for occurrence of bifurcation. Therefore the 

candidate bifurcation parameter that is make the equilibrium point non-hyperbolic at a specific value 

of that parameter is selected. Now rewrite system (3) in the form: 

    
  

  
  ( )         (21) 

where   (     )  and   (           )
  with            represent the interaction functions in 

the right hand side of system (3). Then straightforward computation on the JM of system (3) with any 

non-zero vector   (        )
 , gives the following second directional derivative   

        (     )(   )  (   )   
                                 

(22) 

where 
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Theorem 6: System (3) at AEP undergoes a transcritical bifurcation (TB)but neither saddle node 

bifurcation (SNB) nor pitchfork bifurcation (PB) can occurs when the parameter    passes through 

the value   
    (    ).  

Proof:  According to the JM that given in equation (9a), system (3) at AEP with      
   has the 

following JM, say  (     
 )    , where 

      <

  
  

    
 

   
     

= 

Clearly,    has a zero eigenvalue given by    
    and hence AEP is a nonhyperbolic point. 

Now, let  , -  .  
, -
   

, -
   

, -
/
 

be the eigenvector corresponding to the eigenvalue     
    . 

Thus    
, -    gives that  , -  .    

, -   
, -  /

 
, where   

  

    
   and   

, -
 represents any 

nonzero real number. Also, let  , -= .  
, -   

, -   
, -/

 
, represents the eigenvector corresponding to 

the eigenvalue     
      of    

 . 

Hence   
  , -     gives that  , -  .    

, -
  /

 
, where    

, -
 stands for any nonzero real number. 

Now because  

     
  

   
    (    )  .  

    

(     )(        )
  /

 
  

Thus,    (     
 )  (     ) , which gives ( , -)

 
   (     

 )   . So according to Sotomayor’s 

theorem for local bifurcation, system (3) has no SNB at      
 .  Furthermore because we have 

        (     
 )  <

   

 
 

    
 

   

= 

Then we obtain,  

  ( , -)
 
(    (     

 ) , -)    
, -   

, -

    
   

Moreover using equation (22) with      
  and  , -  gives  

   (     
 )( , -  , -)

  .  
, -/

 
(     (    

  
(    )

 
*  

  
(    )

 
 
       

 

(    )
 
 

     
 

(    )
 
  *

 

 

Hence, it is obtained that 

      ( , -)
 
   (     

 )( , -  , -)  
    

(    )
(       )  

, - .  
, -/

 
  . 
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Thus, based on Sotomayor’s theorem, system (3) at AEP has a TB as the parameter    passes through 

the bifurcation value   
 , while PB cannot occurs and that complete the proof.     

             

Theorem 7: Assume that condition (12a) holds, then system (3) at TPFEP undergoes a TB but neither 

SNB nor PB can occurs when the parameter    passes through the value    
  

   ̅

( ̅   )
 . 

Proof:  From the JM that given in equation (11a), system (3) at TPFEP with      
  has the 

following JM, say  (     
 )    , which has zero eigenvalue, say    

   . 

       [
       
         
   

] 

where                 are given in equation (11a).  

Now, let  , -  .  
, -
   

, -
   

, -
/
 

represents the eigenvector corresponding to the eigenvalue     
  

 . 

Therefore,    
, -    gives that  , -  .    

, -     
, -   

, -/
 

, where    
        

              
  , 

    
         

              
   and   

, -
 represents any nonzero real number. Also, let  , -= 

.  
, -   

, -   
, -/

 
 represents the eigenvector corresponding to the eigenvalue     

    of    
 . 

Hence   
  , -     gives that  , -  .      

, -/
 

, where    
, -

 stands for any nonzero real number. 

Now because we have 

     
  

   
    (    )  (      )    

Thus    (     
 )  (     ) , which gives ( , -)

 
   (     

 )   . So according to Sotomayor’s 

theorem for local bifurcation, system (3) has no SNB at      
 .  Furthermore because we have 

        (     
 )  [

   
   
    

] 

We can show that 

 ( , -)
 
(    (     

 ) , -)  .      
, -/ .       

, -/
 
    

, -  
, -    

Moreover, using equation (22) with      
  and  , -  gives  
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 )( , -  , -)   .  

, -/
 
.   

, -
/
   

 

Where 
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Hence, it is obtained that 

 ( , -)
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 )( , -  , -)  
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  (         ̅)  

, - .  
, -/

 
  . 

Therefore, by Sotomayor’s theorem, system (3) at TPFEP has a TB as the parameter    passes 

through the bifurcation value   
 , while PB cannot occurs and hence the proof is complete.    

            

Theorem 8:  Assume that condition (14a) along with the following sufficient conditions hold 

     
      

 

  
   

 
   

  
                       

(23a) 

                                           

(23b) 

                             

(23c)  
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where         
 ;       

       ;         
  and       

       ; while 

           are given in equation (13b). Then system (3) undergoes a Hopf bifurcation (HB) around 

the equilibrium point    as the parameter    passes through the positive value   
 
, that given in the 

proof. 

Proof: Recall that, according to the HB theorem [26] for the three dimensional autonomous system, 

such as system (3), undergoes a HB as the parameter    passes through the positive value   
 
 

provided that: 
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The JM of system (3) at the equilibrium point    has a simple pair of complex eigenvalues, say 

  (  )     (  ), such that they become purely imaginary at      
 , while the third eigenvalue 

remain real and negative. Moreover, the transversality condition  
   (  )

   
|
     

 
   should be hold. 

Note that the above first condition will be satisfied if the coefficients of the characteristic equation 

given by (13b) satisfy that             . So straightforward computation gives that this is 

equivalent to 

          
                            

(24a) 

Where       ,   
 (       )  (   

    )   -
   

   
 

  
  

     ,   
 (       )

  (   
    )      -

  

  
 , 

     (       )(             ) 

Clearly, according to the signs of JM elements that given by equation (13a) in addition to the 

sufficient conditions (14a), (23a), (23b), (23d) and (23e) it is easy to verify that      ,      , 

     and     , and then equation (24a) has a unique positive root denoted by   
 
 that satisfies  

  (  
  )  (  

  )    (  
  ). Consequently, as      

 
 the characteristic equation given by (13b) 

will be 

     (    )( 
    )                                

(24b) 

Thus, equation (24b) has the following roots  

        (  
  ) and        √  (  

  )      (  
  ).  

Again, the given conditions (23b)-(23d) with the signs of JM elements guarantee that      for all 

       . Therefore the first condition of the HB follows.  

Now in order to check the occurrence of the transversality condition, substitute   (  )     (  ), 

where    in the neighborhood of   
 
, in the equation (24b) and then take the derivative with respect 

to the bifurcation parameter   . Then comparing the two sides of this equation and then equating 

their real and imaginary parts, we get 

    
 (  )  

 (  )   (  )  
 (  )    (  )

 (  )  
 (  )   (  )  

 (  )    (  )
              (25a) 
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Solving the linear system (25a) by using Cramer's rule for the unknowns   
 (  ) and   

 (  ) gives 

that

 
   

 (  )   
 (  ) (  )  (  ) (  )

, (  )-
  , (  )-

  ,   
 (  )   

 (  ) (  )  (  ) (  )

, (  )-
  , (  )-

                 (25b) 

Hence the transversality condition is satisfied provided that  

   (  
 ) (  

 )   (  
 ) (  

 )    

Obviously, we have that   (  
  )    and   (  

  )  √  (  
  ), so we obtain that 
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 )     

 (  
 )  (  

  )    
 (  

 ) 

    (  
 )      (  

 ) 

   (  
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 (  
 )√  (  

  ) 
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Accordingly, we get that 

  
 (  

 )     (  
  )

[  
 (  

 )  (  
 (  

 )  (  
  )    (  

  )  
 (  

 ))]

, (  
 )-  , (  

 )- 
 

Consequently,   
 (  

 )    under condition (23f), and then the transversality condition hold. Hence 

HB occurs at      
 
.               

Not that, according the above theorem, we have that for      
 
 the equilibrium point    of system 

(3) is stable; when      
 
 loses its stability and the HB occurs at   , , and when      

 , the 

equilibrium point    becomes unstable and a family of periodic solutions bifurcates from   . 

  

5.  Numerical Simulation 

In this section, the global dynamics of system (3) is investigated numerically. The main objectives 

understand the effect of fear on the dynamics of system (3), specify the set of parameters that control 

the dynamical behavior of the system (3) and confirm our obtained results. Different tools are used 

through this investigation such as bifurcation diagram (BD), chaotic attractor, 3D phase plot and time 

series.  Predictor-Corrector method with six-order Range Kutta methods are used for solving the 

system, while MATLAB version 6 is used to present these numerical results. 

The following hypothetical set of parameters is used. 

    
                                       

                            
                        

(26) 

Clearly, in the above set of data, there is no fear in the system (3). It is observed that system (3) 

undergoes a chaotic dynamics for the above set of data as shown in the Figure 1.  
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Figure 1.  The trajectory of system (3) for the data (26). (a) Chaotic attractor. (b) Time series of 

the attractor in (a). 

Obviously from Figure 1, system (3) without fear has a chaotic dynamics at the data (26), which 

indicates to existence of complex dynamics. Now, to investigate the impact of varying the parameters 

  ,    and    on the dynamics of system (3), the BD for the trajectory of system (3) as a function of 

each parameter are drawn in Figure 2 – Figure 4 respectively. It is known that, the BD summarizes 

the dynamical behavior of the system as a function of a specific. These parameters are selected 

according to the analytical study in section (4).   

 

Figure 2. BD of system (3) as a function of     (     ) keeping other parameters as in the data 

(26). (a) Maximum of the trajectory of   versus   . (b) Maximum of the trajectory of   versus   . 
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Figure 3. BD of system (3) as a function of     (   ) keeping other parameters as in the data 

(26). (a) Maximum of the trajectory of   versus   . (b) Maximum of the trajectory of   versus   . 

 

Figure 4. BD of system (3) as a function of     (      ) keeping other parameters 

as in the data (26). (a) Maximum of the trajectory of   versus   . (b) Maximum of 

the trajectory of   versus   . 

Clearly, as shown in the above BD, system (3) is very sensitive for varying the parameters   ,    and 

  . Different types of bifurcations are obtained and system (3) enters to chaotic and periodic regions. 

Furthermore, it is obtained that system (3) approaches asymptotically to AEP for the range    

(      ), which is confirm stability condition (10). It is approaches asymptotically to TPFEP, where 

   (           ), for the range    (         ). While it is approach asymptotically to PEP, with 

   (              ), for the range    (         ). Finally, system (3) approaches asymptotically 

to a periodic dynamics in       
 , see Figure 5  for typical values of     and Table 1 for varying other 

parameters. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a)

Theta-2

M
a

x 
y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
(b)

Theta-2

M
a

x 
z



454 
 

 

Figure 5. The trajectory of system (3) for the data (26) with different values of   . (a) System (3) 

approach asymptotically to    (     ) for       . (b) Time series of the attractor in (a). (c) 

System (3) approach asymptotically to    (           ) for        . (d) Time series of the 

attractor in (c). (e) System (3) approach asymptotically to    (              ) for        . 

(g) System (3) approach asymptotically to period two attractor for       . (h) Time series of 

the attractor in (g). 

 

Table 1. The dynamical behavior of system (3) using data (26) with varying one parameter each time 

 

The parameter The range of varying The dynamical behavior of system (3)   

   

          

            

       

Complex dynamics involving periodic and 

chaos  

Periodic dynamics in       
  

Approaches to PEP in       
  

   

          

             

        

Periodic in the    plane 

Complex dynamics involving periodic and 

chaos  

Periodic dynamics in       
  

   

          

            

            

          

Complex dynamics involving periodic and 

chaos  

Approaches to PEP in       
  

Approaches to TPFEP in    plane 

Approaches to AEP 

   
          
          

Complex dynamics involving periodic and 

chaos  

Periodic dynamics in       
  

   

         
            
             
          

Complex dynamics involving periodic and 

chaos  

Periodic dynamics in       
  

Approaches to PEP in       
  

Periodic in the    plane 

   

          
            
         

Periodic in the    plane 

Complex dynamics involving periodic and 

chaos  

Periodic dynamics in       
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Complex dynamics involving periodic and 

chaos  

Periodic in the    plane 

Now, in order to understand the effects of varying the fear rates on the dynamics of system (3) 

using the data (26), the system is solved numerically with different values of prey’s fear rate    and 

different values of intermediate predator’s fear rate    as shown in Figure 6 and Figure 7 

respectively.  

 

 

 

Figure 6.  The trajectory of system (3) for the data (26) with different values of   . (a) System 

(3) approach asymptotically to chaotic attractor for       . (b) Time series of the attractor in 

(a). (c) System (3) approach asymptotically to periodic attractor in       
  for      . (d) Time 

series of the attractor in (c). (e) System (3) approach asymptotically to    (             ) for 

     . (f) Time series of the attractor in (e). (g) System (3) approach asymptotically periodic 

dynamics in the    plane for      . (h) Time series of the attractor in (g). 
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Figure 7.  The trajectory of system (3) for the data (26) with different values of   . (a) System 

(3) approach asymptotically to chaotic attractor for     . (b) Time series of the attractor in (a). 

(c) System (3) approach asymptotically to period two attractor in       
  for      . (d) Time 

series of the attractor in (c). (e) System (3) approach asymptotically to periodic attractor for 

     . (f) Time series of the attractor in (e). (g) System (3) approach asymptotically to 

   (              ) for       . (h) Time series of the attractor in (g). 

 

However, for the data set given by (26) with       and      , it is observed that the trajectory 

of system (3) approaches asymptotically to PEP represented by    (             ) as shown in 

Figure 8. 

 

Figure 8.  The trajectory of system (3) for the data (26) with       and      . (a) System 

(3) approaches asymptotically to    (             ). (b) Time series of the attractor in (a). 

 

Keeping the obtained results in view, the effect of varying the parameters of system (3) on the 

dynamical behavior of the system in case of having asymptotically stable PEP using the data given by 
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equation (26) with       and       is also studied numerically and obtained results are 

summarized in Table 2. 

 

Table 2. The dynamical behavior of system (3) using data (26) with       and       in 

case of varying one parameter each time 

The parameter The range of varying The dynamical behavior of system (3) 

   
          

        

Periodic in the    plane 

Approaches to PEP in       
  

   
          

          

Periodic in the    plane 

Approaches to PEP in       
  

   

          

             

            

           

         

Approaches to AEP 

Approaches to TPFEP in    plane 

Approaches to PEP in       
  

Periodic dynamics in       
  

Periodic in the    plane 

   

          

             

             

             

          

Periodic in the    plane 

Periodic dynamics in       
  

Approaches to PEP in       
  

Approaches to TPFEP in    plane 

Approaches to AEP 

          Approaches to PEP in       
  

   

          
             
          

Periodic dynamics in       
  

Approaches to PEP in       
  

Periodic in the    plane 

   

          
             
          

Periodic in the    plane 

Approaches to PEP in       
  

Periodic dynamics in       
  

   

         
            
          

Periodic dynamics in       
  

Approaches to PEP in       
  

Approaches to PEP in       
  

 

6. Conclusion and discussion 

In this paper, a BD food chain model incorporating fear factors in the first and second traffic levels of 

the chain is proposed and studied. The objective is to investigating the role of fear on the dynamical 

behavior of the system. The boundedness of the solution is proved. All the EPs are determined and 

their stability analyses are investigated locally as well as globally. The persistence conditions of the 

system are established. The occurrence of local bifurcation around the equilibrium points is 

investigated too. Finally, the numerical simulation of the system in case of nonexistence and existence 

of fear is carried out. It is observed that using the hypothetical set of data given by equation (26) the 

food chain without fear has a complex dynamics involving chaos that is very sensitive for varying of 

most the parameters. Furthermore, it is clear that the existence of fear has a stabilizing effect, through 

removing the complex dynamics of the system. Now, according the numerical simulation results using 

the hypothetical set of data (26) the following observations are obtained. 

1. System (3) without fear has complex dynamics including chaos and periodic.  
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2. Increasing the fear in the first level up to a specific value removes the chaotic dynamics and the 

trajectory of system (3) approaches asymptotically to stable PEP. However, further increasing the fear 

at the first level more than a critical value makes the system losing the persistence and then the 

trajectory approaches asymptotically to a periodic dynamics in the    plane. 

3. Increasing the fear rate in the second level up to a specific value removes the chaos too and the 

trajectory of system (3) approaches asymptotically to periodic attractor in       
 . Moreover, 

increasing the fear rate further above a critical value stabilizes the system and the trajectory 

approaches asymptotically to PEP. 

4. The BDs show that the system is very sensitive to varying in the conversion rates   ,    and the top 

predator death rate   . Different points of bifurcation have been obtained. In fact, decreasing the value 

of the conversion rates   ,    or increasing the value of predators death rates   ,    causes extinction 

in top predator and the system loses their persistence.   

5. Similar observation has been obtained regarding increasing the values of top predator half saturation 

constant    as  that obtained in case of increasing the predators death rate. 

6. In case of existence of constant values of fear rates       and       with rest of parameters as 

given in equation (26), it is observed that the system persists at the PEP. While decreasing the value of 

encounters between the intermediate predator individuals or the intermediate predator half saturation 

constant causes extinction in top predator and system (3) approaches asymptotically top periodic 

dynamics in the    plane.  

7. Decreasing (increasing) the conversion rate of the intermediate predator    (death rate of intermediate 

predator   ) below (above) a specific value causes extinction in top predator and the solution of 

system (3) approaches asymptotically to TPFEP in the    plane. Further decreasing (increasing) in 

these parameters leads to extinction in intermediate predator too and the system approaches 

asymptotically to AEP. On the other hand, increasing    (decreasing   ) above (below) a specific 

value leads to extinction in top predator and the solution approaches asymptotically to TPFEP in 

   plane. 

8.  Increasing the half saturation constant    or the death rate    of top predator above a specific value 

causes losing the persistence of the system and the solution approaches asymptotically to periodic 

dynamics in    plane. However, decreasing these rates leads to losing the stability of the PEP and 

the system still persist at periodic attractor in       
 . 

9. Finally, decreasing the top predator conversion rate    below a specific value causes losing the 

persistence of the system and the solution approaches asymptotically to periodic dynamics in 

   plane. However, increasing this rate leads to losing the stability of the PEP and the system still 

persist at periodic attractor in       
 . 
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Abstract: Through the characteristic and properties of ideal we were able to give a new definition to 

neighborhood of a certain point, but these neighborhoods do not necessarily contain that point. we  also  

introduced  a new definition to the local function by using   both proximity relation  and the idea of the 

neighborhoods that were indicated ,finally we presented most important  results and  their properties. 

1. Introduction: This research is based on the concept of proximity relation which was known by the Riecs 

[10] in his theory of enchainment in 1909 and in 1952, Efremovic [5] rediscover the concept of proximity 

spaces.  

Later, many researchers and mathematicians presented several studies on this topic like A. Kandil, O.A. 

Tantawy, S.A. El-Sheikh, A. Zakaria [1] in 2014. 

 As well as they were used to define a new type of set introduced by Luay Al Swidi and Dhearrgham Ali [2] in 

2020 and they are named it the centre set.  

The second crutch of this research, it is the concept of ideals that has been defined by the Kuratowski [4]  in 

1933 , this concept has  evolved   and developed  In topological spaces to be the triple (X, T,I), which is named  

the ideal Topological  space and more of mathematician like  T. R. Hamlett D. Jankovi´c[13,14] in 1990 and 

1992 and  R. Vaidyanathaswamy [11] in 1960 studied on this concept . 

In 2006 the Irina Zevina [3] developed a new definition of some topological spaces using the ideal tools and it 

was named i-topological spaces. 

As for the third crutch it is the local function that was defined. By K. Kuratowski [4] in 1933  and this  function 

was studied by  Many of mathematician in various forms, some of them studied by the fuzzy set   such as 

Mohammed Majid Najm, Luay A. A. AL-Swidi[7]in 2020 and Reghad almohammed ,luay al swidi [12]in 2020   

and some of them studied by the soft set, such as manash Jyoti and bipan Hazarika [ 8 ] in 2019  and Luay A. 

Al-Swidi and Sameer A. Al-Fathly[6]in 2017. 

 In this work all the crutch and concepts were invested to provide a new definition of the sets we named  it  the 

focal set and we studied the most important properties, and we also presented a new type of closure using the 

focal set,  and finally the focal  function was defined with the confirmation of some facts about it. 

 

2. Fundamentals: 

mailto:yiezik.altalkany@uokufa.edu.iq
mailto:drluayha11@yahoo.com
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We will begin with some of basic concepts that we are needed in our work and we will mean by a space is i-

topological space. 

2.1 Definition  
 an ideal is a family I of X satisfy the following  [4 ,11]  

  )            )                                 )                         
                                        ( )                          
( )                      , - 
( )                 (      )    (      )        [5] 

 

2.2 Definition [3]  

Let I  is ideal defined  on X an i-topology on X  is a family T of X that check  conditions: 

           
                                             ⋃      
                                                        
           * +  
Then  (X, T , I) is named  an i-topological space and an item  of T are  named  i-open sets, and 

 ( )   *              + for any x  X. 

2.3Example  

Let X be any set then (      ) where TD is the discrete topology  and   *  * ++is not  space  

2.4Example: 

If (   )  is the indiscrete  topological space and I is any ideal on X then (     ) is i-topological 

space.  

 

2.5 Definition [1,2]:  

A proximity space (    ) is a set X with relation δ between subsets of X satisfying the following 

properties: 

For all subsets  ,   and C of X 

                
                
                    
      (     )    (              ) 
  (                 (   ))          
6.If   δ B we say   is near   or   and   are proximal; otherwise we say   and   are apart.  

 

2.6 Example Let X={a,b,c} and   defined as follow , A B iff A∩B≠  then   is a proximity relation 

on X . 

 

2.7 Proposition [1,2] : let  (    ) be a A proximity space then for all subsets     and C of X: 

 

                    
                    
                       
                       
         ̅         ̅  
       ̅           ̅  
       ̅        ̅         ̅    
 

3. In this section we will define the focal set with some of facts about it 

The following proposition will prove some of important properties of the relation    

 

https://en.wikipedia.org/wiki/Relation_(mathematics)
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3.1. Proposition:  

Let I be an ideal on the space X and A, B, C, D are subsets of X,  then : 

1.                            

2.                  

3.                                          

4.                                  

5.                                 

6.                        

i-                         ⋃   

7.                                                       

     ⋂    

 

   

             ⋃   

8.                                                       

i-                  ⋃   
 
       

9.                              

10.                           

 

Proof: we will prove (7) and (8) and the other cases exist by definition (2-1) 

7) i- 

1- By a summation we have that     
     and      

     then  

    
  ⋃    

    (  
  ⋃  

 )    (      )     Thus A B1 ∩B2 

ii- by (6)  the result exists  

8) i- by using part (7) and by induction the result exist 

ii-By (6)  and since A  Bλ ⋃Bλ then the result exists  

9)Is a similar proof of ( 8) 

10) Obvious  

11) Obvious  

3.2 Corollary: 

Let (X,T,I) is i-topology  if Aλ  Bλ for              

    ⋂  
 

 ⋃  
 

 

    ⋂  
 

 ⋂  
 

 

Proof: obvious  

 

Now we will define the focal set and give some properties about it  

 

3.3 Definition : 

Let (     ) be a space and x X , a subset A of X is named  a focal set if then we have U T(x) 

such that U A , the system of all focal sets of a point x denoted by I∳(x). 

 

3.4 Example : 

In the space  (     * +) , I∳(x)=T(x) for each x in X when  ( )  *       +  

Now useful facts about the focal set are introduce in the following proposition . 

 

3.5 Proposition : 



464 
 

Let (X,T,I) be a space and  ,  , are subsets of X  then the following propositions  are holds  : 

1. If     I∳(x) and     then     I∳(x)  

2. If  ,     I∳(x) then   ∩     I∳(x)  

3. If For each     I∳(x) then we have B such that       and     I∳(y)  for each y in   

4. If For each    I and each     then     I∳(x) 

5. If For each    T(x) then     I∳(x) 

6. If     I∳(x)  then    c
   I∳(x) 

7. If    I then   c  I∳(x) 

8. If  ,     I∳(x) then    ⋃   I∳(x) 

Proof:  

1)  the proof is obvious  

2) let U1 , U2   ( )  such that             , since                then we have     

such that           , which imply         and         , Since          

  by corollary (3-2) (2) we have             hence   

We get             so        , Now, to prove that     , if bearable  that  

     imply that      thus    (        )    , this is mean  * +    for each    x  X ,  

from that we get     ( ) and this is contradiction   ,thus            ( )  ,  Hence 

     I∳(x) 

3)let    I∳(x)  , then then we have     ( ) such that     ,therefor  for each          

 ( ) but      ,  hence    I∳(y) 

4) Suppose that    I∳(x) so then we have     ( ) such that      But     then (  

 )        , from that we get          and this is contradiction, then    I∳(x) 

5) For any     ( ) by proposition (3-1) (10)  ,      for every   in X then    I∳(x). 

6) Let    I∳(x) and suppose that     I∳(x) by (2)  =       I∳(x) and this is contradiction, 

thus     I∳(x) 

7) let      , if bearable  that     I∳(x),  then for every     ( )   (  )     

Hence       , But     and this contradiction and therefore        I∳(x) 

8) The prove is similar to (2)  

The following proposition discuss the relation of the focal set of  two i-topological spaces with 

respect to   

  the same i-topology T of X 

 

3.6. Proposition: 

Let (X,T,I1) and (X,T,I2) be  spaces such that  I1 I2  then  I1∳(x)  I2∳(x)   

Proof:  

Let A   I1∳(x), then we have U T(x) such that U∩A
c I1 and then belongs to I2  so A  I2∳(x)  . 

As a consequently with the above proposition (I1∩I2)   I1 and I2. 

 

3.7 Proposition : 

Let (     ) be a space if U is i-open set then U is focal set for each of its points  

Proof : let U is i-open set and x be any point of X such that  x U , then by proposition ( 3-1 )(5)  U 

is focal    

 set of x . 

The antagonistic is not true  as we see bellow  

 

3.8. Example : 

In the space (      )  where Ti is the indiscrete topology  and    *   * + * + *   ++ then    
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I∳(a)= I∳(b)= I∳(c)={X,{c},{a,c},{b,c}} so clearly that {c} is a focal set of c  but it is not i-open set 

. 

 

3.9 .Remark :  

1. From the above example we can see that if A  I∳(x) then it is not necessary that x A like {c} is 

a focal set of a but not  containing a . 

2.   is not focal set for each x in X  

3. X is focal set for each x in X 

 

3.10 . Proposition : 

Let (     ) be space then the system of focal set constructed a filter for each x in X . 

Proof:  

By proposition (3-1) (1,2) and remark (3-9)(2 and 3) the result exist . 

3.11. Definition : 

Let (X,T,I) be a space and     ,   , then   is named  a  -limit point of A iff  for each     I∳(x)   

such that          (  ∩ )−{ }≠  and the set of all a limit point of   is named  the focal derived 

set and  denoted by   (A), and   cl(A)=A⋃   A)  and is named  the focal closure of the set A 

 

3.12. Definition : 

Let (X,T,I) be a space  and     , then the intersection of all  i-closed supersets of   is named  the i- 

closure of   and is denoted by   cl(A) , i.e, 

    ( )  ⋂*                                       + 

 

3.13. Proposition : 

Let (X,T,I) be  a space  if a subset  A of X is i-closed set  then     ( )    

 

3.14. Proposition : 

Let (X,T,I) be  a space then if       ( )  then       for each    ( ) . 

Proof : let       ( )  and suppose that        then A    and since     ( ) is 

 the intersection of all i-closed set containing A hence     ( )     and this is contradiction  

so        for each    ( )  

 

3.15.  Proposition : 

Let (     ) be a space then     (A)     ( ) for each subset A of X 

 

Proof: 

 let p     ( ) then p  A or p    (A) hence if          ( ) the result exist and if   

  ( )   

then p is    limit point and for each    I∳(x)   such that          (  ∩ )−{ }≠   

Now if bearable that p    ( ) then by proposition (3-14) then we have     ( ) such that 

      and this is contradiction so p  A     ( ) hence    cl(A)     ( ) 

3.16 Proposition  

Let (X,T,I) is space then if      ( )  then       for each U T(a) . 

 

3.17. Remark:  

     ( ) and  cl(A) is not necessarily i-closed set  and     ( )      * )  as we show in the 

following   
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example  

 

3.18. Example: 

 Let X={a,b,c} ,   *      * + * + +,  *  * ++ then if A={c} then      ( )={c} which is  not 

i-closed set  

 

3.19. Example:  

  *     +   *    *   + *   ++        *  * ++ then if A={b,c} then   d(A)=   then A⋃  

d(A)={b,c}≠    ( )  X and {b,c} is not i-closed set  

4.  in this section we will define the focal function with some results about it  

 

4.1 .Definition  

Let (X,T,I) is space  and (X, )  is a proximity space and   is a subset of X  then   a point x X  is 

named  occlusion point of     if for each U  I∳(x) ,      , U    The set of all occlution points of   

is denoted by  ( )  also we will call that occlusion  set   ( ) is a focal function  

  

4.2 Example  

Let X={a,b,c} and   *    *   + *   ++ and   *  * ++ then (X,T,I) is space we define   as a 

proximity relation as follow   

A B  iff A∩B≠   then  ({a})= ({a,b})= ({a,c})= ({X})=X and  

 (* +)   (*   +)  * +      (* +)   (* +)    

 

Some of properties of focal function introduce in the following proposition 

  

4.3 Proposition : 

Let (     ) is space and A,B,C  are subsets of X  then : 

1.              ( )   ( ) 

2.   (   )     ( )   ( ) 

3.   ( ⋃ )     ( )⋃ ( ) 

4.  (  ( ))    (  ) 

5.              ( )    

6.              ( ⋃ )     ( )   (   ) 

7.  ( )      ( ( )) 

8.                                                ( )  (   ) 

Proof:  

1) Let    ( ) then for each    I∳(x) ,     ,but     then     and hence 

    ( )  

2) since (   )    and (   )    then by (1)  (   )   ( )  

And  (   )   ( ) and hence  (   )   ( )   ( ). 

3)  ( ⋃ )  *                 ( )   (   )+  

                      *        ∳ ( )           +  

                      {                ∳ ( )    }    *                ∳ ( )    +  

                       ( )   ( ) 
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4) Let    ( ) then for each     ∳ ( )     ,if bearable that     ( ( )) then we have  

   ∳ ( )  such that    ̅ ( ) , but    ∳ ( ),  Then      ( )and this  contradiction so 

 ( )   ( ( )) , now let    ( ( )) then for each     ∳ ( ),    ( ) and this imply that   

   ( )    , hence then we have       ( ) then z   ( )    this mean that for each   

   ∳ ( ),      ,But      ,by proposition  (3-5) ,    ∳ ( ),  then      for each    ∳ ( ) 

Therefore x   ( ) . 

5) if bearable that  (  )≠   then then we have x   (  )   Such that for each U is focal set of x  

such that x  U , U    , but   c
 is also focal set and this is contradiction hence  (  )=  

6) by using part (3)and (5)we get that   ( ⋃ )   ( )  

Now to prove  (   )   ( )  , since        by (1) then  (     )   ( )  

Now, let    ( ) then, for each     ∳ ( )  , x  U,     if bearable that     (   ) then 

then we have     ∳ ( )  such that     ̅(   )   iff    ̅  and   ̅   c
 then x  ( ) and this is 

contradiction , Hence    (   ) so     (   )   ( ) . 

7) Let       (  ) then for each     ( ) U∩ ( )≠  , then then we have    U and 

y  ( )  and this imply  for each W  ∳ ( )  , W    but  U T(y) and by proposition (3-5)(6) , U  

 ∳ ( ) so U     hence  x   ( ) and since    ( )      (  )  we get that      ( ( ))  

 ( ) 

8) let      ( )   then x  ( ) ,  if bearable that     (   ) then then we have  

   ∳ ( )  such that    ̅     iff  U ̅  and   ̅  then then we have    ∳ ( ) such that   ̅   

Then    ( )and this  contradiction so  ∩ ( )   (   ) ,  

The antagonistic of (2) in the above proposition is not true as in the following example  

 

4.4 Example : 

By example (4-2) clearly that if A={a,c} and B={ b,c} then A∩B={c} 

Hence  (A∩B) = ( {c})=      ( )   ( )    * +  * + 

 

The following proposition explain the relation of focal function of two spaces defined on the same 

family T. 

  

4.5 Proposition : 

Let (X,T,I1) and (X,T,I2) be  i-topological  spaces  such that  I1  I2 then  

  ( ( I2∳(x) ))    ( ( I1∳(x) )) 

Proof : exist by proposition (3-6) and (4-3)(1) 

5. Conclusion: 

Through our study of the subject, we found that the definition of the focal set  does not achieve 

some of the attributes that the set of neighbors achieve in the usual topological spaces, and that the 

nature of the definition of this set affected some definitions and theories such as closure and its 

theories in addition to the definition of the local function 
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Abstract. The alternating direction implicit method (ADI) is a common classical numerical method that was 

first introduced to solve the heat equation in two or more spatial dimensions and can also be used to solve 

parabolic and elliptic partial differential equations as well. In this paper, We introduce an improvement to the 

alternating direction implicit (ADI) method to get an equivalent scheme to Crank-Nicolson differences scheme 

in two dimensions with the main feature of ADI method. The new scheme can be solved by similar ADI 

algorithm with some modifications. A numerical example was provided to support the theoretical results in the 

research.  

1. Introduction: 

The alternating direction implicit (ADI) method was first proposed in the first place for partial 

differential parabolic equations in two spatial dimensions by D. Peaceman and H. Rachford in 1955 

[1], they produce the ADI method to solve multidimensional petroleum simulators reservoir, which is 

between the multi-scale many types of systems which that require implicit discretization. For solving 

the problem of any useful size, memory-efficient, fast converging methods are needed to solve the 

large linear equations that arise at each time step [2]. Although computers at that time were of limited 

capacity, they were able to use this method to solve the problem of heat diffusion in two spatial 

dimensions. Later ADI method developed to solve other problems and became a significant approach 

in numerical methods to solve different type of partial differential equations in two or more 

dimensions [3, 4, 5]. 

Consider the two-dimensional heat equation:  

 

  
  (     )

  
  .

   (     )

   
 

   (     )

   
/        (1) 

 (     )   (   )        (   )       

 (     )   (   )        (   )     

 

Where (   )   ,   *(   )             +,   is a positive constant. We will consider the 

rectangle domain       ,       with Dirichlet boundary conditions, so that  (     ) is 

given at all rectangular boundary points, for all     and an initial condition  (     ) is given. The 

region is covered with a uniform rectangular grid of points, with a spacing      in the  -axis and 

     in the  –axis , where   
 

  
 ,   

 

  
 ,      ,       are positive integer numbers, Which 

denote the approximated solution is then the finite difference     
   (        )   (        ), 

             ,             , for simplicity suppose (       ).  

The explicit finite difference schemes are used for solving such problems but these schemes are 

conditionally stable so the time the step must take a small value to achieve the stability conditions, 

while the implicit finite difference schemes are unconditionally stable but these schemes  lead to a  

linear large system of  equations must be solved,  solving (   )  linear equations. 

The mentioned method to solve the heat conduction equation is the Crank-Nicolson method which it 

like implicit method need the same number of equations in implicit method to solve at every time 

mailto:adil.r.a@ihcoedu.uobaghdad.edu.iq
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step. But with the ADI method we need to solve (   ) systems of linear equations and every 

system consist of (   ) of linear equations. After fifty years of their pioneering work on alternating 

direction implicit methods, D. Peaceman and H. Rachford attended a conference organized to honor 

them and celebrate a legacy that continues to grow [2]. 

2. Theory and Calculations: 

To explain the advantages of the ADI method for the parabolic equation we will consider the explicit 

scheme, the implicit and the Crank Nicolson finite difference Scheme for equation (1) with their basic 

properties.  

2.1. Explicit Finite Difference Scheme: 

The simplest difference analog to equation (1) is the explicit finite difference scheme which can be 

found by replacing the time derivative 
  

  
 use the difference forward approximation at the point 

(        ) and the space derivatives 
   

   
 and 

   

   
 with the central difference approximation at the 

same grid point, then the explicit finite difference scheme has the following difference equation  

 
    
        

 

 
  .

 

  
  
     

  
 

  
  
     

 / (2) 

 where   
     

        
       

        
 ,   

     
        

       
        

  and can be rewritten 

as: 

     
    (      

      
 )    

  (3) 

 where    
  

  
 and    

  

  
. This is the explicit scheme which can be solved explicitly for     

   , it is 

stable with conditions and the stability condition is  

        
 

 
  (4) 

For the case     the condition of stability becomes  

     
  

  
 

 

 
     (5) 

 That it is as restrictive twice as the one dimensional case [6, 7].  

2.2 Implicit Finite Difference Scheme: 

The implicit finite difference scheme can be obtained by replacing the derivative time 
  

  
 using 

forward difference approximation at the point (        ) and the space derivatives 
   

   
 and 

   

   
 with 

the central difference approximation at the grid point (          ), then the implicit finite difference 

scheme has the following difference scheme  

     
      

        
     

        
     

      (6) 

 or  

     
  (      

      
 )    

     (7) 

The implicit scheme is unconditionally stable [6, 7], but leads to large number of linear equations 

which are more difficult to solve than the explicit scheme.  

2.3 Crank Nicolson Finite Difference Scheme: 

It is another implicit difference scheme and can be found by replacing the time derivative 
  

  
 using 

forward difference approximation at the point (        ) and the space derivatives 
   

   
 and 

   

   
 with 

the central difference approximation at the two grid points (        ) and (          ) and take the 

average then the Crank Nicolson difference scheme given by:  

     
        

  
 

 
,(    

      
 )    

  (    
      

 )    
   - (8) 

 which can be rewritten as  
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 0  
 

 
(    

      
 )1     

    0  
 

 
(    

      
 )1     

   (9) 

  

3. ADI method: 

 The ADI method is a finite difference method for two dimensional (or more) heat flow and diffusion 

problems. The main idea of the ADI method is to divide the scheme from   to      into two steps, 

in the first half step, from   to   
  

 
, treating one of the spatial derivatives implicitly (say 

   

   
) and 

treating the other derivative (say    ) explicitly, this lead to the difference equation:  

     
  

 

      
  

  

 
  
     

  
 

  
  

 
  
     

  (10) 

 The matrix of the unknowns     
  

 

  will appearing in (10) as a block tridiagonal linear algebraic 

system of equations and  that can solved by the algorithm of tridiagonal linear system. For the second 

step reverse the treating of the spatial derivatives, i. e. from   
  

 
 to    , treating 

   

   
 explicitly and 

treating 
   

   
 implicitly and this lead to the second difference equation:  

     
        

  
 

  
  

 
  
     

  
 

  
  

 
  
     

     (11) 

 The unknowns     
    in (11) will appearing like equation (10) as a block tridiagonal linear system of 

algebraic equations and can be solved by the same algorithm. 

The two equations (10) and (11) consist the ADI scheme. The ADI Scheme is unconditional stability 

with simplicity in calculation. Nowadays there are many versions of the method, with applications to 

elliptic and hyperbolic problems as well as to systems of parabolic equations.  

For comparing ADI with the Crank Nicolson scheme consider equation (10), that rewritten as:  

 .  
  

 
  
 /    

  
 

  .  
  

 
  
 /    

  (12) 

 or  

     
  

 

  .  
  

 
  
 /

  
.  

  

 
  
 /     

  (13) 

 similarly, equation (11) can be rewritten as:  

     
    .  

  

 
  
 /    

  
 

  
  

 
  
     

    (14) 

 from equation (13) and equation (14) we can get  

     
    .  

  

 
  
 / .  

  

 
  
 /

  
.  

  

 
  
 /    

  
  

 
  
     

     (15) 

 By simplifying the equation we get  

 .  
  

 
  
 /    

    .  
  

 
  
 / .  

  

 
  
 /

  
 .  

  

 
  
 /     

  (16) 

 or  

 .  
  

 
  
 / .  

  

 
  
 /     

    .  
  

 
  
 /  .  

  

 
  
 /     

  (17) 

 with more simplifying we get  

0  
 

 
(    

      
 )  

 

 
      

   
 1     

    0  
 

 
(    

      
 )  

 

 
      

   
 1     

  (18) 

 Now by comparing equation (18) with the Crank Nicolson scheme, equation (9) we can notice that 

ADI consider  
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 .
 

 
      

   
 /    

    .
 

 
      

   
 /     

  (19) 

 in two time steps,   and    . 

 

4. Improved ADI 

ADI semi-implicit method is because it expresses one spatial derivative in an explicit difference 

scheme and the other spatial derivative in implicit difference scheme, if we have a three-dimensional 

problem then the ADI method will be a one-third implicit method and so on.  

In this work, we introduce an improvement to the ADI method to get a finite difference scheme 

similar to the Crank-Nicolson scheme as follows: 

 

     
         

      
     

         
     

   (20) 

  

     
          

      
     

      
     

       (21) 

Then by addition and divided by 2 for equations (20) and (21) we get the average: 

     
    

 

 
[    

         
     ]   (22) 

The three equations (20), (21) and (22) are consist the Improved ADI scheme. The main idea in 

improved ADI method is of only one of the 2nd-order replaced derivatives, like ADI method, using 

implicit finite difference approximation in terms of unknown values of   from (   )th level time, 

and the other 2nd-order derivative being replaced by an explicit finite difference approximation then 

solve the resulting system to get the first solution. And repeat this for the second derivative to the 

same time level and get the second solution, then gather the two solutions and divide them by two. 

With this technique, we will get a scheme similar to the Crank Nicolson scheme.  

The equations (20) and (21) can be solved by tridiagonal matrix algorithm. Both     
     and     

      

represent a solution of equation (1) so replaced by an     
   , and the equations (20) and (21) can be 

rewritten as:  

 (      
 )    

    (      
 )    

   (23) 

  

 (      
 )    

    (      
 )    

   (24) 

 Add (23) with (24) to get  

 [(      
 )  (      

 )]    
    [(      

 )  (      
 )]    

    (25) 

 By simplifying the equation, we can get  

      
        

     
        

     
         

       
     

      
     

   (26) 

 or  

  (    
        

 )      
 (    

        
 )      

 (    
        

 )  (27) 

 

     
        

  
 

 
    

 (    
        

 )  
 

 
    

 (    
        

 )  (28) 

 and this led to:  

 0  
 

 
(    

      
 )1     

    0  
 

 
(    

      
 )1     

   (29) 

 We can notice that this is the same Crank Nicolson finite difference scheme (9). And so the improved 

ADI method has the same accuracy as Crank-Nicolson method. 
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4.1 Stability Analysis of Improved ADI method: 

We will use the Von Neumann method to find the stability condition for the improved ADI finite 

difference scheme [8]. It is common to write  

      
                (30) 

where   √   ,   ,  are real spatial wave numbers and   is the amplification factor.  

Theorem 1: The improved ADI finite difference scheme is unconditionally stable.  

Proof: The finite difference scheme (20) and (21) and (22) can be rewritten as  
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     )- 

            
 

 
,    

    (      
          

           
    )    (      
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    (      
       

        
 )    (      

           
            

     )- 

 

use the expression (30) to get we obtain  

                                ( 
       (   )                        

                                           (   )      )    ( 
         (   )                

                                             (   ) )    ( 
    (   )                     

                                  +     (   )      )    ( 
             (   )  

                                                                   (   ) ) 

 

We consider both     
     and     

      as a solution of equation (1) in the level     so we can 

consider              as     . Divided the above equation by              to get  

         (  
             )    ( 

           ) 

           ( 
           )    (  

            ) 

 using the formula (                 
 

 
) to get  

         .     
   

 
/    .     

   

 
/    .     

   

 
/     .     

   

 
/ 

 rearrange the equation and divided by two to get  

       .    
   

 
/     .    

   

 
/      .     

   

 
/    .     

   

 
/ 

 this lead to  

     
        

   

 
       

   

 

        
   

 
       

   

 

    (31) 

For stability we require      , and from equation (31) for all values of           This ratio has an 

absolute value less than or equal to one. 

 

Table  1: Results of the example when          with      . 

     
ADI Method Improve ADI 

Average Error Max Error Average Error Max Error 
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1        0.003791562244134 0.013263668239204 0.001359974472108 0.004383685897438 

2        0.001990674075311 0.006252252554629 0.000279746819906 0.000995690451892 

3        0.001145347137462 0.003448770747655 0.000576055621512 0.001399504353320 

4        0.000777710885193 0.002261185531372 0.000144191125440 0.000730750281131 

5        0.000541626617549 0.001554638768872 0.000084594696706 0.000651841988994 

6        0.000411224398929 0.001161040587889 0.000054859072335 0.000824484762950 

7        0.000314098601357 0.000875586629557 0.000064951419127 0.000604186421875 

 

Numerical Example: For comparison between the improved ADI and ADI, we will consider the 

following diffusion equation in two dimensions  

    
  

  
 

   

   
 

   

   
  (     )  

 where  (     )  (     )  on the domain      ,       with     and the initial 

condition  (     )     (  )   (  ) and Dirichlet boundary conditions on the rectangle in the 

form  (     )    (     )        (  ),  (     )   (     )   . The exact solution is given 

by  (     )        (  )   (  ).  

The table ( ) represents the results of the example with different values of     with two error 

measures, the average error and the maximum of errors. 

5. Results and Conclusion: 

The Improved ADI is stable  with out condition and consistent with a local truncation error 

 ((  )  (  )  (  ) ) as Crank Nicolson method. Then by Lax’s Equivalence Theorem [8], the 

converge conditions are satisfied. The ADI method has a local truncation error  ((  )  (  )  
(  ) ).  
To solve the two dimensional diffusion equation by Crank Nicolson method we need to solve a linear 

system of (   )  equation in every time step, but The ADI techniques reduce the Number of 

arithmetic operation, we need to solve (   ) linear system and every system have (   ) linear 

equations at every half time step. But with improved ADI method we need to solve (   ) linear 

system and every system have (   ) linear equations two times at every time step.  

The numerical examples show that the improved ADI method have a good agreement with the 

theoretical findings. in this paper we consider the diffusion equation in two dimensions, it can be 

possibly generalized and extended to elliptic and hyperbolic problems and for more than two 

dimensions. 
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Abstract. The Caputo definition of fractional derivatives introduces solution to the difficulties appears in the 

numerical treatment of differential equations due its consistency in differentiating constant functions. In the 

same time the memory and hereditary behaviors of the time fractional order derivatives (TFODE) still common 

in all definitions of fractional derivatives. The use of properties of companion matrices appears in reformulating 

multilevel schemes as generalized two level schemes is employed with the Gerschgorin disc theorems to prove 

stability condition. Caputo fractional derivatives with finite difference representations is considered. Moreover 

the effect of using the inverse operator which transmit the memory and hereditary effects to other terms is 

examined. The theoretical results is applied to a numerical example. The calculated solution has a good 

agreement with the exact solution. 

1. Introduction 

The numerical treatment of the standard parabolic equation  

  
  (   )

  
 

   (   )

   
 (1) 

 with initial condition  (   )   ( ) and Dirichlet boundary conditions of the form  (   )  
 (   )   , defined on the domain      ,      , is the cornerstone in the numerical 

treatment of PDE’s in general. Most of the characteristics as well as the difficulties of finite difference 

method and its common properties appear in this simple form.  

The basic idea of the finite difference method depends on the replacement of the derivatives by 

functional values at different arguments. Accordingly, replacing the functional differential equations 

by an algebraic relation. The accuracy of the solutions obtained by the use of the finite difference 

method depends on the convergence, consistency and stability requirements of the corresponding 

discrete problem. Studying the stability of implicit as well as explicit schemes for equation (1) was the 

main topic in many publications. Lax equivalence theorem states that satisfaction of only two among 

the convergence, the consistency and the stability will guarantee the satisfaction of the third. In this 

work we focus on studying the stability. The importance of proving stability conditions appears in 

many scientific and economic situations rather than the reliability of solutions. Choosing large steps 

within the admissible range well reduce the storage requirements as well as the running time. There 

are different methods used in the stability treatment, Von Neumann, energy and matrix methods are 

standard techniques [1, 2].  

Our main task is to obtain with simple straightforward, easy and realistic method the stability 

conditions of the explicit scheme of the fractional time counter part equation (1)  

 
   (   )

   
 

   (   )

   
  (   )       (2) 
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 with initial condition  (   )    ( ) and Dirichlet boundary conditions of the form  (   )  
 (   )   , defined on the domain      ,      , where the fractional order time derivative 

is understood in the Caputo sense. 

The correspondence with the classical multilevel schemes treated in Richtmyer and Morton [2] with 

the relations on the norm of Frobenius matrices (appears in the reformulation of multilevel schemes as 

block two level schemes) and moreover the well-known Gerschgorin disc theorems have been 

reemployed to introduce systematic treatment.  

Definition 1.1 The Caputo time fractional derivative of order     of the function  (   ) is defined 

by [3, 4]:  

 
   (   )

   
 

 

 (   )
∫  
 

 
(   )     

  

   
 (   )   (3) 

 where   (     ),    . If     then this will coincide with the classical partial derivative.  

Equation (2) have appeared in many applications in physics, continuum mechanics, signal processing, 

and electromagnetic. Also, many publications have mentioned in biology, chemistry and 

biochemistry, hydrology, medicine, and finance [3, 4]. The fractional order partial differential 

equations (FOPDEs) are used to model anomalous diffusion and Hamiltonian Chaos. These equations 

describe the asymptotic behavior of continuous time random walks. Stochastic solutions to the 

simplest governing equations are Levy motions, generalizing the Brownian motion solution to the 

classical diffusion equation. Fractional kinetic equations have proved particularly useful in the context 

of anomalous subdiffusion [5, 6]. 

The fractional derivative considers the memory and hereditary effects which is not the case of the 

classical integer derivative which considers only the local behavior. In this work we are interested in 

this point and its effects on the stability conditions of the explicit schemes. Moreover, the 

corresponding between the treatment in the stability of multilevel schemes in the integer case and the 

explicit schemes in the fractional order case have been considered.  

Models described in the form of FOPDEs, tend to be more appropriate for the description of memorial 

and hereditary properties of various materials and processes than the traditional integer order models 

[7].  

It is interesting to note that the FOPDEs is a generalization of the classical partial differential 

equations and the limiting prosses as the fractional order approaches the classical integer order must 

introduce the classical case      , [8].  

It is well known that there is no analytical method that can be considered as a master method for 

solving PDEs the situation in FOPDEs is more complicated. Laplace and Fourier transform methods 

[9] have their limitation. Semianalytic methods like the series solution method, the Adomian 

decomposition method [10] suffer from the complicated integrations. Numerical methods became the 

most reliable treatment in solving many problems in PDEs due to the development in computer 

devices. The finite difference method is considered as one of the simplest numerical methods that can 

treat many different problems [1, 11].  

A number of numerical methods have been developed to solve the time fractional diffusion equation 

with Dirichlet boundary conditions. Yuste and Acedo [12] proposed a procedure with a new Von 

Neumann-type stability analysis in one dimension using Grünwald approximation for time fractional 

derivative. Liu et al [8] proposed another stability analysis procedure using discrete non-Markovian 

random walk approximation for time fractional derivative. LI and XU propose a spectral method in 

both temporal and spatial discretization [13]. Meerschaert et al. [14] use finite difference 

approximations for fractional advection-dispersion flow equations and other numerical methods with 

finite difference approximation to fractional derivative [15, 16, 17, 18] with Von Neumann and matrix 

methods to study the stability analysis and convergence of the methods.  

In the finite difference method, the continuous domain is replaced by a discrete grid superimpose the 

domain under consideration and the derivatives are replaced by the corresponding differences of 

functional values obtaining algebraic equation at each grid point. Solutions obtained by the finite 

difference method must satisfy some tests of consistency, stability and convergence to be reliable.  

Some authors prefer to write the time fractional diffusion equation in the form [5, 12]:  

 
  (   )

  
 

    

     
.
   (   )

   
/  

    

     
 (   ) (4) 
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This form appears to have many difficulties in the finite difference approximation because it includes 

the time derivatives in both sides even the derivatives in the left-hand side is of integer order.  

Any algorithm using a finite difference discretization of the time fractional derivative has to take into 

account its nonlocal structure, i. e. the computation of the solution at a time level requires information 

about the solution at all previous time levels, which means high storage requirement.  

To deal with this issue, Ford and Simpson [19] and Diethelm and Freed [20], developed a numerical 

technique to reduce the computational cost of the solution using the so called "fixed memory 

principle" as described in Podlubny [4]. We will discuss and compare between equation (2) and 

equation (4) with discretization of time fractional derivative by Caputo definition, formula (7), for 

both equations with use the Multilevel method to derive the stability conditions.  

2.  The Finite Difference Method  
 In the Finite difference method (FDM) every differential equation is approximated by a 

corresponding finite differences scheme. The domain ,   -  ,   - of the given parabolic equation is 

superimposed with a grid. The interval ,   - is divided into   subintervals with length      
 

 
, 

     , for             and define the time step      and      . 

The explicit scheme corresponding to equation (1) can be written in the form [2, 23]  

   
         

  (    )  
       

  (5) 

 this scheme is consistent and stable for   
 

  
 

 

 
. To obtain the corresponding scheme for the 

fractional order equation (2) one must use the discretization of fractional order derivative, the inverse 

operator form  equation (4) is also considered.  

2.1.  Discretization of Caputo Fractional derivatives 

The time fractional derivative replaced by Caputo fractional derivative of order  , definition 1.1, and 

we use the following formulation [8] 

 
   (       )

   
   

 ∑   
     

 (  
        

   ) (6) 

 where   
  

   

 (   )
 and   

  (   )        , for            , which can be rearranged in 

the form  

 
   (       )

   
   

 [  
    ∑   

     
   

        
   

 ] (7) 

 with   
      

    
 . 

Properties 1: the coefficients   
  and   

  having the following properties:   

•   
        (   )    (   )   ,          . And ∑   

     
   .  

•            
    

    
   , with         

   .  

•     
    

    
    

   , with         
   .  

Replacing the time derivative using equation (7) at the grid point (     ) and the space derivatives 

with the central difference approximation at the same grid point (     ), then the explicit scheme for 

the solution of equation (2) have the following difference equation  

   
      

   
  ∑   

     
   

         (   )  
   

  
 

  
   

  (8) 

  

3.  Stability in Multilevel schemes 

 The Von Neumann technique for stability analysis uses for a two-time level finite difference scheme 

but for more than two-time level schemes we need to use the multilevel technique to check the 

stability conditions, for more details about this technique see [21, 22]. 

 

4.  Discretization of Time Fractional Derivatives 
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 Replacing the derivatives appears in differential equation by their finite difference approximations 

one obtains a corresponding scheme. The scheme properties (consistency, stability and convergence) 

should be examined to obtain reliable results. The same approach is used in case of fractional 

derivatives. We consider the fractional time derivative in Caputo definition and study its finite 

difference approximations, also we use this approximation in the diffusion like equations (2) and (4). 

The amplification matrix described above can be obtained with the Von Neumann method and 

Multilevel finite difference technique to study the stability conditions of the fractional time finite 

difference scheme. Putting  

   
           (9) 

 where   √   and   is a real spatial wave number.  

The explicit scheme (8) is conditionally stable and the stability condition is    
     

 (   )
, Liu et al [8]. 

We use the multilevel approach and obtain the same stability condition in the next theorem 4.1. The 

condition is depending on  , figure 1 ( ).  

 
Figure  1: the stability condition on   , left ( ) for equation (8) and right ( ) for equation (22) 

   

Theorem 4.1:  The fractional explicit scheme (8) is conditionally stable and the stability condition is 

   
     

 (   )
.  

  

Proof: The scheme (8) is a multilevel scheme and can be rewritten  

   
    ,  

     (   )  
 -  

  ∑   
     

   
        

   
  

 

  
   

  (10) 

 then the multilevel amplification matrix   can be defined by square block matrix of order (   ) 
and every element of   is of order    :  

   

[
 
 
 
 
(  

     (   )  
 ) (  

 ) (  
 )  (  

 ) (  
 ) 

      
      
      
      ]

 
 
 
 

 (11) 

 for the amplification matrix Insert expression (9) in equation (7) then we get  

              
       ∑   

     
                (   )  [   (   )            (   ) ] (12) 

 Divided by       and using the formula (          )        
 

 
 to get  

          
  ∑   

     
           (   )  0      

  

 
1 (13) 

 can be rewritten  
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        0  
      (   )    

  

 
1  ∑   

     
            

  (14) 

 then the amplification matrix   can be defined by square block matrix of order (   ) and every 

element of   is of order (   ):  

   

[
 
 
 
 
(  

      (   ) ) (  
 ) (  

 )  (  
 ) (  

 ) 
      
      
      
      ]

 
 
 
 

 (15) 

 From Gerschgorin theorem for estimating the eigne values of any matrix [24], all rows of matrix   

gives eigne values lies in the union of unit discs centered at (   ) in the complex plan except those 

corresponding to the first block. For each row of the first block one can see that the corresponding 

eigenvalue satisfies  

     |  
      (   )    

  

 
|  ∑   

      
      

   (16) 

 by the properties1 we have   
   ,   

   , and ∑   
     

           
 , this lead to  

     |           (   )    
  

 
|         (17) 

 if the right-hand inequality is less than or equal to one then      , then we have  

  (      )  .           (   )    
  

 
/         (18) 

 the right-hand inequality is satisfied and we need to calculate the condition on    to make the left-

hand inequality satisfied, this lead to  

     (   )    
  

 
         (19) 

 then the stability condition is  

    
     

 (   )
  (20) 

  

 

For equation (4) the time derivatives appears in both sides makes the finite difference representation is 

implicit and to obtain the explicit scheme and moreover the implicit, we introduce the weighted 

average approach to the time derivatives in the right hand side i.e we replace the term 
    

     
.
   (   )

   
/ 

by its weighted approximation at the preceding time levels.  

  0
    

     
.
   (    )

   
/1  (   ) 0

    

     
.
   (      )

   
/1 (21) 

 

Thus for    , one obtains the explicit scheme obtained for equation (4) in the form  

 

 
  
      

 

 
 

 

  
  (   )

 (  (   ))
[  

   
  ∑     

     
     

   
        

     
   

 ] 

                  
  (   )

 (  (   ))
∑     
     

   [ (       )   (         )] (22) 

 This fractional explicit scheme is conditionally stable and the stability condition is    
 (   )

 
, 

theorem 4.2. It is apparent that the condition is depend on   the fractional order of the time derivative 

as shown in figure 1 ( ), this is more convenient and includes the integer case.  
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Theorem 4.2:  The fractional explicit scheme (22) is conditionally stable and the stability condition is 

   
 (   )

 
.  

  

Proof. The scheme (22) is a multilevel scheme and can be rewritten  

  
      

   [  
   

  ∑     
     

 
  
   

        
 

  
   

 ]  
  

 (   )
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 ] (23) 

 where      , and   
  

 (   )
, then the multilevel amplification matrix   can be defined by 

square block matrix of order (   ) and every element of   is of order    :   

  

[
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 ) (      
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 (24) 

  for the amplification matrix insert expression (9) in equation (23) and divide by       to get  

         0(      
  

 
)        

  

 
∑     
     

 
          

 
    

  

 
  1 (25) 

 can be rewritten  

      (     )      ∑     
     

 
            

 
   (26) 

 then the amplification matrix   can be defined by square block matrix of order (   ) and every 

element of   is of order (   ):   

   

[
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) (     

 
)  (       

 
) (       
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 (27) 

  Employing the same procedure of using Gerschgorin theorem [24], as used in theorem 4.1 we find  

             ∑     
   |       

 
|  |       

 
| (28) 

 by the properties 1 we have   
 
  ,     

 
  , and ∑     

     
 
   (   )               , 

this lead to  

                (      
 

)         
 

 (29) 

 if the right hand inequality is less than or equal to one then      , then we have  

                        (30) 

 then one can write  

  (         )                      (31) 

 the right hand inequality is satisfied and we need to calculate the condition on    to make the left 

hand inequality satisfied, this lead to  

          (32) 

 then the stability condition is  

     
 (   )

 
 (33) 

5.  Consistency of Time Fractional Finite Difference Schemes 

The Caputo fractional derivative of  ( ) [8], and from the Taylor’s expansion, we have  
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   (   )

   
 

 

 
  

   (   )

   
  (  ) (34) 

  

Therefore, the difference schemes (8) and (22) for TFODE are consistent. The truncation error can be 

calculated and it is of the form , ( )   (  )-. 

 
Figure 2: Comparison between the two schemes with the exact solution where      ,       , 

           and        . The absolute Errors in the right and the solutions in the left where    

and    are the numerical solutions by schemes (8) and (22) respectively. 

Example 5.1 To test the two explicit formulas (8) and (22) consider equation (2) with  (   )  

,(
  

   
   )       -   (  ), with initial condition  (   )     (  ) and Dirichlet boundary 

conditions in the form  (   )   (   )    the exact solution is  (   )        (  ).  
 

 
Figure  3: Comparison between the two schemes with the exact solution where      ,       , 

          and       . The absolute Errors in the right and the solutions in the left where    

and    are the numerical solutions by schemes (8) and (22) respectively. 
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Figure  4: Comparison between the two schemes with the exact solution where      ,       , 

           and        . The absolute Errors in the right and the solutions in the left where    

and    are the numerical solutions by schemes (8) and (22) respectively. 

6.  Discussion and Conclusion 

 The implicit schemes are generally unconditional stable and the explicit schemes are conditionally 

stable and. In explicit schemes one obtains the solutions easily but the conditions on time steps restrict 

and increase the computational work. In the implicit schemes one has to solve coupled large algebraic 

systems in each time level. There are many methods to establish stability conditions among them the 

Von Neumann and the matrix methods are easily used. Consistency is a simple property and its prove 

is a reversible process to see the original differential equation from its finite difference representation. 

There are many problems in describing and establishing the properties of the finite difference schemes 

in the fractional order cases in comparison with the classical integer cases some of them due to the 

memory and hereditary effects. Simple stability proves through using the techniques of classical 

multilevel schemes were introduced. The theorems of Gerschgorin’s discs are applied to the 

amplification matrices. We have used the technique of multilevel in proving the condition of stability 

for two schemes for the time fractional diffusion equation. The method of prove is straightforward 

and more convenient and contains memory effects implicitly. we examined the conditions on 

numerical example. 

In conclusion the explicit schemes still require small time steps in comparison with implicit schemes. 

The use of inverse operator has improved the calculated solutions and this is acceptable as illustrated 

because it extended the memory effects to the spatial terms. 

It should be pointed that, the suggested methods can be possibly extended to finite difference schemes 

for variable order TFODE [25], anomalous order TFODE [26] and fractional advection diffusion 

equations [27]. 
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1. Introduction     

Fractional Calculus is a  powerful tool that has been recently applied to complex mathematical with 

linear operators. Despite its complicated mathematical background, fractional calculus came to open a 

new window of opportunity to mathematical and real-world, which has appeared many new problems 

and acceptable results. For instance,  the concepts of fractional calculus operators and their 

generalizations of analytic and univalent functions have been successfully obtained to determine the 

basic geometric properties such as the coefficient estimates and distortion inequalities for numerous 

subclasses of analytic functions, adding to that studied some their topological properties in a complex 

plane (see [1-3]). 

    In [4] introduced an approach of the fractional integral operator defined for       and real 

numbers       ,   ( )    by 

                        
     

 ( )   
  (   )

 ( )
 ∫ (   )    ( )   .           

 

 
/ 

  

 
                              ( )  

where the function  ( ) is analytic in a simply-connected region of the  − plane containing the 

origin, with the order  ( )    (    ) (   )  for      *     +     and the multiplicty of 

(   )    is removed by requiring    (   ) to be real when      . Here,  ( ) is the Gamma 

function and   (       ) 
  is the absolutely convergent Gauss hypergeometric function given for 

             by the power series [5]: 

  (       ) 
  ∑

( ) ( ) 
( ) 

 

   

 
  

  
        

 

where 
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                             ( )  
 (   )

 ( )
 {

                                                       
 (   ) (     )            

 

is the Pochhammer symbol defined in terms of Gamma function.  

   Recently, [6] defined a modification of the fractional integral   
   

 and differential   
   

operators  of 

order two parameters       and       such that          respectively, are presented 

as follows: 

                               
   

 ( )   
 ( )

 ( ) (   )
     ∫ (

 

 

   )          ( )                            ( ) 

and 

 

                               
   

 ( )  
 ( )

 ( ) (     )
     ∫ (

 

 

   )        ( )                           ( ) 

 

where the function  ( ) is analytic in a simply-connected region of the  − plane containing the 

origin, both of the multiplicity of (   )       and (   )     are respectively  removed by 

requiring    (   ) to be real when      . 

 

  In this study, we shall restrict our attention to define new fractional calculus operators in the 

complex plane. The upper bounds for these operators given in terms of the univalent and convex 

functions. Some geometric applications associated with the Bessel function of the first kind are 

presented by the generalized Wright functions in the sense of generalization. 

 

2. New classes of generalized fractional calculus operators 

  In this section, we proposed to define generalized fractional integral and differential operators in the 

classical definitions, where the order of the fractional integral and fractional differential operators 

must be positive real numbers. Our definition has been based on important remarks concerning in 

equations (2) and (3). 

   Now, we employ equation (1) in (2) to introduce a new generalized fractional integral operator 

  
       

 as follows: 

Definition 1. Let      and     be real numbers and              such that  

           Then the fractional integral operator    
       

 is defined by 

  
       

 ( )   
 ( )         

 ( ) (   )
 ∫ (

 

 
   )          ( )   .               

 

 
/ 

       

(4) 

where the function  ( ) is analytic in a simply-connected region of the  − plane containing the origin 

with the order  ( )    (    ) (   )  for      *     +    and the multiplicity of (  

 )        is removed as in equations (2) .  

Remarke 1. By setting        in (4), we have  

  
         

 ( )    
   

 ( )   
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Next, we applying equation (1) in (3) to define a new generalized fractional differential operator 

  
       

  by the following formula. 

Definition 2. Let     and      be real numbers and                 such that     

   . The generalized fractional differential operator    
       

 is defined by:   

  
       

 ( )  
 ( )    

 ( ) (     )

 

  
 {      ∫      ( 

 

 

  )      ( )    (                  
 

 
* 

                                       ( ) 

where the function  ( ) is analytic in a simply-connected region of the  − plane containing the origin 

with order as given by (3). 

Remark 2.  By setting        in (5), then we obtain the following closed results: 

                                             
         

 ( )     
    ( ). 

We shall need the following Definition to present the next outcomes in our investigation. 

Definition 3. [5] For the real numbers     and    ,  the hypergeometric function    
   in the 

integral terms is shown as follows: 

  (       ) 
  ∫  ( )    

 (        )  
 

 

 

where  

 ( )  
 ( )

 ( ) (   )
    (   )     . 

Also, we use the familiar Gauss equation 

  (       ) 
  

 ( ) (     )

 (   ) (   )
            (     )     

The next  results are based on two formulas of generalized fractional integral (4) and generalized 

fractional differential (5) with a power function. 

Lemma 1. If              such that           and            then 

                      
       

   
 ( ) (   ) (       )

 ( ) (     ) (     )
   (   )                                          ( ) 

in particular, 

    
         

      
   

    

Proof. By using equation (4) and applying Definition 3, we get  

  
       

    
 ( )         

 ( ) (   )
 ∫ (

 

 

   )             (               
 

 
* 
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 ( )   (   )  

 ( ) (   )
 ∫       ( 

 

 
  )       (              ) 

    

                          
 ( ) (   )

 ( ) (   )
   (   )     (              ) 

  

                          
 ( ) (   ) (       )

 ( ) (     ) (     )
   (   )   . 

Similarly to the proof of Lemma 1, it is proved the association of the generalized fractional 

differential operator (5) with a power function. 

Lemma 2.  If             such that           and           then 

                                 
       

   
 ( ) (   ) (       )

 ( ) (     ) (     )
                                          ( ) 

in particular,  

            
         

     
       

Proof. By using equation (5) to the function   , we have  

  
       

   
 ( )    

 ( ) (     )

 

  
8      ∫       ( 

 

 

  )     (                   
 

 
* 

   9 

 
 ( )    

 ( ) (     )

 

  
2   ∫       (  

 

 
)     .                   

 

 
/ 

   
 

 
3, 

by employing Definition 1  in the above  expression, we get 

  
       

   
 ( )

 ( ) (     )
{    

 

  
       }∫ ( 

 

 

  )           (                  ) 
     

     
(     ) ( )

 ( ) (     )
        ∫ (   )           (                  ) 

   
 

 

  

Thus, we obtain 

  
       

   
 ( ) (   )

 ( ) (   )
          (                  ) 

   

                                             
 ( ) (   ) (       )

 ( ) (     ) (     )
          

Hence, we arrive at the desired results. 

 

3. Upper Bounds 
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In this section, we  deal with some applications of the new generalizations of fractional operators (4) 

and (5) in view of  the univalent and convex functions in the open unit disk  

 

  *       +  

 

Let     denote the class of all normlaized functions   of the form  

 

                                              ( )    ∑    
  

              * +                                               (8) 

 

which are analytic in    of the complex plane  . A function   is  called univalent and denoted by 

    *                       +  A function      that maps   onto a convex domain is 

called a convex function. Let denote   the class of all functions       that are convex. Further, the 

convolution product for two analytic functions is given by         

 

                                                   (   )( )    ∑      
   

    

 

where  ( )    ∑    
  

    and     . 

 

Lemma 3. [7] Let   and   be subclasses of    If   defined by (8) is in the class  , then         for 

all     * + and  for      the equality holds for the Koebe function defined by 

 ( )   
 

(   ) 
      

Adding to that, if the function   presented by (8) is in the class     then        and for      the 

equality holds for  

 ( )   
 

(   )
  

Theorem 1. For           , let      then 

|  
       

 ( )|       (   ) ∑  
( )   (       ) (     )

 (         ) (     )

  

  

 

   

         

  the equality holds for the Koebe function. 

Proof. Let the function  ( )   . Then, by utilizing Lemma 1, we have 

  
       

 ( )  ∑   
 ( ) (   ) (       )

 ( ) (     ) (     )
   (   )   

 

   

  

Thus by using the fact that        in Lemma 3, we obtain 

|  
       

 ( )|  ∑    
 ( ) (   ) (       )

 ( ) (     ) (     )
     (   )  
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                                (   ) ∑  
 ( ) (   ) (       )

 ( ) (     ) (     )
  

 

   

 

                                         

          (   ) ∑(   )
 ( ) (     ) (         )

 ( ) (       ) (       )
  

 

   

 

        

                                       

                                (   ) ∑  
( )   (       ) (     )

 (         ) (     )

  

  

 

   

  

 

where   (     ) represnts the Beta function in terms of Gamma function given by [5] 

 

 (     )  
 (  ) (  )

 (     )
. 

This completes the proof. 

 

Theorem 2. For           , let      then 

|  
       

 ( )|       (   ) ∑  
( )   (       ) (     )

 (         ) (     )

  

  

 

   

  

the equality holds for the Koebe function. 

Proof.  Let the function  ( )    . Then, by applying Lemma 1 and Lemma 3  we have 

|  
       

 ( )|  ∑    
 ( ) (   ) (       )

 ( ) (     ) (     )
     (   )            

 

   

 

                                                       

                            

    (   )  ∑
 ( ) (     ) (         )

 ( ) (       ) (       )
  

 

   

 

                                

       (   ) ∑
 ( ) (     ) (         )

 ( ) (       ) (       )
  

 

   

 

                  

                               (   ) ∑  
( )   (       ) (     )

 (         ) (     )

  

  

 

   

  

 

This completes the proof. 

Finally, we introduced some observations concerning the operator   
       

 of (5) and by considering a 

similar manner of Theorem 1 and Theorem 2, respectively, we obtain the upper bounds of the above 

operator in classes of the univalent and convex functions. 

Theorem 3. For           , let      then 

|  
       

 ( )|       (   ) ∑  
( )   (       ) (     )

 (         ) (     )
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the equality holds for the Koebe function. 

Proof. Let the function  ( )     and       . Then, by applying Lemma 2, we obtain 

|  
       

 ( )|  ∑    
 ( ) (   ) (       )

 ( ) (     ) (     )
       (   )

 

   

              

             (   )  ∑(   )
 ( ) (     ) (         )

 ( ) (       ) (       )
  

 

   

 

                     (   ) ∑  
( )   (       ) (     )

 (         ) (     )

  

  

 

   

  

Theorem 4. For           , let      then 

|  
       

 ( )|       (   ) ∑  
( )   (       ) (     )

 (         ) (     )

  

  

 

   

 

the equality holds for the Koebe function. 

Proof. By supposing  ( )    , such that        and applying Lemma 2. Then, we conclude the 

proof. 

4. Applications in terms of generalized Wright functions 

In view of definitions of the fractional integral operator (4) and fractional differential operator (5), we 

investigate to present some generalized properties associated with the Bessel function of the first kind 

  ( ) formulated for       such that     and  ( )     by [8]: 

                                                     ( )  ∑
(  ) (

 
 )

    

    (     )

 

   

           

                                          ( ) 

 We demonstrate that such associated are expanded in terms of the generalized Wright function 

  
 

 ( )  which is given by the following formula: 

                                     
 

 ( )    
 

 ( ) [
(      )   

(      )   
|  ]  ∑

∏  (       )
 
   

∏  (
 
           )

 

   

 
  

  
                    (  ) 

where             and         real numbers in   (                    )  under the condition 

∑     
 
   ∑      

 
    

In the following, we provide the generalized fractional integral operator (4) associated with the Bessel 

functions (9).  

Theorem 5. Let      be positive non-zero numbers,      and             such that 

       . Then  
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 (  )( )  
   (   )   ( )

   ( )
  

 
 ( ) 6

(     ) (         )  

(       ) (       ) (     )  
|  

  

 
7  

Proof. Utilizing equation (4) and equation (9), we obtain 

  
       

 (  )( )  ∑
(  ) .

 
 
/
    

    (     )

 

   

.  
       

     /  

Using Lemma 1, we obtain 

  

  
       

 (  )( )

 
   (   )   ( )

   ( )
∑

 (      ) (          )

 (        )   (        ) (     )

(   ) 

     
 

 

   

  

By applying Equation (10), we have 

  
       

 (  )( )  
   (   )   ( )

   ( )
  

 
 ( ) 6

(     ) (         )  

(       ) (       ) (     )  
|  

  

 
7  

Corollary 1. Let     ,     be such that        and             with        . 

Then  

  
   

 (  )( )  
   ( )

   ( )
  

 
 ( ) 6

(     ) (       )  

(     ) (       ) (     )  
|  

  

 
7  

Corollary 1 achieves from Theorem 5 in respective cases         

The following Theorem 6 introduces the generalized fractional differential operator (5) of the Bessel 

function (9). 

Theorem 6. Let     be positive non-zero numbers,      and             be such that 

       . Then  

  
       

 (  )( )  
     (   ) ( )

   ( )
  

 
 ( ) 6

(     ) (         )  

(       ) (       ) (     )  
|  

  

 
7  

Proof. Applying Equation (5) and Equation (9), we have 

  
       

 (  )( )  ∑
(  ) .

 
 /

    

    (     )

 

   

.  
       

     /  

By using Lemma 2 

  
       

 (  )( )

 
         ( )

   ( )
∑

 (      ) (          )

 (        ) (        ) (     )

(   ) 
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By Equation (10) 

  
       

 (  )( )  
     (   ) ( )

   ( )
  

 
 ( ) 6

(     ) (         )  

(       ) (       ) (     )  
|  

  

 
7  

Corollary 2. Let    ,     be such that        and             with        . 

Then  

  
   

 (  )( )  
   ( )

   ( )
  

 
 ( ) 6

(     ) (       )  

(     ) (       ) (     )  
|  

  

 
7  

Corollary 2 achieves from Theorem 6 in particular cases         

5. Conclusion 

Conditions for the new fractional calculus operators are obtained. Also, some characteristics for these 

operators are delivered.  Some geometric applications are studied in the sense of generalization. 
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Abstract. The aim of this paper is to introduce the concepts of asymptotically p-contractive and asymptotically 

severe accretive mappings. Also, we give an iterative methods( two step-three step) for finite family of 

asymptotically p-contractive and asymptotically severe accretive mappings to solve types of equations . 

h) Introduction  

     W Consider the real  anach  pace   and dual space   . The mapping           
 
 such that 

 ( )  *                             + for all     is called  ormalized duality 

 apping .When   is a  niformly  mooth  anach  pace, we get   is  inglevalued and   iformly 

 ontinuous  n every  ounded  ub et of   . Lin, Kang andiShim [1], are introduced the following 

 lgorithm: 

1.1Definition:  

Let   be a  onvex  onempty  ubset of   ,       be a map and      .Define the  lgorithm 

iteration      as 

      (    )          

    (    )            ,     

This  lgorithm iteration  alled Ishikawa, when            ny  equences in [0,1]. If      for 

all      , then the  lgorithm iteration       s  alled Mann  teration. Now, let        are two 

mappings, the  lgorithm iteration 

                                             

      ́     ́      ́                                          

This  lgorithm iteration called Ishikawa with  rror. If  ́   ́    for all    , then the  lgorithm 

iteration  s  alled Mann with  rror. The convergence of the iterative algorithms are studied by many 

researchers,see([1]-[14]) 

1.2 Lemma: [2]  

If   real  anach  pace and  :      
 
 be a  ormalized duality  apping. Then, for any       

                  (   )      (   )   (   ) 

1.3 Lemma: [3]  

The  onnegative  equence      satisfied the following inequality 

      (    )       

where    (   )       ∑   
 
      and     (  ).Then           . 

      In this article, we analyze the convergence of a new algorithm for asymptotically p-contractive 

and asymptotically severe mappings. 

i) Main Results  
 Now, we introduce asymptotically p- ontractive and asymptotically severe mappings as follows: 

2.1 Definition: Any map   with domain  ( ) and rang  ( )  in   is called  

i) asymptotically p- ontractive if      ( )   appositive  sequence       (   )     

such that for all    ( ) and      
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        (   )(   )      . 
 
    

 /     

ii)  asymptotically severe accretive if      ( )     positive sequence       (   ) such that 

for each     ( )    there is  

                    (   )   (   ) satisfying   
    

    (   )              . 

2.2 Remark:  1.The mapping    is asymptotically p-contractive mapping if and only if (    ) is 

asymptotically severe accretive mapping and      
 

  
 . 

2. 3. If   is asymptotically severe accretive mapping then(       ) accretive mapping. 

 It is  ur aims in this paper to study the convergence of the modified 3-step  lgorithm with 

error 3_ asymptotically p-contractive and asymptotically severe accretive mappings . 

2.3 Theorem: Let           are asymptotically severe accretive mappings assume that the 

equations    
      (     ) , has a solution for some     . Define the bounded mapping 

       such that   
         

  . Consider        the  lgorithm iteration      is 

defined by: 

             
 
                     ( ) 

      ́     ́  
 
     ́                  (2) 

where      and      are two  ounded  equences in   and               ́          

and  ́   are real  equences in [0,1] such that       

           ́   ́   ́     satisfying the conditions: 

i)                 ́    

ii) ∑      
    ,  

iii)           ́   ́  . 

Then the algorithm       onverges  trongly to a  ixed point of   
      . 

Proof: Suppose that     
         (   

 )       

Since      is asymptotically severe accretive  apping   

    
     

     (   )    .           
 /                            ( )  

      , we have 

   
     

     (   )                                    ( )     

If     (   ) , we have (4) with           , we prove that              are  ounded 

 equences.  

Let sup {   
     

       
         +            
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sup {             +             for all       and       *      +  By (1) and 

(iii) we get 

                      
 
              

                                  

                             

                            

Now, from (2) and(iii) , we get 

        ́         ́    
        ́      

                           ́         ́     ́   

             ́         ́    

              ́         ́                                     (6) 

Now , we show by induction that                           (7) 

For      we have                

Suppose that          , then by(5) we get  

                                          

                                            (     )  (    )    

Therefore, the inequality (7) holds 

Substituting (7) into (6), we get                          (8) 

From (2.6) , we have 

          ́            ́   ́           ́
  

  

Since  ́    and                  

                   ́  
   ́  

  

                                    =           ́  
                         (9) 

Using Lemma(2) , we get 

              (    )         ( 
 
     )    

     (    )       
        

       (      )   

   
                                          

       (    )

        
       (      )   (    )    
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where       
       (      )   (    )           (10) 

By (7) and (9) ,       and          
     we obtain 

                      
    

          
    

       
      ( 

  

   ́  
 )                       

            
    

    (         
 )          

      
        ́  

  

                     

                                                         (11) 

where,    (          ́ ) 
        

 First, we show that      as    .From ( 1) and ( 2) we get 

            (    ́ )(    )    ( 
 
     )   ́ ( 

 
     )         ́  ́  

                            (    ́ )              
         ́   

 
      

                                    ́       

                         (            ́   ́ )              
         ́ 

   
               ́      

By ( 7) and definition of M. we get   

           (    ́ )  (    ́ )  (    ́ )  

 

i.e.,             (    ́ )                                  ( 12) 

Therefore,         (    )     as    . 

Since                  and    
       are bounded and j is uniformly 

continuous on any bounded subset of   we have 

  (      )   (    )    and         as    . 

Thus ,            

Let       *              

To prove that    .Assume the contrary, i.e.,    ,  

Then             foriall    , hence 

  (       )    ( )    where     (   ) 

Thus from( 11),                       ( )    ,  ( )    -…..(13)     
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Since           , there exists a positive integer no such that      ( ) for all       

 From( 13) , we have 

                      ( )              or 

     ( )                      for all      

Hence,    ( )∑                                 
    

 

  ∑      
   , contradicting(ii)     and there exists           subsequence of 

          s.t     
   

                                (  ) 

From( 2),we have 

               (  ́   ́ )(    )   ́ ( 
 
     )   ́     

                (  ́   ́ )  (    )     ́  (  
     )   

                               ́        

Since  ́    ́  and by definition       and  , we get 

                  ́   for all                              (15) 

Thus,      
   

                                     (  ) 

  Now, let     be arbitrary, since    
   

      
   

  ́    and    
   

     ,        such that  

   
 

   
        ́  

 

   
           .

 

 
/ for all       

From(16),       such that  

                                                    (17) 

Now,we prove that                                        (18) 

Assume that (18) holds and for       the inequality(18) holds by (17).Now, if 

              then by(12) , we get 

                                        

                                              

                             (       ́   )  

                            
 

 
  

Hence,          
 

 
 

From(11), we get 
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                                    .
 

 
/            

                     which is a contradiction 

Thus we proved (18) , hence,    
   

         . 

2.4 Theorem: Let   be a nonempty  ounded closed subset of   and           are asymptotically 

pseudo-contractive mappings. Let   be a fixed point of      , and let       and      defined as  

              
 
          

    ́     ́  
 
     ́       ,     

where      and                ́          ́   are sequences as in theorem (2.3). 

then     converges strongly to the unique fixed point of    .  

Proof: The sequences      and      are both contained in   and therefore, bounded sequences. 

Since    are asymptotically p-contractive if and only if (    
 ) are asymptotically severe accretive 

and      
 

  
, for all (     ) put     and (     ), we get the result 

2.5 Theorem: Let           are asymptotically  p-contractive self mappings on   and ⋂   
   (  

 )  

 . Define the  lgorithm iteration       as, 

For        

              
 
         

    ́     ́  
 
     ́     

     ́  ́     ́́  
 
     ́́    

where      ,      and      are bounded sequences in  and          ́     ́  ́    ,  

       ́      ́́            ́        ́́   are real sequence 

 in [0.1] such that 

          ́   ́   ́   ́  ́   ́́   ́́    and satisfying the following: 

i) ∑     

ii)    
   

      
   

 ́     
   

 ́́    

iii)                ́   ́        ́́   ́ ́and       
 

      
  ,for any sequence    

(   ). Then the scheme       converges strongly to the unique fixed point of    
 , for all 

   . 

Proof: Since for all     then ⋂   
   (  

 )    , it follows from(1.8) that ⋂   
   (  

 ) is singleton 

say   .The mappings    is asymptotically p -contractive if and only if (    
 ) is asymptotically 
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severe accretive  and      
 

  
, and therefore (    

 )          
          (       ) is 

accretive. Hence , for all     and    (   ) we have,                [(    
  

   )  (    
     ) ] 

From our hypothesis,  

                 
 
         

                               
 
         

=(    )       (    
     )       (    

     )     

   (       )     
 
                                              ( 19) 

=(    )       (    
     )       (     )     

        (       )     
 
         

Since   is a fixed point of    , then 

   (    )     (    
     )    (    )                (20) 

Subtracting  (20) from(19) we obtain 

      (    ) 0(      )  
  

    
{(    

    )     (    
      ) }1  

  (    )(      )  ,   ( 
 
   )    -    

 
   -  ,         - 

        (    ) 0(      )  
  

    
{(    

    )       (    
     ) }1  

  (    )(      )  ,   ( 
 
    )    -   

 
   -   ,          -   

       (    ) [(      )  
  

    
{(    

     )       (    
     ) }]

    (    )  (      )       ( 
 
   )            

                                          
 
                                      (21) 

Since    asymptotically p -contractive, then ( 21) yields 

       (    )            (    )             ( 
 
   )    -       

        
 
       

 (      )             ( 
 
   )                           

       
 

      
,          ( 

 
   )    -               

 
    - 

Now, 

 (      )   
 

      
       

 

      
                       (22) 
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Now, put    
 

      
 ,        and           

 Thus (22) reduces to               

Since        ,            and            . Therefore by Lemma (1.3) , we have      

                 converge  strongly to    

2.6 Theorem:Let  Let           are uniformly continuous asymptotically severe   self  mappings of   

and ⋂   
   (  

 )    . Define a mapping       by   
       

    , for some    , 

consider the following  lgorithm iteration : 

For arbitrary       ,  

              
 
         

    ́     ́  
 
     ́     

     ́  ́     ́́  
 
     ́́    

 Where          and      are  ounded  equences in    and         ́      ́  ́     

      ́     ́́         ́       ́́   are real  equences in [0,1] such that       

    ́   ́   ́   ́  
́   ́́   ́́    and  atisfying the  onditions: 

i)  ∑     

ii)                  ́         ́́    

iii)          ,     ́   ́  ,     ́́   ́́  and       
 

      
  .For all    (   ).Then 

the scheme        onverges  trongly to a  olution of   
       

Proof: Form definition of asymptotically severe   ap, that              (   ) such that 

    
     

      (   )            for all    , we observe that         are  niformly 

 ontinuous and for any given    . 

(    
 )        

        
     

Which implies that  

 (    
 )  (    

 )     (   )               

That is (    
 ) is asymptotically severe  . Thus   

  is asymptotically  p-contractive. Thus the 

results  follows . 
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1. Introduction 

Let  ( ) be the class of functions which are analytic in the open unit disk  

  *                   +  
Also let 

 ,   -         (    *       +     ) 
be the subclass of the analytic function class   consisting of functions of the following form:  

 ( )       
       

                  (   ) 
Let   be a subclass of     which are analytic in   have the normalized Taylor-Maclaurin series of the 

form: 

 ( )     ∑   

 

     

                (    *       +    )                                                        ( ) 

Suppose that   and   are in  . We say that   is subordinate to  , written as follows:  

             ( )   ( )       (   ) 
if there exists a Schwarz function     which is analytic in   with  ( )    and  ( )    (   ), 

such that  ( )   ( ( ))   (   ). Indeed, it is known that 

 ( )   ( )    ( )   ( )      ( )   ( )  
 Furthermore, if the function   is univalent in  , we have the following equivalence relationship ([10]) 

 ( )   ( )    ( )   ( )      ( )   ( )                    (   )  
The concept of differential subordination is a generalization of various inequalities involving complex 

variables. We recall here some more definitions and terminologies from the theory of differential 

subordinations and differential superordination. 

Definition (1). (see [1]):  Let          and suppose that the function  ( ) is univalent in  . If 

the function  ( ) is analytic in   and satisfies the following third-order differential subordination:  

 ( ( )    ( )      ( )       ( )  )   ( )                                                ( ) 
then  ( ) is called a solution of the differential subordination (2). Furthermore, a given univalent 

function  ( ) is called a dominant of the solutions of (2) or, more simply, a dominant if  ( )   ( ) 
for all  ( ) satisfying (2). A dominant  ̌( ) that satisfies  ̌( )   ( ) for all dominants  ( ) of (2) is 

said to be the best dominant. 

Definition (2)[15]: Let          and let the function  ( ) be univalent in  , if the functions 

 ( ) and  ( ( )    ( )      ( )       ( )  ) are univalent in   and satisfy the following third-order 

differential superordination:  

 ( )   ( ( )    ( )      ( )       ( )  )                                                  ( ) 
then  ( ) is called a solution of the differential superordination given by (3) or more simply a simply 

a subordinant, if  ( )   ( ) for all  ( ) satisfying (3). A univalent subordinant  ̃( ) that satisfies 

mailto:waggas.galib@qu.edu.iq
mailto:waggas_hnd@yahoo.com
mailto:waggashnd@gmail.com
mailto:alih.battoor@uokufa.edu.iq
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 ( )   ̃( ) for all subordinants  ( ) of (3) is said to be the best subordinant we note both the best 

dominant and the best subordinant are unique up to rotation of  . 

The monograph by Miller and Mocanu [9] and the more recent book of Bulboac ̃ [5] provide detailed 

expositions on the theory of differential subordination and differential superordination.   

Definition (3). [3]:  For             * +. We define the differential operator  

  
      

  
   ( )   ( )  

  
   ( )  

    

   
[     ( )]

 

 
    

  
   ( )  

    

   
[     ( )]

 

 
     

  
   ( )  

    

   
[       ( )]

 

 
    ∑ (

   

   
*
  

     

                                    ( ) 

By simple calculation and using  

 (  
   ( ))

 

 
 (   )  

    ( )     
   ( )                                                        ( ) 

Definition (4). [1]: Let   be the set of all functions   that are analytic and univalent on  ̅  ( )⁄  

,where 

 ( )  {          
   

* ( )+   }                                                       ( ) 

and are such that       ( )               ( )⁄ . Further, let the subclass of   for which 

 ( )    be denoted by  ( ) with  

 ( )            ( )                                                                          ( ) 
The subordination methodology is applied to appropriate classes of admissible functions. The 

following class of admissible functions is given by Antonino and Miller[1] 

Definition (5).[1]: Let   be a set in  .Also let     and    * +  ⁄   being the set of positive 

integers. The class   ,   - of admissible functions consists of those functions         , which 

satisfy the following admissibility conditions: 

 (         )     
whenever 

   ( )       ( )  (
 

 
  *    4

    ( )

  ( )
  5 

and 

 .
 

 
/     4

      ( )

  ( )
5   

where            ( )⁄            
Lemma (1) below is the foundation result in the theory of third-order differential subordination. 

Lemma (1). [1]: Let    ,   -                 ( ) satisfying the following conditions: 

 4
    ( )

  ( )
5                            |

   ( )

  ( )
|     

where            ( )⁄            If   is a set in  ,     ,   - and  

 ( ( )    ( )      ( )       ( )  )      
then  

 ( )   ( )       (   )   
Definition (6). [15]:  Let   be a set in   . Also let    ,   -   and   ( )     The class    ,   - of 

admissible functions consists of those functions       ̅    that satisfy the following admissibility 

conditions: 

 (         )     
whenever 

   ( )   
   ( )

 
   (

 

  
  *  

 

 
 4

    ( )

  ( )
  5    

and  
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 .
 

 
/  

 

  
 4

      ( )

  ( )
5  

where                      
Lemma (2). [15]:  Let     ,   - with     

 ,   -  If the functions 

 ( ( )    ( )      ( )       ( )  )      
is univalent in   and    ( ) satisfying the following conditions: 

 4
    ( )

  ( )
5                            |

   ( )

  ( )
|     

where                       ,then 

  * ( ( )    ( )      ( )       ( )   )    + , 
implies that  

 ( )   ( )       (   )   
The notion of the third-order differential subordination can be found in the work of Ponnusamy and 

Juneja [11]. The recent work by Tang et al . (see,for example, [14] and [15]; see also [5]) on the 

differential subordination attracted many researchers in this field . For example,  

see[2,4,6,7,8,10,11,12,13,14,15]. 

In the present paper, we investigate suitable classes of admissible functions associated with the 

differential operator and drive sufficient conditions on the normalized analytic function to satisfy: 

  ( )   ( )    ( )         (   )  
where       are univalent in   and   is suitable operator. 

2. Third-Order differential subordination results 

 In this section, we start with a given set    and a function    and determine a set  of admissible 

operator   when (2) holds true . For this purpose, new class of admissible functions was introduced 

that will be required to prove the main third- order differential subordination theorems for the operator  

  
  defined by (3). 

Definition (7): Let   be a set in   and        . The class    ,   - of admissible function 

consists of those function          that satisfy the following admissibility conditions: 

 (         )     
whenever 

   ( )    
    ( )    ( )

   
 

 4
 (   )     

( (   )    )
   5    4

    ( )

  ( )
  5 

and 

 4
 (   )   (   ) ( (   ))     (    )

 (   )    
         5     4

      ( )

  ( )
5  

where           ( )⁄           

Theorem (1): Let        ,   -  .If the function      and          satisfy the following 

conditions: 

 4
    ( )

  ( )
5                        |

  
   ( )

  ( )
|                                               ( ) 

and  

* (  
   ( )   

   ( )    
   ( )   

   ( )   )    +                            ( ) 
then 

  
   ( )   ( )       (   )   

Proof: Define the analytic function  ( )  in   by  

 ( )    
   ( )                                                                          (  ) 

From equation (5) and (10), we have  

  
     ( )  

   ( )    ( )

   
                                                             (  ) 
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By a similar argument, we get  

  
     ( )  

     ( )  (    )   ( )     ( )

(   ) 
                                     (  ) 

and  

  
     ( )  

      ( )   (   )     ( )  (        )   ( )     ( )

(   ) 
   (  ) 

Define the transformation from    to   by  

 (       )         (       )  
    

   
           (       )  

   (    )     

(   ) 
       (  ) 

and  

 (       )  
    (   )   ( (    )   )     

(   ) 
                         (  ) 

Let  

 (       )   (         )   

  4  
    

   
 
   (    )     

(   ) 
 
    (   )   (        )     

(   ) 
5    (  ) 

The proof will make use of Lemma(1). Using the equations (10) to (13), and from the equations (16), 

we have  

 ( ( )    ( )      ( )       ( )  )   (  
   ( )   

     ( )   
     ( )   

     ( )  )      (  ) 
Hence , clearly , (9) becomes  

 ( ( )    ( )      ( )       ( )  )      
We note that  

 

 
   

 (   )     

 (   )    
    

and 

 

 
 
 (   )   (   ) (    )     (    )

 (   )    
           

Thus clearly, the admissibility condition for       ,   -  in Definition (7) is equivalent to 

admissibility condition for     ,   - as given in Definition (5) with    . 

Therefore, by using (8) and Lemma (1), we have  

  
  ( ) ( )   ( ) . 

The proof is complete. 

Our next result is a consequences of Theorem (1) for the case when the behavior of  ( )       is un 

known. 

Corollary (1): Let      and let function   be univalent in         ( )   . Let       [    ]  

for some  (   ) , where   ( )   (  ) .If the function     and     

satisfies the following conditions: 

 4
   

  ( )

  
 ( )

5                        |
  
   ( )

  
 ( )

|             (             (  ))⁄  

and 

 (  
   ( )   

     ( )   
     ( )   

     ( )   )     
then 

  
   ( )   ( )       (   )   

Proof: By applying Theorem (1), we get 

 
  
   ( )    ( )       (   )   

The result asserted by Corollary (1) is now deduced from following subordination property 
  ( )   ( )       (   )   

The proof is complete. 
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If     is simply-connected domain, then    ( ) for some conformal mapping  ( )     onto   

In this case, the class   , ( )  -  is written as   ,   -. This leads to the following immediate 

consequence of Theorem (1). 

Theorem (2):  Let      ,   - . If the function      and       satisfy the following conditions: 

 4
   

  ( )

  
 ( )

5                        |
  
     ( )

  
 ( )

|                                         (  ) 

and 

 (  
   ( )   

     ( )   
     ( )   

     ( )   )   ( )                         (  ) 
then 

  
   ( )   ( )       (   )   

The next result is an immediate consequence of Corollary (1).  

Corollary (2): Let      and let function   be univalent in         ( )   .  Also Let    
   ,   -  for some  (   ) , where   ( )   (  ) .If the function     and     

Satisfies the following conditions: 

 4
   

  ( )

  
 ( )

5                            |
  
     ( )

  
 ( )

|             (             (  )⁄ ) 

and 

 (  
   ( )   

     ( )   
     ( )   

     ( )   )   ( ) 
Then  

  
   ( )   ( )       (   )  

The following result yield the best dominant of differential subordination (19). 

Theorem (3): Let the function   be univalent in  .  Also let             and   be given by (16). 

Suppose that following differential equation: 

 ( ( )    ( )      ( )       ( )  )   ( )                                                      (  ) 
has a solution  ( ) with  ( )     which satisfies the condition (8). If     satisfies the condition 

(19) and if  

 (  
   ( )   

     ( )   
     ( )   

     ( )   )  

is analytic in  , then 

  
   ( )   ( )       (   ) 

and  ( ) is the best dominant. 

Proof: From Theorem (1), we see that   is a dominant of (19). Since   satisfies (20), it is also a 

solution of (19). Therefore,   will be dominated by all dominants. Hence   is the best dominant. This 

completes the proof of Theorem (3). 

In view of Definition (7), and in special case when  ( )     (   ) ,the class    ,   - of 

admissible functions, denoted by    ,   - is expressed follows. 

Definition (8): Let   be set in   and    . The class    ,    - of admissible functions consists of 

those function          such that  

 

(

 
 
     (

   

   
*       

  ,(    )    -    

(   ) 
 

   (   )  ,(        )    -    

(   ) 
  
)

 
 
                     (  ) 

whenever      

 (     )  (   )   

and  

 (     )                         

Corollary (3): Let      ,   -  .If the function       satisfies the following conditions: 

|  
     ( )|           (           ) 

and 

(  
   ( )   

     ( )   
     ( )   

     ( )   )     
then  

   
   ( )     
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In the special case when    ( )  *       +, the class   ,   - is simply denoted by   , -. 
Corollary (3) can now be rewritten in the following form. 

Corollary (4): Let        , -. If the function     satisfies the following conditions: 

   
   ( )           (           ) 

and 

|(  
   ( )   

     ( )   
     ( )   

     ( )   )|     
then  

   
   ( )     

Corollary (5): Let                   . If the function       satisfies the following 

conditions: 

   
   ( )            

and 

   
   ( )    

   ( )  
 

     
  

then  

   
   ( )     

Proof: let  (         )      and    ( )  
where  

 ( )  
  

     
                   (   ) 

use Corollary (3), we need to show that       ,   - , That is that the admissibility condition (21) is 

satisfied. This follows readily, since it is seen that  

  (           |
(   )    

   
|  

 

     
  

whenever                  The requird result now follows from Corollary (3). This 

completes the proof of corollary (5). 

Definition (9): Let   be a set in   and        . The class      ,   - of admissible functions 

consists of those functions         , which satisfy the following admissibility conditions: 

 (         )   , 

whenever 

   ( )   
    ( )  (   ) ( )

   
     

 (
 (   )   (   ) 

 (   )   (   )
  (   )+    4

    ( )

  ( )
  5 

and 

 4
 (   )    (   )(   )    (   )(   )  (   )  

 (   )   (   )
           5

    4
      ( )

  ( )
5   

where            ( )⁄             

Theorem (4): Let        ,   - . If the function      and       satisfy the following conditions: 

 4
    ( )

  ( )
5                        |

  
     ( )

   ( )
|                                                   (  ) 

and 

8 4
  
  ( )

 
 
  
    ( )

 
  
  
    ( )

 
 
  
    ( )

 
   5     9                            (  ) 

then 

  
  ( )

 
  ( )       (   )   

Proof: Define the analytic function  ( )  in   by  
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 ( )  
  
  ( )

 
                                                                                 (  ) 

From equation (5) and (24), we have  

  
    ( )

 
 
   ( )  (   ) ( )

   
                                                          (  ) 

By a similar argument, we get  

  
    ( )

 
 
     ( )  (    )   ( )  (   )  ( )

(   ) 
                            (  ) 

and  

  
    ( )

 
 
      ( )   (   )     ( )  (        )   ( )  (   )  ( )

(   ) 
     (  ) 

Define the transformation from    to   by  

 (       )         (       )  
   (   )

   
  

       (       )  
   (    )  (   )  

(   ) 
                                                        (  ) 

and  

 (       )  
    (   )   (        )  (   )  

(   ) 
                                  (  ) 

Let  

 (       )   (         )   

  

(

 
 
  
  (   ) 

   
 

   (    )  (   )  

(   ) 
 

    (   )   (        )  (   )  

(   ) 
   

)

 
 
                         (  ) 

The proof will make use of Lemma (1). Using the equations (24) to (26), and from the equations (30), 

we have  

 ( ( )    ( )      ( )       ( )  )   4
  
  ( )

 
 
  
    ( )

 
 
  
    ( )

 
 
  
    ( )

 
  5      (  ) 

Hence, clearly, (23) becomes  

 ( ( )    ( )      ( )       ( )  )      
We note that  

 

 
   

 (   )   (   ) 

 (   )   (   )
  (   ) 

and 

 

 
 
 (   )    (   ) (   )    (   )(   )  (   ) 

 (   )   (   )
             

Thus clearly, the admissibility condition for       ,   -  in Definition (9) is equivalent to 

admissibility condition for     ,   - as given in Definition (5) with    . 

Therefore, by using (22) and Lemma (1), we have  
  
  ( )

 
  ( ) . 

This completes the proof of Theorem (4). 

If     is simply-connected domain, then    ( ) for some conformal mapping  ( )     onto   

.In this case, the class    , ( )  -  is written as     ,   -  . This leads to the following immediate 

consequence of Theorem (4) is stated below. 

Theorem (5): let        ,   - . If the function       and       satisfy the following conditions: 

 4
   

  ( )

  
 ( )

5                        |
  
    ( )

   
 ( )

|                                              (  ) 

and 
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 4
  
  ( )

 
 
  
    ( )

 
  
  
    ( )

 
 
  
    ( )

 
   5   ( )                          (  ) 

then 

  
  ( )

 
  ( )       (   )   

In view of Definition (10), and in special case when  ( )     (   ) ,the class      ,   - of 

admissible functions , denoted by      ,   - is expressed follows. 

Definition (10): Let   be set in   and     . The class      ,   - of admissible functions consists 

of those function          such that  

 

(

 
 
     

(     )    

   
 
  ,(    )  (   ) -    

(   ) 
 

   (   )  , (        )  (   ) -    

(   ) 
  

)

 
 
                        (  ) 

Whenever      
 (     )  (   )    

and  

 (     )                          

Corollary (6): Let          ,   -  .If the function       satisfy the following conditions: 

                     |
  
    ( )

 
|                                   (           )  

and 

 4
  
  ( )

 
 
  
    ( )

 
  
  
    ( )

 
 
  
    ( )

 
   5     

then 

|
  
  ( )

 
|      

In the special case when    ( )  *       +, the class     ,   - is simply denoted by 

    , -. Corollary (6) can now be rewritten in the following form. 

Corollary (7): Let          ,   -  .If the function       satisfy the following conditions: 

   |
  
    ( )

 
|                                   (           )  

and 

| 4
  
  ( )

 
 
  
    ( )

 
  
  
    ( )

 
 
  
    ( )

 
   5|     

then 

|
  
  ( )

 
|      

Definition (11): Let   be a set in  .Also let        .The class       ,   - of admissible 

functions consists of those functions         , which satisfy the following admissibility 

conditions: 

 (         )     
whenever 

   ( )   
 

   
4
     ( )

 ( )
 (   ) ( )5     

 4
(   )(          )

(   )
5    4

    ( )

  ( )
  5 

and 
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 .(   )(   )    (   ) (   )(        )    (   )(   )   (   )

   (   )(   )  (   ) (   )((   )(   )      (   ))

   (   )(   ) / (   )      4
      ( )

  ( )
5   

where            ( )⁄            
Theorem (6): Let        ,   - . If the function       and       satisfy the following conditions: 

 4
     ( )

  ( )
5                        |

  
    ( )

  
    ( )  ( )

|                                                       (  ) 

and 

8 4
  
    ( )

  
  ( )

 
  
    ( )

  
    ( )

  
  
    ( )

  
    ( )

 
  
    ( )

  
    ( )

   5     9                               (  ) 

then 

  
    ( )

  
  ( )

  ( )       (   )   

Proof: Define the analytic function  ( )  in   by  

 ( )  
  
    ( )

  
  ( )

                                                                          (  ) 

From equation (5) and (37), we have  

  
    ( )

  
    ( )

 
 

   
6
   ( )

 ( )
 (   ) ( )7  

 

   
                                                   (  ) 

By a similar argument , we get  

  
    ( )

  
    ( )

 
 

   
                                                                                 (  ) 

and 

  
    ( )

  
    ( )

 
 

   
,     (            )-                                                  (  ) 

where  

  (   ) ( )  
   ( )

 ( )
 

     ( )
 ( )

 
   ( )
 ( )

 (
   ( )
 ( )

*
 

 (   )   ( ) 

   ( )
 ( )

 (   ) ( )
  

  
     ( )

 ( )
 
   ( )

 ( )
 4

   ( )

 ( )
5

 

 (   )   ( ) 

and 

  
      ( )

 ( )
 

      ( )

 ( )
 

   ( )

 ( )
  .

   ( )

 ( )
/
 

 
     ( )   ( )

  ( )
  .

   ( )

 ( )
/
 

 (   )   ( )  (  

 )     ( ) . 
We now define the transformation from         by 

 (       )         (       )  
 

   
0
 

 
 (   ) 1  

 

   
           

 (       )  
 

   
[
 

 
 (   )  

 
  

 
  .

 
 /

 
 (   ) 

 
  

(   ) 
]  

 

   
                      (  ) 

and  

 (       )  
 

   
,     (             -                                         (  ) 

where  

   (   )  
 

 
 
 

 
 .
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and 

  
  

 
 
 

 
 
 

 
  .

 

 
/
 

  (
  

  
*   .

 

 
/
 

 (   )(   )  

Let  

 (       )   (         )   (  
 

   
 

 

   
 

 

   
,     (            -*   (  ) 

The proof will make use of Lemma(1). Using the equations (37) to (40), and from the equations (43), 

we have 

 ( ( )    ( )      ( )       ( )  )

  4
  
    ( )

  
  ( )

 
  
    ( )

  
    ( )

  
  
    ( )

  
    ( )

 
  
    ( )

  
    ( )

   5         (  ) 

Hence, clearly, (35) becomes  

 ( ( )    ( )      ( )       ( )  )      
We note that  

 

 
   

(   )(          )

(   )
 

and 

 (   )  . 

Thus clearly, the admissibility condition for         ,   -  in Definition (11) is equivalent to 

admissibility condition for     ,   - as given in Definition (5) with    . 

Therefore, by using (35) and Lemma (1), we have  
  
    ( )

  
  ( )

  ( )                                                                  (  ) . 

This completes the proof of Theorem (6). 

If     is  simply-connected domain, then    ( ) for some conformal mapping  ( )     onto   

.In this case , the class     , ( )  -  is written as      ,    -  . An immediate consequence of 

Theorem (6) is now stated below without proof. 

Theorem (7): Let        ,   - . If the function       and       satisfy the following conditions 

(37) and 

 4
  
    ( )

  
  ( )

 
  
    ( )

  
    ( )

  
  
    ( )

  
    ( )

 
  
    ( )

  
    ( )

   5   ( )                                 (  ) 

then 

  
    ( )

  
  ( )

  ( )       (   )   

3. Result Related to the Third-Order Superordination 

In this section, we investigate and prove several theorems involving the third-order differential 

superordination for the operator Defined in (5). For the purpose, we consider the following class of 

admissible functions. 

Definition (12): let   be a set in   and        . The class      ,   - of admissible functions 

consists of those functions         , which satisfy the following admissibility conditions: 

 (         )   , 

whenever 

   ( )   
   ( )     ( )

 (   )
     

 4
 (   )     

 (   )    
   5  

 

 
 4

    ( )

  ( )
  5 

and 

 4
 (   )   (   ) (    )     (    )

 (   )    
         5  

 

  
 4

      ( )

  ( )
5   

where                      
Theorem (8): Let        

 ,   -  .If the function    , with   
  ( )    , and if      with 

  ( )   , satisfying the following conditions: 
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 4
    ( )

  ( )
5                        |

  
     ( )

  ( )
|                                               (  ) 

and the function 

 (  
   ( )   

     ( )    
     ( )   

     ( )   )                        
Is univalent in  , then  

  { (  
   ( )   

     ( )    
     ( )   

     ( )   )    }                            (  ) 
Implies that 

 ( )    
   ( )       (   )   

Proof: Let the function  ( ) be defined by (24) and   by (16). Since       
 ,   -,  from (17) and 

(48), we have  

  * ( ( )    ( )      ( )       ( )  )    +  
From (14)  and (15), we see that the admissibility condition for       

 ,   -  in Definition (1) is 

equivalent to the admissibility for     ,   - as given in Definition (6) with      Hence   
  

 ,   - and , by using (48) and Lemma (2) , we find that  

 ( )    
   ( )       (   )   

This completes the proof of Theorem (8). 

If     is simply-connected domain, then    ( ) for some conformal mapping  ( )     onto   

.In this case, the class  
 , ( )  -  is written as   

 ,   -. This leads to the following immediate 

consequence of Theorem (8). 

Theorem (9):  Let     
 ,   - and let   be analytic in  . If the function     and   

   ( )    , 

and if      with   ( )   , satisfying the conditions (47) and the function  

 (  
   ( )   

     ( )   
     ( )   

     ( )   )        
is univalent in  , then 

 ( )   (  
   ( )   

     ( )   
     ( )   

     ( )   )                            (  ) 
implies that  

 ( )     
   ( )      (   )  

Theorem (8) and (9) can only be used to obtain subordination for the third-order differential 

superordination of the form (48) or (49). The following theorem gives the existence of the best 

subordination of (49) for suitable  .  

Theorem (10): Let the function   be univalent in  .  Also let         ̅     and   be given by 

(16). Suppose that following differential equation: 

 ( ( )    ( )      ( )       ( )  )   ( )                                                      (  ) 
has a solution  ( )    . If the function    , with   

   ( )     and if        with   ( )   , 

satisfying the condition (47) and 

 (  
   ( )   

     ( )   
     ( )   

     ( )   )  
is analytic in  , then 

 ( )   (  
   ( )   

     ( )   
     ( )   

     ( )   ) 

 ( )    
   ( )       (   ) 

and  ( ) is the best dominant. 

Proof: By applying Theorem (8) and Theorem (9), we deduce that   is a subordination of (49). Since 

  satisfies (50), it is also a solution of (49) and therefore,   will be subordinated by all subordinates. 

Hence   is the best subordinate. This completes the proof of Theorem (10).    

Definition (13): Let   be a set in   and      with   ( )   . The class      ,   - of admissible 

functions consists of those function       ̅    that satisfy the following admissibility condition: 

 (         )   , 

whenever 

   ( )   
   ( )  (   )   ( )

 (   )
     

 (
(   )(   )

   
  (   )+  

 

 
 4

    ( )

  ( )
  5 

and 
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 (   )    (   )(   )    (   )(   )   (   ) 

   
           5

 
 

  
 4

      ( )

  ( )
5   

where                      

Theorem (11): Let        ,   -. If the function     and  
  
     ( )

 
   , and if     with 

  ( )   , satisfying the following conditions: 

 4
    ( )

  ( )
5                        |

  
    ( )

   ( )
|                                              (  ) 

and the function 

 4
  
  ( )

 
 
  
    ( )

 
  
  
    ( )

 
 
  
    ( )

 
   5   ( )    

is univalent in  , then  

  8 4
  
  ( )

 
 
  
    ( )

 
  
  
    ( )

 
 
  
    ( )

 
   5     9                           (  ) 

then 

 ( )  
  
  ( )

 
       (   )   

Proof: Let the function  ( ) be defined by (24) and   by (30). Since        ,   -, we find from 

(31) and (52) that  

  8 4
  
  ( )

 
 
  
    ( )

 
  
  
    ( )

 
 
  
    ( )

 
   5     9    

Form the equations (28) and (29), we see that the admissible condition for       ,   - in Definition 

(13) is equivalent to the admissible condition for     
 ,   - and, by using (51) and Lemma (2), we 

have  

 ( )  
  
  ( )

 
       (   )  

If     is simply-connected domain, then    ( ) for some conformal mapping  ( )     onto   

.In this case, the class    
 , ( )  -  is written as     

 ,   -. This leads to the following immediate 

consequence of Theorem (11). 

Theorem (12): Let        ,   - and let    be analytic in   .If the function                 and 

  ( )   , satisfying the conditions (51) and the function 

 4
  
  ( )

 
 
  
    ( )

 
  
  
    ( )

 
 
  
    ( )

 
   5   

is univalent in  , then  

 ( )   4
  
  ( )

 
 
  
    ( )

 
  
  
    ( )

 
 
  
    ( )

 
   5                             

implies that 

 ( )  
  
  ( )

 
       (   )   

Definition (14): let   be a set in   and       with   ( )    The class        ,   - of admissible 

functions consists of those functions       ̅   , which satisfy the following admissibility 

conditions: 

 (         )     
whenever 

   ( )   
 

   
4
   ( )

  ( )
 (   ) ( )5     

 4
(   )(          )

(   )
5    4

    ( )

  ( )
  5 
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and 

 ((   )(   )    (   ) (   ) (        )   (   )(   )   (   )

  (   ) (   )  (   ) (   )((   )(   )     (   )    

 (   ) (   ))(   )   
 

  
 4

      ( )

  ( )
5   

Where                      

Theorem (13): let         ,   - . If the function    , with 
  
    ( )

  
  ( )

        and if      with 

  ( )    satisfy the following conditions: 

 4
    ( )

  ( )
5                        |

  
    ( )

  
    ( )  ( )

|                                   (  ) 

and the function 

 4
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  ( )
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    ( )
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    ( )

   5  

is univalent in  , then 

  8 4
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    ( )
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    ( )

  
    ( )

 
  
    ( )

  
    ( )

   5     9                         (  ) 

implies that 

 ( )  
  
    ( )

  
  ( )

       (   ) 

Proof: Let the function  ( ) be defined by (37) and   by (43). Since        ,   -, we find from 

(44) and (54) that  

  * ( ( )    ( )      ( )       ( )  )    +  
From the equations (41) and (42), we see that the admissible condition for        ,   - in 

Definition (14) is equivalent to the admissible condition for   as given in Defintion (6) with     

Hence     
 
,   - and, by using (53) and Lemma (2), we have  

 ( )  
  
    ( )

  
  ( )

      (   )  

This completes the proof of Theorem (13). 

Theorem (14): Let       ,   - . If the function    , with 
  
    ( )

  
  ( )

      , with      and 

  ( )    satisfy the conditions (53) and the function 
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    ( )

  
  ( )

 
  
    ( )

  
    ( )

  
  
    ( )

  
    ( )

 
  
    ( )

  
    ( )

   5  

is univalent in  , then  

 ( )   4
  
    ( )

  
  ( )

 
  
    ( )

  
    ( )

  
  
    ( )

  
    ( )

 
  
    ( )

  
    ( )

   5 

implies that 

 ( )  
  
    ( )

  
  ( )

       (   ) 

4. A Set of Sandwich-Type Results 

By combining Theorem (2) and (9), we obtain the following sandwich -type theorem. 

Theorem (15): Let    and    be analytic function in    Also let    be univalent function in   and 

       with   ( )    ( )    and      ,     -     ,     -. If the function       with  

  
   ( )         and the function  

 (  
   ( )   

     ( )   
     ( )   

     ( )   )  

is univalent in  , and if the condition (8) and (47) are satisfied, then  

  ( )   (  
   ( )   

     ( )   
     ( )   

     ( )   )    ( ) 
Implies that  

  ( )    
   ( )    ( )       (   )                                        (  ) 



515 
 

If, on the order hand, we combine Theorem (5) and (12), we obtain the following sandwich-type 

theorem. 

Theorem (16): let    and    be analytic function in    Also let    be univalent function in   and 

       with   ( )    ( )    and        ,     -       ,     -. If the function       with 
  
   ( )

 
        and the function  
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     ( )

 
   5  

is univalent in  , and if the condition (22) and (51) are satisfied, then  

  ( )   4
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   5    ( ) 

implies that  

                                            ( )  
  
   ( )

 
   ( )       (   )                                                    (  ) 

Finally, by combining Theorem (7) and (14), we obtain the following sandwich-type theorem.  

Theorem (17): let    and    be analytic function in    Also let    be univalent function in   and 

       with   ( )    ( )    and        ,     -       ,     -. If the function       with 
  
     ( )

  
   ( )

        and the function  
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Is univalent in  , and if the condition (35) and (53) are satisfied, then  
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implies that  
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   ( )       (   )                                                    (  ) 
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Abstract. The aim of this action is a study and investigate  Von Neumann regular  semirings, some related 

concepts, e.g. reduced semirings; duo semiring, quasi-duo, and weakly duo semirings; regular, weakly regular 

and strongly regular semirings, also investigated. Some known results related to those concepts in rings were 

converted to semirings. Another aim of this paper is characterization Von Neumann Regular condition by the 

principal right ideal generated by an idempotent element. 

                          Key words. Semirings, reduced semiring; duo, quasi-duo semiring, weakly duo  

                          Semiring; regular, weakly regular, strongly regular; Boolean semiring; semifield;  

                          Nilpotent 

1. Introduction 

      The concept of  Von Neumann Regular introduced in (ring theory) in 1936  by J. Von Neumann 

[1], also was studied in semirings, through much research  [2], [3], [4], [5]. A semiring   is referred to 

as ‘simply regular’ or ‘Von Neumann regular’ if                    , -   A non-empty set   

with two bilateral operations )+( and) ) is referred to as a semiring if:  

(1) (  , +) is a commutative monoid with identity element 0; 
(2)  (  ,   ) is a monoid with identity element 1    
(3)  Both the distributive laws hold in  ; 
(4)            for all       , - 

A nonempty subset I of a semiring   is called a (left, right) ideal if       and     implies 

      and (          respectively) [6]. An ideal I from a semiring   is called subtractive if 

             implies     [7]. A semiring     is called yoked if for each x and y in the 

semiring           or       for some h in the semiring    [8]. A semiring     is called 

cancellative if for every         such that         then     [2]. This paper consisting of 

three sections. In section one, we study semirings which that contain no non-zero nilpotent 

elements; such semirings are called reduced semiring. We give some of their basic properties and 

provide some examples. Section two is devoted to exhibiting several preliminary results on duo 

semiring, quasi-duo semirings and weakly duo semiring. In section three, the properties and 

definitions of strongly regular, regular and weakly regular semiring were studied. 

 

mailto:alaaasd476@gmail.com
mailto:asaad_hosain@itnet.uobabylon.edu.iq
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2. Reduced semiring 

      In this section, we study semirings that contain no non-zero nilpotent elements; such semirings are 

called reduced semirings. We give some of their basic properties and provide some examples. 

7 Definition 2.1. (see [6], p. 43) 

      An element x at a semiring   is referred to as  nilpotent  iff there exists a positive integer n 

satisfying xn= 0. We will denote the set for every nilpotent elements from   by N. 

Lemma 2.2. (see [6], p. 43, 44) 

      Let N be the set of all nilpotent elements of    then N is an ideal of  .      

Definition 2.3. [9] 

      A semiring   is referred to as  reduced  if    contains no non-zero nilpotent elements. 

Example 1 

      The semiring of integers modulo 6,     is reduced while    is not reduced, since 2,4,6 are 

nilpotent elements of      

Definition 2.4. [10]  

       A right annihilator  of a non-zero element a in a semiring   is defined by             

 r(a) ={b    ab= 0}. 

A left annihilator l(a) is similarly defined. 

 Proposition 2.5. [9]  

      Let   be  a reduced semiring  . Then, for every a   

1- r(a)=l(a) 

2- r(a)=r(a2) 

3-  /r(a) is reduced 

Definition 2.6. [1]  

      An ideal I from a semiring   is referred to as essential if and only if  I    ≠1  for every nonzero 

ideal of   . 

Example 2  

      1- Let    be the semiring of (integers modulo 8) and I=(2), J=(4), then I and J are essential ideals 
in   . 

      2- Let   be the semiring of (integers modulo 6), then I=(2) is not essential in   .  

      3- Let   = (  U* +  min,+ ) be the semiring wherever   is the natural numbers, thus the ideals 

from   are the form  = {n, n+1,…- U * + or * +  
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Since :  

 ( )   = {   ,     ,     , … } U * + closed under addition ( min ). 

 (  ) Let   be any element belongs to   and   be any element belongs to  , r+  ≥  , then r+    this 

implies closed under multiplication by elements of   (+).  

 Now,  suppose   is a non-zero ideal contained in  . indeed :  

( ) ∞    ,       then   +   =       

(  ) Let   be the smallest element of  . Then   is an ideal, 1     implies 1    .  

Then {  ,    ,    , …-          = {   ,     , … } U {   }. 

On the another hand every non-zero ideal from   is essential from    ( the zero element from   is 

 ), if      K = {   }   either   * +  or   * + 

 = {  ,    ,…- * + , K = {   ,     , …- * + . 

      =            or         if n       if J  * +       ≠ {  }. Then      K  * +. 

   

Definition 2.7. [1]  

      Let x an element in a semiring  . Then x is referred to as  a right singular  iff r(x) is essential ideal 
in    The set of all  right singular elements  in   is denoted by  rZ( ) . 

    A left singular ideal, denoted by lZ( ), is similarly defined. 

Example 3 

      1-Let Z12 be the semiring of integers modulo 12. Then r(6) and r(0) are the only essential  

ideals in Z12. Therefore,  rZ( )=lZ( )={0,6}. 

  2-By( Example 2(3) ), if m   ∞ ,  

then r(m) = { k   U*  }   m+k   +  *   } not essential in  . 

r( )  * k   U* + |   + k   + =   essential in  .  This implies that   rZ( )= {   }. 

The following result is analogous to one in ring theory ( see [11] ), but we will give another proof. 

Proposition 2.8.  

      If lZ( ) contains no non-zero nilpotent elements, then lZ( )=0. 

Proof: 

      Since lZ( )  0, then there exists 0 z   l(z) essential in  . 

Thus l(z)  x  0 for each    . In particular when xz, then there exists     ( )     with    
    So, (  )    (   )  (   )(   )   (   )          ( )      nilpotent       
(  )   ( )  Now, (  )  (  )(  )   (   )    (  )   ( ) and    is nilpotent    
      this is a contradiction. Implies that   ( )      

By a similar argument in [12], the following result can be proved. 

Corollary 2.9.  
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       Let   be a reduced semiring. Then lZ( )= rZ( )=0. 

Remark   

       It is clear that, if   is  a commutative semiring , and K  the set for each  nilpotent elements  of 
 . Then  /N is  a reduced semiring . 

 

3. Duo and quasi-duo semiring 

       The present section is devoted to exhibiting several preliminary results on  duo semirings , 
 quasi-duo semirings , and  weakly duo semirings . We shall begin this section with the following 
definition. 

Definition 3.1. [7]  

       The semiring   is referred to as right (left) duo if every right (left) ideal of   is a two-sided ideal. 

 The following definition is analogous to a similar one in ring theory (see [13])  

Definition 3.2.   

       A semirings   is referred to as  left (right) quasi-duo  if each maximal (left) right ideal of   is a 
two-sided ideal. 

A right (quasi-duo) semiring form a non-trivial generalization of right duo semiring. 

Definition 3.3. [14] 

       An element x of a semiring   is (a unit) if and only if there exists ( a necessarily unique ) element 

    of    satisfying x    1     x.  

The following definition is analogous to a similar one in ring theory ( see [13] )   

Definition 3.4.  

       A semiring    is referred to as (weakly right (left) duo), if for every x  , there exists a positive 
integer m such that     (   ) is a two-sided ideal of  . 

Note that, every  weakly right (left) duo semiring  is  right (left)  quasi-duo . 

 

Definition 3.5. [10] 

                                                           ( )                                            

J( )= {M: M is a maximal ideal of  }. 

Definition 3.6. [7] 

       A semiring   is called semi-simple if J( )  0. 

Corollary 3.7. [15] 

       Any proper ideal of a semiring   is a subset of a maximal ideal of  . 

The following result is analogous to a similar one in ring theory ( see [16], p. 109 ), 

 Lemma 3.8. 

         (  )  *            +   

Proof : 

       ( )       C is a maximal ideal of    such that               is not small in  , 
a contradiction. This implies    ⋂   where C is a maximal ideal of  . 
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(⟸) Let a ⋂ , where C is a maximal ideal of  . Assume a +U=  , for some proper ideal U of    
We can assume that U is a maximal ideal of   by corollary(3.7.). But               
     a contradiction. Therefore       .  

 The following result is analogous to a similar one in ring theory ( see [17] )  

Proposition 3.9. 

       Let   be  a right quasi-duo semiring . Then  /J( ) is  a reduced semiring . 

Proof : 

       It is enough to prove that any nilpotent element belongs to  ( ). That is, to prove if      

and      for some     , then    ( )  *        + by lemma(3.8.). Suppose that 
       where K is a left ideal from  , we want to show that K=  which implies    ( )  by 
corollary (3.7.), we can assume that K is a maximal ideal of  , multiplying both side by x from right 
we get                       continuing in this way, we end up with       
              (     )  Since   is  left quasi-duo , and K is maximal, then hence K= . 
  

 

4. Regular, Strongly Regular, Weakly Regular             

        In this section, the definitions, and properties of regular, weakly regular and strongly regular 

semirings are given. 

 Definition 4.1. [2]  

        A semiring   is said to be  Von Neumann Regular  if, for any x , there exists y  such that x= 
xyx. 

The following definition is analogous to a similar one in ring theory ( see [18] )   

8 Definition 4.2.  

        A semiring   is said to be unit regular if, for every a , there exists a unit u in   such that 

a=aua. 

Definition 4.3. [19] 

         A commutative semiring    is referred to as (a semifield) if each non-zero element in   has a 

(multiplicative) inverse in  . 

Definition 4.4. (see [6], p. 7) 

       The Boolean semiring is the commutative semiring   *   +, formed by the two-elements, and 

defined by         

Example 1 

1- Every semifield is regular. 

2-   Every Boolean semiring is regular.  
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       3- Let    *       + be the semiring and  1 = 0 
   

   1, it’s clear that  1 is   a non-

commutative semiring  with identity 




0

1
  




1

0
, but not  regular  because 






0

0
  




0

1





0

a
  




c

b





0

0
  




0

1
= 




0

0
  




0

0
 




0

0
  




0

1
 for all 





0

a
  




c

b
 1. 

The following result is analogous to a similar one in ring theory ( see [20] )  

9 Lemma 4.5.  

       Let v , if v is  unit regular , then v=eu for some idempotent element e and some unit element 

u. 

Proof: 

       Suppose that x is a unit regular. Then there exists a unit v  such that xvx=x. Let e=xv. Then 

e2=xvxv=xv=e, so e is an idempotent element of  . Let u=v-1, then we have x=eu.* 

The following definition is analogous to a similar one in ring theory ( see [21])    

Definition 4.6. 

       A semiring   is referred to as CI-semiring if each idempotent element from   is central, (a   is 

central if ab =ba   b  ). 

The following definition is analogous to a similar one ring theory ( see [22] ). 

Definition 4.7.  

       A semiring   is called  strongly regular  if, for each r  , there exists  

s, t   such that r=r2s =tr2. 

Remark 2  

       Every  strongly regular semiring  is  regular . (clear) 

We call   -regular (unit -regular)  semiring if for any x  , there exists a positive integer m and an 

element y (a unit u) of   such that xm=xmyxm (xm=xmuxm).  

Lemma 4.8.  

       Let    a semiring. Then  the following statements equivalent conditions: 

1- zm
 zm+1  for some integer m1. 

2- zm  =zm+1  for some integer m1. 

3-The chain z  z2  …. terminates. 
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9.1 Proof: 

9.2  (1)(2),                     for some r  ,                   

                    (  )                  

9.3  (2)(3), trivial.             

9.4  (3)(1), trivial.  

                                                                                                            Definition 4.9.       

9.5         An element   in a semiring   is called right  -regular if, it satisfies the  equivalent 

conditions in lemma(4.8.)  

Definition 4.10. 

            An element k   is referred to as (strongly -regular) if it is both left and right  -regular , 

and   is referred to as  a strongly -regular semiring  if each element is  strongly -regular . 

REMARK 3 

9.6         Every strongly -regular semiring is -regular .(clear) 

Definition 4.11. [3] 

        A semiring   is referred to as right (left)  weakly regular  if    =H for each right (left) ideal H 

      equivalently  if w     (      ) for every wℜ .   is referred as to  weakly regular  

if it is both right and left  weakly regular . 

 

Remark 4  

      Every ―regular semiring‖ is ―weakly regular‖. 

In case   is commutative semiring then   is regular if and only if   is weakly regular.[3] 

The following result is analogous to a similar one ring theory ( see [23] ) 

Proposition 4.12. 

      Let   be a right weakly regular, cancellative and yoked semiring. Then  

 = a  for any right non-zero divisor element a of  . 

Proof : 

      Let a be a right non-zero divisor element of  . Then a =(a )2 (since a(a )2 ). Assume that 

         then by yoked property either         or         ( )       

                 , since a and arat  (  )   then by subtractive, we get    (  )     

     for some        Again, by yoked property either 

                                                        .  
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By cancellative property, we have         (                     )             

then by(1) 1             

The following definition is analogous to a similar one in ring theory (see [24] ) 

Definition 4.13. 

       A semiring   is called right (left)  weakly -regular  if  x   there exists a natural number n 

such that xn
       (xn

      ),   is  weakly -regular  if it is both right and left  weakly -

regular . 

Remark 5 

       Every  -regular semiring  is  weakly -regular . 

The following result is analogous to a similar one in ring theory (see [23] ) 

Proposition 4.14.  

      For a semiring    the following are equivalent : 

( )   is  Von Neumann regular .  

(b)  For each a in  , there exists an  idempotent  e in   such that a      

Proof: 

       (a) ( ) Since   is a  Von Neumann regular semiring , then for every element a in   there 

exists an element b in   such that a=aba. Now we put e=ab yields e=e2 for some e in  ,    

   (           (   )            (  )    )  

(b) ( ) assume a =e  where e is an idempotent element. Then a=ex for some x in  . 

Now, a=ex=e2x=ea. Let e=ab(                ) we get a=aba. So   is Von Neumann  regular 

semiring.  

Definition 4.15. [10]       

       An ideal I from the semiring   is referred to as  direct summand  of   if there exists an ideal J of 

  such that  =I+J and I  J=0. We usually write  =I J. 

The following result is analogous to similar one in ring theory ( see  [23] ) 

Proposition 4.16.  

      A cancellative and yoked semiring   is   Von Neumann regular   if and only if every principal right 
ideal of   is a direct summand. 

Proof: 

      Let   be a von Neumann regular semiring, if 0≠a  , then by proposition (4.14) a  =e  for 

some idempotent element e of  . To prove e  is a direct summand of  . Assume that e is an 

idempotent element of   and I = e . If e is a not zero-divisor, then  :   → e  defined by        r er 
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is an isomorphism, so, e  is  a direct summand  of  . If e is a zero-divisor, and eu = 0 (for some u   

 ). 

Claim:   = e + u  for some u such that eu = 0. We need to consider that   

is yoked. In this case either e+ u = 1 or e = 1+u for some u    . If e+ u = 1, 

then   = e + u  and since e (e+ u) = e → e2+eu = e → e+ eu = e → eu = 0. 

x  e  ∩ u → x= er =us for some r, s    . x= er→ ex=er=x and ex=eus=0, so x=0. Then   = e  u . 

In case e = 1+ u, also we get eu = 0, too, and  

e  ∩ u  = 0. On the other hand e = 1+u → 1 =eu = u+u2 → e+u+u2 = 1+u, by cancellative property 

then 1 = e +u2 → r = er + u2r   e  + u ;  r    →   = e  u . Therefore I =  e is  a direct 

summand  of  . 

Conversely, let   =a  K, for some ideal K of  . Now 1=ar+k for some r in   and k in K, and 

a=ara+ka, but           implies that a=ara and   is  Von Neumann regular  semiring.    

The following result is analogous to similar one in ring theory ( see [17] )  

Proposition 4.17. 

      Let   be  a right duo semiring . The following statements are equivalent: 

1-   is a right  weakly regular semiring  ; 

2-   is  a strongly regular semiring . 

3-   is  Von Neumann regular ; 

Proof :  

      (1)(2). By proposition(4.12.)  = a  1=rat a=arat a=a(as)t,for some s  , then a  
a2sta=a2b , where b=st . 

(2)(3),   is strongly regular, then for each a     b,c such that a=a2b=ca2 

a=aab=aba.(       since   is a right duo semiring). 

(3)(1),   a       b   a=aba ar =abar a   a a  

This implies   is a right  weakly regular semiring .  

 

References 

[1]   T. K. Dutta and M.L. Das, Singular Radical in Semiring, Southeast Asian Bulletin of Mathematics 

(2010), 34 : 405-416. 

[2]   Alhossaini AM, Aljebory KS. Principally Pseudo-Injective Semimodule. J of  Babylon, Pure and 

Applied Sciences. 2019; Vol(27), No(4). 

[3]   Ahsan J, Liu ZK, Shabir M. Some Homological Characterizations of Semigroups and Semirings. 

Acta Math Sinica. 2011; 27(10): 2065-2072.    

[4]   Jawad Abuhlail and R. G. Noegraha. Flat semimodules and Von Neumann Regular 



526 
 

Semirings. Department of Mathematics and Statistics King Fahd University of Petroleum and 

Minerals 31261 Dhahran, KSA, July 17, 2019.                                                                                        

[5]   M. K. Sen and P. Mukhopadhyay, Von Neumann regularity in semirings, Kyungpook 

Math. J., 35 (1995), 249-258. 

[6]   Golan JS, Semirings and Their Applications. Kluwer Academic Publishers, Dordrecht, 1999.  

[7]   Vishnu Gupta and J.N. Chaudhari, Right  - regular semiring, Sarajevo Journal of Mathematics, 2. 

(14) (2006), 3-9.  

[8]  Alhossaini AM, Aljebory ZA. Fully Dual Stable Semimodule. Journal Of Iraqi Al-Khwarizmi, vol. 1, 

no. 1, pp.92-100, 2017. 

[9]    Vishnu Gupta and J.N. Chaudhari, Prime Ideals in Semirings, Bull. Malays. Malaysian Math. Sci. 

Soc. 34(2), (2011),  417-421. 

[10]   A. M. Alhossaini, K. S. Aljebory, The Jacobson Radical of The Endomorphism  Semiring of a P.Q.-

Injective Semimodules Baghdad Sci. J., to appear. 2020. 

[11]   Ming R. Y. C.(1978); On Von Neumann Regular Rings ІІІ, Montash. Math., 86, 251-257. 

[12]   Ferrero M. and Puczylowski E. R.(1998); The Singular Ideal and Radical, J. Austral. Math. 

(series A) 64, 195-209 

[13]   Chen J. L. and Ding N. Q.(1999); On General Principally Injective Rings, Comm. Algebra, 

27(5), 2097-2116. 

[14]    Semirings and Affine Equations over Them, Kluwer, Dordrecht, 2003 

[15]    Nasehpour, P.: Some remarks on the ideals of commutative semirings, Quasigroups Relate. 

Syst., 26(2) (2018), 281-298. 

[16]   Kusch F.,  ''Modules and Rings'', Academic Press, London, (1982).  

[17]   Kim N.K., Nam S. B. and Kim J. Y. (1999); On Simple Singular GP-injective Modules, 

Comm. Algebra, 27(5), 2087-2096. 

[18]  Are P.(1996); Strongly π-regular Rings Have Stable Range One, Proc. American Math. Soc., 124 

(11), 3293-3298. 

[19]   J. N. Chaudhari and K. J. Injale, On k-Regular Semirings, Journal of the Indian Math. 

 82, (3-4), (2015), 01-11. 

[20]   Badawi A.(1997); On Abelian π-regular Rings, Comm. Algebra, 25 (4), 1009-1021. 

[21]   Shuker NH, Abdulla JS.(1999); On YJ-Injectivity, M. Sc. Thesis, Mosul University.  

[22]   Badawi A.(1994); On  Semicommutative π-regular Rings, Comm. Algebra, 22 (1),  

151-157. 

[23]   Mahmood A. S.(1990); On Von Neumann Regular Rings, M. Sc. Thesis, Mosul  

University.  

[24]   Nam S. B., Kim N. K. and Kim J. Y. (1995); On Simple GP-injective Modules, Comm. 

Algebra, 23 (14), 5437-5444. 



527 
 

A Study of Equicontinuous Maps On Uniform    Spaces 

By 

Ansam A A 
1,2 

Ihsan J K 
2,3 

1 ansan.a.ali1987@gmail.com 

2 
University of Al- Qadisiyah, College of Science, Department of 

Mathematics 

3
 Ihsan.kadhim@qu.edu.iq 

 

Abstract. In this paper we shall study some new properties of  equicontinuous maps on uniform  

  Spaces. Here the phase space consider as a uniform space. Also we show the relationship among 

the equicontinuous maps with the distal dynamical system and expansive dynamical system. 

 

1.Introduction 

One of the most significant in the investigation of the hypothesis of dynamical framework is 

equicontinuous dynamical framework. Numerous creators have been examined the dynamical ideas in 

a measurement space or in topological space. 

R. Das (2012) [1] characterize and study the mayhem of a grouping of maps in "a metric G−space". 

Additionally, he [2] characterize while research a idea of G−transitive subset for a ceaseless guide 

upon the smaller metrical G−space. 

R. Das [3] (2013) get enough status beneath that consequence from pair maps, at that singular is 

"Devaney's" G1-befuddled while else is "Devaney's" G2-scattered, is "Devaney's" G1 × G2- chaotic. 

R. Das , T. Das [4] (2012) describe and research the thoughts from determinedly and antagonistically 

"G-asymptotic" spotlights at a homeomorphism by a "metric G-space". Furthermore, in [5] (2012) 

they describe and research a possibility of "topological transitivity" of an industrious self- chart 

during the "metric G−space" named like "topologically G-transitive" guide and secure hers depiction. 

P. Das and T. Das [6] (2019) show that the course of action of concentrates dual asymptotic into a 

dot hold measure zero concerning every expansive outside common mensuration to a bi-quantifiable 

guide on a discernable "uniform space". 

I. J. Kadhim and S. K. Jebur [7] (2017) they study the some acclaimed dynamical thoughts, for 

instance, tricky transitive mixture while equicontinuous at a general topological. 

E. Shah and T. Das [8] (2013) portray while research the idea from inconsequentiality while detail 

for self a homeomorphism from a "metric G−space X". utilize "G−minimality", they get a category 

concerning maps that don't contain a "G−shadowing property". Further, get the  enough event into 

"G−expansive homeomorphisms" and  "G−shadowing property" to have "G−specification property". 

mailto:Ihsan.kadhim@qu.edu.iq
mailto:Ihsan.kadhim@qu.edu.iq
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Here, we will concentrate some new properties of equicontinuous maps on uniform G-Spaces. In 

Sec.2, a few ideas related with the uniform space a few properties of a uniform space that required in 

our work are state. Sec. 3 comprises of the primary aftereffects of our work. 

2. Uniform space  

Disregard X a set. mean by ∆_X a corner to corner in (X×X), in order to is a set ∆_X={(x,x):x X}. a 

regressive U^(- 1) of the subcategory U X×X is a subcategory of X×X described via U^(- 

1)={(x,y):(y,x) U}. On decision in order to U is symmetric if U^(- 1)=U. we get  U∩U^(- 1) 

symmetric into each U X×X. We describe the combined U V of pair subsets (U ,V ) of X×X by 

U V={(x,y):found  z X to that a degree, such  (x,z) U and (z,y) V}  X×X. 

Definition 2.1[10] suppose  X is  a set. A "uniform structure" on X be a invalid combination U 

containing subsets of the Cartesian square ( X×X) satisfactory a going with situations:  

[UN-1] if    , then     ; 

[UN-2] if     and         , then    ; 

[UN-3] if     and    ,then      ; 

[UN-4] if     ,then      ; 

[UN-5] if    , then there exists      such that      . 

a segments of U is known as the escort of the "uniform structure" while the set X is known as a " 

uniform space". The consistency U is called segregating ( and X is said to be disconnected ) if 

∩{U:U U}=∆. 

annotation in order to the events [UN-3], [UN-4] and [UN-5] propose that, into each  organization U 

found  a symmetric escort V with the ultimate objective in order to  V V U. Disregard X a set while  

put U X×X. specified a point x X,  describe a subset U_([x]) X by U_([x])={y X:(x,y) U}. 

In case X is" a uniform space", thither a started topology on X charactrized via a way in order to the 

regions from an emotional dot x X include the sets U_([x]) , wherever U works onto every  

organizations of X. This topology is "Hausdorff " if while just if the interchange purpose of the 

impressive number of escorts of X is rduced to one side ∆_X. 

If (X,d) be an estimation space, thither a trademark uniform build upon X whom organization are the 

sets U X×X satisfactory the going with situation: found an authentic numeral ε>0such that U 

involves every paire (x,y) X×X with the ultimate objective in order to d(x,y)<ε. The topology related 

together and such orderly build is subsequently comparable to the topology started by the estimation. 

Theorem 2.2 [10] (a) For every  x X, the assortment  _x={U_([x])  U U} structure a local base at 

x X, making X a topological space. A similar topology is delivered if any base B is utilized instead of 

U.  (b) the topology is Hausdorff if and just if U is isolated. 

Theorem 2.3[10] The consistency U is isolated if and just if for each x,y X with x≠y, there exists 

U U to such an extent that (x,y) U. 
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Corollary 2.4[10] The topology is Hausdorff if and just if for every x,y X with x≠y, found U U to 

this an extent that (x,y) U. 

Definition 2.5. [10]Let (X,U) while (Y,V) be "uniform spaces". A capacity f:X→Y is told into be 

uniform persistent if for every V V, there is some U U with the end goal that (x,y) U implis that 

(f(x),f(y)) V. On the off chance that f is one-one, onto and both   and     are uniform persistent, we 

consider f a uniform isomorphism (uniform comparability) and state X and Y are consistently 

isomorphic ( consistently proportionate). Each consistently constant capacity is nonstop and thus 

every uniform isomorphism is "homeomorphism". 

Definition 2.6. [10] suppose (X,U) and (Y,V) are duo uniform spaces. A mapping f:X→X is told into 

be uniform equicontinuous on X if for each company V V and for each positive number n, fund an 

escort U U to such an extent that  

 (x,y) U infers (f^n (x),f^n (y)) V. 

Obviously that any self-nonstop guide is uniform equicontinuous however the opposite need not be 

valid. 

Definition 2.7 [10] let (X,U) and (Y,V) are "uniform spaces". By subsequently the consequence from 

(X,U) and (Y,V) is a "uniform space" (Z,W) together the concealed set Z=X×Y while the consistency 

W on Z whom basis involves the sets  

W_(U,V)={((x,y),(x^',y^' )) Z×Z:(x,x^' ) U,(y,y^' ) V}, 

wherever U U and V V. a consistency W is known as the consequence of U , V and is made as 

W=U×V. 

3- Main Results 

Right now idea of equicontinuous, sweeping and distal maps in a uniform G-space are presented and 

some new properties of such ideas are demonstrated. 

Definition 3.1[9] through a "G-space" we purpose a triplex (X,G,θ), wherever X is a "Hausdorff 

space", G is a topological social occasion and θ:G×X→X is a perpetual movement of G on X. 

Definition 3.2 The 4-tuple (X,G,U,θ) is said to be Uniform G-space if (X,G,θ) is G-space and (X,U) 

is uniform space. 

For simplest, we shall indicate for  (       )    by  . 

Definition 3.3  The pair of maps  

(μ,ψ):(G_1,X,U,θ_1)→(G_2,Y,V,θ_2 ) 

is said to be uniform homomorphism between the two uniform spaces (G_1,X,U,θ_1) and 

(G_2,Y,V,θ_2) if  

(I) μ:G_1→G_2 is topological gathering homomorphism,  

(ii) ψ:X→Y is uniform consistent guide and  

(iii) ψ(θ_1 (g,x))=θ_2 (μ(g),ψ(x)). 
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Definition 3.4 suppose  X is a uniform G-space. A uniform ceaseless mapping f:X→X is said to be 

uniform G-equicontinuos on X if for each escort V U and for each positive whole number n, there 

exists a company U U to such an extent that  

(x,y) U infers (f^n (θ(g,x),f^n (θ(p,y)) V, g,p G. 

Remark 3.5 beneath the paltry activity of G on X the thoughts of "uniform equicontinuous" and 

"uniform G-equicontinuous" are agreed. 

Theorem 3.6 Suppose X and Y is a "uniform G-spaces" and h_1:X→X , h_1:Y→Y be "equivariant 

topologically" conjugate by means of θ:X→Y. In the event that h_1 is "uniform G-equicontinuous", 

at that point so is h_2. 

Proof. let    is "uniform   equicontinuous". Let    . Since   is uniform isomorphism, so we 

found     Like that 

                     (     )      implies   ( (  )  (  ))   .           (1) 

while        is uniform   equicontinuous, so we found an entourage  ̃    and       such 

that  

         ( ̃   ̃ )   ̃     implies   (  
 ( (   ̃ ))   

 ( (   ̃ )))   .       (2) 

Since         is uniform continuous, subsist  ̃    Like that 

                ( ̃   ̃ )   ̃     denote(   ( ̃ )  
  ( ̃ ))   ̃.      (3) 

By (2) we have  

                 (  
 ( (     ( ̃ )))   

 ( (     ( ̃ ))))   . 

By (1) we have 

              (   
 . (     ( ̃ ))/     

 . (     ( ̃ ))/)   . 

Since    ,     be equivariant topologically conjugate via  , then  

      
 ( (     ( )))     ( ( ̃   

 ( )), for every     and  ̃     

                                          (  
 ( ( ̃  )) 

Thus     

                  (    (  
 ( ( ̃  ̃ ))   

  (  
 ( ( ̃  ̃ )))   . 

This means that  (  
 ( ( ̃  ̃ ))   

 ( ( ̃  ̃ ))   . Consequently    is  uniform   equicontinuous. 
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Theorem 3.7. suppose  X and Y be uniform spaces and h_1:X→X , h_1:Y→Y be equivariant 

topologically conjugate by means of θ:X→Y. In the event that h_1 is uniform equicontinuous, at that 

point so is h_2. 

Proof. Let     is uniform equicontinuous. Let    . Since   is uniform isomorphism, at that point 

there exists an escort U U with the end goal that 

                     (     )      implies   ( (  )  (  ))   .           (1) 

Since        is uniform equicontinuous, at that point there exists an escort  ̃    with the end 

goal that 

                   ( ̃   ̃ )   ̃     implies   (  
 ( ̃ )   

 ( ̃ ))   .       (2) 

Since         is uniform continuous, subsist  ̃    same that 

                ( ̃   ̃ )   ̃     suggest(   ( ̃ )  
  ( ̃ ))   ̃.      (3) 

By (2) we have  

                              (  
 (   ( ̃ ))   

 (   ( ̃ )))   . 

By (1) we have 

                             (   
 (   ( ̃ ))    

 (   ( ̃ )))   . 

Since    ,     be equivariant topologically conjugate via  , then  

                      
 (   ( ))     (  

 ( )), for every    . 

Thus     

                  (    (  
 ( ̃ ))   

  (  
 ( ̃ )))   . 

This means that  (  
 ( ̃ )   

 ( ̃ ))   . Consequently    is uniform equicontinuous. 

Here the relation between the ( G-) equicontinuous and  (G- )expansive is studied in uniform space. 

First we shall introduce the concepts of expansive and G- expansive in uniform space.  

Definition 3.8 In the event that (X,U) is a "uniform space" and h H(X) at that point h is called far 

reaching, on the off chance that there exists an escort U U with the end goal that at whatever point 

x,y X,x≠y, at that point found a whole number n fulfilling  

(h^n (x),h^n (y)) U; 
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U is then named a far reaching escort for h. 

Definition 3.9 suppose (X,U) be a uniform space and h H(X) at that point h is called uniform G-far 

reaching, in the event that there exists an escort U U with the end goal that at whatever point 

x,y X,G(x)≠G(y) at that point found a number n fulfilling  

(h^n (u),h^n (v)) U, for all u G(x) and  G(y) . 

Theorem 3.10 put (X,U) be a uniform space and f H(X). On the off chance that f is equicontinuous 

map, at that point its sweeping. 

Proof. Assume that f is uniform equicontinuous. Let x,y X with x≠y. Let V U be a non-symmetric 

escort. By speculation there exists an escort U U with the end goal that 

(   )       implies     (  ( )   ( ))   , for every integer  . 

while   is non- symmetric and      , then (  ( )   ( ))     . 

This means that   is expansive. 

Theorem 3.11 Leave X alone a uniform G-space and f H(X). In the event that f is G-equicontinuous 

map, at that point its G-extensive. 

Proof. Assume that f is uniform G-equicontinuous. Let x,y X with G(x)≠G(y). Let V U be a non-

symmetric company. By theory there exists an escort U U and g,p G to such an extent that 

(   )      implies   (  ( (   ))   ( (   )))   , for every integer  . 

While    is not symmetric and      , then for every integer    

           (  ( (   ))   ( (   )))                                 (1) 

Let    ( ) and    ( ). Then there exist       such that    (   )    (   ). Thus we 

have  

                        (  ( )   ( ))      , for every integer   . 

This means that   is   expansive.This complete the proof. 

Definition 3.12 A uniform    we can state distal whether, for every pair space       with    , 

the closure of the set {( (   )  (   ))    } is disjoint from the diagonal   *(   )    + in 

   . 

Theorem 3.13 If (     ) is equicontinuous, then it is distal. 
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Proof Let       with    . Then found an  index   on   with (   )   . By equicontinuity 

found an index   like that (   )    implies 

                                    ( (   )  (   ))    for all    .  

It pursue that  

                                     ( (   )  (   ))    for all    . 

Otherwise, we could let    (   ),    (   ),       , and reach a contradiction. Thus 

{( (   )  (   ))    } is disjoint from the diagonal   *(   )    + in    . Since     and 

  is open in the product topology, it follows that (     ) is distal.■ 

Theorem 2.9. Let  ,   be    spaces and         ,         be maps. Then             

  is uniform        equicontinuous iff    is uniform    equicontionuos and    is uniform 

   equaicontinuous. 

Proof. Assume that f f_1×f_2 is a uniform G_1×G_2-equicontinuous on X×Y . We will show that 

f_1 is uniform G_1-equicontionuos on X and correspondingly we can show that f_2 is G_2-

equaicontinuous on Y. Let V U_X and n be a positive whole number. Since Y×Y U_Y at that point 

                                       (   )           

By hypothesis, found         like that if (   )   , after that  

    (  ( (   )   ( (   ))      (   ),             

Since (   )   , then found        and       like that 

     (     )      and   (     )    .  

But    ( (   ))  (  
 (  (     )   

 (  (     ))    

This means that    is uniform     equicontionuos. Conversely, suppose that    is uniform 

   equicontionuos and    is uniform    equaicontinuous. Let       . Then there exist  

          and         such that        . By hypothesis , there exist        and        

like that if (    )     and (    )    , after that  

                           (  
 (  (   )   

 (  ( 
    ))      

and  

      

(  
 (  (   )   

 (  ( 
    ))     

 

   for all (    )     and (    )     Set        . Then       . Thus we have  

                 (  ( (   )   ( (   ))     ̅       . 
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This means that               is uniform       equicontinuous. This complete the 

proof. 
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Abstract 

Present several types in this paper of intuitionistic fuzzy ideal in Q-algebra , called (intuitionistic fuzzy pseudo 

ideal , intuitionistic fuzzy k-pseudo ideal, intuitionistic fuzzy c-psudo 

ideal , intuitionistic fuzzy complete- k-pseudo ideal). We have introduced and illustrated several 

ideas that evaluate their relationship in a Q-algebra. 

1 Introdction 
In 1966 , K.Iseki and Y.Imai([7], [14]) introduced BCK-and BCI-algebras. In 2001 H.S.Kim([6]) 

introduced a new notion, known as Q-algebra, which is BCH / BCI / BCK-algebra generalization. 

At the same time, A.Iorgulescu and G.Georgescu ([3]) introduced pseudo BCK-algebras as an 

exemption from bck-algebras. In2016 , Y.B.jun, H.S.Kim and S.S Ahn([13])introduced pseudo 

Qalgebra as ageneralization of Q-algebra the concept of fuzzy set was introduced in 1969 by L. A 

.Zadeh ([10]) .In 2005, J.Meng, X.Guo([5]) studied fuzzy ideals of BCK / BCI-algebras. W.A.Dudek 

and Y.B.Jun ([15]) in 2008, introduced pseudo-BCI-algebras as a natural generalization of 

BCIalgebras and pseudo-BCK-algebras. At the same time , K. J .Lee([8]) established the fuzzy ideals 

in pseudo BCI-algebras.in([4]) H. K .Jawad introduced the notion of fuzzy pseudo Ideals of pseudo 

Q-algebra. In K. ([9]) Intuitionistic Fuzzy Sets(1986) was introduced by T. Atanassov..in 2012 S.M. 

Abdelnaby and O.R.Elgendy applied the concept of Intuitionistic fuzzy sets on Q-algebra. In this 

article, we will describe some of the new types of I F pseudo ideal, called (I F pseudo ideal, I F 

K-pseudo ideal, I F complete ?k-pseudo ideal). Also, we introduced and illustrated the proposition 

that defines the relationship among them in Q-algebra. 

2 Basic concept and notations 
In this section , We define Q-algebra , pseudo Q-algebra ,bounded , involutory , and some properties. 

Definition (2.1) [11] 

A Q- algebra is a set M with a binary operation * and constant 0 that fulfilled the following axioms: 

1. m   m = 0 8m 2 M 

2. m   0 = m 8m 2 M 

1 
3. (m   b)   d = (m   d)   b;  

Remark (2.2)[11] 
8m; b; d 2 M 

In a Q-algebra M , we can define a binary relation ≤ on M by m ≥ b if and only if m   b = 
0  8m; b 2 M 
Definition (2.3) [1] 

 
A Q-algebra (M;  ; 0) is called bounded if there is an element e 

2 M that satisfies m ≤ e  
8m 2 M 

then e is said to be an unit .We denotted e*m by  

Example(2.4) 
m ,for each m 2 M in bounded Q-

algebra. 
let M = f0; η; θ; βg be a set with the following table : 

Table 1: Example of bounded 
*  0  η  θ  β 
0  0  0  0  0 
η  η  0  0  0 
θ  θ  0  0  0 
β  β  β  β  0 
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Thereafter (M;  ; 0) be a Q-algebra . Note that M is bounded by unit β 

Remark(2.5) [1] 

As stated in the following example , the unit in bounded Q-algebra is not unique in general . 

Example(2.6) 

A binary operation * with M = f0; η; θg can be shown in the table : . 

Table 2: The unit in bounded Q-algebra is not uniqe 
*  0  η  θ 
0  0  0  0 
η  η  0  0 
θ  θ  0  0 
Note that M is bounded with two units η; θ 

Propoition(2.7) [4] 

In a bounded Q-algebra M , for any m; b 2 M; the following are hold : 

1. e  = 0; 0  = e 

2. m    b = b    m 

3. 0   b = 0 

4. e    m = 0 

5. m   ≤ m 

Definition(2.8) [1] 

For a bounded Q-algebra M, If element m of M satisfies m   = m,then m is called an involution. 

If every element of M is an involution,we call M is an involutory Q-algebra. 

Example (2.9) 

let M = f0; η; θ; β; g , can be shown in table : 

2 
Table 3: Example of involutory 
*  0  η  θ  β 
0  0  0  0  0  0 
η  η  0  η  0  0 
θ  θ  θ  0  0  0 
β  β  θ  η  0 

 
0  0  0  0 

  
subsequently (M;  ; 0) is a bounded Q-algebra with unit β. Note that M is involutory. 

Definition(2.10) [9] 

An intuitionistic fuzzy set (IFS for short ) A in a set M is object having the form 

A = f< m; µA(m); νA(m) >: m 2 Mg , such that µA : M -! [0; 1] and νA : M -! [0; 1] denoted 

the dagree of membership (namely µA(m)) , and the dagree of non membership (namely νA(m)) for 

any element m 2 M to the set A , and 0 ≤ µA(m) + νA(m) ≤ 1; 8m 2 M for the sake of simplicity 

, we shall use the notation A = f< m; µA(m); νA(m) >g instead of A = f< m; µA(m); νA(m) >: 

m 2 Mg 

Definition(2.11) [2] 

if A = f< m; µA(m); νA(m) > jm 2 Mgand B = f< m; µB(m); νB(m) > jm 2 Mg be any two IFS 

of a set M then 

1. A   Bif and only if for all m 2 M µA(m) ≥ µB(m) and µA(m) ≥ µB(m) 

2. A = B if and only if for all m 2 M µA(m) = µB(m) and µA(m) = µB(m) 

3. A\B = f< m; (µA\µB)(m); ; (νA[νB)(m); m 2 Mg where ; (µA\µB)(m) = minfµA(m); µB(m)gg 

and ; (νA [ µB)(m) = maxfνA(m); νB(m)gg 

4. A[B = f< m; (µA[µB)(m); (νA\νB)(m); m 2 Mg where ; (µA[µB)(m) = maxfµA(m); µB(m)gg 

and ; (νA \ µB)(m) = minfνA(m); νB(m)gg 

Definition(2.12) 

An intuitionistic fuzzy set A = f< m; µA(m); νA(m) >g in a Q-algebra M is called an intuitionistic 

fuzzy ideal if 

1. µA(0) ≥ µA(m) 8m 2 M 

2. νA(0) ≤ νA(m) 8m 2 M 

3. µA(m) ≥ MinfµA(m   b); µA(b)g 8b; m 2 M 
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4. νA(m) ≤ MaxfνA(m   b); νA(b)g 8m; b 2 M 

Definition(2.13) [13] 

A pseudo Q-algebra is non-empty set of M with constant 0 and two binary operations * and # that 

satisfy the following axioms : 

1. m#m = m   m = 0 8m 2 M 

2. m#0 = m   0 = 0 8m 2 M 

3. (m#b)   c = (m   c)#b 8m; b; c 2 M 

3 
Remark(2.14) [13] 

In pseudo Q-algebra M , we can define a binary relation ≤ by m ≤ b if and only if m#b = 

0 & m   b = 0 8m; b 2 M 

Remark(2.15) [13] 

That Q-algebra is a pseudo Q-algebra but the converse is not true as shown in the example below 

Example(2.16) Let M = f0; η; θ; βg 

Table 4: pseudo Q-algebra but not Q-algebra 
*  0  η  θ  β 
0  0  0  0  0 
η  η  0  0  0 
θ  θ  θ  0  η 
β  β  β  0  0 

 
#  0  η  θ  β 
0  0  0  0  0 
η  η  0  0  0 
θ  θ  β  0  β 
β  β  β  0  0 
Then (M;  ; 0) and (M; #; 0) are not Q-algebra , since (θ   η)   β = η 6= 0 = (θ   β)   η and 

(θ#η)#β = 0 6= β = (θ#β)#η , but (M;  ; #; 0) is pseudo Q-algebra . 

Proposition(2.17) [12] 

Let (M;  ; #; 0) be a pseudo Q-algebra . Then the following hold : 

1. (m   (m#b))#b = (m#(m   b))   b = 0 8m; b 2 M 

2. m ≤ 0 =) m = 0 8m 2 M . 

Definition(2.18) [4] 

A pseudo -Q-algebra M it is said to bo bounded if there is an element n 2 M satisfying 

m ≤ n 8m 2 M i:e ; m ≤ n , m   n = 0 and m#n = 0 then n is called pseudo unit of M . 

A pseudo-Q-algebra with a pseudo uinit is called bounded. 

Proposition (2.19) [4] 

Let (M;  ; #; 0) be a bounded pseudo Q-algebra . Then the following hold: 

1. e  = 0 = e# 

2. m #b = b#   m 8m; b 2 M 

3. m #b  = (b )#   m 8m; b 2 M 

4. m#   b# = (b#) #m 8m; b 2 M 

Defintion(2.20) [13] 

Let (M;  ; #; 0) be a bounded pseudo Q-algebra . A subset I of M is called the pseudo -ideal of M 

if it satisfies : 

1. 0 2 I 

2. m   b; m#b 2 I and b 2 I imply m 2 I 8m; b 2 I whenever m; b 2 I 

Definition(2.21) [9] 

Let (M;  ; #; 0) be a bounded pseudo Q-algebra and let υ 6= I   M: I is called a pseudo subalgebra 

of M if m   b; m#b 2 I wenever m; b 2 I 

Definition(2.22) [4] 

Let M be a pseudo Q-algebra .A fuzzy set µ in M is called a fuzzy pseudo ideal of M if it satisfies : 

4 
1. µ(0) ≥ µ(m); 8m 2 M 
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2. µ(m) ≥ Minfµ(m   b); µ(m#b); µ(b)g 8m; b 2 M 

Example(2.23) 

In Example (2.17) , define the fuzzy set µ by µ(m) = ( 0 0: :8 : 6 : if m if m = 0 = θ; β ; η 

Then µ is fuzzy pseudo ideal , since µ(0) ≥ µ(m); 8m 2 M and 

µ(m) = 0:6 ≥ Minfµ(m   b); µ(m#b); µ(b)g = 0:6 8m 2 Mnfη; 0g and 8b 2 M 

Wihle ’(m) = (  
00::

7 : 5 

:  

ifm = 0 ; η; 

θ  

if  m=β 
is not fuzzy pseudo ideal of M , since ’(β) = 0:5 6≥ Minf’(β   θ); ’(β   θ); ’(θ)g = 0:7 

Definition(2.24)[4] 

A nonempty subset I of a pseudo Q-algebra (M;  ; #; 0) is called complete pseudo ideal (briefly , 

c-pseudo ideal ) , if 

1. 0 2 I 

2. m   b; m#b 2 I; 8b 2 I such that b 6= 0 implies m 2 I 

Definition(2.25)[4] 

A nonempty subset I of a bounded pseudo Q-algebra (M;  ; #; 0) is called complete k-pseudo ideal 

(briefly ,c-k-pseudo ideal ), if 

1. 0 2 I 

2. m    b; b#   m 2 I (resp.m##b; b #m 2 I), 8b 2 I such that b 6= 0 imply m  2 I (resp. 

m# 2 M) , 8m 2 M 
Note that in bounded pseudo Q-algebra M there ara trivial c-k-pseudo ideals , f0g  

Proposition(2.26) [4] 
and  M 

Any c-pseudo ideal from bounded pseudo Q-algebra is c-k-pseudo ideal . 

Definition(2.27) [4] 

Let M be a bounded pseudo Q-algebra . An elementm 2 M satisfies m   = m = m## then m is 

called pseudo involution (i. e) m is *-involution and # - involution). If every element m 2 M is 

pseudo involution , we call M is a pseudo Q-algebra . 

Example(2.28) 

Let M = f0; η; θ; β; g be a set with tables below 

Table 5: Pseudo involutory Q-algebra 
*  0  η  θ  β 
0  0  0  0  0  0 
η  η  0  0  0  0 
θ  θ  0  0  0 

 
β  β  η  0  θ 

 
0  0  0  0 

  
 
#  0  η  θ  β 
0  0  0  0  0  0 
η  η  0  0  0 

 
θ  θ  0  0  0  0 
β  β  θ  0  η 

 
0  0  0  0 

  
Then (M;  ; #; 0) is bounded pseudo Q-algebra with unit β. Notice that M is a pseudo involution . 

Proposition(2.29) [4] 

If I be a c-k-pseudo-ideal in a pseudo-involutory pseudo-Q-algebra M , then I is c-pseudo-ideal. 

5 
Proposition(2.30) [4] 

Let µ be a fuzzy pseudo ideal of a pseudo Q-algebra M if m ≤ b; then µ(m) ≥ µ(b); 8m; b 2 M 

Definition(2.31) 

Let M be a pseudo Q-algebra . A fuzzy set µ in M is called a fuzzy pseudo subalgebra of M if it 
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satisfies : 

1. µ(m   b) ≥ Minfµ(m); µ(b)g 8m; b 2 M 

2. µ(m#b) ≥ Minfµ(m); µ(b)g 8m; b 2 M 

3 some types of intuitionistic fuzzy pseudo ideal 
In this section , we define IF pseudo ideal and IF complete pseudo ideal , IF k-pseudo ideal , IF 

c-pseudo ideal and some properties among them . 

Definition(3.1) 

Let M be a pseudo Q-algebra . An intuitionistic fuzzy set A of M is called an intuitionistic fuzzy 

pseudo ideal if it satisfies : 

1. µA(0) ≥ µA(m) 8m 2 M 

2. νA(0) ≤ νA(m) 8m 2 M 

3. µA(m) ≥ MinfµA(m   b); µA(m#b); µA(b)g 8m; b 2 M 

4. νA(m) ≤ MaxfνA(m   b); νA(m#b); νA(b)g 8m; b 2 M 

Example(3.2) 

In Example (2.23) define the intuitionistic fuzzy set A by 

µA(m) = ( 0 0: :8 : 6 : if m if m = 0 = θ; β ; η & νA(m) = ( 0 0: :2 : 4 : if m if m = 0 = θ; β ; η 

Then A is intuitionistic fuzzy pseudo ideal since , 

µA(0) ≥ µA(m) and νA(0) ≤ νA(m) 8m 2 M; 

µ(b) = 0:6 ≥ MinfµA(b   m)µA(b#m); µA(m)g = 0:6; 
νA(b) = 0:4 ≤ MaxfνA(b   m); νA(b#m); νA(m)g = 0:4 8m 2 M  

Definition(3.3) 
and 8b 2 Mnf0; ηg 

Let I be a c-pseudo ideal of a pseudo Q-algebra (M;  ; #; 0): An intuitionistic fuzzy set A is called 

intuitionistic fuzzy complete pseudo ideal at I (briefly , IF c-pseudo ideal ) , if 

1. µA(0) ≥ µA(m) 8m 2 M 

2. νA(0) ≤ νA(m) 8m 2 M 

3. µA(m) ≥ MinfµA(m   b); µA(m#b); µA(b)g 8m; b 2 M; b 2 I 

4. νA(m) ≤ MaxfνA(m   b); νA(m#b); νA(b)g 8b 2 I; 8m 2 M 

Example(3.4) 

Let M = f0; η; θ; βg be a set with the tables below 

6 
Table 6: intuitionistic fuzzy c-ideal 
*  0  η  θ  β 
0  0  0  0  0 
η  η  0  0  0 
θ  θ  0  0  η 
β  β  β  0  0 

 
#  0  η  θ  β 
0  0  0  0  0 
η  η  0  0  η 
θ  θ  θ  0  η 
β  β  β  0  0 
Then (M;  ; #; 0) is pseudo Q-algebra , a subset I = f0; η; θg is a c-pseudo ideal of M . Let A 

is the intuitionistic fuzzy set defined as the following : 

µA = ( 00::5 : 4 : if m if m = 0 = θ; η; β & νA(m) = ( 0 0: :5 : 6 : if m if m = 0 = θ; η; β 

Then A is the intuitionistic fuzzy c-ideal at I in M , because 

µA(0) ≥ µA(m) and νA(0) ≤ νA(m) 8m 2 M , 

µA(θ) = 0:4 ≥ MinfµA(θ   b); µA(θ#b); µA(b)g = 0:4 8b 2 I; 

νA(θ) = 0:6 ≤ MaxfνA(θ   b); νA(θ#b); µA(b)g = 0:6 8b 2 I: 

Proposition(3.5) 

Every intuitionistic fuzzy pseudo ideal of a pseudo Q-algebra is an intuitionistic fuzzy c- pseudo 

ideal . 

Proof 
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suppose that I be a c-pseudo ideal and A is intuitionistic fuzzy pseudo ideal of a pseudo Q-algebra 

M then by definitin (2.22) we have , 

1. µA(0) ≥ µA(m) 8m 2 M 

2. νA(0) ≤ νA(m) 8m 2 M 

3. µA(m) ≥ MinfµA(m   b); µA(m#b); µA(b)g 8m; b 2 M 

4. νA(m) ≤ fνA(m   b); νA(m#b); νA(b)g 8m; b 2 M 

since I   M , then µA(m) ≥ MinfµA(m   b); µA(m#b); µA(b)g and 

νA(m) ≤ MaxfνA(m   b); νA(m#b); νA(b)g 8b 2 I 

Thus A is intuitionistic fuzzy c-pseudo ideal of M . 

Remark(3.6) 

The following example shows that the converse of proposition (3.5) is not true in genaral 

Example(3.7) 

In example (3.2) , notice that A is intuitionistic fuzzy c-pseudo ideal at I in M 

(When I = f0; η; θg ), but its not is intuitionistic fuzzy pseudo ideal because 

µA(θ) = 0:4 6≥ MinfµA(θ   β); µA(θ#β); µA(β)g = 0:5 

Proposition(3.8) 

Let I be a c-pseudo ideal of a pseudo involutory pseudo Q-algebra M. An intuitionistic fuzzy set A 

is intuitionistic fuzzy c-pseudo ideal if and only if satisfies : 

1. µA(0) ≥ µA(m) 8m 2 M 

2. νA(0) ≤ νA(m) 8m 2 M 

3. µA(m) ≥ MinfµA(m     b); µA(b#   m ); µA(b)g 

= µA(m) ≥ MinfµA(b #m#); µA(m###b); µA(b)g 8m; b 2 M 

7 
4. νA(m) ≤ MaxfνA(m     b); νA(b#   m ); νA(b)g and 

νA(m#) ≤ MaxfνA(m##b); νA(b #m); νA(b)g: 8m; b 2 M 

Proof 

by definitin(2.27) and definition(3.3) 

Definition(3.9) 

An intuitionistic fuzzy set A in bounded pseudo Q-algebra (M; #;  ; 0) is called intuitionistic fuzzy 

k-pseudo ideal, if 

1. µA(0) ≥ µA(m) 8m 2 M 

2. νA(0) ≤ νA(m) 8m 2 M 

3. µA(m ) ≥ MinfµA(m    b); µA(b#   m); µA(b)g and 

µA(m#) ≥ MinfµA(m##b); µA(b #m); µA(b)g 8m; b 2 M 

4. νA(m ) ≤ MaxfνA(m    b); νA(b#   m); νA(b)g and 

νA(m#) ≤ MaxfνA(m##b); νA(b #m); νA(b)g 8m; b 2 M 

Example(3.10) 

1. Every intuitionistic fuzzy constant in bounded paeudo Q-algebra M is intuitionistic fuzzy 

k-pseudo ideal . 

2. Let M = f0; η; θ; β; g be a set with the tables below 

Table 7: Pseudo involutory Q-algebra 
*  0  η  θ  β 
0  0  0  0  0  0 
η  η  0  0  0  η 
θ  θ  0  0  θ  θ 
β  β  0  β  0  θ 
0  0  0 

   
 
#  0  η  θ  β 
0  0  0  0  0  0 
η  η  0  0  η  η 
θ  θ  0  0  0  0 
β  β  0  0 

  
0  0  0 
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then (M;  ; #; 0) is bounded pseudo Q-algebra with uinit η and define an intuitionistic fuzzy A by 

µA(m) = ( 0 0: :9 : 3 : if m if m = 0 = θ; β; ; η & νA(m) = ( 0 0: :1 : 7 : if m if m = 0 = θ; β; ; η 

then A is intuitionistic fuzzyk-pseudo ideal of M , because 

µA(0) ≥ µA(m) and νA(0) ≤ νA(m); 8m 2 M 

µA(m ) = 0:9 ≥ MinfµA(m    b); µA(b#   m); µA(b)g is hold 8m; b 2 M . 

also µA(m#) = 0:9 ≥ MinfµA(m##b); µA(b #m); µA(b)g is hold 8m; b 2 M also 

νA(m ) = 0:1 ≤ MaxfνA(m  b); νA(b# m); νA(b)g and νA(m#) = 0:1 ≤ MaxfνA(m##b); νA(b #m); νA(b)g 

Proposition(3.11) 

Every intuitionistic fuzzy pseudo ideal of a bounded pseudo Q-algebra is an intuitionistic fuzzy 

k-pseudo ideal 

Proof 

Let A is an intuitionistic fuzzy pseudo ideal of a bounded pseudo Q-algebra then by definition (3.1) 

we have 

1. µA(0) ≥ µA(m) 8m 2 M 

8 
2. νA(0) ≤ νA(m) 8m 2 M 

3. µA(m) ≥ MinfµA(m   b); µA(m#b); µA(b)g then 

µA(m ) ≥ MinfµA(m    b); µA(m #b); µA(b)g 

= MinfµA(m    b); µA(b#   m); µA(b)g 8m; b 2 M Also 

µA(m#) ≥ MinfµA(m#   b); µA(m##b); µA(b)g 

= MinfµA(m##b); µA(b #m); µA(b)g 8m; b 2 M 

4. νA(m) ≤ MaxfνA(m   b); νA(m#b); νA(b)g then 

νA(m ) ≤ MaxfνA(m    b); νA(m #b); νA(b)g 

= MaxfνA(m    b); νA(b#   m); νA(b)g 8m; b 2 M Also 

νA(m#) ≤ MaxfνA(m#   b); νA(m##b); νA(b)g 

= MaxfνA(m##b); νA(b #m); νA(b)g 8m; b 2 M 

Thus A is intuitionistic fuzzy K-pseudo ideal of M . 

Remark(3.12) 

In genaral , the converse of Proposition (3.11) needs not ture as shown in the following example . 

Example(3.13) 

in Example (3.10 -2) A is intuitionistic fuzzy k-pseudo ideal in M , but not intuitionistic fuzzy 

pseudo ideal in M , because µA(θ) = 0:3 6≥ MinfµA(θ   η); µA(θ#η); µA(η)g = 0:9 

Proposition(3.14) 

Every intuitionistic fuzzy k-pseudo ideal in a pseudo involutory pseudo Q-algebra M is intuitionistic 

fuzzy pseudo ideal . 

Proof 

Assume that A be an intuitionistic fuzzy k-pseudo ideal of M 

since M is pseudo involutory pseudo Q-algebra , then 

µA(m) = µA(m  ) ≥ MinfµA(m     b); µA(b#   m ); µA(b)g 

= MinfµA(m b); µA(m#b); µA(b)g and νA(m) = νA(m  ) ≤ MaxfνA(m   b); νA(b# m ); νA(b)g 

= MaxfνA(m   b); νA(m#b); νA(b)g 8m; b 2 M 

Proposition(3.15) 

Let A be intuitionistic fuzzy k-pseudo ideal of a bounded pseudo Q-algebra M , then 

1. µA(m ) ≥ µA(e) and µA(m#) ≥ µA(e) 8m 2 M 

2. if ν(m ) ≤ νA(e) νA(m#) ≤ ν(e) 8m 2 M 

3. if m  ≤ b; then µA(b) ≥ µA(m ) also νA(b) ≤ νA(m ) 

4. m# ≤ b; then µA(b) ≥ µA(m#) also νA(b) ≤ νA(m#) 

Proof 

1. Since A is intuitionistic fuzzy k -pseudo ideal, we have 

µA(m ) ≥ MinfµA(m    e); µA(e#   m); µA(e)g 

= MinfµA(0); µA(e)g = µA(e) and µA(m#) ≥ MinfµA(m##e); µA(e #m); µA(e)g 

= MinfµA(0); µA(e)g = µA(e) 8m 2 M 

2. Since A is intuitionistic fuzzy k -pseudo ideal, we have 

νA(m ) ≤ MaxfνA(m    e); νA(e#   m); νA(e)g 
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= MaxfνA(0); νA(e)g = νA(e) and νA(m#) ≤ MaxfνA(m##e); νA(e #m); νA(e)g 

= MaxfνA(0); νA(e)g = νA(e) 8m 2 M 

9 
3. if m  ≤ b i.e m    b = 0 and m #b = 0 , then 

µA(m ) ≥ MinfµA(m    b); µA(b#   m)µA(b)g 8m; b 2 M 

(since A is intuitionistic fuzzy k-peudo ideal ) 

= MinfµA(0); µA(b)g = µA(b) and 

νA(m ) ≤ MaxfνA(m    b); νA(b#   m)νA(b)g 8m; b 2 M 

(since A is intuitionistic fuzzy k-peudo ideal ) 

= MaxfνA(0); νA(b)g = νA(b) 

4. is similar to the proof of (3) 

Definition (3.16) 

Let I be a c-k-pseudo ideal of a bounded pseudo Q-algebra (M;  ; #; 0): An intuitionistic fuzzy 

set A is called intuitionistic fuzzy complete k-pseudo ideal (briefly , intuitionistic fuzzy c-k-pseudo 

ideal ), if 

1. µA(0) ≥ µA(m) 8m 2 M 

2. νA(0) ≤ νA(m) 8m 2 M 

3. µA(m ) ≥ MinfµA(m    b); µA(b#   m); µA(b)g 

and µA(m#) ≥ MinfµA(m##b); µA(b #m); µA(b)g 8m; b 2 M; b 2 I 

4. νA(m ) ≤ MaxfνA(m    b); νA(b#   m); νA(b)g 

and νA(m#) ≤ MaxfνA(m##b); νA(b #m); νA(b)g 8m; b 2 M; b 2 I 

Example(3.17) 

In Example (2.16) let A be intuitionistic fuzzy set of M where I = f0; η; θg is c-k-pseudo ideal 

defined by 

µA(m) = ( 0 0: :6 : 2 : if m if m = 0 = θ; η; β & νA(m) = ( 0 0: :4 : 8 : if m if m = 0 = θ; η; β 

Then A is intuitionistic fuzzy complete k-pseudo ideal of M because 

µA(0) ≥ µA(m) and νA(0) ≤ νA(m) 8m 2 M; 

µA(0 ) = 0:2 ≥ MinfµA(0    b); µA(b#   0); µA(b)g = 0:2 8b 2 I 

µA(η ) = 0:2 ≥ MinfµA(η    b); µA(b#   η); µA(b)g = 0:2 8b 2 I 

µA(0#) = 0:2 ≥ MinfµA(0##b); µA(b #0); µA(b)g = 0:2 8b 2 I and 

νA(0 ) = 0:8 ≤ MaxfνA(0    b); νA(b#   0); νA(b)g = 0:8 8b 2 I 

νA(η ) = 0:8 ≤ MaxfνA(η    b); νA(b#   η); νA(b)g = 0:8 8b 2 I 

νA(0#) = 0:8 ≤ MaxfνA(0##b); νA(b #0); νA(b)g = 0:8 8b 2 I 

Proposition(3.18) 

Every intuitionistic fuzzy k-pseudo ideal of a bounded pseudo Q-algebra is an intuitionistic fuzzy 

c-k-pseudo ideal 

Proof 

Let I be a c-k-pseudo ideal in bounded pseudo Q-algebra M and A be an intuitionistic fuzzy kpseudo 

ideal of M , then 

µA(m ) ≥ MinfµA(m    b); µA(b#   m); µA(b)g and 

νA(m ) ≤ MaxfνA(m    b); νA(b#   m); νA(b)g 8m; b 2 M 

Since I   M we have 

µA(m ) ≥ MinfµA(m    b); µA(b#   m); µA(b)g and 

νA(m ) ≤ MaxfνA(m    b); νA(b#   m); νA(b)g 8b 2 I Also 

µA(m#) ≥ MinfµA(m##b); µA(b #m); µA(b)g and 

10 
νA(m#) ≤ MaxfνA(m##b); νA(b #m); νA(b)g 8m; b 2 M 

Since I   M we have 

µA(m ) ≥ MinfµA(m    b); µA(b#   m); µA(b)g and 

νA(m ) ≤ MaxfνA(m    b); νA(b#   m); νA(b)g 8b 2 I 

Remark(3.19) 

The converse of proposition(3.18) may not be true and the following example explainwd that . 

Example (3.20) 

In example (3.17) A be intuitionistic fuzzy c-k-pseudo ideal in M 
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(Where I = f0; η; θg is c-k-pseudo ideal) , but its not intuitionistic fuzzy k-pseudo ideal , since 

µA(0#) = 0:2 6≥ MinfµA(0##β); µA(β #0); µA(β)g = 0:6 

corollary (3.21) 

Every intuitionistic fuzzy pseudo ideal of bounded pseudo Q-algebra is intuitionistic fuzzy c-k-psudo 

ideal 

proof 

by proposition(3.11) and proposition(3.18). 

Proposition(3.22) 

Any intuitionistic fuzzy c-pseudo ideal from bounded pseudo Q-algebra is intuitionistic fuzzy c-

kpseudo ideal . 

Proof 

Let A be an intuitionistic fuzzy c-pseudo ideal from bounded pseudo Q-algebra M and I be c-pseudo 

ideal of M . 

then I is c-k-pseudo ideal of M by proposition (2.26) 

since A intuitionistic fuzzy c-pseudo ideal of M , from definition(3.3) we have : 

1. µA(0) ≥ µA(m) 8m 2 M 

2. νA(0) ≤ νA(m) 8m 2 M 

3. µA(m) ≥ MinfµA(m   b); µA(m#b); µA(b)g 8b 2 I thus 

µA(m ) ≥ MinfµA(m    b); µA(m #b); µA(b)g 
= MinfµA(m    b); µA(b#   m); µA(b)g  8b 2 I 

also µA(m#) ≥ MinfµA(m#   b); µA(m##b); µA(b)g 
 

= MinfµA(m##b); µA(b #m); µA(b)g  8b 2 I 

4. νA(m) ≤ MaxfνA(m   b); νA(m#b); νA(b)g 8b 2 I thus 

νA(m ) ≤ MaxfνA(m    b); νA(m #b); νA(b)g  

= MaxfνA(m    b); νA(b#   m); νA(b)g  8b 2 I 

also νA(m#) ≤ MaxfνA(m#   b); νA(m##b); νA(b)g 
 

= MaxfνA(m##b); νA(b #m); νA(b)g  8b 2 I 
Hance A is intuitionistic fuzzy c-pseudo ideal of M 

Example(3.23 ) 

In example (3.10) if I = f0; β; g; then i is a c-k-pseudo ideal and c-pseudo ideal of a bounded 

Q-algebra M 

define the intuitionistic fuzzy set A by : 

µA(m) = ( 00::9 : 6 : if m if m = 0 = θ;; η; β & νA(m) = ( 00::1 : 4 : if m if m = 0 = θ;; η; β 

then A is intuitionistic fuzzy c-k-pseudo ideal because 

µA(0) ≥ µA(m) and νA(0) ≤ νA(m) 8m 2 M 

11 

Also µA(m ) = 0:9 ≥ MinfµA(m    b); µA(b#   m); µA(b)g is hold 8b 2 I; 8m 2 M and 

µA(m#) = 0:9 ≥ MinfµA(m##b); µA(b #m); µA(b)g is hold too 8b 2 I; 8m 2 M 

and 

νA(m ) = 0:1 ≤ MaxfνA(m    b); νA(b#   m); νA(b)g is hold 8b 2 I; 8m 2 M and 

νA(m#) = 0:1 ≤ MaxfνA(m##b); νA(b #m); νA(b)g is hold too 8b 2 I; 8m 2 M 

but A is not intuitionistic fuzzy c-pseudo ideal because 

µA( ) = 0:6 6≥ MinfµA(   β); µA( #β); µA(β)g = 0:9 

Proposition(3.24) 

Every intuitionistic fuzzy c-k-pseudo ideal in a pseudo involutory pseudo Q-algebra M is intuitionistic 

fuzzy c-pseudo ideal . 

Proof 

suppose that A is intuitionistic fuzzy c-k-pseudo ideal of M . Then I is c-pseudo ideal of M by 

(proposition (2.29)) 

since M is pseudo involutory , then 

µA(m) = µA(m##) ≥ MinfµA(m###b); µA(b #m#); µA(b)g 
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= MinfµA(m###b); µA(m##   b); µA(b)g 

= MinfµA(m   b); µA(m#b); µA(b)g 8b 2 I 

Thus A is intuitionistic fuzzy c-pseudo ideal of M . 

Remark(3.25) : 

The following diagram shows the relation among intuitionistic fuzzy pseudo ideal ,intuitionistic 

fuzzy k-pseudo ideal,intuitionistic fuzzy c-pseudo ideal , intuitionistic fuzzy c-k-pseudo ideal in 

bounded Q-algebra : 

12 

IF pseudo ideal I F k- pseudo ideal 

IF c-pseudo ideal IF c-K-pseudo ideal 

In involutory Q-algebra 

13 
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ABSTRACT:In this work, we associate a new topology to undirected graph   (   ) which may 

contain one isolated vertex or more and we named it Independent (non-adjacent vertices) Topology. A 

new sub-basis family to generate the Independent Topology is introduced on the set of   vertices V 

and for every vertex   of   the number of adjacent vertices is not greater than     ( In simple graph 

we can say :  for every vertex   of   ,  ( )      , where  ( ) is the maximum degree of vertices 

in a graph   ). Then we give a fundamental step toward investigation of some properties of undirected 

graphs by their corresponding Independent Topology which we introduce in this work. Furthermore, 

an application to our new model (Independent Topology) are presented, that to carry out a framework 

in practical life like biomathematics ( applied examples in biomathematics). 

 

2010 Mathematics Subject Classification: 05C99, 54A05. 

Key words and phrases: Undirected graphs, Independent(non-adjacent vertices),  Independent 

topology. 

 

1. Introduction 

 

In Mathematics graph theory have a long history, one branch of graph theory is a topological graph 

theory. The relation between graph theory and topological theory existed before and used many times 

by researchers to deduce a topology from a given graph. Some of them makes models defined on the 

set of vertices   of the graph   only and others made it on the set of edges   . They studies graphs as 

a topologies and have been applied in almost every scientific field. Many excellent basics on the 

mathematics of graph theory, topological graph theory and some applications may be found in the 

sources [1-7],  

In general graphs divided in two types; directed and undirected graph. To an undirected graph some 

researchers associate a topological spaces as fellow; 

In 2013 [8], Jafarian et al. associate a Graphic Topology with the vertex set of a locally finite graph 

without isolated vertex, and they defined a sub-basis family for a graphic topology as a sets of all 

vertices adjacent to the vertex   .   

And in 2018 [9], Kilicman and Abdulkalek associate an Incidence Topology with a set of vertices for 

any simple graph without isolated vertex. where they defined a sub-basis family for an incident 

topology as a sets of all incident vertices with the edge  . 

The previous works of topology on graphs was associated with a set of vertices without isolated 

vertex. Therefore, these topologies are not appropriate to be associated with graphs that have an 

isolated vertices.  

Our motivation or target is to associate a topology on the vertex set of any undirected graph (not only 

simple graph or locally finite graph) and which may contain one isolated vertex or more. By 

introducing a new Sub-basis family defined as a sets of all vertices non-adjacent to the vertex   to 

mailto:asmhanf.alzuhairy@uokufa.edu.iq
https://orcid.org/0000-0002-0855-1873
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induce the new topology (which we named it Independent Topology), and we present a fundamental 

steps toward studying some main properties of undirected graphs by their corresponding topologies. 

 

So, we have two goals for this work: First, we introduce a new model of a topology associated with 

graph which is most general than the previous works. Second, we apply this new model topology in 

some main subjects in biomathematics. 

 

In Section 2 of the article we give some fundamental definitions and preliminaries of graph theory and 

topology, also In Section 3 we define our new topology (independent topology) on undirected graphs 

by introducing a sub-basis family for the new topology. Section 4 is devoted to some preliminaries 

results of independent  topology.  

In Section 5 some application in biomathematics of new model (independent topology) is discussed. 

In last Section, conclusions of this new topology on undirected graphs are presented. 

 

2. Preliminaries 

 

In this section we give some fundamental definitions and preliminaries of graph theory and topology. 

All this definitions are standard, and can be found for example in sources [2] [ 3] [10]. 

 

Usually the graph is a pair    (   ), for more exactly A graph G consist of a non-empty set   of 

vertices (or nodes), and a set   of edges (or arcs). If   is an edge in   we can write       (   is join 

each vertex   and   ),where   and   are vertices in  , then  (  and  ) are said adjacent vertices and 

incident with the edge  .If there is no vertex adjacent with a vertex  , then   is said isolated vertex. 

the degree of the vertex   denoted by  ( ) is the number of the edges where   incident with  , and 

 ( ) is the maximum degree of vertices in  . A vertex of degree 0 is isolated. An independent set in 

a graph   is a set of pairwise non-adjacent vertices. The graph   is finite if the number of the vertices 

in   also the number of the edges in   is finite, then; otherwise it is an infinite graph. If any vertex 

can be reached from any other vertex in   by travelling along the edges, then   is called connected 

graph and is called disconnected otherwise. 

We use notations    ,     ,    and    for a complete graph with   vertices, the complete bipartite 

graph when partite sets have sizes   and  , the path on   vertices and the cycle on   vertices, 

respectively. 

 

A topology   on a set   is a combination of subsets of  , called open, such that the union of the 

members of any subset of   is a member of  , the intersection of the members of any finite subset of  

  is a member of   , and both empty set and   are in  . The ordered pair ( ,  ) is called a 

topological space. When the topology    ( ) on   is called discrete topology while the topology  

  *   + on   is called indiscrete (or trivial) topology. A topology in which arbitrary intersection 

of open set is open called an Alexandroff  space. 

 

3. Independent topology on graphs 

 

Now, we define our new model of topology on undirected graph   (   ) which may contain one 

isolated vertex or more and we named it Independent (non-adjacent vertices) Topology. A new sub-

basis family to generate the Independent Topology is introduced on the set of   vertices   and for 

every vertex   of   the number of adjacent vertices is not greater than     ( In simple graph we can 

say :  for every vertex   of  ,  ( )      , where  ( ) is the maximum degree of vertices in a 

graph   ). 

( i.e. for every vertex       the number of adjacent vertices is not greater than     , where   is the 

number of all vertices in   )     

Suppose that    is the set of all vertices non-adjacent (independent) to  . It is clear that      iff 

     for all       and      for all    .  
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Define     as follows      *          +. Since the condition above exist and the graph   can 

contain one isolated vertex or more, we have   ⋃       Hence     forms a sub-basis for a topology 

    on  , called Independent topology of  . 

It easy to see that the independent topology of    when      and the simple graph has      
   isolated vertex are discrete but the independent topology of    is not discrete because the set 

contains just two vertices of degree one is open, the independent topology of      is equal to 

*         + ,where   and    are partite sets of     . 

 

Example 3.1. Let   (   ) be a simple graph as in Fig.1,clearly   verify the condition (for every 

vertex     the number of adjacent vertices is not greater than     ), then:  

      *              +  We have: 

 

    = *     +      = *     + ,     = *  +.      *  +     ={      }.  

  

By taking finitely intersection the base obtained,  

 

**  + *     + *     + *  + *  + *      +  + 
Then by taking all unions the Independent topology can be written as:                        Fig. 1   

      *    *  + *  + *     + *  + *     + *     + *     + *     + *        +  
*        + *        + *        + *           + *           + *        + *        ++  

 

4. Preliminary result 

 

Proposition 4.1.  If   (   ) is a graph .then (     ) is an Alexandroff space. 

Proof.  It is enough to prove that arbitrary intersection of members of     is open. Let     . If 

          , then     for each    . Hence      for each     and  so     ,    and    are 

finite sets. This means that if    is infinite, then          is empty, but if   is finite, then         is 

the intersection of finitely many open sets and hence        is open .  □ 

 

Let   (   ) be a  graph containing  , for each    , the intersection of all open sets containing   

is the smallest open set containing   we still call it     and the family     *        + is minimal 

basis for the topological space (     )  
 

Proposition 4.2. Let   (   )  be a graph. Then we have            and so    is finite for 

every    . 

Proof. Since    is the smallest open set containing   and     is a sub-basis of      we have    
        for some subset   of   .This implies that      for each    . Therefore      and so 

             . 

Now by definition of   , the proof is complete. □ 

 

Corollary 4.3. Let   (   ) be a graph. Then for every        we have      if and only if  

      . Equivalently    *          +  
Proof.  By the Proposition above       if and only if         for each      if and only if       

for each         
 

Remark 4.4. Suppose that   (   ) is a graph, then(     ) is a discrete topological space if and 

only if        and        for every distinct pair of vertices      . 

 

Remark 4.5.  We also know from Remark in [11] that an Alexandroff topological space is      if and 

only if it is discrete. Now, this implies that the graph   (   ) has     independent topology 

(     ) if and only if       for every distinct pair of vertices      . Let   (   ) be a tree. 

Then (     ) is a    space  if and only if        for every        such that      and  deg   = 

deg   = 1. 

𝑣  

𝑣  

 

𝑣  

𝑣  

 

𝑣  
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Remark 4.6.  Complete graph    does not  verify  the Independent Topology but if there exists an 

one isolated vertex or more in the same graph then it verify the  Independent Topology 

 

Example 4.7. Let   (   ) be a complete graph    as in Fig.2, clearly   satisfy the condition since 

    and each vertex has not greater than     adjacent vertices 

 such that    *            +.  We have;  

   = *  + ,     = *  + ,    = *  + ,     *        +   

Then sub-basis     * *        + *  ++ 
By taking finitely intersection the basis obtained                                                   Fig. 2   

**  + *        +   +    
Then by taking all unions the Independent Topology can be written as: 

      *    *  + *        ++ 
 

Definition 4.8. Let    (     ) and    (     ) be two graphs. We call   and    isomorphic, and 

write       , if there exists a bijection             with                         ( ) ( )      for 

all        , Such a map    is called an isomorphism; if  

       , it is called an automorphism of   . 

 

Remark 4.9.  It is easy to check, If    (     ) and    (      ) are isomorphic graphs, then 

topological spaces (       ) and  (       ) are homeomorphic. The converse is not true, in general. 

For example    when      and the simple graph has       isolated vertex, are not isomorphic 

graphs, but their corresponding independent topologies are both discrete and hence homeomorphic. 

 

Proposition 4.10. Let   (   ) be a graph. Then (     ) is a compact Independent topological 

space  if and only  if    is finite. 

Proof . By Proposition 4.2,     is finite for every    , hence if     is infinite , then     is an open 

covering of (     )  which has no finite sub cover.  □ 

 

Definition 4.11.  In the graph    if     ( ), then we write   –    for the sub graph obtained by 

deleting the set of vertices  , A cut-vertex of G is a vertex whose deletion increases the number of 

components of  , i.e. a vertex    ( ) such that   * + has more components than  . A vertex cut 

of a connected graph   is a set     ( ) such that     has more than one component. A vertex 

cut   of   is said to be minimal if every proper subset of    is not a vertex cut. 

It is obvious that, if     be a cut vertex in a graph  G = (V, E) (not necessarily connected) . Then  

* +       .  

 

Example 4.12. Let   (   ) be a graph as in Fig.3 such that    *              + . We have; 

   = *     + ,    = *     + ,    = *  +,      *     + ,    ={         }. 

Then     **  +, *     + , *     + , {         }}  

By taking finitely intersection the basis obtained 

*   *  + *     + *     +  *         ++ 
   

Then by taking all unions the Independent Topology can be written as: 

    *    *  + *     + *     + *        + *           +                                     Fig. 3 
*        + *           ++ 

 

It is clear in this example {  + is a cut vertex but {  +      . 

 

Now, the  connected graph is a tree if and only if every vertex of degree greater than one is a  cut-

vertex. Therefore, if    (   ) is a tree and     with         , then * +       . 

 

Example 4.13. Let   (   ) be a graph as in Fig. 4  such that   *              +  We have; 

𝑣  

𝑣  𝑣  𝑣  

𝑣  

 

𝑣  

𝑣  𝑣  

𝑣  
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   = *        + ,    = *     + ,    = *  + ,      *        + ,    ={         }. 

Then     **        + , *     + , *  + ,  *        + , {         }}  

  

By taking finitely intersection the basis obtained  

 

*   *        + *     + *  + *         + *         + *     + *  + *  ++           
   

Then by taking all unions the Independent Topology can be written as: 

 

    *    *        + *     + *  + *         + *         + *     + *  + *  +        Fig. 4 
*            + *         + *            + *     + *     ++ 

 

Clearly, *  +     *  + are cut vertex in the graph but both of them do not belong to      

 

 

Proposition 4.14.  Let   (   ) be a connected graph and   is a minimal vertex cut in  . Then 

     . 

Proof. Suppose that     has     components, say      (     ) for              . Every 

vertex     must be adjacent to vertices of at least two different components, say    and   , 

because   is a minimal vertex cut.  

Suppose that *          +            and {  , . . . ,    } =      , then we have        
      

     and        
            and so   (    

     )  (    
     

)    (     )    that is 

  is an interior point of  . □      

 

 

 
5. Application of Independent Topology in biomathematics. 

 

 

We apply the above definition on a bio-mathematical applications. We conclude that the undirected 

graph must be connected for modifying the bio-mathematical state. 

 

 

5.1. In a possible genetic for the inheritance of blood group. 

 

There are four main blood groups (types of blood) A, B , AB and O, your blood group is determined 

by the genes you inherit from your parents. Everyone has an (ABO) blood type just like eye or hair 

color. 

Each biological parent donates one of two (ABO) genes to their child, the A and B genes are 

dominant and the O gene is recessive [12]. 

 

      

𝑣  𝑣  

 

𝑣  𝑣  𝑣  

𝑣  𝑣  

𝑣  

𝑣  

𝑣  

𝑣  

𝑣  
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Fig. 5: diagram of a possible genetic for the inheritance of blood group and it is graph. 

 

By a graph above,     *                     +, where       ,       ,      ,      , 

     ,       ,       .   We have; 

    *           +,     *           +,     *           +,     *        +   

    *           +,     *            +,     *              +  

Then     {*           +, *           +, *           +, *        +,*           +, 
*            +, *              +} 

 

By taking finitely intersection the basis obtained  

 *   *           + *           + *           + *        + *           + *            + 

 {               } *     + *        + *      + *  + *     + *        + *     + *        + 

 *     + *        + *   + *     + *        + *     + *  + *  + *        + *     + *  + 
 *     + *      +  *  + *      +  *      + *      ++ 
 

Then by taking all unions the Independent Topology can be written as:                                       

     *     *  + *  + *  + *   + *  + *  + *           + *           + *        +  
*           + *           + *            + {               } *     + *        + *      +  

*     + *        + *     + *        + *     + *        +  *     + *        +  *     +  
*        + *     + *     + *      + *      + *      + *      + *      + *      + *      ++ 

 

 

5.2.  In general shape of Bipolar neuron. 

 

Neurons are the cells that make up the brain and the nervous system. They are the fundamental units 

that send and receive signals which allow us to move our muscles, feel the external world, think, form 

memories and much more. 

Just from looking down a microscope, however, it becomes very clear that not all neurons are the 

same. So just how many types of neurons are there? And how do scientists decide on the categories? 

For neurons in the brain, at least, this isn’t an easy question to answer. For the spinal cord  though, we 

can say that there are three types of neurons: sensory, motor, and interneurons. 

Most neurons can be anatomically characterized as: Unipolar, Bipolar, Multipolar. 

Bipolar, these neurons have two processes arising from a central cell body, typically one axon and one 

dendrite. These cells are found in the retina [12]. 

 

 

 

 

 

 
                                                                                      Graph of Bipolar neuron general shape    

 

𝑣  
𝑣  

𝑣  

𝑣  

𝑣  

𝑣  

𝑣  𝑣  Bipolar              Unipolar         Multipolar  

neuron                neuron             neuron   
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Fig 6:  anatomically types of neuron and the graph of Bipolar neuron shape. 

 

By a Graph of Bipolar neuron general shape,     *                       + and; 

   =*                 +,    =*                 +,    =*           +, 

     *              +,     *              +,     *           +, 

     *                 +,     *                 +.  Then; 

    {*                 +, *                 +, *           +, *              +, 
*              +, *           +,*                 +, *                 +} 

 

By taking finitely intersection the basis obtained;  

*   *                 + *                 + *           + *              + *     + 
,*              +, *           +, *                 + *                 + *     +, 
*              +, *           +, *        +,{     +, *           +, *           +, 
*           +, *        +, *     +, *           +, *           +, *        + *     +   
, *     +, *           +, *     +, *        +, *        +, *        +, *           +, 
*           +, *              + , *  + , *     +, *  +, *  +, *  +, *  +, *  +, *        +, 
*        +} 

 

Then by taking all unions the independent topology can be written as:                                       

    *    *  + *  + *  +  *  + *  + *  + *     +*     +*     +*     + *     +   
*     + *     + *     + *     + *     +  *     +  *     + *     + *        + *        + 
 *        + *        + *        + *        + *        + *        + *        +  
 *        + *        + *        + *        + *        + *         *        + *        + ,
*        +,*        +, *        +, *        +, *        + *        +,*        +, *        + 
*           +,  *           +,*           +, *           + , *           +, 
*           + *           + *           + *           + *           + *           + 

*           + *           + *           + *              + *              + *     + 
*           + *              + *              + *                 + *                 + 

,*                 +, *                 + }. 

 

5.3. In connections of the renal artery of human kidney. 

The kidneys are a pair of bean-shaped organs on either side of your spine, below your ribs and behind 

your belly. Each kidney receive blood from the paired renal arteries; blood exits into the paired renal 

veins. Each kidney is attached to a ureter, a tube that carries excreted urine to the bladder, and has 

around a million tiny filters called nephrons. 

The kidneys' job is to filter your blood. They remove wastes, control the body's fluid balance, and 

keep the right levels of electrolytes. All of the blood in your body passes through them several times a 

day [12]. 

 

 
Renal Artery Graph                                              Anatomy of Human Kidney 

 

https://www.webmd.com/urinary-incontinence-oab/picture-of-the-kidneys
https://www.webmd.com/back-pain/discs-of-the-spine
https://en.wikipedia.org/wiki/Renal_artery
https://en.wikipedia.org/wiki/Renal_vein
https://en.wikipedia.org/wiki/Renal_vein
https://en.wikipedia.org/wiki/Ureter
https://en.wikipedia.org/wiki/Urine
https://en.wikipedia.org/wiki/Urinary_bladder
https://www.webmd.com/heart/anatomy-picture-of-blood
https://www.webmd.com/drugs/drug-3399-oral+electrolytes+oral.aspx
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Fig. 7: Anatomy of Human Kidney and Renal Artery Graph. 

 

 

Now, let   (   ) be a graph represents the associations (connections) points of the renal artery of 

human kidney (which is a non-simple graph because it has two multiple  edges (     ) and (       ) 

) as in Fig.7  such that;         *            +   
 

We have a sub-basis family of the Independent topology as fellow: 

   = *                                            +   

   = *                                          +   

   = *                                          +  

   = *                                          +  

   = *                                             +  

   = *                                          +  

   = *                                          +  

   = *                                          +  

   = *                                        +  

    = *                                       +  

    = *                                      +  

    = *                                          +  

    = *                                          +  

    = *                                      +  

    = *                                      +  

    = *                                        + 

 

Then, by taking finitely intersection we find the basis, and after that find the all unions, the 

Independent Topology will obtained.  

 

Conclusions : 

A synthesis between graph theory and topology has been made. A topology with the set of vertices for 

any undirected graph has been associated, called idependent topology. The study of some properties 

of this new model of topology has been presented. It has been shown that this topology is an 

Alexandroff topology. Useful applications of idependent topology in biomathematics have been 

introduced. Therefore, this article can be considered as a point of applying another topological 

concept of graphs in scientific fields, which could lead to another significant applications in the 

future. 
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Abstract. 

       As a popularization of weakly  -regular rings , we tender the connotation of  W -regular rings , that is if 

for each    ( ) , there exist a natural number    such that           (           )  . In this treatise , 

numerous properties of this sort of rings are discussed , some important  results are secured . Using the 

connotation of  W -regular rings . It is show that : 

1- Let   be a right  W -regular ring and   -rings with                     ( ) and for at least one of 

a natural number  . Then  ( )   ( ) .              
 2- Let   a right  W -regular ring and       for each   ( ) . Then    is right    -ring . 

 3- Let   be a ring with  ( )   ( ) , for   each   ( ) . If any of the next conditions are hold  , then   is 

 W -regular rings :      

       i – Every maximal right ideal of   is a right annihilator and right    -ring .       

     ii- any simple singular right  -module is  -injective and   is semi prime .  

Keywords :  W -regular ring ,  -injective rings ,    -rings ,  -regular ring . 

j) Introduction . 

 

      Over this treatise,    refers to an associative ring with identity and each module is 

unitary  -module . We write   ( ) ,  ( ) , and  ( )  for the Jacobson radical , the right 

singular ideal and the set of nilpotent elements of   , respectively . We use the contraction  

 ( ) ,  ( ) for the left , right annihilator of   in   . 

 

        -injective rings were defined and discussed [5] , [10]. A ring  is define as a right  -

injective [10], whether each     ( ) ,   ( )     . Recall that   is known as a right 

(left ) weakly  -regular (W -regular ) [7] , if every     , there is a natural number   

such that           (           ). According to [4]   is said to be  -weakly regular 

ring if for any    ( ) ,      . A ring   is said to be reduced if  ( )=0 [3].   is said 

to be right ( left )     if for each 0       there is a natural number   such that 

        ( )   (  )(  ( )   (  ) ), every reduced is     but convers is not true [8] 

. A ring is define is semiprime ring if and only if it contains no non-zero nilpotent ideal [2] 

. 

 

mailto:raida.1961@uomosul.edu.iq
mailto:khedirjumaa@gmail.com
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        An element       in the ring       is said to be  right  (left)      - element  , if  there  is  

an  idempotent  element  ȩ  in    such  that      (    ) and    ( )   ( )( ( )  

 ( ))  .     is known as a right ( left )    -ring . whether  each element in       is right ( 

left )     -element [1].   For example      is    -ring [1] . 

 

        In this treatise, we shall popularize the connotation of weakly  -regular rings to 

 W -regular  , numerous properties of this sort of rings are discussed , little conditions 

under which  W -regular are    -ring,  -regular , strongly regular rings will be given . 

 

k) Popularized weakly  -regular rings . 

 

 

      Definition 2.1 :   is defined as a right ( left ) popularized weakly  -regular (  W -

regular  ) if , for each    ( ) , there exist a positive integer   such that 

          (           ) . 

 

      Example : Assume that     is division ring   . Then  the   2 by 2  upper  triangle ring 

   0
  
  

1 is  W -regular ring . Clearly   (  ( ))  0
  
  

1 and 

0
  
  

1
 

0
  
  

1 0
  
  

1
 

0
  
  

1  0
  
  

1
 

0
  
  

1 . 

 

      Remark : Every weakly    -regular ring is   W -regular ring but the converse is  not 

always true : Let     be the ring of integer . Then    ( ) = 0. Then   is  W -regular ring 

which is not W -regular ring. 

 

      Proposition 2.2 : If   is right  W -regular ring and  ( )     for all      ( ) . 

Then     =       . 

      Proof : Let   be a right  W -regular . Then for all      ( ) ,  there is a natural 

number   such that             , this implies   (      )    and hence (  

    )   (  )    , hence it follows that           . Therefore       . 

 

      Proposition 2.3 : if   is reduced ring . Then it is a right  W -regular iff   is left 

 W -regular . 
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      Proof : suppose that   is right  W -regular . Then for each    ( ) there is a natural 

number   and           such that             . Now  (         )     . Since   is 

reduced, then            . Therefore          . Hence    is left   W -regular .The 

converse is similar . 

 

      Following   [2], a ring   is said to be      if    ( )   ( ) . 

 

      Theorem 2.4 : Let   be a right  W -regular and   -ring with 

                    ( ) and for some a natural number   . Then  ( )   ( ) . 

      Proof : assume that      ( ) and let   be a right  W -regular . Then there is a 

natural number   and        such that                   (        )     . 

Then           (    ) . implies that   (     )    . Since    ( ) then     ( ) 

gives (     ) is invertible , so (     )    for some     , implies that (   

     )       . Thus   ( ) , and hence  ( )   ( ) . But   is    , therefore 

 ( )    ( ) and hence  ( )   ( ) . 

 

      Theorem 2.5: If   is      ring and right  W -regular , then  ( )   ( )    . 

      Proof : Let  ( )   ( ) not equal to zero . So there exist      ( )   ( ) . 

Since   is right  W -regular , so there is a natural number   and            such that  

          . Thus   (      )    , this implies  (      )   (  )   ( ) , implies 

 (      )    . Since    ( ) then     ( ) . So      ( ) , gives (      ) is 

invertible , so (      )    for some     , implies that(       )     . This is 

contradiction. Hence    ( )   ( )     . 

 

      Proposition 2.6 : Let   be reduced ring . Then   is right  W -regular iff    ( )⁄  is 

right  W -regular . 

      Proof : Suppose that    ( )⁄  is right  W -regular , then for every    ( ) there is a 

natural number   and        such that (   ( ))
 
 (   ( ))

 
(   ( ))(  

 ( ))
 
(   ( )) , implies that     ( )          ( ) . Therefore (         )   ( ) 

and so    (      )    ,implies that (      )   (    )   (  ) (   is reduced ) . 

Therefore   (      )    , which yields           . Hence   is right  W -regular, 

The conversely is clear .  
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l) The relevance among right  W -regular and other rings 

 

      Following [10] ,    is called right   -regular ring (  -regular ) . whether  for each   

 ( )          . 

 

      Theorem 3.1 : Assume that    is right  W -regular and        for each    ( )  

and a natural number   . Then   is   -regular . 

      Proof : Assume that     ( )  ,  and let    is right  W -regular  , then there is a 

natural number    such  that              ,  since       , then            

               implies that       for every    ( ) . Hence   is  -regular . 

 

      Proposition 3.2 : Suppose that    is    with        for each    ( )  and a natural 

number   . Then   is  -weakly regular ring iff   is  W -regular  . 

      Proof :  ( )   ( ) ( Theorem 2.4 ) . So   is  -weakly regular iff   is  W -regular  . 

 

      Theorem 3.3 : Suppose that   is right  W -regular and       for each    ( ) . 

Then    is right    -ring .   

Proof : Since       is right  W -regular ring  .  Then for any    ( ), there is a natural 

number   and        such that                        , when       ,  if 

we take          ,  then                  , then     is idempotent element 

and         . Now  let    ( ) , implies      , and        , implies that  

          ,  and  hence         . Therefore     (  )    and  we get    ( )  

 (  ) ( ) . Now let   (  ) , implies       and       ,  implies that      . 

Therefore   ( )    and  we get (  )   ( ) ( )   From ( ) and ( ) we  get  (  )  

 ( ) . Hence    is     -ring . 

 

      Following [10]   ,   is said to be right    -ring . If    is projective for each   ( ) . In 

[10] we give the following lemma: 

 

      Lemma 3.4 : Let   be a ring .Then it is  right    -ring iff  ( )     , ȩ is some 

idempotent element in   ,    ( ) . 

 

      Proposition 3.5 : If   is right    -ring , then  ( )     .  
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      Proof : Assume that        ( ) ,      . it is clear that    is projective , then  ( ) 

must be direct summand of   . But    ( ) ,  ( ) it then essential in   , but this is 

contradiction. Therefore  ( )    . 

 

      Lemma 3.6 : Assume that   is right    -ring ,  ( )   ( ) , for each    ( ) . Then   

is reduced . 

      Proof : Trivial . 

 

      Theorem 3.7 : Let   is right    -ring ,  ( )   ( ) , for each    ( ) , and any right 

maximal ideal of   is a right annihilator .Then   is   W -regular . 

      Proof : Suppose that    ( ) , we must show that       (  )   . If it is not hold, 

then there is a right maximal ideal   containing       (  ) . If   ( ), for some 

     ( ) , we have    (      (  ))   (  )   (  )     ( ) , which implies 

   ( ) . Then           , a contradiction . Therefore      (  )   . In particular 

         , with       , and     (  ) . Hence           which proves   is right  

 W -regular . 

 

      Following [3],   is called strongly regular ring , if for each    , there is    , 

     .     

 

      Theorem 3.8 : Assume that   is right  W -regular,  ( ) is reduced and        , for 

each    ( ) . Then  ( ) is strongly regular ideal . 

      Proof : Assume that  ( ) be a reduced of   and let    ( ) . Since   is right   W -

regular , there is a natural number   and         such that            , which implies 

  (      )    and (      )   (  )   ( ) , gives             (        ) . 

Consider (     )                             (   )   (   )   

                . But   ( ) is reduced , then        , implies that       . 

Hence  ( ) is strongly regular ideal . 

 

      Theorem 3.9 : Assume that   is semi prime and any singular simple right  -module is  -

injective with  ( )   ( ) , for each    ( ) . Then   is right   W -regular .  

      Proof : Assume that       (  )    , for every    ( )  . If      (  )    , then 

there is a right maximal  ideal   of   such that       (  )    and if   is not essential 

of   . Then   is a direct summand. And then there exists          such that   ( ) . 
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Now ,              ( )  , implies that         and (    )             

. So        (  is semi prime ) and       ,    (  )     ( )  , and      , a 

contradiction . So   is maximal essential right ideal of  . Since   ⁄  is  -injective , then for 

any right  -homomorphism,   :      
 ⁄  , known as  (   )      , for every  

    . Note f is well define and it will be extended from   into   ⁄  . So     

 (  )        , where     , and (      )   . Since           . So that 

    , and this is contradiction , hence       (  )    . In specific          , 

              . Therefore            , and   is right   W -regular . 

 

      From Theorem 3.9 and Lemma 3.6 we get : 

 

     Corollary 3.10 : If every simple singular right  -module is  -injective and   is right 

   -ring ,  ( )   ( ) , for each    ( ) . Then   is    W -regular . 
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ABSTRACT 

 

The main objective of this paper is to use the concept    -openness to offered new classes of 

separation axioms in ideal spaces. Those new classes are;    -T0-space,    -T1-space,    -T2-

space. Also new type of concepts of convergence in ideal spaces via the    -open set were 

offered. 

 

Keywords.    -closed set,     -functions,     -functions,    -continuous function, ideal,    -

T0-space,    -T1-space,    -T2-space,    -convergence. 

 

1- Introduction 

An α-open was studied in 1965 by O. Njastad, as a subset   is α-open set where   

   (  (   ( )))[1,2]. The notion of ideal was studied by Kuratowski[3,4], that   is an ideal on  , 

when   is a collection of all subsets of   an ideal have two properties (if      , then      ) 

and (if     and    , then    . 

There are many types for the ideal[5-8] 

i.  * +: the trivial ideal where  ={ +. 

ii.   : the ideal of all                    

    {    :    (  ( ))={ }}. 

iii.  : the ideal of all finite subsets of   

   = {    :   is a finite set}. 

 

mailto:Safsaf201030@gmail.com
mailto:ranamumosa@yahoo.com
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The collection of all α-open sets denoted by"   " and the collection of all α-closed denoted 

by     . 

 

 

2- On    -closed set 

 

Definition 2.1. In ideal topological space (     ), Let    .   is said  - -g-closed set denoted by 

"   -closed" ,if  -    then,   ( )-    where     and   is an α-open sets. 

Now,    is an  - -g-open sets denoted by "   -open" .The collection of all    -closed sets 

where     , denoted by "    ( ). The collection of all    -open sets "    ( )". 

  

Example 2.2. Consider the space (     ) where  ={ⱳ,ⱱ},  ={ , ,{ⱳ}} and  ={ ,{ⱱ}}.Then 

  ={ , ,{ⱳ}} and   ={ , ,{ⱱ}}, so     ( )      ( )  * , ,{ⱳ},{ⱱ}}. 

 

Example 2.3. Consider the space (     ) where  ={ⱳ,ⱱ,ⱬ},  ={ , ,{ⱳ}} and  ={ ,{ⱱ}}. Then 

  ={ , ,{ⱳ},{ⱳ,ⱱ},{ⱳ,ⱬ}}   ={ , ,{ⱱ,ⱬ},{ⱬ,},{ⱱ}}, so     ( )={ , ,{ⱱ,ⱬ},{ⱬ},{ⱳ,ⱬ--     ( )  

* , ,{ⱳ},{ⱳ,ⱱ},{ⱱ}}. 

 

Remark 2.4. 

i.  Each closed set in (    ) is an    -          (     ). 

ii.  Each open set in (    )  is an    -        (     ). 

Proof: 

i.  Let   is any closed set in (     ) and   be an α-open set such that  -    since   ( )    this 

implies   is an    -closed set. 

ii. Let    , then    is a            this implies    is an    -closed set, so   is an    -open 

set. 

 

The converse of Remark 2.4 is not true in general see Example 2.2. Since {ⱳ} is closed in 

(     ), but not closed in (   ), and {ⱱ} is open in (     ), but not open in (   ). 

 

2.1 Open function 

 

Definition 2.1.1. The function  : (     )  (     ) is called; 
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i.     -open function, denoted by "    -function" if  ( ) is an    -open set in  . Whenever   is 

an    -open in  . 

ii.    
 -open function, denoted by "   

  -function" if  ( ) is an    -open set in  . Whenever   

  . 

iii.     
  -open function, denoted by "   

   -function" if  ( ) is an open set in  . Whenever   is an 

   -open set in  . 

 

Proposition 2.1.2. Let  : (     )  (     ) is a function; 

i.  If   is an open function then   is    
  -function 

Proof: Let    , since ᶂ is an open function then  ( )  , since for each open sets is an    -open 

set then  ( ) is an    -             , then   is an    
  -        .                                                   

ii.  If   is an    
   -function then   is an     -         . 

Proof: Let   is an    -             , since   is an    
   -function, then  ( )  , since for each 

open set is an    -open set, this implies  ( ) is an    -             , then ᶂ is an    -

             .                                                                                                                                   ∎ 

iii.  If   is an     -function then   is an    
  -        . 

Proof: Let    , since for each open set is an    -        , then  ( ) is an    -             , 

thus   is an    
  -function.                                                                                                                 

iv. If   is an    
   -function then   is an open function. 

Proof: Let    , since for each open set is an    -        , then   be an    -open set in  , since 

  is an    
   -function thus  ( ) is                 , then   is an open function.                              

v. If ᶂ is an    
   -function then ᶂ is an    

  -function. 

Proof: The prove is complete. 

 

             , examples show that the opposite direction of           proposition is incorrect. 

 

Example 2.1.3. A             (     )  (     ), where   {        } such that  (  ) = (  ), 

 (  )  (  ),  (  ) = (  ),  ={ , ,{  }},  ={ } and  ={ ,{  },{  },{  ,  }} then 

  ={ , ,{  },{     },{     }} then     ( )  * , ,{  ,  }} and     ( )  * , ,{  }}. So 

    ( )   ( ) and     ( )   ( )  

Then   is     -function and    
  -function which is not    

   -function and not open 

function, since {  }                     and    -        , but  (  )=(  ) which is not open. 

 

Example 2.1.4. The function    (     )  (     )  where  ={        } such that  ( )  ( )   ẻ Ӽ, 

 ={ , ,{  }},  ={ ,{  },{  },{     }} and  ={ +. Then   =,Ӽ, ,{  },{     },{     }} then     ( )  

 ( ) and     ( )   ( )  So     ( )  * , ,{  ,  }} and     ( )  * , ,{  }}. 
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                       ᶂ is open function and    
  -function but it is not     -function and not 

   
   -function, since {  }      ( ) but  (  )  (  ) which is not open and not    -open set. 

 

Definition 2.1.5. The function   (     )  (     ) is said, 

i.     -closed function, denoted by "    -function" if ᶂ( ) is    -                       is on 

   -           . 

ii.     
 -closed function, denoted by "   

  -function", if ᶂ( ) is    -                       is an 

           . 

iii.     
  -closed function, denoted by "   

   -function", if ᶂ( ) is closed in   whenever   is an    -

closed in  . 

 

Proposition 2.1.6. Let    (     )  (     ) is function, 

i.  If   is a closed function then   is an    
  -function. 

ii.  If   is an    
   -function then   is an     -function. 

iii.  If   is an    
   -function then   is a closed function. 

iv. If   is an     -function then   is an    
  -function. 

v. If   is an    
   -function then   is an    

  -function. 

Proof: By Remark 2.4 and Definition 2.1.5 the prove is complete.                                                   

 

Example 2.1.3 and 2.1.4 show that the opposite direction of the above proposition is incorrect. 

 

2.2- Near continuous function 

 

           2.2.1.              (     )  (     ) is called; 

i.   - -g-continuous function, denoted by "   -continuous function", if    ( ) is an    -

             , where    . 

ii.  Strongly  - -g-continuous function, denoted by "Strongly    -continuous function" if 

   ( )   , whenever   is an    -             . 

iii.   - - -irresolute function, denoted by "   -irresolute function", ", if    ( ) is an    -

             , where   is an    -             . 

 

Proposition 2.2.2. Let   (     )  (     ) is a function; 

i.  If   is a                    , then   is an    -continuous function. 

ii.  If   is Strongly    -                                                   . 

iii.  If   is an    -irresolute function, then   is an    -continuous function. 

iv. If   is Strongly    -continuous function, then   is an    -irresolute function. 
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v. If   is Strongly    -continuous function, then   is an    -continuous function. 

Proof: 

i.  Let     . Since   is a continuous function, then    ( )    .    ( ) is an    -              By 

Remark 2.4. Hence   is an    -continuous function.           

ii.  Let      . By Remark 2.4,   is an    -                      is Strongly    -           

function, then    (Ơ)    . Hence   is a continuous function.          

iii.  Let     , this implies to   is    -             . Since   is an    -irresolute function then    ( ) 

is an    -             . Then   is an    -           function.        

iv. Let   is an    -             . Since   is a Strongly    -                     then    ( )   ῖ. By 

Remark 2.4, ᶂ( ) is    -             . This implies ᶂ is an    -irresolute function.       

v. Let     this implies   is an    -         and since ᶂ is a Strongly    -continuous function, 

thus    ( ) is             Ӽ by Remark 2.4    ( ) is an    -open set, so ᶂ is an    -continuous 

function.           

 

                        show that the opposite direction of the above proposition is 

incorrect. 

 

Example 2.2.3.                 (     )  (     )  where  ={        } such that  (  ) = (  ), 

 (  )  (  ),  (  ) = (  ),   * , ,{  }},  ={ } and  ={ ,{  },{  },{  ,  }} then 

  ={ , ,{  },{     },{     }} then     ( )  * , ,{  ,  }} and     ( )  * , ,{  }}. So 

    ( )   ( ) and     ( )   ( )  

It is easy to see that ᶂ is continuous and    -continuous function but not    -irresolute 

function since {  } is an    -              but    (  ) =    is not an    -open set in  . 

 

Example 2.2.4.                (     )  (     ), where  ={        } such that  (  ) = (  ), 

 (  )  (  ),  (  ) = (  ),   * , ,{  }},  ={ } and  ={ ,{  },{  },{  ,  }} then 

  ={ , ,{  },{     },{     }} then     ( )  * , ,{  ,  }} and     ( )  * , ,{  }}. So 

    ( )   ( ) and     ( )   ( )  

 

It is easy to see that   is    -continuous function but not continuous function since {  }   but 

   (  ) =    is not open in  , and not Strongly    -continuous function since {  }      ( ) but 

   (  ) =    is not open in  . 

3-On    -Separation Axioms. 

 

Definition 3.1. A space (     ) is said  -g-  -T0-space denoted by "   -T0-space" if            an 

   -open set contains one of them. 
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Example3.2.    (     )         ={        },  ={ , ,{  }{     }}  ={ ,{  }. 

Then   ={ , ,{  },{     },{     }}   ={ , ,{  },{  +,{     }},        ( )={ , ,{  },{  },{     },{

     } and     ( )={ , ,{  },{  },{     },{     }}. Then (     ) is an    -T0-space. 

 

Theorem 3.3. The space (     ) is an    -T0-space if and only if,        , there is an    -closed 

set contains one of them. 

Proof;( ) Let          where      .Since   is an    -T0-space, then there is an    -open 

set   contains one of them, then ( - ) is an    -closed set contains the other one. 

( ) Let          where       and there is an    -closed set   contains one of them ( - ) is 

an    -open set contains the other one.          

 

Remark 3.4. If (   ) is a T0-space then (     ) is an    -T0-space. 

Proof: Let          where      . Since (   ) is a T0-space, then there is   contains one of 

them, where   is an open set. Then   is an    -open set contains one of them, since by Remark 

(2,4) for each open set in (   ) is an    -open in (     ).          

 

Definition 3.5. A space (     ) is said  -g-  -T1-space denoted by "   -T1-space" if        , 

there are    -open set  1 and  2, satisfies      ( 1- 2) and     ( 2- 1). 

 

Example 3.6. Let  ={        },  ={ , } and  = ( ).   =   =  ( ),     ( )=     ( ) =  ( ). Then 

(     ) is an    -T1-space. 

Remark 3.7. If (   ) is a T1-space then (     ) is an    -T1-space. 

Proof: Let        , where      . Since (   ) is a T1-space, then there are  1, 2 where  1 and 

 2 are two open set, such that    ( 1- 2) and    ( 2- 1). By Remark 2.4,  1      2 are    -

open sets whenever    ( 1- 2) and    ( 2- 1).          

Proposition 3.8. Every    -T1-space is an    -T0-space. 

Proof: Let        , where      . Since (     ) is an    -T1-space, then there are    -open 

sets  1, 2 whenever    ( 1- 2) and    ( 2- 1). Then there is an    -open sets   contains 

one of them.          

 

The opposite direction of proposition 3.8, is generally incorrect, as the following example. 
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Example 3.9. A space (     ) is an    -T0-space where  ={        }, 

 ={ , ,{  },{  +,{     }}      ={ },  ={ , ,{  },{  +,{     },{     },*     }},  ={ , ,{  +,{  },{  +

,{     },{     }}     ( )={ , ,{  },{     },{     }}     ( )={ , ,{  },{  },{     }}. Then the 

space (     ) is not    -T1-space, since the elements      ,      -open set   contains    

which does not contains   . 

 

Theorem 3.10. For a space (     )  (     ) is an    -T1-space if and only if        ,      -closed 

sets  1 and  2, such that     ( 1-  2),     ( 2-  1). 

Proof:( ) Let        , where      . Since   is an    -T1-space, then      -open sets  1 and 

 2, such that    ( 1- 2) and    ( 2- 1). Then      -closed sets   
  and   

  such that 

     
 -  

 ,      
 -  

  where   
 =  1 and   

 =  2. Then      -closed sets  1 and  2 satisfy     

( 1    
 ) and     ( 2    

 ), therefore     ( 1-  2) and     ( 2-  1). 

( ) Let        , where      ,      -closed sets  1 and  2 satisfy     (   
   1) and     

(   
   2), then      -open sets    

  and    
  whenever    (  

 -  
 ),    (  

 -  
 ), where   

 =  1, 

  
 =  2.          

 

Proposition 3.11. A space (     ) is an    -T1-space, if * + is an    -closed set for each elements 

  in  . 

Proof:  Let        , where      . Since *  + *  + are    -closed sets. So ( -*  +) and ( -*  +) 

are    -open sets. Then      -open sets  1 and  2 where  1= ( -*  +) and  2= ( -*  +) such 

that    ( 1- 2) and    ( 2- 1).          

 

Definition 3.12. A space (     ) is said  -g-  -T2-space denoted by "   -T2-space" if        , 

there are    -open sets  1 and  2, satisfies       1 and      2 and  1   2= . 

Remark 3.13. If (   ) is a T2-space, then (     ) is an    -T2-space. 

Proof: Let        , where      . Since (   ) is a T2-space, then    1,  2     satisfy      1 

and      2 and  1   2= . By Remark 2.4, there are    -open sets  1 and  2, satisfies       1 

and      2 and  1   2= .        

 

Proposition 3.14. Every    -T2-space is an    -T1-space. 

Proof: Let (     ) is an    -T2-space and Let        , where      . Since (     ) is a T2-space, 

then there are    -open sets  1 and  2, satisfies       1 and      2 and  1   2= . Then there 

are    -open sets  1 and  2, such that      1-  2 and      2-  1.        
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The opposite direction of proposition 3.14, is generally incorrect. 

Example 3.15. Let (     ) is a space, such that    , the set of all natural numbers ῖ = ῖ cof, the 

collection of all complement finite topology and   =  , then      cof,     ( ) ={       is a 

finite set}   , then (     ) is an    -T1-space but not    -T2-space. 

Proposition 3.16. If (   ) is a Ti-space i={1,2,3} then the ideal space  (     ) is an    -Ti-space. But 

the converse is not true, as shown in the following Arrow chart 

Arrow chart (3.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relationships between Ti-space and    -Ti-space 

 

The next example shows that the converse of the arrow chart 3.1is incorrect. 

(Ӽ ῖ) is T2-space (Ӽ ῖ  ) is an 𝛼𝑔 -T2-space 

(Ӽ ῖ) is T1-space 

(Ӽ ῖ  ) is an 𝛼𝑔 -T0-space 

(Ӽ ῖ) is T0-space 

(Ӽ ῖ  ) is an 𝛼𝑔 -T1-space 
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Example 3.17. Let (     ) is an    -Ti-space, where  ={        },  ={ , , {  ++ and  = ( ) is not 

Ti-space         *1,2,3}, and   ={ , , 

{  +,{     },*     }},  ={ , ,{  +,{  },*     ++         ( )=     ( ) =  ( ). 

 

3.1- On    -Separtion Axioms via some types of function. 

 

Proposition 3.1.1. If (     ) is an    -Ti-space whenever (i {0,1,2} and   (     )  (     ) is a 

surjective,     -function implies that (     ) is an    -Ti-space. 

Proof: If,    : Let      , where        . Since   is a surjective function then    (  )   , 

   (  )   , and    (  )     (  ), where    (  )     (  )   , since   is an    -T0-space then 

there is an    -                contains one of elements    (  ) and    (  ). Since   is an     -

function. Then ᶂ( ) is an    -         contains one of two elements   and   . Hence   is an    -

T0-space. 

If    , Let      , where        . Since   is a surjective function then    (  )   ,    (  ) 

  , and    (  )     (  ), where    (  )     (  )   , since   is an    -T1-space then there is an 

   -open sets  1 and  2 in   such that    (  )   ( 1- 2) and    (  )   ( 2- 1). Since   is an 

    -function. Then ᶂ( 1) and  ( 2) are    -        , such that    (ᶂ( 1)-  ( 2)) and    

(ᶂ( 2)-  ( 1)). Hence   is an    -T1-space. 

If    , Let      , where        . Since   is a surjective function then    (  )   ,    (  ) 

  , and    (  )     (  ), where    (  )     (  )   , since   is an    -T2-space then there is an 

   -open sets  1 and  2 in   such that    (  )   1,  
  (  )   2 and  1   2    Since   is an 

    -function. Then ᶂ( 1) and  ( 2) are    -        , such that     ᶂ( 1) and     ᶂ( 2) and 

ᶂ( 1)   ( 2)  ( )   . Hence   is an    -T2-space.             

 

Proposition 3.1.2. If   is a Ti-space (i {0,1,2}) and   (     )  (     ) is a surjective    
 o-function 

then   is an    -Ti-space. 

Proof: Similar to the proof of proposition 3.1.1. Since   is an    
 -              then ᶂ( ) is an 

   -         in   for all            in  .               

 

Proposition 3.1.3. If (     ) is an    -Ti-space whenever (i {0,1,2} and   is a surjective    
  o-

function from (     ) to (     ) then (   ) is Ti-space. 

Proof: Similar to the proof of proposition 3.1.1. Since   is an    
  -              then ᶂ( )    , 

whenever   is an    -         in  .              
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Proposition 3.1.4. If   is a Ti-space (i *     +) and   is an injective    -continuous function from 

(     ) to (     ) then   is an    -Ti-space. 

 

Proof: If    : Let      , where        . Since   is a injective function then  (  )   (  ), 

where  (  ),  (  )   . So   is a T0-space, then      contains one of the two elements  (  ) or 

 (  ). Since   is an    -continuous, then    ( ) is an    -         contains one of two elements 

   or   . Hence   is an    -T0-space. 

If    : Let      , where        . Since   is a injective function then  (  )   (  ), where 

 (  ),  (  )   . So   is a T1-space, then    1   2  , such that   (  )   ( 1- 2) and   (  )   ( 2-

 1). Since   is an    -continuous, then    ( 1) and    ( 2) are    -         whenever 

   (   ( 1)- 
  ( 2)),    (   ( 2)- 

  ( 1)). Hence   is an    -T1-space. 

If    : Let      , where        . Since   is a injective function then  (  )   (  ), where 

 (  ),  (  )   . So   is a T2-space, then    1   2  , such that   (  )   1 and   (  )   2 and  1 

  2  . Since   is an    -continuous, then    ( 1) and    ( 2) are    -         whenever 

      ( 1),       ( 2) and    ( 1)     ( 2)    ( )   . Hence   is an    -T2-space. 

               

 

Corollary 3.1.5. If   is a Ti-space and   is an injective continuous function from (     ) to (     ) 

then   is an    -Ti-space whenever (i *     +). 

Proof: Since, every continuous function is an    -continuous function, then by proposition 2.2.2 

and by proposition 3.1.4, then   is an    -Ti-space.           

 

Proposition 3.1.6. If   is an    -Ti-space and   is an injective strongly    -continuous function 

from (     ) to (     ) then   is a Ti-space whenever (i *     +). 

Proof: Similar to the proof of proposition 3.1.4.           

 

Proposition 3.1.7. If   is an    -Ti-space and   is an injective    -irresolute function from 

(     ) to (     ) then   is an    -Ti-space whenever (i *     +). 

Proof: Similar to the proof of proposition 3.1.5.           

 

4- On    -convergence. 
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Definition 4.1. Let (     ) be an ideal topological space,       and (ᶊŋ)ŋ   be a sequence in  . 

Then (ᶊŋ)ŋ   is called    -convergence to    in simple terms ᶊŋ    if for every    -           

contined   ,       where ᶊŋ    ŋ   . 

 

A sequence (ᶊŋ)ŋ   is called    -divergence if it is not    -convergence. 

 

Theorem 4.2. If (     ) is an    -T2-space then every    -convergence sequence in   has only 

one limit point. 

Proof: If we consider (ᶊŋ)ŋ   be a sequence in   and ᶊŋ    and ᶊŋ   ,       where 

       . Since (     ) is an    -T2-space, then there are disjoin    -          1      2 such 

that     1 and     2 since ᶊŋ   and     1 leads to   1   ; ᶊŋ  1  ŋ   1. So ᶊŋ 

  and     2 leads to   2   ; ᶊŋ  2  ŋ   2. Hence  1   2  , and that a contradiction. 

           

 

The precondition that a space   is an    -T2-space is very requisite to make Theorem 4.2 is 

valid. 

 

Example 4.3. For a space (     ) where  ={        }, 

 ={ , ,{  +,{     ++      =* +        ={ , ,{  +,{     + *     +}, then     ( )  

{    *  + *     +}         ( ) ={    *  + *     +} . 

 

The sequence (ᶊŋ)ŋ   in  , where ᶊŋ =     ŋ, has one limit point; ᶊŋ   . But (     ) is not 

   -T2-space. 

 

The following proposition explains the relationships between convergence and    -

convergence to   . 

 

Proposition 4.4. If a sequence (ᶊŋ)ŋ   is an    -convergence to    in an ideal space  , then it is a 

convergence to   . 

Proof: Let   is open set in   contains   . By Remark 2.4,      -         in   contains   . Since 

(ᶊŋ)ŋ   is an    -convergence to    then      , where ᶊŋ    ŋ   . Hence (ᶊŋ)ŋ   is a 

convergence to   .           
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Reverse the proposition 4.4, is incorrect in general. 

 

Example 4.5. For an ideal space (     ), where    , the set of all natural numbers  ={ , } and 

 = ( ). Then   =  ={ , }, so     ( )=     ( ) =  ( ). The sequence (ᶊŋ)ŋ  , where ᶊŋ   , 

    , is convergent to  =1 which is not    -convergence. 

Proposition 4.6. Let   (     )  (     ) be an    -irresolute function and (ᶊŋ)ŋ   be a sequence 

in  . If ᶊŋ    in   then  (ᶊŋ)   (  ) in  . 

Proof: Let   is an    -open set in   contains  (  ). Since   be an    -irresolute function, then 

   ( ) is an    -         in   contains   . By (ᶊŋ)ŋ   is an    -convergence to   , then      , 

where ᶊŋ    ( )  ŋ   , implies      , where  (ᶊŋ)     ŋ   . Hence  (ᶊŋ) is an    -

convergence to  (  ).           

Theorem 4.7. Let   (     )  (     ) be an    -continuous function and (ᶊŋ)ŋ   be a sequence 

in  . If ᶊŋ    in   then  (ᶊŋ)                (  ) in  . 

Proof: Let   is an open set in   contains  (  ). Since   be an    -continuous function, then    ( ) 

is an    -         in   contains   . By (ᶊŋ)ŋ   is an    -convergence to   , then      , where 

ᶊŋ    ( )  ŋ   , implies      , where  (ᶊŋ)     ŋ   . Hence  (ᶊŋ) is an    -convergence to 

 (  ).           

Proposition 4.8. Let   (     )  (     ) be a strongly-   -continuous function and (ᶊŋ)ŋ   be a 

sequence in  . Then  (ᶊŋ)                (  ) in   whenever if ᶊŋ    in  . 

Proof: Let   is an    -open set in   contains  (  ). Since   is a strongly-   -continuous function, 

then    ( ) is an          in   contains   . By (ᶊŋ)ŋ   is a convergence to   , then      , where 

ᶊŋ    ( )  ŋ   , implies      , where  (ᶊŋ)     ŋ   . Hence  (ᶊŋ) is an    -convergence to 

 (  ).           
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Abstract 

We will apply the classical Banach contraction for proving the generalized 

Hyers-Ulam stability and Hyers-Ulam stability of Volterra integral equations with 

two variables. 

1 Introduction 
Volterra integral equations appearance in 1896, therefore it have been extensively 

studied. Interest in this equation has emerged due to its importance in applications, for instance in 

chemical reactions,fluid flow, , semiconductors and elasticity, see 

([3, 6, 11, 19]). 

We say a functional equation is stable when for every approximate solution, there 

exists near it an exact solution. The concept of stability has been studied for different 

equations in a quite extensive way, during the last decades. 

In 1940,S.M. Ulam [32] posed a famous question concerning the stability of functional equations: 

\Give conditions in order for a linear function near an approximately 

linear function to exist." In 1941, a partial answer to the equation of Ulam given by 

D.H. Hyers [12] for additive functions defined on Banach spaces: Suppose that X and 

Y are real Banach spaces and " > 0. Then for every function ^ : X ! Y with the 

property 
  ^ (x + y) - ^(x) - ^(y)  ≤ "  (x; y 2 X); 
there exists a unique additive function T : X ! Y such that the relation 

below comes  

true 

  ^ (x) - T(x)  ≤ "   

(x 2 X): 
 

In 1978, Th.M.Rassias in ([26]) considered unbounded right-hand sides in the inequality introducing 

therefore called the Hyers-Ulam-Rassias stability. 

After that, many mathematicians have extended Ulam’s problem to other functional 

equations and generalized Hyers’s result in various directions (see [7, 13, 18, 26]). 
02010 Mathematics Subject Classification: 45M10, 45D05, 34K20, 47H10. 

0Key words and phrases: Integral equations; generalized Hyers-Ulam stability; Banach’s fixed point 

theorem;Volterra Integral equations. 

1 
2 

A generalization of Ulam’s problem was recently proposed by replacing functional 

equations with differential equations (see [2, 20, 21, 30, 31, 15, 17, 16, 28, 29, 23, 24, 

25, 14]). M.Gachpazen and O. Baghani ([9]), by successive method proved the HyersUlam stability of 

a nonlinear integral equation, then in 2011, M.Akkouchi, A. Bounabat 

and M.H.L.Rhali ([1]) proved Hyers-Ulam-Rassias by the classical Banach contraction. 

Despite the large amount of workes on integral equations.(see [5, 10, 22, 4]). 

In this paper, we proving Hyers-Ulam-Rassias stability, by using the fixed point 

alternative theory, for Volterra-type integral equations with two variables . 

u(x; y) = f(x; y) + ∫0x g(x; y; ξ; u(ξ; y))dξ + ∫0x ∫0y h(x; y; σ; τ; u(σ; τ))dτdσ 

for x; y 2 R+, where f 2 C(E; Rn),g 2 C(E1 × Rn; Rn) and h 2 C(E2 × Rn; Rn) are 
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functions and u is the unknown function to be found. 

In addition, we proving generalize Hyers-Ulam stability for the Volterra-Fredholm 

-type integral equation in the form 

u(x; y) = h(x; y) + ∫0x ∫0y F(x; y; s; t; u(s; t))dtds + ∫01 ∫01 G(x; y; s; t; u(s; t))dtds; 

for x; y 2 R+, where h 2 C(E; Rn),F 2 C(E2 × Rn; Rn) ,G 2 C(E2 × Rn; Rn). 

2 Preliminaries 
Definition 2.1 For a nonempty set Y , a function ^ : Y × Y ! [0; 1] is called a 

generalized metric on Y if and only if the function ^ satisfies : 

(i) ^(x1; x2) = 0 if and only if x1 = x2; 

(ii) ^(x1; x2) = ^(x2; x1) for all x1; x2 2 Y ; 

(iii) ^(x1; x2) ≤ ^(x1; y) + ^(y; x2) for all x1; x2; y 2 Y . 

Theorem 2.1 (The fixed point alternative) [8] Assume that (X; d) is a generalized 

complete metric space and ^ : X ! X is a strictly contractive operator with Lipschitz 

constant L < 1. If there exists a nonnegative integer c such that d(^c+1x; ^cx) < 1 

for some x 2 X, then the followings are true : 

(a) The sequence f^nxg convergens to a fixed point x  of ^; 

(b) x  is the unique fixed point of ^ in 

X  = fy 2 X=d(^cx; y) < 1g ; 

(c) If y 2 X , then d(y; x ) ≤  
1-1Ld(^y; 

y): 

 
3 

Throughout this paper we will use the notation E = R+ × R+, E0 = Ia × Ib, 

E1 = f(x; y; s) : 0 ≤ s ≤ x < 1; y 2 Rg and E2 = f(x; y; s; t) 2 E2 : 0 ≤ s ≤ x < y; 0 ≤ 

t ≤ y < 1g. 

Let S be the space of all functions u 2 C(E; Rn) which satisfies the condition. 

ju(x; y)j = O(exp(Λ(x + y))); (2.1) 

where Λ > 0 is a constant. 

we define in the space S the norm 

jujs = sup(x;y)2E[ju(x; y)j (exp(-Λ(x + y)))]; (2.2) 

such that, we get Banach space from S with norm defined in (2.2). From the condition 

(2.1) we get there exists a constant N ≥ 0 such that ju(x; y)j ≤ N(exp(-Λ(x + y)). By 

using this fact in (2.2), we observe that 
ju(x; y)js ≤ N:  

Now, define a metric function ds : S × S -! [0; 1] such that 
(2.3) 

ds(u(x; y) - v(x; y)) = ju(x; y) - v(x; y)js ; 

for all u; v 2 S. We obtain a generalization metric space (S; ds) 

Lemma 2.2 ([27]) Suppose that 

(i) the functions g; h in equation (3.1) satisfy the conditions 

jg(x; y; Ω; u) - g(x; y; Ω; u)j ≤ a(x; y; Ω) ju - uj (2.4) 
jh(x; y; σ; τ; u) - h(x; y; σ; τ; u)j ≤ b(x; y; σ; τ) ju - uj  

where a 2 C(E1; R+),b 2 C(E2; R+) 
(2.5) 

(ii) for λ as in (2.1), 

(iia) There exists a constant α such that 0 < α < 1 and 

∫0x a(x; y; Ω)exp(λ(Ω+y))dΩ+∫0x ∫0y b(x; y; σ; τ)exp(λ(σ +τ))dτdσ ≤ αexp(λ(x+y)) 

(2.6) 

(iib) There exists a constant β such that 0 < β and 
f(x; y) - ∫ h(x; y; σ; τ; 0)dτdσ ≤ βexp(λ(x + y))  
0x g(x; y; Ω; 0)dΩ + ∫0x ∫0y where f; g; h are the functions in equation (3.1). Then the operator T which 

defined as 

follows: 

(Tu)(x; y) = f(x; y)+∫0x g(x; y; Ω; u(Ω; y))dΩ+∫0x ∫0y h(x; y; σ; τ; u(σ; τ))dτdσ (2.8) 

where u 2 S is maps S into itself. 
4 
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Proof. 

We must verify that (2.1) is fulfilled. We have from (2.8) and (2.3) 

j(Tu)(x; y)j ≤ f(x; y) + ∫0x g(x; y; Ω; 0)dΩ + ∫0x ∫0y h(x; y; σ; τ; 0)dτdσ 

+ ∫0x jg(x; y; Ω; u(Ω; y)) - g(x; y; Ω; 0)j dΩ+∫0x ∫0y jh(x; y; σ; τ; u(σ; τ)) - h(x; y; σ; τ; 0)j dτdσ 

≤ βexp(λ(x + y)) + ∫0x a(x; y; Ω) ju(Ω; y)j dΩ + ∫0x ∫0y b(x; y; σ; τ) ju(σ; τ)j dτdΩ 

≤ βexp(λ(x+y))+jujs [∫0x a(x; y; Ω)exp(Ω; y)dΩ+∫0x ∫0y b(x; y; σ; τ)exp(λ(σ+Ω))dτdσ] 

≤ [β + Nα]exp(λ(x + y)) 

Hence, Tu 2 S and mean that is T maps S into itself.  

3 Main Results 
3.1 Volterra-type integral equation 
In this subsection, we consider the integral equation 

u(x; y) = f(x; y) + ∫0x g(x; y; Ω; u(Ω; y))dΩ + ∫0x ∫0y h(x; y; σ; τ; u(σ; τ))dτdσ (3.1) 

for x; y 2 R+, where f 2 C(E; Rn),g 2 C(E1 × Rn; Rn) and h 2 C(E2 × Rn; Rn) are 

functions and u is the unknown function to be found. 

We start with the following theorem which ensures the equation (3.1) has HyersUlam-Rassias 

stability. 

Theorem 3.1 Under the same conditions in Lemma (2.2), let θ is a continuous function θ : E -! R+ and 

u 2 S is such that 
u(x; y) - f(x; y) + ∫ h(x; y; σ; τ; u(σ; τ))dτdσ ≤ θ(x; y); 
0x g(x; y; Ω; u(Ω; y))dΩ + ∫0x ∫0y (3.2) 

then there is a unique solution u0 2 C(E; R+) of integral equation (3.1) and constant 

0 < α < 1 such that 

ju(x; y) - u0(x; y)j ≤ θ(x; y) 

1 - α 
5 

Proof. Let u; v 2 S. Using the hypotheses, consider the operator defined in (2.8) 

ds(Tu; T v) = j(Tu)(x; y) - (T v)(x; y)j ≤ ∫0x jg(x; y; Ω; u(Ω; y)) - g(x; y; Ω; v(Ω; y))j dΩ 

+ ∫0x ∫0y jh(x; y; σ; τ; u(σ; τ)) - h(x; y; σ; τ; v(σ; τ))j dτdσ 

≤ ∫0x a(x; y) ju(Ω; y) - v(Ω; y)j dΩ + ∫0x ∫0y b(x; y; σ; τ) ju(σ; τ) - v(σ; τ)j dτdσ 

≤ ju - vjs [∫0x a(x; y; Ω)exp(λ(Ω + y))dΩ + ∫0x ∫0y b(x; y; σ; τ)exp(λ(σ + τ))dτdσ] 

≤ α ju - vjs exp(λ(x + y)) 

we get 

ds(Tu; T v) ≤ αds(u; v) (3.3) 

Since α < 1, from Banach fixed point theorem, it follows that T has a unique fixed 

point u0 in S is however a solution of integral equation (3.1). We can apply again the 

Banach fixed point theorem, we get 

ds(u; u0) ≤ 1 

1 - α 

ds(Tu; u) 

ju(x; y) - u0(x; y)j ≤ θ(x; y) 

1 - α 

 

Corollary 3.2 Under the same conditions in Lemma (2.2), let ϵ > 0 and u 2 S is 

such that 
u(x; y) - f(x; y) + ∫ h(x; y; σ; τ; u(σ; τ))dτdσ ≤ ϵ; 
0x g(x; y; Ω; u(Ω; y))dΩ + ∫0x ∫0y (3.4) 

then there is a unique solution u0 2 C(E; R+) of integral equation (3.1) and constant 

0 < α < 1 such that ju(x; y) - u0(x; y)j ≤ 1-ϵ α. 

This means that, the integral equation (3.1) has the Hyers-Ulam stability. 

Theorem 3.3 Suppose that the functions f; g in equation (3.1) satisfy the conditions 

(2.4),(2.5) and let 
sup 

x;y2R+[∫0x a(x; y; Ω)dΩ + ∫0x ∫0y b(x; y; σ; τ)dτdσ] ≤ α < 1 (3.5) 

then the equation (3.1) has Hyers-Ulam-Rassias stability. That means there is a unique 
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solution u0 2 C(E; R+) of integral equation (3.1) and constant 0 < α < 1 such that 

ju(x; y) - u0(x; y)j ≤ θ(x; y) 

1 - α 
6 

Proof. Consider the space C(E; Rn) with a generalization metric defined by 
d(u; v) =sup x;y2R+ ju(x; y) - v(x; y)j ;  (3.6) 
for u; v 2 C(E; Rn). From hypotheses, we can prove that, the operator T defined by 

 
(2:8) is a contraction. For any u; v 2 C(E; Rn) satisfies 

d(Tu; T v) ≤ αd(u; v)  
(3.7) 

Thus we can apply the Banach fixed point theorem, we get for u0 2 C(E; Rn) which 

satisfy equation (3.1), 

d(u; u0) ≤ αd(Tu; u) 

Thus by theorem (2.1) 

ju(x; y) - u0(x; y)j ≤ θ(x; y) 

1 - α 

 

Corollary 3.4 Under the same conditions in Theorem (3.3), let ϵ > 0 and u 2 S is 

such that 
u(x; y) - f(x; y) + ∫ h(x; y; σ; τ; u(σ; τ))dτdσ ≤ ϵ; 
0x g(x; y; Ω; u(Ω; y))dΩ + ∫0x ∫0y (3.8) 

then there is a unique solution u0 2 C(E; R+) of integral equation (3.1) and constant 

0 < α < 1 such that ju(x; y) - u0(x; y)j ≤ 1-ϵα. 

This means that, the integral equation (3.1) has the Hyers-Ulam stability. 

3.2 Volterra-Fredholm-type integral equation 
In this subsection, we consider the Volterra-Fredholm -type integral equation in the 

form 

u(x; y) = h(x; y) + ∫0x ∫0y F(x; y; ξ; t; u(ξ; t))dtdξ + ∫01 ∫01 G(x; y; ξ; t; u(ξ; t))dtdξ; 

(3.9) 

for x; y 2 R+, where h 2 C(E; Rn),F 2 C(E2 × Rn; Rn) ,G 2 C(E2 × Rn; Rn). 

Theorem 3.5 Assume that 

(i) the functions F; G in equation (3.9) satisfy the conditions 

jF(x; y; ξ; t; u) - F(x; y; ξ; t; v)j ≤ k(x; y; ξ; t) ju - vj ; (3.10) 

jG(x; y; ξ; t; u) - G(x; y; ξ; t; v)j ≤ r(x; y; ξ; t) ju - vj ; (3.11) 
7 

where k 2 C(E2; R+), r 2 C(E2; R+). 

(ii) for λ as in inequality (2.1), 

(b1) there exist constants α1 ≥ 0 and α2 ≥ 0 such that α1 + α2 < 1 and 

∫0x ∫0y k(x; y; ξ; t)exp(λ(ξ + t))dtdξ ≤ α1exp(λ(x + y)) (3.12) 

∫01 ∫01 r(x; y; ξ; t)exp(λ(ξ + t))dtdξ ≤ α2exp(λ(x + y)) (3.13) 

(b2) there exists a constant β ≥ 0 such that 

jh(x; y)j + ∫0x ∫0y jF (x; y; ξ; t; 0)j dtdξ + ∫01 ∫01 jG(x; y; ξ; t; 0)j dtdξ ≤ βexp(λ(x + y)); 

(3.14) 

where h; F; G are the functions in equation (3.9). Then if u 2 S is such that 

u(x; y) - h(x; y) + ∫0x ∫0y F (x; y; ξ; t; u(ξ; t))dtdξ + ∫01 ∫01 G(x; y; ξ; t; u(ξ; t))dtdξ ≤ υ(x; y); 

(3.15) 

where υ : E ! R+ there is a unique solution u0 2 C(E; R+) of integral equation (3.1) 

and constant 0 < α < 1 such that 

ju(x; y) - u0(x; y)j ≤ υ(x; y) 

1 - α 

Proof. Let u 2 S and define the operator T by 

(Tu)(x; y) = h(x; y)+∫0x ∫0y F (x; y; ξ; t; u(ξ; t))dtdξ +∫01 ∫01 G(x; y; ξ; t; u(ξ; t))dtdξ; 

(3.16) 

for (x; y) 2 E: 

Now, we will show that T maps S into itself.From equation (3.16), we have 
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j(Tu)(x; y)j ≤ jh(x; y)j + ∫0x ∫0y jF (x; y; ξ; t; 0)j dtdξ + ∫01 ∫01 jG(x; y; ξ; t; 0)j dtdξ+ 

∫0x ∫0y jF (x; y; ξ; t; u(ξ; t)) - F (x; y; ξ; t; 0)j dtdξ+∫01 ∫01 jG(x; y; ξ; t; u(ξ; t)) - G(x; y; ξ; t; 0)j dtdξ 

≤ βexp(λ(x + y)) + ∫0x ∫0y k(x; y; ξ; t) ju(ξ; t)j dtdξ + ∫01 ∫01 r(x; y; ξ; t) ju(ξ; t)j dtdξ 

≤ βexp(λ(x+y))+jujs [∫0x ∫0y k(x; y; ξ; t)exp(λ(ξ+t))dtdξ+∫01 ∫01 r(x; y; ξ; t)exp(λ(ξ+t))dtdξ] 

≤ [β + N(α1 + α2)]exp(λ(x + y)) 

That means that Tu 2 S. 

ds(Tu-T v) = j(Tu)(x; y) - (T v)(x; y)j ≤ ∫0x ∫0y jF (x; y; ξ; t; u(ξ; t)) - F (x; y; ξ; t; v(ξ; t))j dtdξ+ 
8 

∫01 ∫01 jG(x; y; ξ; t; u(ξ; t)) - G(x; y; ξ; t; v(ξ; t))j dtdξ 

≤ ∫0x ∫0y k(x; y; ξ; t) ju(ξ; t) - v(ξ; t)j dtdξ + ∫01 ∫01 r(x; y; ξ; t) ju(ξ; t) - v(ξ; t)j dtdξ 

≤ ju - vjs [∫0x ∫0y k(x; y; ξ; t)exp(λ(ξ + t))dtdξ + ∫01 ∫01 r(x; y; ξ; t)exp(λ(ξ + t))dtdξ] 

≤ (α1 + α2) ju - vjs exp(λ(x + y)). 

We get, 

ds(Tu; T v) ≤ (α1 + α2)ds(u; v) (3.17) 

Since α1 + α2 < 1, from Banach fixed point theorem, it follows that T has a unique 

fixed point u0 in S is however a solution of integral equation (3.9). We can apply again 

the Banach fixed point theorem, we get 

ds(u; u0) ≤ 1 

1 - (α1 + α2)ds(Tu; u) 

ju(x; y) - u0(x; y)j ≤ υ(x; y) 

1 - (α1 + α2) 

 

Theorem 3.6 Suppose that the functions F; G in equation (3.9) satisfy the conditions 

(3.10),(3.11) and let 
sup 

x;y2R+[∫0x ∫0y k(x; y; ξ; t)dtdξ + ∫01 ∫01 r(x; y; ξ; t)dtdξ] ≤ α < 1 (3.18) 

then the equation (3.9) has Hyers-Ulam-Rassias stability. That means there is a unique 

solution u0 2 C(E; R+) of integral equation (3.9) and constant 0 < α < 1 such that 

ju(x; y) - u0(x; y)j ≤ θ(x; y) 

1 - α 

Proof. Consider the space C(E; Rn) with a generalization metric defined by 

d(u; v) =sup x;y2R+ ju(x; y) - v(x; y)j ; (3.19) 

for u; v 2 C(E; Rn). We can complete proof, in same way proof of theorem (3.3) .  
9 
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Abstract  

                  The theory of fuzzy topological ring has wide scope of applicability than order 

topological ring theory. The reason is fuzzy can provide better result. Therefore, fuzzy 

topological ring has been found in Robotics, computer, artificial intelligent, etc. 

                   In this paper, we continue the study of mixed fuzzy topological ring [13]. We are 

studying the mixed fuzzy topological subring space, mixed fuzzy quotient topological ring and 

mixed product fuzzy topological ring. 

Keywords: Fuzzy topological ring, Mixed Fuzzy topological ring, mixed fuzzy    

                     Quotient topological ring and mixed product fuzzy topological ring 

Introduction: 

               In 1965 [14], Zadeh L. A. gave the definition of fuzziness.  After three years C. 

Chang [2] gave the notion of fuzzy topology. In 1990[1], Ahsanullah and Ganguli, depended 

on the convergent in fuzzy topological space in the sense of Lowen [7, 8] to introduce the 

concept of fuzzy nbhd. In 2009, Deb Ray, A. and Chettri, P [3] introduced fuzzy topology on 

a ring. Also in [4] they introduced fuzzy continuous function and studied left fuzzy 

topological ring. 
               In [9,10,11 and 12] we studied the  induced fuzzy topological ring space by fuzzy pseudo 

norm ring space, fuzzy nbhds system fuzzy separation axiom, study fuzzy compactness and Bohr 

fuzzy compactification of fuzzy topological ring space. In [13] we construct a mixed fuzzy 

topological ring also we study the relationship between fuzzy continuities of fuzzy homo. with 

respect to different fuzzy topologies 

               In this present article we continue the study of mixed fuzzy topological ring and have 

obtained several significant results of mixed fuzzy topological subring space , mixed fuzzy quotient 

topological ring and mixed product fuzzy topological ring  

               For rich the paper, some basic concept of fuzzy set , fuzzy topology and fuzzy 

topological ring are given below.  The symbol   will denote to the closed interval ,   -. Let   

be a non-empty set: 

Definition [14] 1.1  

              A fuzzy set in   is a map       and, that is, belonging to    (the set of all fuzzy 

set of  ) . Let      , for every     , we expressed by  ( ) of the degree of membership 

of   in   . If  ( ) be an element of *   + , then    is said a crisp set. 

Definition [2] 1.2 
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              A class      of fuzzy set is called a fuzzy topology for    if the following are 

satisfied 

1)        

2)                

3)  (  )       ∨        

(   ) is called fuzzy topological space. if     Then   is fuzzy open and    (complement 

of   )is a fuzzy closed set. 

Definition [1, 3 and 4] 1.3 

         A pair (    ) , where   a ring and   a fuzzy topology on  , is called fuzzy topological 

ring if the following functions are fuzzy continuous: 

1)          (    )     . 

2)            

3)          (    )       
 

Definition [4]1.4  

          A family   of fuzzy nbhds of   , for       , is called a fund. system of fuzzy 

nbhds of    iff for any fuzzy nbhd   of   , there is     such that        

 

Definition [4]1.5 

                 Let   be a ring and   a FZT on  . Let   and   are fuzzy sets in  . We define    
  ,    and       as follows 

(   )( )                * (  )  (  )+  

  ( )   (  )  
(   )( )                * (  )  (  )+  

 

Theorem [4]1.6 

          If   is a fuzzy topological ring then there is a fundamental system of fuzzy nbhds   of 

  (     ), such that the conditions: 

(i)     , then      

(ii)     , then   is symmetric 

(iii)       , then  ⋀    

(iv)     , there is     such that       

(v)     , there is     such that       

(vi)            , there is     such that a       and       . 

 

Definition [7] 1.7 

            (   ) is fully stratified fuzzy topology on   if  the fuzzy topology   on   contain all 

constant fuzzy set  

 

Theorem [5]1.8  

               Let (   ) and (   ) be two fuzzy topological spaces and let    ( )  *  
                 ( )   +. Then  ( ) is a mixed fuzzy topology on   

 

Theorem 1.9[4] 
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           Every fuzzy subring of fuzzy topological ring is a fuzzy topological ring. 

Proposition 1.10[5]  

                  I f (   ) is a fuzzy regular topological space and   any other topology on   such 

that    , then  ( )    

2.0 Mixed Fuzzy Topological subring  

 

          We study a fuzzy subring   of a bi- fuzzy topological ring (      ), we mean the bi- 

fuzzy topological Subring (        ), where   and     are relative fuzzy topologies on   

induced by   and    respectively. 

           Let (      ) be any bi- fuzzy topological ring and   be a fuzzy subring of  . Clearly, 

the mixed fuzzy topological on   can be constructed in two different methods, the first 

method by mixing the relative fuzzy topologies     and    on   and the second method by 

the mixed fuzzy topological  ( ), of   on  .  

Definition 2.1 

                 Let   be any ring equipped with two fuzzy topological ring space   and  . 

Then the triplet (     ) is defined as a bi- fuzzy topological ring space. 

Example 2.2 

              Let   be any ring with the indiscrete fuzzy topology   and the discrete fuzzy 

topology  . Then, (     ) is a bi- fuzzy topological ring 

Theorem 2.3 

 L et  (     )  be any bi- fuzzy topological ring. I f    , then 

    ( )    

Proof 

        Let us consider the identity map 

   (   )   (    ( ))  

For    ( )     ( ), 

   .   ( )/      ( )       

So,   is fuzzy continuous and consequently, 

    ( ) 

For the other part, let    * + be a fuzzy fundamental system of  -fuzzy closed fuzzy 

nbhds of   in (   ). Since    , for each     , there is a     such that 
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Therefore,  
   ( )     ( ) 

Thus, for each      there exists     ( )     ( )) such that 

    ( )    

This implies that 
    ( ) 

Combining (1) and (2), the result follows. 

 

Theorem 2.4 

             In either of the two above cases, every fuzzy subring of mixed fuzzy topological ring 

is a mixed fuzzy topological ring. 

Proof 

            Let   be a fuzzy subring of a bi- fuzzy topological ring (      ). By theorem 1.9, 

   and    are fuzzy topological ring on  , then (     (   ))  where   (   )  *  

                 ( )   +, is fuzzy topological ring space.  Also since (    ( )) is 

mixed fuzzy topological ring, then( ( ))  is a mixed fuzzy topological ring on     

 

Theorem 2.5 

           Let (    ) and (    ) be two fuzzy topological rings such that    . If (    ) is 

fuzzy   -space then (   ( ) )is also   -space. 

Proof 

           Let (    ) is a   -space. Let us consider       and    . Then there are disjoint 

 -fuzzy open sets      such that 

( )( )    and ( )( )    

Since     ( )              also   ( )-fuzzy open sets. Thus, given      ,    , 

we have disjoint  ( )-fuzzy open sets      such that 

( )( )    and ( )( )    

. So (   ( )) is a   -space.  

 

Theorem 2.6 

               Let   be a fuzzy subring of a bi- fuzzy topological ring (      ); 

(1) If   be  - fuzzy closed, then ( ( ))    (  ) 

(2) If (   ) be fuzzy Hausdorff and    , then  ( )    (  ) 
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Proof  

(1) Let   * ( ( )) ( )+ be an element of fuzzy open nbhds of   in (  ( ( )) ) , then there 

exists   *  ( )+ with   ( )    s.t    ( )     . Since    is  - fuzzy closed, 

    (   )      (   )    

    ( )     ( )       ( )      

Also 

(   )( )      * ( )  ( )+   , implies     (   )( )    

This obtain that there existed a fuzzy element of the fuzzy open nbhd of   for the mixed 

fuzzy topological    (  ) on   contained in every element of the fuzzy open nbhds of   for 

the mixed fuzzy topological  ( ( ))  on    

Thus 

( ( ))    (  ) 

(2) By Proposition 1.10, we have    ( ) on   . So, 

   ( ( )) , on                      ( ) 

Clearly, (    ) is Hausdorff and      on   since     on  . By proposition 

1.10,       (  ) on                               (  ) 

from (i) and (ii), the result follows. 

Hence the theorem 

 

Theorem 2.7 

               Let   be a fuzzy subring of a bi- fuzzy topological ring (      ) such that     

and (   ) is fuzzy Hausdorff; then  

(a) (    (  )) is fuzzy Hausdorff 

(b) (   ( ) ) is fuzzy compact if (   ) is fuzzy compact. 

 

Proof 

 (a) 

                   (   )is fuzzy Hausdorff and    , then    ( )   , and by theorem 

2.5,(   ( )) is also fuzzy Hausdorff. Then, (   ( ) ) is fuzzy Hausdorff and hence by 

Theorem 2.6, (    (  )) is also fuzzy Hausdorff. 

(b)  

                 By hypothesis    , then     ( )    on  , and (   ) is fuzzy compact 

then(   ( )) and (   ) are fuzzy compact. 
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Also (   )being fuzzy Hausdorff, (   ( )) is also fuzzy Hausdorff [by theorem 2.5]. 

Then (   ( ) ) is fuzzy compact 

 

Theorem 2.8 

               Let   be a fuzzy subring of a bi-FZT ring (     ) such that     and (   ) is 

fuzzy Hausdorff, then 

(a) (    (  )) is fuzzy Hausdorff, 

(b) (    (  )) is fuzzy compact if (   ) is fuzzy compact and   is  - fuzzy closed, 

(c) (    (  )) is fuzzy locally compact if (   )is fuzzy locally compact and   is  -fuzzy 

closed, 

Proof 

            Since (   )is fuzzy Hausdorff and     , therefore by Prop 1.10, 

   ( ) i.e  ( ) is fuzzy Hausdorff, fuzzy compact  implies  ( )  is fuzzy Hausdorff, 

fuzzy compact .   Also by Theorem 2.6 

 ( )    (  ) on   

Then we get the results  

 

3. Mixed Fuzzy Quotient Topological Ring 

                  This section deals the fuzzy quotient topology corresponding to the mixed fuzzy 

topological  ( ) on   is the same as the mixed fuzzy topological of the two fuzzy quotient 

topologies corresponding to   and   on  .  

Theorem 3.1 

               Let (     ) be any bi- fuzzy topological ring with  ( ) as the mixed fuzzy 

topological on  . For any subring   of  , let        , and   ( )   be the fuzzy quotient 

topologies on     derived from the fuzzy topological ring(   ) , (   )  and (   ( )) 

respectively. Then 

    (   )     ( )   

Proof 

          Clearly,  ( )   is the finest fuzzy topological ring on     such that the 

map   (   ( ))  (     ( )  ), is fuzzy continuous. Assume 

  (   ( ))  (       (   )) 

If   be a fuzzy element of    (   ))-fuzzy nbhds of the     of    , then there exists a 

    – fuzzy open nbhd.   of     of     s.t 
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        ( ) 

Now, 

   ( )     (      ( ))     ,⋀(   )-  

where * +be a fuzzy fundamental     –fuzzy nbhds system of     

           ⋀(   (   ))     ( )( ) 

 

Thus,   (   ( ))  (       (   )) is fuzzy continuous. Since  ( )   is the finest fuzzy 

topological ring on     for which   is fuzzy continuous, 

 ( )      (   ) 

For the converse, let us consider the identity map 

  (       (   ))  (     ( )  ) 

Let   be a fuzzy element of the  ( )  )-fuzzy nbhds of the     of    , then there exists a 

 ( ) – fuzzy open nbhd   of   s.t 

      ( )    ⋀(   )    

where * +be a fuzzy fundamental   –fuzzy nbhds system of   

 ⋀(   )  (   )       (   )     (   ) 

since 

   ( )    

and hence i is fuzzy cont. which means that 

 ( )      (   ) 

Thus 

    (   )     ( )   

 

 

Theorem 3.2  

                   Let (     ) be a bi- fuzzy topological ring with     and   an  - fuzzy closed 

subring of  . Then (       (   )) is compact if (   ) is fuzzy compact. 

Proof  

           Since    , we have by Theorem 2.3, 

   ( )    

         Let   be  - fuzzy compact topological ring. In view of the above ordering of the fuzzy 

topologies      ( ) and  , it follows that   is also  ( )- fuzzy compact, Hence by Theorem 

3.1, (       (   )) is compact. 
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Theorem 3.3 

               Let (     ) be a bi- fuzzy topological ring such that (   ) is fuzzy Hausdorff and 

     . Also, let   be a  - fuzzy closed subring of  . Then 

 (       (   )) is fuzzy compact (fuzzy locally compact) if (   ) is fuzzy compact 

(fuzzy locally compact), 

Proof 

            Since     then  ( )    and   is  ( ) fuzzy closed. Now we note that (   ( )) is 

fuzzy compact (fuzzy locally compact) whenever (   ) is fuzzy compact (fuzzy locally 

compact) and by virtue of Theorem3.1, the result follows immediately. 

 

Theorem 3.4 

               Let   be any index set and *(        )      + be a family of bi- fuzzy topological 

rings. Then 

 ∏  
   

(  )  ∏  
   

(∏  
   

) 

On the product ring   ∏      . 

Proof 

            Let   be fuzzy open nbhds system of the   (         ) of  ∏       relative to the 

fuzzy topology ∏      (  ) so that if    is the fuzzy open nbhds system of the identity    of 

  . Then  

  ∏    (  )

   

 

We know that 

∏    (  )

   

     (∏ 

   

) 

Hence   is a fuzzy nbhd of          relative to the mixed fuzzy topology 

∏      (∏      )  

Thus, every fuzzy nbhd of          In the fuzzy topology ∏      (  ) is also a fuzzy 

nbhd of          in the fuzzy topology ∏      (∏      ) and vice versa. 

Hence follows the result. 

Theorem 3.5  

              Let   be any index set and*(        )      + be a bi- fuzzy topological ring for 

each    . If for each    ,       then 
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∏  
   

 ∏  
   

(∏  
   

)  ∏  
   

) 

On the product ring   ∏      . 

Proof 

            It is sufficient to prove that 

∏  
   

 ∏  
   

 

Because in that case the required result would follow immediately by Theorem 2.3 For each 

   , (        ) is a bi-FZT ring with      . Therefore, there are fundamental systems *  + 

and *  + of fuzzy nbhds of       in the fuzzy topologies    and    respectively such that for 

each    *  + there is a    *  + with 

          

Thus, 

  (  )    ∏  
   

 ∏  
   

  

In particular, 

  (  )    ∏  
   

 ∏  
   

  

for                   (n finite) and for      

                                                                  ( ) 

But ∏       and ∏       in ( ) above, form the fundamental systems of fuzzy nbhds of 

  (  )    ∏       in the product fuzzy topological ∏       and ∏       respectively. 

Hence, 

∏  
   

 ∏  
   

 

from which follows the required result.  
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Abstract In this paper we invention all irreducible modular  spin(projective) characters 

  of the symmetric group      when      and the  characteristic of the field =19. 

 Key words  spin(projective) characters , modular characters , decomposition matrix , AMS 

2010,15C15,15C20,15C25. 

1-Introduction 

The decomposition matrix for the projective characters is appear the link between the irreducible projective 

characters and irreducible modular projective characters[1] , then when we find this matrix as amounting to find 

all irreducible modular projective characters. Characters is known modular or ordinary when the characteristic 

of the field is prime or zero[2]. Every finite group has covering group[3] ,then     has like this group. The 

characters of the covering group which are identical the characters of     are called modular or ordinary 

characters of     ,the rest characters  are called projective(spin) of    [4]. Finding the decomposition matrix for 

the projective characters will become  more difficult when    increasing ,and there is no general method to find 

this matrix[4]. Many Mathematicians work in this field like Adul Kareem A.Yaseen, Saeed Abdul-Ameer Taban 

,Ahmed Hussein Jassim and Marwa Mohammed Jawad [5],[6],[7],[8]. In this paper decomposition matrices       

modulo      have been calculated by using (   ̅)-inducing method, we induce the principal indecomposable 

characters(P.i.s)of      (see creek*) to have (P.i.s) or principal characters (P.s) of     . 

2-Rudiments 

1-The spin characters of     can be written as a linear combination , with non-negative integer coefficients , of 

the irreducible spin characters[8]. 
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2- Projective characters                 have degree which is equal  0
   

 
1   

∏ (   )
 
   

∏
(     )

(     )
         [9]. 

3-The values of associate characters           are same on the class  except on the class corresponding to    they 

have values   
     

 √.
     

 
/ [9]. 

4-The inducing from group or restriction from the subgroup of the projective characters are also  projective 

characters [1]. 

5-If   is odd and   (   ) ,then         and          are distinct I.m.s of grade   0
(   )

 
1  (   ) which 

are denoted by          and           [9]. 

6- Let   be an odd prime and let      be a bar partition of   which are not   -bar core. Then    (and      if    is 

odd) and    (and      if    is odd) are in the same   -block     ̃      ̃.If    be a bar partition of    and     = 

    ̃  , then    (and      if    is odd) forms  a  -block of defect 0 [4]. 

7- Let   be an odd prime and   (      ) be a bar partition of    ,then  all I.m.s  in the block B are 

double(associate) , if (      ) is even(odd), where      the number of parts of    divisible by    [4]. 

8- If   is even and   ( ) ,then     and      are distinct I.m.s of grade   0
(   )

 
1  which are denoted by      

and      [9]. 

3-The spin block of      

The matrix required  of the projective( spin) characters  of           has 115 irreducible spin characters and 

113 (19,  )-regular classes [10]. 

From preliminaries (6)   ,there are 105 blocks of          , theses blocks are           of defect zero 

except the block     of defect one. 

The blocks of defect zero           includes  

                                                                                  

                                                                                    , 

                                                                                             

                                                                                           , 

                                                                                     

                                                                               ,           ,            , 

                                                                                            

                                                                                               , 

                                                                                 , 

                                                                                         ,         , 

                                                                                                   

                                                                                    ,             ,  
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                             .respectively ,these characters are irreducible modular spin character  (preliminaries 

6).The principle block    contains  the remaining projective characters. 

4-The decomposition matrix for the block    of defect one 

From preliminaries (7,3)   all I.m.s. for the block     are double and             on (19,  )-regular classes  

respectively.  

Theorem(4.1): 

The matrix required  of the projective( spin) characters  of       is  

             
( )

         
(   )

  

Proof: 

Through technique and the method (   ̅)-inducing of  P.i.s.  of           (see creek *)  to     we have  

   
(   )       ,     

(   )     =  ,     
(    )    =    , 

     
(    )    =   ,     

(   )    =     ,      
(   )    =    , 

      
(   )    =    ,      

(   )    =    ,     
(   )    =    .  

So, the matrix required  for this block is as given in creek(1). 

 

Creek(1) 

The grade of 

the projective 

characters 

The projective 

characters 
      
  

1024       1         

193536        1 1        

193536         1 1        

487424            1 1       

62899200             1 1      

253338624              1 1     

684343296               1 1    

1316044800                1 1   

1809561600                 1 1  

1663334400                  1 1 

684343296                   1 

           

                             

 

 

 

 

 

Creek(*) 
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Future work 

We can find the irreducible modular projective characters or indecomposable principal characters for the 

symmetric group      modulo      . 

The 

grade of 

the 

projective 

character 

The 

projective 

characters 

      
  

512      1                  

512        1                 

9216         1 1 1 1               

204800            1  1              

204800              1  1             

1497600              1  1            

1497600                1  1           

6031872                1  1          

6031872                  1  1         

16293888                  1  1        

16293888                    1  1       

31334400                    1  1      

31334400                      1  1     

43084800                      1  1    

43084800                        1  1   

39603200                        1  1  

39603200                          1  1 

16293888                          1  

16293888                            1 
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Abstract 

   In this study, cubic B-spline method is used with a new approximation of the 

second derivative to find a numerical solution for boundary value problems of 

the second order. An error analysis was performed for the method and the 

accuracy of the method was tested via four numerical examples and the results 

were compared with the exact solution and cubic B-spline method.  

Keywords: boundary value problems, error analysis, cubic B-spline, exact 

solution. 

1. Introduction 

    Splines, especially B-splines, play an important role in the areas of 

mathematics and engineering today [2],[17]. Splines are popular in computer 

graphics because of their finesse, flexibility and accuracy. Historically, Isaac 

Jacob Schoenberg  discovered splines in 1946 [ 6-10], his work motivated other 

scientists such as Carl de Boor. In the early seventies de Boor [3], [4], [5] 

discovered a recursive definition for splines. Birkhoff  and de Boor (1964) [1] 

investigated  the error bound and convergence of of spline interpolation. 

Manguia and Bhatta (2015) [18] used cubic B-spline(CBS) functions for 

solution of second order boundary value problems(BVPs). Reza and Akram 

[23], applied of cubic B-splines collocation method for solving nonlinear 

inverse parabolic partial differential equations. Suardi et. al. [26] used the cubic 

B-spline solution of two-point boundary value problem using HSKSOR 
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iteration and they presented solutions of two-point boundary value problems by 

using quarter-sweep SOR iteration with cubic B-Spline scheme[27] . 

In this study, approximate solutions was found to problems of second order 

linear arrangement using B-cubes with a new approximation of the second 

derivative. Lang and X. Xu[16], introduced a new cubic B-spline method for 

approximating the solution of a class of nonlinear second-order boundary value 

problem with two dependent variables. His work was a motivation to other 

mathematicians such Tassaddiq and others [28] to used his method for solve 

non-linear differential equations arising in visco-elastic flows and 

hydrodynamic stability problems. 

The presented scheme is based on new approximations for the second order 

derivatives. The approximation for second order derivative is calculated using 

appropriate linear combinations to approximate the typical B-spline  y x  at 

neighbouring values. In the past two decades, several numerical techniques have 

been used to explore the numerical solution of linear BVP but as far as we 

know, this new approximation has not been used for this purpose before for 

solving BVPs. This work is presented as follows. Section 2 is explanation about 

the cubic B-splines schemes. We presented the new approximation for   y x  in 

Section 3.In Section 4, we descripted of the numerical method for new cubic B-

spline. The error analysis of the method is described in Section 5. Section 6 tests 

numerical experiments to demonstrate the feasibility of the proposed method, 

and this article ends with a conclusion in Section 7. 

 

2. Derivation of the Cubic B-spline Schemes 

 Let n  be a positive integer and 0 1 na x x x b    L  be a uniform partition of   

, ,, i ox x ih ia b      ¢ and 
b a

h
n


 . The typical third degree B-spline basis 

functions are defined: [11-14], [24-26] 
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(1) 

 

  

Where     1,2, , 1.i n  L  
 
For a sufficiently smooth function  y x

  
there always 

exists a unique third degree spline   ,Y x
 

                     

1

1

( ) ( )
n

i i
i

Y x c B x




 
                                                                                

(2)     

which satisfies the prescribed interpolating conditions 
 

       Y a a b by and Y y       , 0,1,...,i n   for all     ,i iY x y x  

Where ,

ic s  are finite constants yet to be determined.  

For simplicity, we express the CBS approximations, ( ), ( )Y x Y x  and ( )Y x by   

,j jY t   and  jT ,  respectively. The cubic B-spline basis function (1) together with 

(2) and by using Table (1)  gives the following relations,                                                                                                      

   
1

1 1
1

1
4 ,

6

i

j i i j j j
i j

Y c B x c c c


 
 

          (3)                                                 

   
1

1 1
1

1
,

2

j

j i i j j
i j

t c B x c c
h



 
 

   
 

(4)                                                         

   
1

1 12
1

1
2 .

j

j i i j j j
i j

T c B x c c c
h



 
 

                                                                  

(5)                                                      

Moreover ,from (3)-(5) relationships can be created.[7] 

2 2 1

1 1 1 1

3
1 1 1 1

2 1 2

3( ) [ , ]

3 2 2 33( ) 3 ( ) 3 ( ) [ , ]
1

3 2 2 3( ) 3( ) 3 ( ) 3 ( ) [ , ]6
3( ) [ , ]

0

i i i

i i i i i

i
i i i i i

i i i

x x if x x x

x x h x x h x x h if x x x

B x x x h x x h x x h if x x xh

x x if x x x

if otherwise
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         4 (5)1
,

180j j jyt y x h x  L                                                                         

(6)  

          2 (4) 4 (6)1 1

12 360j j j jy yT y x h x h x   L  .                                                                       

(7)    , we have. and (7)  From (6) 

 2( ) ( ).j jT y x O h
     and  4( ) ( )j jt y x O h


        

This gives enough motivation to craft a better approximation to, the   ( ).y x  

Table 1: Coefficients of cubic B-spline and its derivative at nodes ix .  

 

 1ix   ix  1ix   Else 

( )iB x  1

6
 2

3
 1

6
 0 

(1)( )iB x  1

2h
  0 1

2h
 0 

(2)( )iB x  1
2h

 2
2h

  1
2h

 0 

 

3. The New Approximation for   y x  

In order to formulate a new approximation to  y x , we  use (7),  to establish 

the following  expression for   1 ,jT   in knots,  , 1,2,3, , 1,jx j n L    [15-16]  

 

     2 (4) 4 (6)

1 1 1 1

1 1
,

12 360j j j jT y x h y x h y x   
   L  

       (3) 2 (4) 3 (5)5 1
.

12 12j j j jy yy x h x h x h y x    L         
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 Similarly, 

       (3) 2 (4) 3 (5)

1

5 1
,

12 12j j j j jyT y x h y x h y x h x
    L  

be a new approximation to  jy x   such that,  jT   let 

                1 2 1 3 1 .j j j jT B T B T B T   %
                                                                    

 

(8)  

Choosing three parameters 
1 2,B B and 

3B  so that the error order of  jT% is as high 

as possible , we obtain 

1 2 3 1,B B B    

     2 3 0,B B    

1 2 35 5 0.B B B     

Hence   
1

6

5
B  , and 

2 3

1
.

12
B B   

The expression (8) takes the following form, 

   1 2 1 3 1 2 1 1 22

1
8 18 8 .

12j j j j j j j j jT B T B T B T c c c c c
h            %                       

(9)                                   

Now we approximate  y x at the knot 0x  using four neighboring values, such 

that. 

           0 0 0 1 1 2 2 3 3 ,T B T BT B T BT   %                                                                

(10) 

where. 
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       (3) 2 (4) 3 (5)

1 0 0 0 0

5 1
,

12 12
T y x h y x h y x h y x    L  

     (3) 2 (4) 3 (5)

2 0 0 0

23 7
2 ,

12 6
y yT y x h y x h h x    L

       (3) 2 (4) 3 (5)

3 0 0 0 0

53 17
3 .

12 4
y yT y x h y x h x h x    L   

The expression (9) yields the following four equations, 

0 1 2 3 1,B B B B                 

1 2 32 3 0,B B B                   

0 1 2 35 23 53 0,B B B B      

1 2 314 51 0.B B B                

Hence 
0

7
,

6
B  1 ,

5

12
B  

2

1

3
B 

 
and  

3

1
.

12
B  

 

Using these values in (10), we have  

            0 1 0 1 2 3 42

1
14 33 28 14 6 .

12
T c c c c c c

h      %                                                                    

(11) 

the same style, rounding is presented at node nx    by   working in When 

(12)
                                 4 3 2 1 12

1
6 14 28 33 14 ,

12 n n n n n nT c c c c c cn h           %
       

 

4. Description of the Numerical Method.  

   In this section, consider the boundary value problems, 

                      ( ) ( ) ( ) ( ) ( ) ( ) ( )p x y x q x y x r x y x f x                                                     

(13) 
 

  with boundary conditions                                                                                                                            
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( ) , ( ) .y a y b     

Where ( ) 0, ( ), ( )p x q x r x  and ( )f x  are continuous real-valued functions on the 

interval [ , ]a b . 

Let  Y x  be the cubic B-spline solution to (14) satisfying the interpolating 

conditions such that 

                    
1

1

.
n

i i
i

Y x c B x




                                                                                                                  

(15)   

Discretize Eq.(14) in knots , 1,2, , 1,jx j n L  we get, 

                  1 1 1 .j k j j k j j k j jY Y Yp x x q x x r x x f x  
   

                                     
 

(16)   

Using Eqs.(3)-(4) and (9) in Eq.(16) ,we have      

  2 1 1 2

2

8 18 8

12
j j j j j

j

c c c c c
p x

h
    

 
 

   
             

     1 1 1 14
.

2 6
j j j j j

j j j

c c c c c
q x r x f x

h
     

  
   

   
  

                                    

   

(17) 

Similarly, at the knots  0x    and nx  , the following equations are obtained 

  1 0 1 2 3 4
0 2

14 33 28 14 6

12

c c c c c c
p x

h
 

 
 

    
 

     1 0 11 1
0 0 0

4
,

2 6

c c cc c
q x r x f x

h


     

    
   

                                           

(18)                                                                                                                                                                       
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  1 1 2 3 4

2

14 33 28 14 6

12
n n n n n n

n

c c c c c c
p x

h
     

 
 

    
 

        1 1 1 14
.

2 6
n n n n n

n n n

c c c c c
q x r x f x

h
     

   
   

   
                                 

(19)                   

The boundary conditions are giving of the following two equations        

          
1 0 14 6 ,c c c                                                                                          

(20) 

          
1 14 6 .n n nc c c                                                                                      

(21) 

In This way  they  have a system of   3n   linear equations .Eqs.(17)-(19)   

which can be written in matrix form as 

                .Ac b                                                  

(22) 

Where  A  is the coefficients matrix given by  

 

1 2 3 4 5 6

1 1 1 1 1

2 2 2 2 2

1 1 1 1 1

1 2 3 4 5 6

1 4 1 0 0 0 0 0

0

1 4 1

n n n n n

o o o o o o

a b c d e

a b c d e
A

a b c d e

m m m m m m

    

 
 
 
 
 
 
 
 
 
 
 
 
 

O O O O O O  

 

where 
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2

1 0 0 0

2

2 0 0

2

3 0 0 0

4 0

5 0

6 0

14 6 2

33 8 ,

28 6 2

14 ,

6 ,

,

o p x hq x h r x

o p x h r x

o p x hq x h r x

o p x

o p x

o p x

  

  

  





 

 

     

   

     

2

2

2

1,2,..., 1,

( ),

8 6 2 ,

18 8 ,

8 6 2 ,

( )

i i

i i i i

i i i

i i i i

i i

where i n

a p x

b p x hq x h r x

c p x h r x

d p x hq x h r x

e p x

 



  

  

  



  

 

 

 

     

   

     

1

2

3

2

4

2

5

2

6

,

6 ,

14 ,

28 6 2 ,

33 8 ,

14 6 2 .

n

n

n

n n n

n n

n n n

m p x

m p x

m p x

m p x hq x h r x

m p x h r x

m p x hq x h r x

 



 

  

  

  
 

and  1 0 1 1,, , , ,
T

n ncc c c c c  L , 

2 2 2 2

0 1 1[6 ,12 ( ),12 ( ),...,12 ( ),12 ( ),6 ] ,T

n nb h f x h f x h f x h f x   

since A is aa non-singular matrix,  so can solve the system  Ac b    for 

1 0 1 1 1, , ,... , ,n n nc c c c c c    substituting these values in Eq. (15), to get the required 

approximate solution. 

Error Analysis  5. 

 Now, the error analysis is investigated by using the cubic B-spline 

approximations  Eqs.(3)-(5)  and  Eq.(9) the following  relationships  can be 

established 
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             1 1 1 1

1 4 1 1
,

6 6 6 2j j j j jh Y Y Y Yx x x x Y x   

 
      

 
                                                   

(23)  

                 2

1 1 1 .
1

7 8 2
2j j j j j jYh x Y x Y x Y x h Y x Y x  

      
    

                 

(24)  

Moreover ,we have 

           3

1 112 6 ,j j j j jh Y x Y x Y x h Y x Y x 
        
                                      

 

(25) 

           3

1 112 6 .j j j j jh Y x Y x Y x h Y x Y x 
        
   

                                

(26) 

Where     j j
Y x and Y x 
    indicate approximate values of in   jY x  in 

1[ , ]j jx x 
 

and 
1[ , ]j jx x  

respectively. 

    , ,j jE Y x Y x Z

 
    Using the operator notation 

Equation (19) can also be written as  

   1 11 4 1 1
,

6 6 6 2j jh E E Y x E E y x  
    

 
    Hence 

                  
1

1 13 4 ,j jhS x E E E E s x


                                                   

(27)  

Using              , ,hD d
E e D

dx
          we can get it   

2 2 4 4 6 6
1 2 1 ,

2! 4! 6!
hD hD h D h D h D

E E e e   
 
 

       L  
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3 3 5 5 7 7
1 .2

3! 5! 7!
hD hD h D h D h D

E E e e hD   
 
 

       L  

Therefore, Eq. (27) can be expressed  as. 

   
1

2 3 4 5 2 2 4 4 6 6

1 ,
3! 5! 6 72 2160j j

h D h D h D h D h D
Y x D y x



    
    

    

        L L  

Simplify, we get. 

   
4 5 6 7

,
180 1512j j

h D h D
Y x D y x

 
 
 

    L       

  Hence   

        4 (5)1
,

180j j jY x y x h y x   L
                                                            

 

(28) 

   

Similarly, writing  Eq. (20) in operator notation we have     

     2 1 11
7 8 2 ,

2j j jh Y x E E y x h E y x       
       

 
3 3 4 4 5 5 6 6

2 23 2
2 6 40 180 j

h D h D h D h D
hD h D y x

 
 
 
       L  

 
3 2 4 3 5 4 6 5

2 .3
2 6 24 120 j

h D h D h D h D
h h D y x

 
 
 

      L  

Simplify the relationship above, we have.   

          3 (5) 4 (6)1 1
.

60 360j j j jY x y x h y x h y x    L                                                         

(29) 
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Using the same method  in Eq.(21) it can also be written, 

        2 (5)1 1
.

2 12j j j
j j

Y x y x y x y x h y x 

    
        

       L%                                      

(30)  

Let us define the term error        ,e x Y x y x    using  relations  (24) and (26) 

in the Taylor series expand   e x    we get   

     
  

   
2

5 (5) 6 (6)
5 2 1

.
360 720j j je x h h y x h y x

   


 
   L                                     

(31)  

Where 0,1 ,    from Eq. (31) The new B-spline approximation is  5O h
 

accurate. 

6. Numerical Examples 

    In this section we illustrate the numerical techniques discussed in the previous sections by the 

following two boundary value problems of  Eqs.(1-2) , in order to illustrate the comparative 

performance of our method over other existing methods. We now consider four numerical examples 

to illustrate the comparative performance of our method. All calculations are implemented by 

Maple. 

Example 1: We consider a linear boundary value problem with constant 

coefficients :[18]  

        ( ) ( ) 6 ( ) ,y x y x y x x     

with boundary conditions 

(0) 0, (1) 1,y y   

The exact solution to boundary value problem is 

            
2 3 3 2

3 2

(43 ) (43 ) 1 1
( ) .

36( ) 6 36

x xe e e e
y x x

e e
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The numerical result of the example (1) are presented in the Table (2)  for  with 

20n   .In Table 3 the observed maximum absolute errors and compared our 

result with the results given in cubic b-spline method [18]. Figure 1 shows the 

comparison of the exact and numerical solutions for 20n  . 

Table 2: The numerical solutions and exact solution of example (1). 

 

 

 

 

 

 

 

 

 

 Table 3: Comparison of the error proposed method with CBS[18] for 

example(1) . 

 

 

 

 

 

 

 

 

 

x New Cubic B-

Spline   

Cubic B-Spline[18]   

0 0 0 

0.2 5.59E-8 2.3534E-5 

0.3 6.23 E-8 4.41179E-5 

0.4 6.06 E-8 6.46773E-5 

0.5 5.44 E-8 8.19815E-5 

0.6 4.57 E-8 9.30536E-5 

0.7 3.59 E-8 9.47169E-5 

0.8 2.54 E-8 8.31905E-5 

0.9 1.52 E-8 5.36906E-5 

1 0 0 
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Figure 1 : Comparison of the 

exact and the proposed method 

of example(1) for n=20 

Example 2:  We consider a 

linear boundary value 

problem with constant coefficients[18], 

2( ) ( ) 5 ( ) 6cos(2 ) 7sin(2 ),y x y x y x x x      for 0 ,
4

x


   

with boundary conditions 

   (0) 4, ( ) 1
4

y y


  . 

The exact solution to boundary value problem is 

                    ( ) 2(1 )cos(2 ) sin(2 ).xy x e x x    

The numerical result of the example (2) are presented in the Table 4  compared 

our result  with the exact solution.   In Table 5 the observed maximum absolute 

errors and compared our result with the results given in cubic B-spline method 

[18]. Figure 2 shows the comparison of the exact and numerical solutions for 

20n   . 

Table 4: The numerical solutions and exact solution of example (2) . 

 

x New Cubic B- Exact Solution 

x New Cubic B-

Spline  

Exact Solution 

0 0 0 

0.2 0.1074285058 0.1074285617 

0.3 0.1636254812 0.1636255435 

0.4 0.2267411540 0.2267412146 

0.5 0.3006953149 0.3006953693 

0.6 0.3896566891 0.3896567348 

0.7 0.4982584629 0.4982584988 

0.8 0.6318199536 0.6318199790 

0.9 0.796586555 0.7965865702 

1 1 1 
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Spline  

80


 3.989348208 3.9893481701 

3

80


 3.906796607 3.9067967056 

5

80


 3.748792026 3.7487922376 

7

80


 3.523205708 3.5232056151 

9

80


 3.238294433 3.2382892895 

11

80


 2.902583355 2.9025837374 

13

80


 2.524830455 2.5248342470 

15

80


 2.113912251 2.1139139602 

17

80


 1.678750121 1.6787494845 

19

80


 1.228243494 1.2282459716 

 

 

 

Table 5: Comparison of the error proposed method with CBS[18] for 

example(2) . 

x New Cubic B-

Spline  

Cubic B-

Spline[18] 
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Figure 2 : Comparison of the exact and the proposed method of example(2) for 

n=20. 

Example 3:  We consider a linear boundary value problem with constant 

coefficients[18] 

80


 3.8E-8 2.0634E-5 

3

80


 9.9 E-8 4.8130E-5 

5

80


 2.12 E-7 6.0894E-5 

7

80


 9.3 E-8 6.2779E-5 

9

80


 5.143E-6 5.70988E-5 

11

80


 3.82 E-7 4.67074E-5 

13

80


 3.792E-6 3.40587E-5 

15

80


 1.709E-6 2.12666E-5 

17

80


 6.37 E-7 1.01538E-5 

19

80


 2.478E-6 2.2885E-5 
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2 ( ) 3 ( ) 3 0x y x xy x y      for   1 2x  , 

with boundary conditions 

(1) 5, (2) 0.y y   

The exact solution to boundary value problem is 

5
( ) [cos( 2 ln ) cot( 2 ln 2)sin( 2 ln )].y x x x

x
   

The numerical result of the example (3) are presented in the Table (6)  for  with.   

In Table 7 the observed maximum absolute errors and compared our result with 

the results given in cubic B-spline method [18]. Figure 3 shows the comparison 

of the exact and numerical solutions for  20.n   

Table 6: The numerical solutions and exact solution of example (3). 

 

x New Cubic B-

Spline  

Exact Solution 

1.1 4.094768326 4.0947693502 

1.2 3.316711309 3.3167126115 

1.3 2.649607254 2.6496084276 

1.4 2.077976455 2.0779773959 

1.5 1.587980746 1.5879814418 

1.6 1.167624994 1.1676254805 

1.7 0.806670353 0.8066706529 

1.8 0.496442085 0.4964422651 

1.9 0.229613526 0.2296136048 
 

Table 7: Comparison of the error proposed method with CBS [18] for 

example(3) . 

 

x New Cubic B-

Spline  

Cubic B-

Spline[18] 

1.1 1.024E-6 1.609202E-4 

1.2 1.303E-6 3.065565E-4 

1.3 1.174E-6 3.980724E-4 

1.4 9.41E-7 4.327606E-4 
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1.5 6.96E-7 4.197742E-4 

1.6 4.86E-7 3.707492E-4 

1.7 2.999E-7 2.964084E-4 

1.8 1.801E-7 2.055654E-4 

1.9 7.88E-8 1.050575E-4 
 

 

 

Figure 3 : Comparison of the exact and the proposed method of example(3) for 

n=20. 

 

Example 4:  We consider a linear boundary value problem with constant 

coefficients,[18] 

( ) ( )xy x y x x     for  1 2,x   

with boundary conditions 

(1) 1, (2) 1.y y   

The exact solution to boundary value problem is 

2 3ln 3
( ) .

4 4ln 2 4

x x
y x   

 

The numerical result of the example (4) are presented in the Table 8  for  with   

.In Table 9 the observed maximum absolute errors and compared our result with 
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the results given in cubic B-spline method [18]. Figure 4 shows the comparison 

of the exact and numerical solutions for  20.n   

 

Table 8: The numerical solutions and exact solution of example (4). 

 

x New Cubic B-

Spline  

Exact Solution 

1.1 0.9493723880 0.9493723572 

1.2 0.9127242439 0.9127241956 

1.3 0.8886163346 0.8886162826 

1.4 0.8759299325 0.8759298796 

1.5 0.8737781718 0.8737781245 

1.6 0.8814461109 0.8814460712 

1.7 0.8983489704 0.8983489402 

1.8 0.9240023401 0.9240023201 

1.9 0.9580004464 0.9580004361 

 

Table 9: Comparison of the error proposed method with CBS [18] for 

example(4) . 

 

x New Cubic B-

Spline  

Cubic B-

Spline[18] 

1.1 3.08E-8 2.38675E-5 

1.2 4.83 E-8 3.66902E-5 

1.3 5.20 E-8 4.21471E-5 

1.4 5.29 E-8 4.25917E-5 

1.5 4.73 E-8 3.95759E-5 

1.6 3.97 E-8 3.41494E-5 

1.7 3.02 E-8 270371E-5 

1.8 2.00 E-8 1.87491E-5 

1.9 1.03 E-8 9.6491E-5 
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Figure 4 : Comparison of the exact and the proposed method of example(4) for 

n=20. 

7. Conclusion  
The cubic B-spline method with a new approximation of the second derivative 

is developed for the approximate solution of second order two –point BVPs in 

this paper. Four examples are considered for numerical illustration of the 

method. Numerical result are presented in Tables (2), (4), (6), and (8) and 

compared with the exact solutions. We also compared the results with the 

(CBS) method [18] in Tables (3), (5), (7), and (9) and It can be concluded that 

this method is quite suitable, accurate. 

The obtained numerical results show that the proposed methods maintain a high 

accuracy which make them are very encouraging for dealing with the solution 

of this type of two point boundary value problems. 
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The Formula for the product of Sines of multiple Arcs 

 

                                         

Department of  Mathematics  -  College of Education 

                      AL-Mustansiriyah University 

 

Abstract 

By using  the theory of residues of holomorphic functions, one formula is obtained for 

the product of a finite number of Sines of multiple arcs and one improper integral is 

computed. 

Introduction 

As known, the theory of functions of complex variable has various applications  in 

different sections of mathematics . In the book [2], the properties of  complex 

numbers were used to solve exercises and proofs of theorems from elementary 

geometry . Chapter 7 of the book [1] is devoted to the applications of complex 

integrations, in particular , to  the calculation of real integrals by using the method of 

transition to complex variables. 

In the present paper , using the calculation of the residue of one special function, we 

have proved the formula (*) for the product of a finite number of Sines of multiple 

arcs, the proven formula has been verified for several particular values of the 

parameter which get into the formula. The same function and the residue theorem 

are used to calculate one improper real integral (**). 

1.   If         be an isolated singular point of the holomorphic function  ( ) and     be 

a simple closed piecewise smooth curve that, together with the interior, belongs to 

the domain of holomorphy of the function  ( ), except the point            ( )   

then the residue of  ( ) at this point is equal to  

                     ( )   
 

  
∮  ( )  
 

 .                                       (1)           

  If         s a simple pole of the holomorphic function  ( )   then                                                                  

                                  ( )         (   ) ( ) .                                            (2)             

   

         If   ( )     ( )    ( ), where   ( ) and    ( ) are holomorphic in a 

neighborhood of the point        and   ( ) has a zero of first order at this point, then 
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                                          ( )   
 ( )

  ( )
 .                                                               (3) 

These formulas can be found in   [1]  and  [3] . 

2. Consider the function   ( )  
 

    
   where      is a natural number .                                     

Let       
 

    This point is a simple pole for the considered function        has a zero 

of first order at this point (the first derivative at this point is not zero). By the formula (3) 

with        ( )     and   ( )        , we obtain 

         ( )   
 ( )

  ( )
  

 

  
  
   
 

 .                                      (4) 

We calculate the residue     by formula (2) , by using the expansion  

      ∏ (     
    

 *   
   . 

Then we get                                                                                                      

     
   

 
 
 

   
  

 
 

∏ 4   
  
    
 5   

   

 
 

∏ 4 
 
 
   

  
    
 5   

   

 
 
   

   
 

∏ 4   
  
  
 5   

   

 . 

We transform expression                                                                               

.     
  

 /
  

 .     
   

 
     

   

 
/
  

=
     

   

 
     

   

 

 .   
  

 
/
 = 

 
 (   

  
      

  
 *

    
  
 

 
  
 
    

  
 

    
  
 

 

Substituting  the transformed expression into the formula for the residue    , we have 

  
 
   

   
 

∏     
  

 
   
   

   (   )
 

  ∏     
 

    
   = 

 
   

   
 

∏     
  

 
   
   

   (   )
 

     
 

 
   
 (   )

  . 

Summing up the exponents, we find                                                                     

  
    

   
 

∏     
  
 

   
   

 

 

We equate the resulting expression for the residue   with the previously      obtained 

expression from formula (4):                                                       
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∏     
  

 
   
   

  . 

From this equality we obtain an equation that proves the following theorem 

 

Theorem.                                                                                                       

 For positive integers       the following formula is true:      

            ∏    
  

 
 

 

    
   
    .                                                (*)     

Let us verify the equality for several values of the parameter   : 

If    n = 2   we have:       
 

 
 

 

 
                                                                  

If    n = 3   we have:     
 

 
    

  

 
 

√ 

 
 
√ 

 
 

 

  
 .                                               

If    n = 4  we have:     
 

 
    

  

 
    

  

 
 

√ 

 
   

√ 

 
 

 

 
 

 

  
 . 

3. We now calculate the residue   by the formula (1) and consider the curvilinear 

triangle  (figure)                                                           

                                                   
                             

               ( )      ( )      ( )      ( )  as the contour  , where 

                 is a fixed real number and the parametrization of the constituent arcs of 

a curvilinear triangle is given by:                                          

  ( )     ,   - ;     ( )          ,  
  

 
] ;      ( )      

  

    ,   -  
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These arcs are oriented in accordance with the increase of the variable parameter.   

                                                                                                

 Note that inside the contour                                                                             

 ( )                                                                       

          
 
                        ( )   

 

(      )
                  

From formula (1), taking into account the orientation of the contour γ,  

we obtain                                                                                                

  
 

    
∮

  

     
 

 

   
∫

  

      
 

 

   
∫

  

      
 

 

   
∫

  

      
 .                      (5)  

 

We calculate the complex integrals on the right-hand side of (5) by reducing them to 

the Riemann integral and find the limits of these integrals as     ,  

we get :                                                                                                               

 

   
∫

  

      
 

 

   
∫

  

    

 

 

    
→   

 

   
  , 

where         ∫
  

    

 

 
    .                                 (6) 

 

   
∫

  

      
 

 

   
∫

       

(    )
 
  

  

 
 

    
→     0,  

So                                                                                                                               

|
 

   
∫

       

(    )
 
  

  

 
 

|  
 

  
 
  

  

 

    

    
→          , when   n> 1 

. 

Finally,                                                                                                           

 

   
∫

  

      
 

 

   
∫

 
 
  
   

4  
 
  
 5

 

  

 

 
= 

 

   
∫

 
 
  
   

( )   

 

 

    
→   

 

   
   

  

   . 

Note that the residue   does not depend on the value                          

   , and (1) holds for all values of  .                                           

Therefore, from equalities (1) and (5), passing to the limit for    

we obtain the following  equality:                                                 
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                                              I   

  
     

    
  
 

 

 

We substitute in the last equality, instead of the residue  , its value    
 

  
  
   
 

 

  By formula (4) and transform the resulting expression:                                  
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 .   
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=  
 

     
 

 

 . 

This proves the equality                                                                                          

∫
  

    
 

 

 

 

     
 

 

  .             (**)             ∎              
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Abstract.  In this paper, the approximate solution is found for the Fornberg-Whitham equation 

(F-W) by using two analytical methods which are the Laplace decomposition method (LDM)  

and modified Laplace decomposition method (MLDM) with comparison between these 

methods for which gave the best approximate solution near to the exact solution, The 

analytical results of these methods have been received in terms of convergent series with 

easily calculable components. The results show that the modified method was found to be 

efficient, accurate and fast compared to the second method used in this research. 

1. Introduction                                                                                                                                                                                                                                                                                                       

Many important phenomena can be represented by nonlinear equations, both ordinary and partial, 

such as population models, chemical kinetics and fluid dynamics.  Many efforts have been made to 

implement either approximate or analytical methods to solve the nonlinear equations such as [1] and 

[2].  The F-W gave as [3, 4]  

                                                                                                                          (   ) 
It consists of a type of travelling wave solution called a kink-like wave solution and anti-kink-like 

wave solutions. No such sorts of travel wave solutions have been found for F-W. These days, 

numerous distinct methods have been presented to solve the F-W such as homotopy analysis 

method (HAM) [5], variational iteration method (VIM) [6], Daftardar-Jafari iterative method 

(DJM) and homotopy perturbation transform method (HPTM) [7]. Temimi and Ansari method 

(TAM) and Banach contraction method (BCM)[8]. 

In this paper, we implemented the LDM introduced by wazwaz [9] and MLDM introduced by 

Khuri [10, 11] to solve F-W, and the solution will be compared in both methods, those iterative 

methods have been successfully used to solve several kinds of problems. For example the linear 

and nonlinear fractional diffusion–wave equation was solved by applying the LDM [12], MLDM 

used to solve lane-Emden type differential equations [13].  In the following sections, the LDM and 

MLDM application are presented to solve the F-W and the validity of these methods to find the 

appropriate approximate solution. 

 

 

2. The basic idea of the methods 

To illustrate the solution steps for the MLDM, we consider the following nonlinear partial differential 

problem: 

  (   )  
  (   )    (   )                                                                                                                             (   )                                                                                                                  
 (   )   ( )    (   )  
 ( )                                                                                                                           (   )                                                                                                        
wherein L, is an differential operator ∂/∂t in eq. (2.1), R is another linear differential factor, N is a 

nonlinear differential factor. 
By taking Laplace transform (LT) (indicated by C), we get: 

 ,  (   )-   ,  (   )-
  ,  (   )-                                                                                                           (   ) 

using the differentiation property of LT and initial condition in eq. (2.3)  
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  , (   )-   ( )
  ,  (   )-   ,  (   )-                                                                                                  (   ) 

 , (   )-  
 

 
 ( )  

 

 
 ,  (   )-

 
 

 
 ,  (   )-                                                                                          (   ) 

Then the solution can be represented as an infinite series mentioned below:  

 (   )

 ∑  (   )

 

   

                                                                                                                                                 (   ) 

The nonlinear operator is disintegrating as 

  (   )  ∑  

 

   

                                                                                                                                                      (   ) 

Where Ai are Adomian polynomials [14] of v1, v2, …, vi and it can be evaluated by the following 

formula 

   
 

  

  

   
[ ∑    

 

   

]                                                                                                                           (   ) 

By substituted (2.6) and (2.7) in (2.5) 

 [∑  (   )

 

   

]  
 

 
 ( )  

 

 
 ,  (   )-

 
 

 
 [∑  

 

   

]                                                                         (   ) 

As   is the linear operator where 

     

,∑      (   )
 
   -  

 

 
 ( )  

 

 
 ,  (   )-  

 

 
 ,∑   

 
   -                                                              (    ) 

By correspondence both sides of eq. (2.10) we have the following: 

   (   )  
 

 
 ( )   (   )                                                                                                                        (    ) 

    (   )  
 

 
 ,   (   )-  

 

 
 ,  -                                                                                                      (    ) 

    (   )  
 

 
 ,   (   )-  

 

 
 ,  -                                                                                                      (    ) 

  

       (   )  
 

 
 ,   (   )-  

 

 
 ,  -                                                                                                    (    )                                                                                                                                    

By applying the inverse LT we get: 

  (   )   (   )                                                                                                                                             (    ) 

      (   )     6
 

 
 ,   (   )-  

 

 
 ,  -7                                                                                   (    ) 

 

Wherein h (b, t) depict the term originating from origin term and define initial conditions. Now, first of 

all, we stratifying LT of the terms on the right-hand facet of Eq. (2.16) then stratifying inverse LT we get 

the values of v1, v2... vi each in order. 

To applied MLDM, we imposed that 

 (   )    (   )
   (   )                                                                                                                                (    ) 

According to this assumption, a small change should be made on the components        . The difference 

we suggest is that only part   (   ) is set to  , at the same time as the ultimate part   (   ) is combined 
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with other terms in eq. (2.16) to fined   .  Based totally on those suggestions, we formulate the modified 

iterative algorithm is as follows 

    (   )
   (   )                                                                                                                                                (    ) 

  (   )    (   )     6
 

 
 ,   (   )-  

 

 
 ,  -7                                                                                (    ) 

      (   )      6
 

 
 ,   (   )-  

 

 
 ,  -7   

                                                                                    (    ) 
The solution using the modified Adomian analysis method in large part relies upon on the choice of 

  (   ) and   (   ). 
 

3. The application of methods  

We will discuss the use of LDM and MLDM for the solution of the F-W in this section. 

3.1.                Applying the LDM  
By considering the F-W (1.1): 

With the initial condition 

 (   )   
 

                                                                                                                  (   )                                                                                                                                        
And the exact solution is 

given:  (   )   
 

 
 
  

                                                                                                  (   )                                                                                                                         
Applying the LT on eq. (1.1) we have 

    
                                                                                                                       (   )                                                                                                                 
By the differentiation property of LT and initial condition in eq. (3.3), we get: 

  (   )   (   )  
                                                                                             (   )                                                                                           
 

 (   )  
 

 
 
 

  
 

 
    

 

 
      

 

 
       

 

 
     

 

 
                                                                   (   )                                                                                                                                                                                                 

Applying inverse LT 

 (   )  

 
 

     0
 

 
   1     0

 

 
     1     0

 

 
      1     0

 

 
    1     0

 

 
       1       (   )  

we represent the solution as an infinite series as follows  

 (   )  
∑   (   )
 
                                                                                                                                                 (   )                                                                                                                                                                  

The nonlinear operator is decomposed as  

      ∑   
 
                                                                                                                                                          (   )                                                                                                                                                                           

    
∑   
 
                                                                                                                                                               (   )                                                                                                                                                                              

 

      ∑   
 
                                                                                                                                                       (    )                                                                                                                                                                        

By replacing eq. (3.7), (3.8), (3.9) and (3.10)  in eq. (3.6) we get:   

∑ vi(b,t)
 
i=0 =e

b

2-C-1 0
1

s
Cvb1+C

-1 0
1

s
Cvbbt1+C

-1 0
1

s
C∑ Ai

 
i=0 1 -C-1 0

1

s
C∑ Bi

 
i=0 1+C-1 0

1

s
C3∑ Ci

 
i=0 1 ,       (3.11)               

 Then we get repetition relation 

v0(b,t)=e
b

2,                                                                                                                                             (3.12)                                                                                                                                                                             

  (   )  

    0
 

 
    1     0

 

 
      1     0

 

 
   1     0

 

 
   1     0

 

 
    1                   (    )    
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    (   )      0
 

 
    1     0

 

 
      1     0

 

 
   1     0

 

 
   1     0

 

 
    1    

                                                                                                                                                                                   (    )  
Then other constituents….. 

  (   )  

    0
 

 
    1     0

 

 
      1     0

 

 
        1     0

 

 
      1  

   0
 

 
         1                                                                                                                                                  (    )  

                                                                                                                                                                                                     

 

  (   )   
 

 
   ⁄                                                                                                                                                 (    )                                                                                                                                                                  

 

  (   )      0
 

 
    1     0

 

 
      1     0

 

 
   1     0

 

 
   1     0

 

 
    1                  (    )  

                                                                                                                                                                                                     

  (   )      0
 

 
    1     0

 

 
      1     0

 

 
 ,               -1     0

 

 
 ,      

     -1  

   0
 

 
  ,               -1                                                                                                      (    )                                                                                                                                                                                    

  (   )  
 

  
   ⁄ (     )                                                                                                                                 (    )                                                                                                                                                      

  (   )      0
 

 
    1     0

 

 
      1     0

 

 
   1     0

 

 
   1     0

 

 
    1                  (    )                                                    

  (   )  

    0
 

 
    1     0

 

 
      1     0

 

 
 ,                       -1     0

 

 
 ,      

           -1  

   0
 

 
  ,                       -1                                                                                 (    )                                                                                                            

  (   )   
 

   
   ⁄ (          )                                                                                                              (    )                                                                                                                                  

  (   )  

    0
 

 
    1     0

 

 
      1     0

 

 
   1     0

 

 
   1     0

 

 
    1                  (    )                                                     

  (   )      0
 

 
    1     0

 

 
      1     0

 

 
 ,                               -1  

   0
 

 
 ,                       -1  

   0
 

 
  ,                        

       -1                                                                                (    )                                                    

  (   )  
 

   
   ⁄ (              )                                                                                                      (    )                                                                                                                             

 (   )  ∑   (   )
 
     

 

  
 

  
   ⁄ (     )  

 

   
   ⁄ (          )  

 

   
   ⁄ (        

      )  
                                                                                                                                                          (    ) 3.2.                

Applying the MLDM  
By considering the F-W (1.1) with initial condition (1.2), applying the LT we have 

    
                                                                                                                     (    )                                                                                                               
By the differentiation property of LT and initial condition in eq. (2.3) 

  (   )   (   )  
                                                                                           (    )                     
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                                                                  (    )                                                                                     

Applying inverse LT  

 (   )  
 

 
 
 

  
 

 
 
 

     0
 

 
   1     0

 

 
     1     0

 

 
      1     0

 

 
    1  

   0
 

 
       1       (    )                        

we constitute solution as an infinite series as follows  

 (   )  ∑   (   )                                                                                                                                           (    )
 
                                                                                                                                                                   

The nonlinear operator is decomposed as  

      
∑   
 
                                                                                                                                                        (    )                                                                                                                                                                         

    
∑   
 
                                                                                                                                                             (    )                                                                                                                                                                            

 

      ∑   
 
                                                                                                                                                       (    )                                                                                                                                                                        

By substituting Eq. (3.31), (3.32), (3.33) and (3.34) in eq. (3.30)   

 ∑   (   )
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   1     0

 

 
     1     0

 

 
 ∑   

 
   1     0

 

 
 ∑   
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  ∑   

 
   1                                                                                                                                                   (    ) 

  Then we have  

  (   )  
 

 
 
 

                                                                                                                                                           (    )                                                                                                                                                                            

  (   )  
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   1     0
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    1          (    )  

    (   )      0
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   1     0

 

 
   1     0
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    [
 

 
    ]              (    )  

  (   )      0
 

 
    1     0
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   ⁄   

 

  
   ⁄ (      )  

 

   
   ⁄ (            )  

 

   
   ⁄ (                 )                                                                                                                 (    )                                                                                                                                                                                  

 

 

 

 

 

4.          Numerical analysis's  

 

In Table 1, absolute errors are calculated for the differences between the exact solution (3.2) and the 

approximate solutions (3.26) and (3.49) obtained by LDM and MLDM. Besides, Figure 1, Figure 2 and 

Figure 3 show the approximate and the exact solutions for the Fornberg-Whitham problem respectively, 

Figure 4 and Figure 5 show the behaviour of exact and approximate solutions obtained by the LDM and  

MLDM. 

 

 

                   
                   

         Figure 1. The approximate solution obtained                 Figure 2.   The approximate solution obtained 

   by the LDM of the Fornberg-Whitham problem      by the MLDM of the Fornberg-Whitham problem 

 
 



628 
 

 
 

Figure 3. The exact solution of the 

Fornberg-Whitham problem 

 

 
Figure 4. Comparison between the exact solution         Figure 5. Comparison between the exact solution 

           and approximate solution by LDM.                              and approximate solution by MLDM. 

 

 
 

 

 

 

 

 

Table 1. the numerical values for the exact and the approximate solutions with the absolute 

errors at t=4 

 

                                             
                                                                                                          

                                                                                                        

                                                                                           

                                                                                                    

                                                                                               

 

 

 

Conclusion  

 

In this paper, we dealt with analytical solutions include the LDM and the MLDM, which we discussed 

convergence and compared to the exact solution where we found that the convergence achieved by the 

modification method is more efficient and accurate than the Laplace decomposition method. 
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Abstract: We consider the nonlinear parabolic equations for the nonlinear 

diffusion-convection-reaction processes applying in many areas of science and 

engineering, such as filtration of gas or fluid in porous media. The aim of this paper 

is to concentrate on the existence of the weak solutions and boundary regularity for 

the Dirichlet problem of  the degenerate parabolic equations in irregular domains in 

some cases where both the convection and reaction terms have the same exponents. 

The notion of parabolic modulus has a significant role for the boundary continuity of 

the solutions. 

10  

11 Keywords: Dirichlet problems,  degenerate parabolic equations, weak solutions. 

1. Introduction    

    Consider nonlinear degenerate parabolic PDEs  

 (   )                ( )       (  )    ( ( ))
 
   ( )           

with                                ( )     and   is a positive exponent for 

both convection and reaction terms. (1.1) is usually called a porous media equation with 

convection and reaction terms. It has wide applications in chemistry, physics and biology 

involving diffusion with convection or advection and accompanied with additional source as 

for instance in modeling filtration in porosity of the medium, flow of a chemical reacting 

fluid on a flat surface, transport of thermal energy in a plasma, evolution and development of 

populations. In [12], the mathematical theory of nonlinear implicit degenerate parabolic 

mailto:habeebk@utq.edu.iq
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equations begins and the general theory, which is represented the concepts of the existence, 

uniqueness and boundary regularity of the boundary problems for classical general nonlinear 

diffusion equation in special case the equation (1.1) with m > 1, b = 0, and  c = 0 have been 

discussed. A lots of works on this equation introduced by a general list of references [9, 16, 

14] etc. General theory for reaction-diffusion in non-cylindrical domains was introduced in a 

serious works in [1,2,3]. 

In this paper, we study the existence of weak solutions for DP of nonlinear diffusion-

convection-reaction equations in particular case where the convection and reaction terms 

have the same exponent    There are in a literature review some papers dealing with the 

boundary value problems in irregular or noncylindrical domain with nonsmooth boundaries. 

Let consider the following problem for the heat equation                  with initial and 

boundary conditions: 

               (   )             (   )    ( )      ( )       ( )             

 
  

              (   )             (  ( )  )   
 
( )                       

where   *(   )    ( )      ( )        +                ,   -         

  ( )    ( )        ,   -      (,  ( )     ( ) -) and   (  ( ))    ( )  Proving the 

existence of a classical solution to the DP for the heat equation with the conditions (1.2) 

,(1.3) was established in [8] if the boundary curves   ( ) satisfy a H ̈lder condition with 

H ̈lder exponent bigger than    ⁄  

 

2. Statement of  Problem 

In this paper, we focus on  the following problem 

Problem( Dirichlet problem (DP)): Finding a weak solution of a nonlinear parabolic 

equation (1.1) in   with the conditions (1.3)-(1.4). 

Definition 2.1. Let  (   ) be a function. It a weak solution of the DP in   if 

(a)     is a nonnegative continuous function in  ̅  and      (   (    )) for a 

finite          
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(b)   for any   ( )                 are   ( ) functions such that    ( )    ( )  

  ( )     ( )  for  ,     -  ,   -  the integral identity holds 

 (      )  ∫ ∫ (

  ( )

  ( )

  

  

                         )     

 (   )                               ∫      
  

  
|  ( )
  ( )

   ∫   
  ( )

  ( )
|  
  
          

where    *(   )    ( )       ( )        + and        
   ( ̅ ) is a function that 

equals zero when      ( ) ,                 

Definition 2.2. A function  (   ) is said to be a supersolution of the DP in   if (a) and (b) of 

definition 2.1 are satisfied except for  (      )    for any nonnegative function    

    
   ( ̅ )  

Definition 2.3. A function  (   ) is said to be a subsolution of the DP in   if (a) and (b) of 

definition 2.1 are satisfied except for  (      )    for any nonnegative function    

    
   ( ̅ )  

Definition 2.4. Let       ,   -       and for any fixed      consider a function  

    
 (    )      (  (  )    ( )             

                
 (    )      (  (  )    ( )             

with     is sufficiently small and this function is well defined and converge to zero as 

          The function     
 (    ) is called the left modulus of lower semi-continuity of the 

function      at the point   ; and     
 (    ) is called the left modulus of upper semi-

continuity of the function      at the point                                                                      

 Assumption( ): Let  ( ) be a function  such that   is defined for sufficiently small 

        is positive and converges to   as       and  

     (   )                              
 (    )   

 
  ( )  

Assumption( ): Let  ( ) be a function  such that   is defined for sufficiently small 

        is positive and converges to   as       and  
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     (   )                                 
 (    )   

 
  ( )  

     The sufficient and necessary condition to satisfy regularity of boundary points in initial 

boundary value problem and in Wiener type [15] and the geometric characterizations for 

boundary points of any bounded open subset of      for a heat equation have been 

established in [5, 10]. The sufficient conditions are presented in [7, 18] for regularity of the 

boundary in the situation of general nonlinear  non-degenerate parabolic equations. In [13], 

the multidimensional Kolmogorov Petrovski test is presented for the boundary regularity for 

the heat equations. In this paper we are interested in DP to equation (1.1) and the general 

strategies for the existence results coincide with the classical solution for the DP to Laplace 

equation [15].                                                               

The goal of this paper is to get our attention by studying the existence of a weak solution and 

boundary regularity of the DP for the nonlinear degenerate parabolic diffusion equation (1.1) 

with convection and reaction terms in irregular domain or non-smooth boundary curves. The 

methods that we use are standard parabolic regularizations, construction of barriers and 

Bernstein method. First, we use an approximation of both the domain   and boundary 

function, as well as standard regularization of (1.1), we also construct a sequence of classical 

solutions in smooth domains which converges to a solution of (1.1). We then use barriers and 

a limiting process to prove a boundary regularity. In particular, we study the regularity of the 

boundary point under the assumptions ( ) and ( ). 

2. Preliminary Results 

      In this section we use parabolic regularization technique to construct the auxiliary 

classical problem to prove the preliminary results. Let  *  +  and *  + be a monotonic 

sequences with        Let        if      and   *   +  be positive sequence such that 

      as      if     . Let {   }       be sequences of functions and      

  ,      -     ( )     ( )    For    ,      - and                                                                                             

   
    

   
       

     ( )     ( )     

      Suppose that    ( )       ( )     ,      ( )     
  ,     ( )      

 . Also, we 

consider some restrictions on the sequence {   
 + will be expressed below. Let   be any 

number which satisfies  
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           and       (         )   if           

Let consider     
 
   without loss of generality and sequences of functions 

*   + *   + *   +  and  numbers *   
 +, *   

 + such that 

( )     
  ,     ⁄ ],    

  ,(  ⁄ )    ],           
                

     

(  )   ( )   (  )  ⁄    (    
 )  (  

 ( )  ( (  )  ⁄ ) )   , 

 (   )   ( )   (  )  ⁄    (    
 )  (  

 ( )  ( (  )  ⁄ ) )   , 

(  )    
 
    ( )     ( )    for (x, t) ,   -  ,      -   

( )       ,   -        
 ,   -           

(  )   (    
 )       ( )   (   

 )''(   
 )  (   

 )   
 (   

 )-b(   
 

)'(    
 ) 

                                     
 (    

 )   c       
  

      
 ( )   

(   )    (    
 )       ( )   (   

 )'' (    
 )  (    

 )    
 (    

 )-b (   
 

)'(    
 ) 

                                      
 (    

 )   c       
  

      
 ( ) 

(    )      ( )    ( )    (  ), for      . 

(  )       
 ( )    

 ( )     (  ), for              . 

where  ( )       for      and    .  Let assume that  ( ) is an arbitrary positive 

monotonic and continuous function with          ( )   , if  the boundary and initial 

functions have a positive infimum value. Consider the following auxiliary DP problem                                                                                                              

(   )                 ( )         
  
                

(   )             (   )     ( )          
            

                                                  
  

(   )             (   ( )  )   
  
( )                             

where    *(   )      ( )        ( )        +    

Lemma 1. Suppose that the sequences of functions *    + and {   + , and sequences of 

numbers *   
 + satisfy the conditions (i)-(ix) then there exists a classical solution   (   ) of 

the problem (3.1)-(3.3) which satisfy                                                             
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(   )            (  )      
          ⁄ (  )    for some          

  
(   )              

 
    (   )   

  
( )   for (   )     ̅   

    Proof of Lemma 1. By applying a standard method, and we suppose without loss of 

generality that the sequences *   +, *   + satisfy the conditions (i)-(ix), If we consider a  new 

variable                                                                                                  

 (     ( ))(    ( )      ( ))
       

Then (3.1)-(3.3) will be changed to the problem  

       (   ( )      ( ))
  (  )   (      

 ( )  ((    
 ( )      

 ( )) )   

(   )           (   ( )      ( ))
        (   ( )      ( ))

  (  )  

                        (            
  
)            

        

(   )            (   )     (    
     (    

      
 ) )           

  
(   )            (   )   

  
( ) 

  
      (   )   

  
( )                

where   
  *(   )                    +  and    ( )   ( ) such that  

 ( )  {
,      (    )(   ) -  (   )            

    (  (    ) )                                      
 

we get from [11] that the problem (3.6)-(3.8) has a unique classical solution     (   ) such 

that        
          ⁄ (  

 ) with some     . From  the maximum principle, we get 

(   )                         
 
    (   )   ( )            

     

Hence, the functions   (   )    .  (     ( ))(    ( )      ( ))
  
  / is the classical 

solution of the problem (3.1)-(3.3), then (4.5) follows. Also, from [6], (3.4) holds.                                                                                                                               

. 

  From the priori estimations in lemma 1, we proved that the classical solution to (3.1)-(3.3) 

exists. we apply H ̈lder estimates for the classical solutions in [17], then we have  the 

following lemma.                                                                                                       
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Lemma 2. Let    be a classical solution of  (3.1)-(3.3) and a sequences of numbers *   
 +  and 

the sequences of functions *   + and *   + satisfy the conditions (i)-(ix) then we get the limit 

solution  

(    )                      (   )      
   

  (   )  

Proof of Lemma 2. Since the problem (3.1)-(3.3) has a classical solution by lemma 1, we can 

consider that a sequence *  +  of compact subsets  of    such that 

(    )                                           ⋃  

 

   

         

Obviously, for each fixed  , there exists a number  ( ) such that        for  ( )  

   The sequence *  +  should be satisfy the following inequality 

 

(    )                 |
   

 

    
|      in           

where      ( ) is an arbitrary constant. From [14], by using method of Bernstein then the 

estimation (3.12) is established. It implies that 

(    )                   (   )    (   )                            

where      ( )  and      (     )  From (3.13) that we can easily establish the 

H ̈lder estimation  with respect to variable of time. Then, we prove the estimation (3.14)  in 

similar way as it is proved in [12], 

(    )                   (   )    (   )     (            
 

   )             

where      ( )  Therefore for   ( )     the sequence *  + is uniformly bounded and 

equicontinuous in the sequence of sets     From [4], we get more general results to establish 

that the sequence *  + is equicontinuous in   . From (3.14), (3.11), and by applying an 

Arzela-Ascoli theorem and a diagonalisation argument, we get a subsequence *  + such that 

       as       pointwise in  , where a limit function    is continuous. Also,  *  +  is 

uniformly convergent on all compact subsets of  . Obviously,      ( ) if     or     

and     and      (   (    )) for a finite value      if      and      . 
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Thus, we consider that  (    ) is a function such that  (   )    (   ) for (   )      with 

the initial condition  (   )    ( ) where    ( )       ( ) and the boundary functions 
  

  (  ( )  )   
 
( ) where    ,     -   

 

2. Main Results 

         Depending on the results in sections 2 and 3, we prove the main existence theorem for 

the DP (1.1), (1.3), (1.4) by using same strategies and methods which presented in [1, 10, 13].                                                                                                                              

Theorem 4.1. If     and     satisfy the assumptions ( ) and ( ), respectively; then a weak 

solution for the DP (1.1), (1.3), (1.4) in   exists. 

Proof. From lemma 1 and lemma 2 we proved the existence of classical solution    which 

satisfies the limit solution (3.10). Also, the integral identity (2.1) is satisfied. Now, according 

to definition 2.1, we have to get our attention in proving the continuity of function  (   ). 

Obviously, we may be easily establish the continuity of   at along the line    . If function 

  
 ( ) is  locally Lipschitz continuous, then from lemma 2, the estimations (3.13), (3.14) are 

established at the point (    )       ( ). Generally, we establish the continuity of    at 

the point (    ) by using barriers technique.  Next, we will prove the continuity of the 

function   at the points (   )     ( )       For that, we consider the following 

function                                                

                         (   )   (  ( )      (  ( )    ( ))   )     (   )    ̅      

where    *(   )   ,   -      ,     -+   Clearly that                     

   (  )    (  ) if       and     or       

   (  )    (   (    )) if           and     , 

where    (   - is a finite number. Then we have a point-wise convergent sequence *  + to 

the function   as      in   
  and uniformly convergent on all compact subsets of     Since 

there are equivalence between the continuity of   along the points     ( )         and 

the continuity of   along the points      and      We will divide the proof into two 

steps: 
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Step 1. To show    is continuous on          we shall prove that the following two 

inequalities are valid for      ,    (  )    

 (   )                        (   ) (    )      (   )       (  )       

(   )                         (   ) (    )      (   )     (  )    . 

Since     is an arbitrary real number, then   is continuous at the boundary points (    ) 

which comes from (4.1), (4.2). If   (  )   , and since (4.1) with     in the lower bound 

inequality directly comes from that   is non-negative in  ̅ , then it is the same way to prove 

(4.2). First, we will prove (4.1) if    ,   (  )    , so we must estimate the subsolution 

from the lemma below and thereby complete the first part of the proof. 

Lemma 3. Let    (  )     and   (     (  ) ) and consider a function   (   )   ( ) 

such that  ( )    (  ( )⁄ )         (  )              where  

   ( )  (         ( ))   (    )     (  )     ( ) 

then we can choose   is so large such that 

 (   )                                 for         ( )(   )  

Proof of Lemma 3.  Let      be fixed where   (  )    and    (     (  ) ) then we 

take  ( )     ( 
  )    such that 

                                  .(    
  )

 

   /⁄              (  )  
 

 
             

where    √    ⁄ , and we suppose that  the boundary curves    satisfies (2.2) from 

assumption ( ) at the point     . If       and        , then we can choose  ( )  

   ⁄             Let  ( ) be a function for all   ,   ( )(   )-  where     such 

that   (    
  )

 

     

Assume that either     or    , and if     or         , we take two cases as 

shown in Figure 1: 

(A)    if      , then        

(B)   if       then       (   )    

If     ,    ,       , we take four different cases as shown in Figure 1: 
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(C)  if          , then          *(   )   (   )  +  

(D)  if              ,  then       (   )    

(E) if     
 

 
         , then        

(F) if     
 

 
         , then        (   ) ⁄  

It may be easily checked that  

(   )                       (  )    (  )             
  
           

Assume that      or         and the cases (A)-(B) are satisfied (see Figure 1), then 

we have the following estimation from (4.4)  

      
   
 8   

 
     ( )     ( )   

 
   (    )  

((   )   )  ⁄
 

(   )                                    (    )  

 
      ( )  

          
       

9 

where      (   )   We take    ( )    as      and choose        is fixed and so 

large if       then (4.3) is satisfied.  

If however,               and     are in the regions (C)-(F)(see Figure 1), then 

we have the following estimation from (4.4) 

       8    ( )   

 
   

       
    ( )   

 
   (    )  

       
 

(   )                                    (    )  

 
      ( )  

    
   9 

As before, from (4.6), we can choose        is fixed and so large if       then (4.3) is 

satisfied. The lemma is proved. 
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Figure 1.Domain of the boundary regularity barrier in the parameter space (   )  

 

We now return to complete proof of the inequality (4.1). Since    ( ) is continuous then we 

consider the numbers        such that    (  )  
 

 
   ( ) for    

 

  
           

where if         then we choose      depends on     such that          If 

        then we choose      depends on     such that     ( )  
 

 
   ( )  for 

        We will estimate   (   ) in the neighborhood of   . Since we have   (    )  

   (  )    and for a continuous function   and a uniformly convergent sequence *  + to   

as      for every      there exists      which depends on   ,     and does not depend 

on   such that      . Let    be a number which depends on   ,   such that for       

  (   )     (  )  
 

 
 for             We choose      if      and      if 

      Let suppose that      and we consider the function   (   ) for          

           and       Let consider a uniformly convergent sequence *   + to    as 

      then without loss of generality we suppose that     
 (     ) is satisfied (2.2) 

uniformly for               If                then we have  

  (   )   ( ( )     (  )     ( ))   ((  
    ) ( ))    (  )  

 

 
  

If      we choose and fix numbers       and       so large that if     , and 

      then  
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  ((     
    )     

 )     ( )  
 

 
  for      (     

 )   ( ). 

Now let       be chosen so large that   
 
    (  )    for        Let    

(  
    

 
)
 

  ( )       Obviously,     converges university to    as      with respect 

      Then we set  

         {(   )         ( )       ( )         }  

         {(   )       ( )       ( )         }  

        ( )   (     ( ))
  
( ( )   (    )     (  )     ( )    )  

where    ( )  2                             
                           

  

If       then since  

(   )                 (      )  ( ( )(    
  )     ) (     (      ))

  
  

Let       so large and for arbitrary        

 (   )                 (      )    for       

In the case, if       then for            

(   )                         for          

If we compare   (   ) with    (   ) in    for       and for     (   )  

    (  )    
 
    for (   )    , 

  (   )    (  )  
 

 
   ( )     ( )    (   ) for       ( )           

If      we also have  

  (   )   ( ( ))    ( )      ((        
 )     

 ) 

                                        (   ) for      (     
 ( ))

  
( ( )    )  

Since the function     is smooth and bounded away from zero in  ̅  by   
 
 . Suppose that a 

function           On a parabolic boundary of   , we have    . Then by apply the 



642 
 

maximum principle theorem, it follows     in  ̅ . Let   *(   )               

    +, where    (    ) and        
 . Consider 

   
 (   )  8

  (   )          ̅  

  
 
                  ̅  ̅  

 

Since      
 
  in   ̅, we have   

 (   )    (   ) in  ̅. Then as       we have  

      (    )                       (   )   (   )     in     ̅, 

where  

 (   )  8
 ( ( )     (    )    (  )    ( ))       (   )   ̅

                                                                               (   )   ̅  ̅
 

and   {(   )        ( )               ( )   (    )    (  )    ( ) }. 

Obviously, we have  

      (    )                     
(   ) (    )

(   )  ̅

 (   )     
(   ) (    )

(   )  ̅

 (   )    (  )     

Hence, from (4.10), (4.1) follows. 

       Let us now prove (4.2) for       (  )   . We will estimate the supersolution from 

the following lemma and thereby complete the proof. 

Lemma 4. Let  (  )    and   (   (  )) and   (   )    ( ) such that  

  ( )  , ̅
 
      ( )( ̅

 
    

 
 )-     

where      (  )                and        *       +  and  

    ( )  (       ( ))   (    )     (  )     ( ), then we can choose   is so 

large such that 

(    )                             for       (    )  ( )  

Proof of Lemma 4. Let     (     ), where      and   is a continuous function at the 

point        Let take     such that   (  )      . If      then we choose  

  ( )     
   (   )    ( ̅

 
    

 
 )(  

 
    

 
 )    
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     (  )  
 

 
         , 

Where      
 
 

  and let us take that the curve    which satisfies the assumption ( ) and the 

condition (2.2) at    for   (    -  If       we choose   ( )              

Consider  a function   ( ) for     (    )  ( )  where      such that  

( ̅
 

    

 

 )(  

 

    

 

 )      ( ̅
 

    

 

 )  

 

 .  

Let us estimate 

         
   (  

 )    (  
 )

 
    

         
  

 

         
  ( ) (  

 
   ̅

 
 )       (    )  

  ( )( ̅
 
    

 
 )    

                  (    ) ̅
       

  
 +    

  ( )  ( ̅
 

    

 

 )   

    

 , 

Where    ,  

 

    ( ̅
 

    

 

 )-        ̅
    

       ̅
   

  if      or     

  

   

 if      and     ̅
    

  if    , or       

    

  if      Since       as 

     we can choose and fix      then (3.11) is satisfied. Here we finished proof the 

lemma. 

       Let us now return to complete proof of step 1. Since   ( ) is continuous , then for 

      and    such that   ( )    (  )  
 

 
 for      

            where if      

   we choose      and if      then      ( )  (    - such that         If       

then we choose that      ( )    such that   ( )    ( )  
 

 
 for         We now 

estimate   (   ) in the neighborhood of      

we have   (    )     (  )    and for a continuous function    and a uniformly 

convergent sequence *   + to a continuous function     as      for every      there 

exists      which depends on   ,     and does not depend on   such that      . Let    be 

a number which depends on   ,   such that for         (   )     (  )  
 

 
 for      

       We choose      if      and      if       Let suppose that      and we 

consider the function   (   ) for                     and       Let consider 

a uniformly convergent sequence *   + to    as       then without loss of generality we 
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suppose that     
 (     ) is satisfied (2.2) uniformly for               If         

       then we have 

  (   )    ( ( )     (  )     ( ))    ((  
    )  ( ))    (  )  

 

 
  

We can choose      (   )     is so large , then for     , 

  ( )     ( )    ( )  
 

 
  for                

If      we choose and fix numbers       and       so large that if     , and 

      then  

  ((     
    )     

 )    ((     
    )     

 )     
 
 

                                                     ( )     for      (     
 )    ( ). 

As before, consider the sets         , then we replace    and   with   and   , respectively. 

We can derive (4.7)-(4.9), replacing    and    with    and    respectively. 

If we compare   (   ) with    (   ) in    for       and for     (   )  

  (   )    (   ) for       ( )           

    ̅   (     )    (     )      for (   )   ̅ , 

If      we also have  

  (   )   ( ( ))    ( )      ((        
 )     

 ) 

                                        (   ) for      (     
 ( ))

  
( ( )    )  

 Suppose that a function           On a parabolic boundary of   , we have    . Then 

by apply the maximum principle theorem, it follows     in  ̅ . As before, consider  , 

where    (    ) and        
 . Consider 

   
 (   )  {

  (   )               ̅  

 ̅                     ̅  ̅  
 

Since     ̅  in   ̅, we have   
 (   )    (   ) in  ̅. Then as       we have  

      (    )                          (   )   (   )     in     ̅, 
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where  

 (   )  8
  (  ( )     (    )    (  )    ( ))       (   )   ̅

 ̅                                                                              (   )   ̅  ̅
 

and   is defined before. Obviously, we have (4.11) is valid. Hence, from (4.13), (4.2) 

follows. Therefore, the proof of continuity of the function   at the point (    ) is valid.  

Step 2. We want to prove that    is continuous on           we shall prove that the 

following two inequalities are valid for      ,    (  )    

 (    )                        (   ) (    )      (   )       (  )       

 (    )                         (   ) (    )      (   )     (  )    . 

Since     is an arbitrary real number, then   is continuous at the boundary points (    ) 

which comes from (4.14), (4.15). If   (  )   , and since (4.14) with     in the lower 

bound inequality directly comes from that    is non-negative in  ̅ , then it is the same way to 

prove (4.15). If       (  ),    (  )    , we prove that the inequality (4.14) in similar 

way to (4.1). Let us consider the following function  

  (   )   (   (   ( )     ( ))   ( )   (    )     ( )     (  ))   

where      ( )     
    ( )           (  )            

Depending on the appropriate value of  , this case is divided into several cases as in step 

1(see, Figure1). Let              and   be chosen as in proof the inequality (4.1), ( only 

replace   ( ) by   ( )) and similarly we get the following estimation  

  
 (   )    (   )          ̅ 

     

Consider 

   
 (   )  8

  (   )          ̅  

  
 
                  ̅ 

   ̅  
 

  ( )   (   ( )     ( ))
  
,  ( )   (    )        (  )     ( )- 

And     ( )    are defined as before. Since    satisfies (2.3), for a fixed number     

which is so large , then     depends on    such that 
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  (       )    for      

Then as       we have  

      (    )                       (   )   (   )     in     ̅, 

where  

  {
 ( ( )   (  ( )    ( ))

  
  (    )    (  )    ( )*  (   )   ̅

                                                                                               (   )   ̅   ̅
 

  {(   )        ( )           ( )      } 

 ( )   (  ( )    ( ))
  
,  ( )   (    )    (  )    ( )- 

Obviously, we have  

                              
(   ) (    )

(   )   ̅̅ ̅̅

 (   )     
(   ) (    )

(   )  ̅

 (   )    (  )     

Hence, from (4.16),  then the estimation (3.7) is valid. The proof of (4.15) is in similar way as 

we prove (4.14) so, the proof of continuity of the function   at the  boundary point (    ) is 

valid. 
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Abstract. The conjugate gradient method (CGM) is one of the best algorithms that used to solve and minimize 

constrained optimization problems. In this paper we suggest a new algorithm to solve large-scale nonlinear 

systems of monotone equations. The suggested method has some advantages such as it doesn't need the Jacobian 

matrix data nor store matrices at each iteration, also this method has the ability to solve large-scale problems 

with non-smooth property. With standard conditions, we established the global convergence for the proposed 

method. The numerical experiment shoes that the new method is promised and efficient by comparing with 

other famous methods. 

                     Keywords: System of monotone equations, Conjugate gradient method and Global        convergence. 

1. Introduction  

CGM is generally used to solve large-scale problems such as image processing, density physics and 

environmental science [1]. It is distinguished from the other numerical methods using to solve 

nonlinear systems of equations, because it is quick to calculate, needs very low memory and also does 

not need the Hessian matrix for objective functions [2, 3, 4, 5]. 

In general, the conjugate gradient direction     has the following formula 

                                                      {
                  
                  

                                                (1.1) 

Where     is a parameter, its value determines the different conjugate gradient Algorithms. 

Consider the following system of monotone equations:  

                                                                ( )                                                                          

(1.2) 

Where          is a continuous monotonic function, i.e.  

                                                    ( )   ( )                                                             

(1.3) 
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Many effective methods have been proposed to solve (1.2) [6] based on the following unconstrained 

optimization problem:  

        ( )   
 

 
 ‖ ( )‖                                                            (1.4) 

Where          is continuous and differentiable function. The optimization techniques are 

iterative, that it depends on the current iteration to find the next one. Most of researchers used the line 

techniques to find the next iteration. In general, the line search principal regularly takes the following 

iterative scheme:  

                                                                                                                                          

(1.5) 

Where    is the current iterate point,    is the search direction and    > 0 is the step length along    . 

The system of monotone equations operates widely in the case of unconstrained equations, i.e. when  

     , where  Ω is a set of possible solutions, it is non-empty closure convex set. 

      Over the years, this topic of CG has received a lot of interests and has many applications. This 

interest has increased sharply in recent years. In 2013, Yunhai Xiao and Hong Zhu [2] introduced a 

conjugate gradient method to solve convex constrained monotone equations with applications in 

compressive sensing. In 2018, M. A. Shiker and K. Amini introduced a new CG direction and 

comparing it with a new projection-based algorithm to solve a large-scale nonlinear System of 

monotone equations [7]. 

The new CG algorithm for solving (1.2) is established from the famous solver CG descent [8, 3] and 

the algorithm of Gonglin Y. and Zengxin W. [4].  Other parts of this paper are structured as follow: In 

Section 2, we build the new algorithm. Section 3 shows the globally converges of the new algorithm. 

And in section 4, we show the Numerical results. Finally, we clarified the conclusions. Through 

paper,  ·  means the normed vector in Euclidean space. 

2. The New Algorithm 

Here, in this part of the paper we will build our suggestion through the following steps. For solution 

(1.2) we will suggest the search direction imposing it in the following formula 

                                  {
(               )  ‖  ‖

                     
                                                                                     

 ,                         

(2.1) 

where: 

                                                       (  ),                                                                      

(2.2) 

                                                    and       ‖  ‖
   

    ‖  ‖
   

                                                        
 (   )

  ( (   )  ( ))

‖ ( )‖
                                                                

(2.3) 

Note that through the premise that    is considered as a descent direction of the function    at the 

point   , this property is very important and necessary for any iterative algorithm to be convergence 
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[9, 10]. In order to ensure that    satisfies our hypothesis in (2.1), it must be satisfy the following 

property: 

 

2.1.  Lemma 

Let *  + be the sequence generated by (2.1) and assume that (‖  ‖
     ≠0), then for every    , 

It holds that 

                                                                                  
 

 
‖  ‖

                                                    

(2.4) 

Proof 

Theorem 1.1 in [11] holds independent of the definition of  . The assertion of this lemma is proving 

directly. □ 

To demonstrate our algorithm we use the projection operative   , - which is known as a mapping 

from           it is defined as follows: 

                                                    , -        *‖   ‖    +       

And it is satisfy the following inequality:   

                                                 ‖  , -    , -‖  ‖   ‖         .  

Now we state the new Algorithm. 

2.2. Algorithm  

Step 1. Select a randomly initial point     , and: 

            (   )   (   )           . Set k =0. 

Step 2. If  (  )    , Stop, Else, calculate    by (2.1). 

                |
 (  )

   

  
   (  )  

|     

Step 3.   find     which satisfy:  

                                                    ( (       )
       ‖  ‖)                                     

(2.5) 

           Set:               

Step 4.  if  (    ) = 0 then stop.  

          Otherwise compute                   , where         

Step 5. Set         . Go to Step 2. 

3. Convergence Analysis 

In this section, we will prove for the globally convergence for Algorithm 2.2, for this purpose we need 

the following assumptions: 
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3.1.   Assumptions  

 A1  Let F is Lipchitz continuous on   , i.e.,   a positive number L > 0, such that 

                                                   ‖ , -   , -‖   ‖   ‖                                                  

(3.1) 

 A2  The solution set of (1.2) is non-empty, the next result displays that Algorithm 2.2 is well-

defined. 

3.2.  Lemma.  

 Assume that the assumption A1 is hold, there exists appositive scalar    that satisfies 

( (       )
       ‖  ‖)    

Proof 

Consider the algorithm stop in   (  ) =0, where         is solutions. 

Suppose   (  )    for each  k  then      . 

From (2.5),            is a solution. 

Now if  

     |
 (  )

   

  
   (  )  

| 

Then    not satisfy the line search condition i.e. 

                                                               (  )
        ‖  ‖,                                                         

(3.2) 

then 

         2  (  )
         ‖  ‖‖  ‖

 . 

Since 

   
 (   )

  ( (   )   ( ))

‖ ( )‖
 

  

and      , from (3.2) and by above assumption we get  (  )    . 

Now, if    (  )
         ‖  ‖‖  ‖

 , that is mean 

      8  |
 (  )

   

  
   (  )  

|9  

So, the suggested line search is will define.  □ 

3.3. Lemma 

Assume that the assumptions A1 and A2 hold, and *  + be the sequence generated by the Algorithm 

(2.2), then for any positive M > 0 we get: 



652 
 

‖ (  )‖    . 

Proof 

For all    , from the non-expansiveness of the projection hand, satisfy                    

‖      ̅‖ = ‖  ,      (  )-   ̅‖  

        ‖      (  )‖
  

                                                                      ‖    ̅‖       (  )     ̅    
  ‖ (  )‖

  

                                                                      ‖    ̅‖       (  )          
  ‖ (  )‖

  

                                                                      ‖    ̅‖    (  )       
  ‖ (  )‖

  

                                                                      ‖    ̅‖  , 

which implies that  ‖    ̅‖  ‖    ̅‖ . 

 From (3.2), for each  , we have 

‖ (  )‖  ‖ (  )   ( ̅)‖   ‖    ̅‖   ‖    ̅‖ . 

 Suppose M =  ‖    ̅‖  , then (3.3) is proved clearly. □ 

3.4. Theorem 

Consider that the assumptions A1 and A2 are satisfied and the sequence *  + is generated by 

Algorithm (2.2) then: 

                                                                          ‖  ‖                                                           

(3.3) 

Proof 

If (3.3) unrealized, then for      it satisfies that: 

                                                                                                                                            

(3.4) 

Let                                                            ‖  ‖  ‖        ‖ 

                                                                            (‖     ‖  ‖  ‖) 

                                                                              (‖     ‖)  ‖  ‖ 

                                                                            
 

 
‖  ‖  ‖  ‖ 

                                                                            
 

 
‖  ‖ 

Hence ‖  ‖  
 

 
‖  ‖, then 
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                                                                 ‖  ‖   
 

 
                                                                

(3.5) 

Since 

                                                             
 (   )

  ( (   )  ( ))

‖ ( )‖
   

Then  

                                                             |
 (   )

  ( (   )  ( ))

‖ ( )‖
 | 

                                                                   (   )
  ( (   )   ( ))  ‖  ‖

  

                                                                 ‖ (   )
 ‖  ‖ (   )   ( )‖ ‖  ‖

  

                                                                ≤  ‖      ‖ ‖  ‖
                                                          

(3.6) 

Now                             

                                                      ‖  ‖  ‖  ‖ ‖    ‖  ‖  ‖                                                      

(3.7) 

From above relations and Lemma 3.2, we get       , where   is a positive scalar.  

By inequalities (3.4), (3.5) and (3.6) there is a contradiction about inequality (3.7). So, (3.3) holds and 

the theorem is proved. □              

4. Numerical Results 

In this section, we will compare our algorithm (  ) with three famous algorithms used to solve large 

scale systems of monotone equations.  

The experiments were run on a PC with CPU 2.20 GHz and 8 GB RAM. The codes were written in 

MATLAB R2014 a programming environment. For high accuracy to all test problems, the termination 

condition is   (  )        , or the total number of iterates exceeds 500000. The problems (1- 4) 

were taken from Qingna L. and Dong H. L. [8], Problems (5- 6) were taken from Wanyou C. [9] and 

problem (7) were taken from Qin R.Y. et.al [12]. 

We compare the new Algorithm (  ) with the following three famous: 

QD: This Algorithm introduced by Qingna L. and Dong H. L. [8].  

GX: This Algorithm introduced by Gonglin Y. et.al. [4]. 

ZZ: This Algorithm introduced by Zhen S. Y. and Zhan H. L. [3]. 

The parameters are definite as follows:                       . We took   |
 (  )

   

  
   (  )  

| 

as the initial trial parameter.  
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The results of tested Algorithms are listed in the following tables. Table 1 contains the functions 

evaluations and iterations that have occurred by each Algorithm to solve each problem. While Table 2 

contains the time that each algorithm took to solve each problem. 

 

Table 1:  Functions evaluations (f eval ) and iterations (iter). 

problem Dim f eval Iter 

  (  ) QD GX ZZ (  ) QD GX ZZ 

P1 500000 168 443 1500009 216 20 110843 500001 24 

500000 778 100589 1500014 292 62 25161 500001 29 

500000 131 2645 1500045 131 10 661 500001 10 

500000 318 2672 1500017 189 50 668 500001 27 

P2 500000 76 31 15 204 5 7 4 14 

500000 56 31 38 180 5 7 5 13 

500000 76 25 9 76 5 5 2 5 

500000 76 25 32 76 5 5 3 5 

P3 500000 76 31 15 76 5 7 4 5 

500000 57 93 45 57 5 20 6 5 

500000 76 25 9 76 5 5 2 5 

500000 77 74 41 77 5 16 5 5 

P4 500000 70 56555 27143 116 3 14133 9040 5 

500000 70 70415 24398 116 3 17598 8125 5 

500000 70 32755 281363 116 3 8183 93780 5 

500000 70 51551 525401 116 3 12882 175126 5 

P5 500000 783 150 2158 * 76 29 622 * 

500000 108 253 2216 * 26 48 632 * 

500000 477 89 2137 * 47 19 619 * 

500000 72 108 2214 * 17 23 633 * 

P6 500000 327 270 352 959 78 68 114 125 

500000 371 258 105 1014 89 64 32 130 

500000 379 259 136 958 91 64 42 98 

500000 508 258 241 1065 123 64 77 127 

P7 500000 88 2277 * * 8 238 * * 

500000 58 4186 * * 5 406 * * 

500000 57 417 * * 5 55 * * 

500000 58 1045 * * 5 121 * * 

 

          

 

 

                                                   Table 2:  CPU-Time (in seconds) 
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problem Dim CPU-Time 

             (  )             QD          GX            ZZ 

P1 500000 0.781 1132.218 4195.515 0.718 

500000 2.109 263.890 4165.875 0.906 

500000 0.312 6.890 3719.375 0.406 

500000 0.890 6.781 4067.031 0.593 

P2 500000 1.750 0.140 0.026 4.234 

500000 1.218 0.156 0.171 3.796 

500000 1.218 0.093 0 1.609 

500000 1.781 0.093 0.078 1.593 

P3 500000 1.765 0.171 0.078 1.781 

500000 1.234 0.390 0.171 1.312 

500000 1.796 0.140 0.031 1.781 

500000 1.828 0.265 0.156 1.890 

P4 500000 0.265 211.500 100.734 0.375 

500000 0.250 293.343 92.781 0.390 

500000 0.250 142.656 1180.796 0.421 

500000 0.250 234.125 2457.375 0.421 

P5 500000 0.609 0.093 1.703 * 

500000 0.109 0.218 1.578 * 

500000 0.359 0.062 1.658 * 

500000 0.031 0.109 1.562 * 

P6 500000 0.156 0.125 0.218 0.515 

500000 0.171 0.140 0.062 0.562 

500000 0.187 0.140 0.062 0.515 

500000 0.265 0.125 0.140 0.5310 

P7 500000 1.921 15.375 * * 

500000 1.046 27.593 * * 

500000 1.296 2.92187 * * 

500000 1.421 7.171 * * 

 

 

The results in above tables show the efficiency of the new Algorithm (  ) comparing with the three 

another methods in all areas of comparison (number of functions evaluations, number of iterations and 

CPU time). Few results may appear to be less efficient of the new algorithm than the other methods, 

but it is generally better than other methods in a final outcome. 

 

5. Conclusions 

In this paper there is a modest contribution for solving constrained convex monotony equations and 

global convergence has been proved. The new method (  ) is very suitable for solving such problems 

as it does not require neither high memory nor Jacobian data and need little storage for matrices from 

the iterations process. 

The preliminary numerical results indicate that the new method is efficient and promised, that is we 

compare it with three famous algorithms according to the number of function evaluations (f eval ), 

number of iterations (Iter) and CPU time that every algorithm needs to find the solution of the given 
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problems. The results listed in above tables show that the new algorithm, in general, needs less 

number of (f eval), (Iter) and CPU time comparing with the other three famous methods, which ensure 

that (  ) is very efficient and promised to solve large scale systems of monotone equations.  
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Abstract 

     We define Skew matrix Gamma ring and  describe constitute of Jordan left Centralizers 

and derivations of a Skew matrix gamma  ring   (       ) on  a   -ring M . 

Keywords: Skew matrix ring, Gamma ring ,Jordan left centralizer and  Jordan left derivation  

1-Introduction 

     A linear mappings       is said to be a left derivation (resp.,Jordan left derivation )if 

  (ab)=a   (b)+b   (a)   a,b    (if   (  )     ( )  a   . Bresar and Vukman  [3] 

introduced concept of left derivation and Jordan left derivation  .We refer the readers to [ 4,6 

,10,11] for result concerning Jordan left derivations .A linear mappings  :     is called 

Jordan left centralizers(resp., left centralizers)  if  (  )   ( )   (        (  )  

   ( )          )  A linear maps  :     is called a Jordan centralizers if   satisfies   

(    +   )=   ( )  +     ( )=   ( )  +     ( )         . In [12,13,14] some result 

about left centralizer .In [5 ] Hamaguchi ,give a sufficient and necessary conditions for J : 

  (      )    (      )  being Jordan derivation and prove that there exist many Jordan 

derivations of it which are not derivations and indicate to the characterization of derivation 

on   (      ),and Jordan derivation of   ( )  with invariant ideal. Nobusawa [ 8] 

introduced the concept of gamma ring which  generalized by Barnes [  1  ] as follows 

     Let M and   with + ,abelian groups ,M is called a  -ring if for any    ,  M and 

      , the following satisfied  

(1)      M  

(2) (  +  )  ,  =     +   ,  

     (   )   =      +      

    (  +  )=      +      

(3) (    )    =   (   ) 

    In[7] Majeed and Shaheen described form of Jordan left derivation and Centralizers on 

  (     ). In this article, we define Skew matrix Gamma ring, describe constitue Jordan 

left centralizers and derivation  of a Skew matrix Gamma ring   (       ) on a   -ring M 

.Now, we shall recall some definitions which are basic in this paper . 
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Definition 1.1  :-[  9  ]  

     Let   be a ring ,     and endomorphism        such that  ( )    and  ( )     

    . 

Let   (     )be the set of     matrices on   with the following multiplication  

0
    
    

1  0
    
    

1   = [
                   
   (  )          (  )      

] 

and usual addition    (     ) is said a skew matrix ring over  . 

In this article ,we define Skew Matrix Gamma ring as follows  

 

Definition 1.2  :-Skew Matrix Gamma ring 

     Let M be a gamma ring ,q   M and    :M  M such that  ( )    and  ( )        

    ,   .Let   (       )be the set of      matrices over M with the following 

multiplication  

0
    
    

1   0
    
    

1   = [
                        
    (  )            (  )        

] 

and usual addition   (       ) is said  a skew matrix   ring over M . 

Note that the matrix 0
  
  

1  is denoted by                            . 

2- on Skew Matrix Gamma ring with Jordan Left Derivation  

     We shall describe constitute of Jordan left derivation of skew matrix Gamma ring . 

Let D be a Jordan left derivation of    (       ) .  First ,we set  

D(    a) [
  ( )   ( )
  ( )   ( )

] ,D(    b)= [
  ( )   ( )
  ( )   ( )

] 

D(    )= [
  ( )   ( )
  ( )   ( )

], D(     )= [
  ( )   ( )
  ( )   ( )

] 

Where                 are linear mapping . 

Lemma2.1:- For every a M,      

        are Jordan left derivation of M . 

    (   )    

    (   )    
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Proof:-since  

 (      )           (    ) 

[
  (   )   (   )
  (   )   (   )

]=20
  
  

1  [
  ( )   ( )
  ( )   ( )

] 

[
  (   )   (   )
  (   )   (   )

]=0
     ( )      ( )

  
1 

Then   (   )       ( )   (   )       ( )   (   )          (   )       

Lemma2.2 :- For every d M,      

1-     are Jordan left derivation of M . 

2-  (   )    

3-  (   )    

Proof:-Since  

 (      )          (    ) 

[
  (   )   (   )
  (   )   (   )

]=20
  
  

1  [
  ( )   ( )
  ( )   ( )

] 

[
  (   )   (   )
  (   )   (   )

]=[
  

     ( )      ( )
] 

         (   )       ( )     (   )       ( )     (   )          (   )   .. 

Lemma  2.3 :- For any a,b        

1-   (   )       ( )       ( )   

2-   (   )       ( )       ( ) 

3-   (   )    

4-   (   )    

Proof:- Since  

 (      )   (                   ) 

[
  (   )   (   )

  (   )   (   )
]        =        (    )            (    ) 

    0
  
  

1  [
  ( )   ( )
  ( )   ( )

]   0
  
  

1  [
  ( )   ( )
  ( )   ( )

] 

                              =0
      ( )       ( )

  
1  0

      ( )        ( )

  
1 

=0
      ( )        ( )        ( )        ( )

  
1 

Lemma 2.4 :-For every c, d  ,      

1-  (   )    
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2-  (   )    

3-  (   )       ( )      (  ( )) 

4-  (   )       ( )      (  ( )) q 

Proof:-Since  

 (       )   (                     ) 

[
  (   )   (   )
  (   )   (   )

]          (    )          (     ) 

                            0
  
   

1  [
  ( )   ( )
  ( )   ( )

]   0
  
   

1  [
  ( )   ( )
  ( )   ( )

]                                                                                     

=[
  

     ( )      ( )
]  [

  
    (  ( ))     (  ( ))  

] 

    = [
  

     ( )      (  ( ))      ( )      (  ( ))  
] 

Theorem 2.5 :-Let M be a gamma ring and D be a Jordan left derivation of   (       ) 

then  0
  
  

1  [
  ( )    ( )    ( )    ( )   ( )    ( )    ( )    ( )

  ( )    ( )    ( )    ( )   ( )    ( )    ( )    ( )
] 

Such that  

1-  (   )   ,  ( 
 )   ,      are Jordan left derivation of M. 

2-  (   )      (   )             are Jordan left derivation of M. 

3-  (   )        ( )        ( )  ,  (   )        ( )       ( ) 

  (   )         (   )     

4-  (   )      (   )   ,  (   )       ( )      (  ( ))and  

  (   )       ( )      (  ( ))      

 

Proof:-Since  0
  
  

1   (     )   (     )   (    )   (     ) 

                      =[
  ( )   ( )

  ( )   ( )
]  [

  ( )   ( )

  ( )   ( )
]   + [

  ( )   ( )

  ( )   ( )
]  [

  ( )   ( )

  ( )   ( )
] 

                      =[
  ( )    ( )    ( )    ( )   ( )    ( )    ( )    ( )

  ( )    ( )    ( )    ( )   ( )    ( )    ( )    ( )
] 

By[ lemma 2.1] ,          - ,[ lemma 2.3]and [ lemma 2.4] we get the result . 

3- On  Skew matrix Gamma ring  and Jordan left centralizer 
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      Let J be a Jordan Left Centralizer of    (       ) .First ,we set  

J(    a) [
  ( )   ( )
  ( )   ( )

]  ,J(    b)= [
  ( )   ( )
  ( )   ( )

]   

J(    )= [
  ( )   ( )
  ( )   ( )

],J(     )= [
  ( )   ( )
  ( )   ( )

] 

Where                 are linear mapping. 

Lemma 3.1 :- For every a M,      

1-  is  Jordan left centralizer  of  M . 

2-  (   )    

3-  (   )    ( )  ( ) 

4-  (   )   . 

Proof:- Since                         (      )   (    )      

[
  (   )   (   )
  (   )   (   )

]=[
  ( )   ( )
  ( )   ( )

]  0
  
  

1 

                                     [
  (   )   (   )
  (   )   (   )

]=[
  ( )   

  ( )  ( )  
] 

Then   (   )    ( )     (   )      (   )    ( )  ( )      (   )     

Lemma3.2  :- For any d M,      

1-      are Jordan left  centralizer of M . 

2-   (   )    

3-   (   )    

Proof:-Since  

 (      )   (    )       

                                 [
  (   )   (   )
  (   )   (   )

]  [
  ( )   ( )
  ( )   ( )

]  0
  
  

1 

 [
   ( )  

   ( )  
] 

Then   (   )      (   )   &     are Jordan left centralizer of M. 

Lemma3.3 :- For every  a, b   

1-  (   )    ( )   

2-  (   )    ( )   

3-  (   )     ( )  ( ) 

4-  (   )    ( )  ( ) q 

Proof:-Since   (      )   (                   ) 
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                  [
  (   )   (   )

  (   )   (   )
]=  (    )       (      )       

                                             [
  ( )   ( )
  ( )   ( )

]  0
  
  

1  [
  ( )   ( )
  ( )   ( )

]  0
  
  

1 

                                       =[
   ( )  

   ( )  ( )  
]  [

  ( )   

   ( )  ( )  
] 

                                             =[
   ( )    ( )  

   ( )  ( )   ( )  ( )  
], 

Then     (   )    ( )     (   )    ( )     (   )     ( )  ( )     

  (   )    ( )  ( )   . 

 Lemma 3.4 :-For every c ,d  ,      

1-  (   )    ( )      

2-  (   )    ( )   

3-  (   )    ( )   

4-  (   )    ( )   

Proof:-Since 

                           (       )   (                     ) 

                [
  (   )   (   )
  (   )   (   )

]   (     )       (    )       

                              [
  ( )   ( )

  ( )   ( )
]  0

  
  

1  [
  ( )   ( )

  ( )   ( )
]  0

  
  

1 

 [
  ( )      

  ( )    
]  [

   ( )  

   ( )  
] 

                                           =[
  ( )       ( )  

  ( )     ( )  
] 

  (   )    ( )           (   )    ( )   

  (   )    ( )        (   )    ( )   

Theorem 3.5:- Let M be a       ring and J be a Jordan left centralizer of   (       ) 

then  

 0
  
  

1  [
  ( )    ( )    ( )    ( )   ( )    ( )    ( )    ( )

  ( )    ( )    ( )    ( )   ( )    ( )    ( )    ( )
] 
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Such that  

1-  is  Jordan left centralizer  of M    (   )      (   )    ( )  ( )     (   )  0. 

2-      are Jordan left  centralizer of R    (   )   and   (   )     

3-  (   )    ( )      ,  (   )    ( )  ,  (   )     ( )  ( ) and 

  (   )    ( )  ( ) q 

4-  (   )    ( )           (   )    ( )   

  (   )    ( )            (   )    ( )   

Proof:- Since  0
  
  

1   (     )   (     )   (    )   (     ) 

       =[
  ( )   ( )

  ( )   ( )
]  [

  ( )   ( )

  ( )   ( )
]   +[

 ( )   ( )

  ( )   ( )
]  [

  ( )   ( )

  ( )   ( )
] 

=[
  ( )    ( )    ( )    ( )   ( )    ( )    ( )    ( )

  ( )    ( )    ( )    ( )   ( )    ( )    ( )    ( )
] 

So by [lemmas 3.1, 3.2, 3.3 and 3.4] ,we have the result. 
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Abstract: The purpose of this paper is to introduce a new class of intuitionistic fuzzy closed 

sets called intuitionistic k-continuous k-irresolute functions in intuitionistic fuzzy topological 

space ( for short, fkt) . Finally , we introduce the concepts of 

k-open (k-closed)  mapping with some properties in fuzzy topological spaces. 

Keywords: Intuitionistic fuzzy K-closed sets Intuitionistic fuzzy K-connectedness, 

Intuitionistic fuzzy K-compactness. 

 

1 Introduction 

Atanassov [1,2] was introduced the concept of intuitionistic fuzzy sets (IFS) . After that 

Change [4] introduced the concept of fuzzy topological spaces. Also many fuzzy topological 

concepts such as fuzzy compactness [5], fuzzy connectedness [12], fuzzy continuity [6,9], 

fuzzy g-closed sets [3], fuzzy g continuity [11], fuzzy rg-closed sets [7] have been 

generalized for IF topological spaces. Further in 2012 Vadivel and Sivakumar [13] were 

introduced the concept    -continuous mapping in fuzzy 

 topology. 

 

2. Preliminaries 

  We give the following definitions which needed in this paper  

Definition 2.1 A fuzzy set   in (    ) is called:  

(1) a fuzzy pre-open set [10] if       (   ( )) and a fuzzy pre-closed set if   (   ( ))     ,  

(2) a fuzzy α-open set [10] if   ≤    (  (   ( ))) and a fuzzy α-closed set if   (   (   ( )))   

  , 

(3) a fuzzy semi-open set [14] if   ≤   (   ( ))  and a fuzzy semi-closed set if    (   ( ))   

  , 

(4) fuzzy regular open set [10] if    (    )      and a fuzzy regular closed set if   (   ( ))   
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Definition 2.2 A fuzzy set   in a fts (    )  is called: (1) a fuzzy generalized closed set (for 

short,   -closed set) [1] if   ( )      whenever       and   is fuzzy open in  

 M, 

   (2) a fuzzy generalized pre-regular closed set [3] (for short,     -closed fuzzy set) if 

        ( )      whenever      and   is fuzzy regular open set in M .  

(3) a fuzzy generalized semi-regular closed set [ ] (for short,     -closed fuzzy set) if 

   ( )      whenever      and   is fuzzy semi open set in M . 

Definition 2.3 Let M, N are two fuzzy topological spaces. A mapping          

is called: 

 (1) fuzzy continuous (for short, f-continuous) [9] if    ( ) is f-open set in M, for every f-

open set   of  N ,  

(2) fuzzy α-continuous (for short, fα-continuous) [10] if     ( )  is fuzzy α-closed set in M, 

for every f-closed set   of N , 

 (3) fuzzy pre-continuous [10] if    ( ) is fuzzy pre-closed set in M, for every 

 f- closed set   of N , 

 (4) fuzzy gp-continuous (for short ,   -continuous) [6] if     ( )  is fuzzy fgp-closed  

 set in M, for every f-closed set   of  N, 

 (5) fuzzy generalized semi-irresolute (for short ,    -irresolute) [14] if    ( ) is fg-closed set 

in M, for every fg-closed set   of N , 

 (6) fuzzy α generalized irresolute (for short , fαg-irresolute) [14] if     ( ) is fαg- 

 closed set in M, for every fαg-closed set   of N , 

(7) fuzzy perfectly continuous (for short , fp-continuous) [14] if     ( ) is fuzzy open  

 and f-closed set in M, for every f-open set   in N .  

Definition 2.4  Let M, N are two fts. A mapping         is called: 

 (1) fuzzy open (for short , f-open) [8] if   ( ) is fuzzy open set in N , for every f-open set of 

M,  

(2) fuzzy g-open (for short, fg-open) [8] iff   ( )  is fg-open set in N , for every  

f-open set in M .  

Definition 2.5  Let M, N are two fts. A bijective map        is called fuzzy-

homeomorphism [14] (for short,  f-homeomorphism) if  L and      are f- continuous. 

3. Fuzzy Generalized K-Continuous Mappings 

 We, start by the following definition:  

Definition 3.1  Let M and N be two fts. A function         is said to be fuzzy 

generalized K-continuous (briefly fgk-continuous) if the inverse image of every FOS in N is 

   -open set in M. 

Proposition 3.2  Let         be a mapping. Then following implications are true : 

f  continuous                            fs continuous                                fgk continuous  

                                                      fp continuous 
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Proof: f  continuous                : Let   be fuzzy   closed set in N . Since L is f -

continuous,     is    closed set in M. so,     is fs closed set in M. Thus  L is fs continuous. 

f  continuous                : Let   be fuzzy   closed set in N . Since L is f -continuous, 

    is    closed set in M. so,     is fp closed set in M. Thus  L is fs continuous. 

   continuous                  :it's clear .   

  The converse of the above proposition need not true in general .The following example 

show the cases. 

Example 3.3.Let        *     + and the fuzzy sets   and   defined as following : 

     
    

  
   

    

  
     =   

  

  
   

    

  
. Let        *     +  and     *     +   Define 

     (   )    (   )  by   (  )            (  )         Then L is not f -continuous because 

  is f -closed in N and    ( )    is not   -closed set in M but L is   -closed set in M.. Thus L is 

  -continuous.Also L is   -continuous but L is not f -continuous . 

Example 3.4 .Let        *        + and the fuzzy sets  ,   and   defined as following :   

  
  

  
   

    

  
  

      

  
    =   

    

  
   

    

  
  

      

  
,   =   

    

  
   

    

  
  

      

  
.  

Let     *     +  and     *     +   Define    (   )    (   )  by   (  )       (  )   

    and  (  )         Then L is not   -continuous because   is   -closed in N and    ( )    is 

not   -closed set in M but it is    -closed set in M . Therefore L is    - 

continuous. 

Remark 3.5. the relations between                 and    -continuous, also                

 and    -continuous are independent .The following example show the cases. 

Example 3.6 .Let        *        + and the fuzzy sets  ,   and   defined as following :   

  
    

  
   

    

  
  

    

  
    =   

    

  
   

    

  
  

      

  
,   =   

    

  
   

    

  
  

      

  
. Let     *     +  and 

    *     +   Define    (   )    (   )  by   (  )       (  )       and  (  )         

Then L is not    -continuous because   is    -closed in N and    ( )    is not    -closed set in 

M but it is    -closed set in M . Therefore L is   -continuous. 

Example 3.7 .Recall example 3.4  We see that  L is not   -continuous because   is    -closed in N 

and    ( )    is not   -closed set in M but it is    -closed set in M.. Therefore L is    -

continuous. 

Example 3.8 .Let        *        + and the fuzzy sets  ,   and   defined as following :   

  
    

  
   

    

  
  

     

  
    =   

    

  
   

    

  
  

      

  
,   =   

    

  
   

    

  
  

      

  
. Let     *     +  and 

    *     +   Define    (   )    (   )  by   (  )       (  )       and  (  )         

Then L is not   -continuous because   is   -closed in N and    ( )    is not   -closed set in M 

but it is   -closed set in M . Therefore L is   -continuous. 

Example 3.9 .Let        *        + and the fuzzy sets  ,   and   defined as following :   

  
 

  
   

    

  
  

      

  
    =   

   

  
   

    

  
  

    

  
,   =   

    

  
   

    

  
  

      

  
. Let     *     +  and 

    *     +   Define    (   )    (   )  by   (  )       (  )       and  (  )         
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Then L is not    -continuous because   is   -closed in N and    ( )    is not   -closed set in M 

but it is   -closed set in M . Therefore L is   -continuous. 

Remark 3.10. By transitivity we get :    continuous                 . 

Proposition 3.11. If           is    -continuous and          is L-continuous, then 

              is    -continuous function . 

 Proof: Let   be fuzzy closed set in W. Then    ( ) is fuzzy closed set in N , since K is 

 f-continuous, then    (    ( )) is     -closed set in M , since  L is     -continuous. So 

 (     )  (λ) =    (   ( )) is     -closed set in M .Therefore              is    - 

continuous function. 

Definition 3.12 A mapping If           is said to be fuzzy generalized k-irresolute (for 

short     -irresolute) if the inverse image of every    -closed set in N is     -closed fuzzy set 

in M . 

Proposition 3.13 Let          be a mapping .Then every    -irresolute function is     -

continuous. 

Proof: Let   be a fuzzy closed set in N . So    is    -closed set in N . Since L is     – 

irresolute,    ( ) is     -closed set in M . Thus L is     -continuous.   

   The converse of the above proposition  are not true . The following example show the  

cases . 

Example 3.14 . Recall example 3.4  We see that  L is    -continuous but not    -irresolute 

because the fuzzy closed set   in N is    ( )     which is not     -closed  

set in M . 

Proposition 3.15. If           and          are two mappings . If  L and   are    , 

irresolute  mapping ,then              is    - irresolute mapping . 

Proof: Let   be fuzzy closed set in M. Then    ( ) is fuzzy closed set in N , since K is 

     - irresolute, then    (   ( )) is     -closed set in M , since  L is     - irresolute. So 

 (     )  (λ) =    (   ( )) is     -closed set in M . Therefore              is    - 

irresolute function. 

Proposition 3.16. Let         and          are two mappings . If  L is     irresolute 

and K is    -continuous, then              is    -continuous.  

Proof : Let   be fuzzy closed set in M. Then    ( ) is    -closed set in N , since K is     -

continuous. Since L is    -irresolute,    (   ( ))   (     )  ( )   is     -closed  

set in M . Hence              is     -continuous. 

Definition 3.17 A mapping         is called to be fuzzy generalized k-regular 

open (for short,      -open) if the image of every f-open set in M is     -open set in N .  

Definition 3.18 A mapping         is said to be fuzzy generalized k-regular closed  

(for short,       -closed) if the image of every f-closed set in M is      -closed set in N . 

Proposition 3.19  If          is f-closed map and          is    -closed maps, then    

          is    -closed map.  
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Proof:  Let   be fuzzy closed set in M . Then L( ) is f-closed set in N . Since K is    -closed 

map and since  K(L( )) is    -closed set in W. So  (   )(  )    ( ( )) is fgpr- 

closed set in Z .Therefore               is    -closed map. 

Proposition 3.20  Let         and          are two mappings s.t,             is      

-closed map. (1) If  L is f-continuous and surjective, then K is      -closed mapping. 

 (2) If h is      -irresolute and injective, then f is      -closed map.  

Proof: (1) Let   be fuzzy closed set in N. Then    ( ) is f-closed set in M. Thus       is      -

closed map, (    )(   ( ))     ( ) is     -closed set in W. Therefore K is      -closed 

mapping . 

 (2) Let   be a f-closed set in N. Then (h ◦ f)(µ) is     -closed set in W, so 

 (   (   )( )) is      -closed set in N. Since K is injective,  ( )       (     )( ) is     -

closed set in N . Therefore L is     -closed mapping. 

 

Definition 3.21 Let M and N be two fts . A bijective map         is called fuzzy generalized 

k-regular homeomorphism (for short,    r-homeomorphism) if  L and     are 

    r-continuous. 

Proposition 3.22  Every f -homeomorphism is     -homeomorphism.  

Proof:  Let          be a   -homeomorphism. Then Land     are f-continuous. Therefore L 

and    are      -continuous. So  L is      -homeomorphism.  

 The converse of the above proposition  are not true . The following example show the  

cases . 

Example 3.23  Let        *     + and the fuzzy sets  ,   defined as following : 

     
    

  
   

  

  
     =   

  

  
   

    

  
 . Let     *     +  and     *     +   Define    (   )   

 (   )  by   (  )           (  )         Then L is    r-homeomorphism but not    -

homeomorphism because the fuzzy set   is open in M  and its image   ( )       

is not    -open set in N ,           is not    -continuous. 

 

Definition 3.24. A bijective map         is called fuzzy generalized k-regular-semi- 

homeomorphism (for short,      -homeomorphism) if  L and     are    r-irresolute.  

Proposition 3.25  Let         ,         are two      -homeomorphism , then  

            is      -homeomorphism.  

Proof : Let   be     -open set in W, and  since         is     -irresolute,    ( ) is      -

open set in N . Also since              -irresolute, and      (   ( ))   (    )    ( ) is 

    -open set in M . So that               is      -irresolute . 

Now, let   be a     -open set in M . Then (    )   ( )     ( ) is     -open set in N . Also 

          is     -irresolute, (    )   (L( ))    ( ( ))    (    )( ) is fgpr-open in 

 W. Hence (    )         is     -irresolute. Thus       is       -homeomorphism. 

Proposition 3.26  Let         ,         are two      -homeomorphism ,then  

            is      -homeomorphism.  

Proof :it's obvious . 
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Conclusion 

 

We studied    -continuous,    -closed mappings and studied some properties .  

It is observed that every fα-continuous and fs-continuous is a    -continuous but not conversely. 

Also every     continuous function is a      -continuous function but not 

conversely. And we  get  results of composition of      -continuous,      -closed maps, and    r-

homeomorphisms maps are obtained. Finally f-closed map is    r-closed map but not conversely. 
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Abstract 

    Day after day, new concepts of soft normed spaces are emerging, which require studying their properties. In 

our works we have defined the soft compact operator and study some properties of this kind. After that we 

define soft adjoint operator on soft Banach spaces and study some of its properties. Finally we discuss the 

relation between the soft compact linear operator and its soft adjoint operator.      

Keywords soft compact linear operator, soft adjoint operator 

 

 

1. INTRODUCTION 

 

Molodtsov (1) in 1999 initiated the theory of soft sets as a new mathematical tool for dealing with uncertainties. 

He has introduce several applications of this theory in solving many practical problems in engineering, 

economics, medical science, social science, etc. Maji et al. (3) introduced in 2003 several operations on soft sets 

and applied soft sets to decision making problems. Ali et al. in (2) defined some new operations on soft sets in 

2009. In the line of reduction and addition of parameters of soft sets some works have been done by Chen (15). 

Aktas and Cagman (16) introduced the notion of soft group and discussed many properties of soft group. Feng et 

al. (4) worked on soft ideals, soft semiring and idealistic soft semiring. The idea of soft topological spaces was 

given by M. Shabir, M. Naz, (6). Mappings between soft sets were described by P. Majumdar, S. K. Samanta 

(17). Feng et al. (2) worked on soft sets combined with fuzzy sets and rough sets. Sujoy Das, S. K. Samanta 

introduced a notion of soft real sets, soft real numbers, soft complex sets, soft complex numbers and some of 

their basic properties have been investigated. They present some applications of soft real sets and soft real 

numbers in real life problems. And later they introduced the concepts of soft metric over an absolute soft set and 

`soft norm, soft inner product over soft linear spaces. Many properties of soft metric spaces, soft linear spaces, 

soft normed linear spaces and soft inner product spaces have been investigated with examples and counter 

examples. 

 

2. PRELIMINARIES 

The basic definitions and theorems which were found in earlier study were introduced in the begin :    

Definition 2.1 [1] suppose X is a given set and F is a set of parameters. Let  (X) symbolize the power set of X 

and      be a subset of F. A pair (H, P) is named a soft set over X, where H is a mapping given by H : P  

 (X). In a similar term, a soft set over X is a parameterized family of subsets of the universe X. For    P, H 

(  ) can be think about as the set of  - approximate elements of the soft set (H, P). 

mailto:sab20072008@gmail.com
mailto:buthainah41@gmail.com
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Definition 2.2 [2] For two soft sets (H, P) and (E, D) over a shared universe X, Then (H, P) is a soft subset of 

(E, D) if: 

(1) P   D and 

(2) For all e   P, H (e)   E (e). We write (H, P)  ̃ (E, D). 

  (E, D) is called a soft superset of (H, P), We write (H, P)  ̃( (E, D) if (H, P) is a soft subset of (E, D).  

Definition 2.3 [2] Two soft sets (H, P) and (E, D) over a shared universe X are said to be identical if (H, P) is a 

soft subset of (E, D) and (E, D) is a soft subset of (H, P). 

Definition 2.4 [3] The union of two soft sets (H, P) and (E, D) over the shared universe X is the soft set 

(J, Z); where Z = P   D and for all e   Z, 

J (e) =         

 ( )                                         

 ( )                                         

 ( )   ( )                            

 

   We express it as (H, P)  ̃(E, D) = (J, Z). 

Definition 2.5 [4] The intersection of two soft sets (H, P) and (E, D) over the shared universe X is the soft set 

(L, S), where S = P   D and for all e  S, L (e) = H(e)    E(e). We write (H, P)   ̃(E , D)= (L, S). 

Suppose X be an introductory universal set and P is a set of parameters such that    . In the upstairs 

definitions the set of parameters probably different from soft set to another, but we consider, through our work 

that all soft sets Possess the identical set of the parameters P. Also the upstairs definitions will be useable for 

these types of soft sets because it'll be a special case of these definitions.  

Definition 2.6 [5] The complement of a soft set (F, P) is symbolized by (   ) = (  , P), where   : P  (X) is 

a mapping given by   (  ) = X \ F (  ), for every      P 

Definition 2.7 [3] A soft set (F, P) over X is said to be an absolute soft set symbolized by  ̃ if F ( ) = X for 

every     P. 

Definition 2.8 [3] A soft set (F, P) over X is said to be a null soft set symbolized by  ̃ if for every     P, F( ) = 

 . 

Definition 2.9 [6] The difference (H , P) of two soft sets ( F, P )and ( E, P )over X, denoted by ( F, P )\( E, P), is 

defined by H ( ) = F( )\E( ) for all     P. 

Proposition 2.10 [6] Let (M, P) and (N, P) be two soft subsets of  ̃ Then: 

(i) ,(    )   ̃ ( (   )-
 
 = (   )    ̃ (   )  

(ii)  ,(    )    ̃( (   )-
 
 = (   )   ̃ (   )  

Definition 2.11 [7] Let X be a non-empty set of elements and     is a set of parameter. Then a function  : P 

 X is called a soft element of X. A soft element    of X is belongs to a soft set B of X, which is symbolized by 

   ̃ B, if    ( )   B( ) for every    P. Thus for a soft set B of X (with respect to the index set P) we have B ( ) 

= { ( ),   ̃B},    P. 

 It should be mentioned that each singleton soft set (a soft set (H, P) for which H ( )={x}, x X  and     P) can 

be assumed as an soft element by replacing the one element set with the element that it contains for all     P. 

Definition 2.12 [8] Consider   (R) the collection of all non-empty bounded subsets of R (R is real number) and 

P booked as a parameters set. The map H: P     (R) is named a soft real set. It is symbolized by (H, P). If 
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explicitly (H, P) is a singleton soft set, then when detecting (H, P) with the matching soft element, it will be 

named a soft real number. 

    The collection of each soft real numbers is symbolized by R(P) while the collection of all non-negative soft  

real numbers is symbolized by  ( ) . 

Definition 2.13 [9] Consider   ( ) ={ k ; k    , k   , k is bounded}. P booked as a parameters set. The map 

H: P     ( ) is named a soft complex set symbolized by (H, P). In particular, if (H, P) is a singleton soft set, 

then identifying (H, P) with the agreeing soft element, it will be named a soft complex number. 

If we take all soft complex numbers as a set, we can call it by  (P). 

Definition 2.14 [9] Let (H, P) be a soft complex set. The complex conjugate of (H, P) is symbolized by ( ̅, P) 

and is defined by  ̅( ) = { ̅ : z   H ( )}, for every     P. Where  ̅ is complex conjugate of the ordinary 

complex number z, The complex conjugate of a soft complex number (H, P) is  ̅( ) =  ̅ : z   H( ) , for every   

  P. 

Definition 2.15 [9] Let (F, P), (E, P)  ̃ C (P): Then the sum, difference, product and division are defined by 

(F + E) ( ) = z + w, z   F ( ), w   E ( ), for all     P. 

(F   E) ( ) = z    w; z   F ( ), w   E ( ), for all     P. 

(FE) ( ) = zw, z   F ( ), w   E ( ), for all     P. 

(F/E) ( ) = z/w, z   F ( ), w   E ( ), provided E ( )   , for all     P. 

 

Definition 2.16 [9] Let (F, P) be a soft complex number. Then the modulus of (F, P) is symbolized by (   , P) 

and is defined by    ( ) =   ; z   F ( ), for each     P, where z is an ordinary complex number. 

       Since the modulus of each ordinary complex number and ordinary real number are a non-negative real 

number and by definition of soft real numbers, we obtained that (   , P) is a non-negative soft real number for 

every soft complex number (F, P) or soft real number (F, P) . 

  Let X is a non-empty set and  ̃ be the absolute soft set i.e., V ( ) = X, for each     P .where (V, P) =  ̃. 

Suppose S ( ̃) be the collection of all soft sets (H, P) over X for which H ( )    , for all     P together with the 

null soft set  ̃. Let (H, P) (  )   S( ̃), then the collection of all soft elements of ( H , P ) will be denoted by 

SE ( H , P ). For a collection   of soft elements of  ̃, the soft set generated by  is denoted by SS( ). 

Definition 2.17 [10] Let d: SE( ̃)   SE( ̃)    ( ) . We called d a soft metric on the soft set  ̃if d Achieves the 

subsequent conditions: 

(1). d ( ̃;  ̃)  ̃  ̅, for each   ̃,  ̃  ̃  ̃ . 

(2). d ( ̃,  ̃) =  ̅, if and only if  ̃ =  ̃. 

(3). d ( ̃,  ̃) = d ( ̃,  ̃) for all  ̃,  ̃  ̃  ̃ . 

(4). For all  ̃  ̃  ̅   ̃  ̃ , d ( ̃   ̅ )  ̃ d ( ̃   ̃) + d ( ̃   ̅ ) 

  The soft metric d defined on  ̃  side by side with the soft set  ̃ is called a soft metric space and is symbolized 

by ( ̃, d, P) or ( ̃, d). 

Definition 2.18 [11] Let W be a vector space over Z (which Z is a field) , P is a parameters set. Let H be a soft 

set on (W, P). If for all     P,H ( ) is a vector subspace of W, Then H is called a soft vector space of W over Z.  
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Definition 2.19 [12] Suppose H is a soft vector space of W over Z. Let L: P     (W) be a soft set over (W, P). 

If for each      P, L( ) is a vector subspace of W over Z and H ( )   L ( ), Then L is called a soft vector 

subspace of H.  

 

Definition 2.20 [11] Suppose H is a soft vector space of W over Z. Then a soft element of H is called a soft 

vector of H. In a similar way we can called the  soft element of the soft set (Z, P) by soft scalar, where Z is the 

scalar field. 

Definition 2.21 [11] Let  ̃ ,  ̃ be soft vectors of G and  ̃ be a soft scalar. The addition  ̃ +  ̃ of  ̃ ,  ̃ and scalar 

multiplication  ̃.  ̃ of  ̃ and  ̃ are defined by ( ̃ +  ̃) ( ) =  ̃ ( ) +  ̃ ( ) ,   ̃.  ̃ ( ) =  ̃ ( ) .  ̃ ( ) for all     A. 

Obviously,  ̃ +  ̃,    ̃.  ̃ are soft vectors of G. 

Definition 2.22 [13] Let  ̃ be the absolute soft vector space i.e.,  ̃ ( ) = X, for all     P. Then a function ‖ ‖ : 

SE( ̃ )    ( ) is called  a soft norm on the soft vector space  ̃  if ‖ ‖ satisfies the subsequent situations: 

1) ‖ ‖  ̃  ̅ for every  ̃  ̃  ̃. 

2) ‖ ̃‖ =  ̅  if and only if  ̃ =  . 

3) ‖ ̃   ̃‖ =   ̃  ‖ ̃‖ for each  ̃  ̃  ̃ as well as for each soft scalar  ̃ . 

4) For each   ̃ , ̃  ̃  ̃,  ‖ ̃    ̃‖  ̃ ‖ ̃‖ + ‖ ̃‖ 

       The soft vector space  ̃  with a soft norm ‖ ‖on  ̃  is called a soft normed linear space and is symbolized 

by ( ̃ ,‖  ‖, P) or ( ̃  , ‖ ‖). The exceeding conditions are called soft norm axioms. 

Theorem 2.23 [11] Suppose a soft norm ‖ ‖ achieves the situation (N5). For     X and      P the set        { 

‖ ̃‖(  ) :  ̃(  ) =  }  is a one element set. Then for each     P, the mapping  ‖ ‖   : X      defined by ‖  ‖  = 

‖ ̃‖(  ), for all      X and   ̃  ̃  ̃ . Such that  ̃ ( ) =   , can be considered as a norm on X. 

Definition 2.24 [12] consider ( ̃ ‖  ‖, P) is a soft normed linear space,   ̃   ̃ ̅ be a soft real number. We define 

the followings: 

  B( ̃ ,   ) = {  ̃  ̃  ̃ :‖ ̃     ̃‖  ̃  ̃ }  SE( ̃) 

  ̅( ̃ ,   ) = {  ̃  ̃  ̃ :‖ ̃     ̃‖  ̃  ̃ }  SE( ̃) 

 S( ̃ ,   ) = {  ̃  ̃  ̃ :‖ ̃     ̃‖ =  ̃ }  SE( ̃) 

  B( ̃ ,   ) ,   ̅( ̃ ,   ) ,  S( ̃ ,   ) are respectively called an open ball, a closed ball and a sphere with center at  ̃ and 

radius  ̃. SS(B( ̃ ,  ̃)), SS( ̅( ̃  ,  ̃)) and SS(S( ̃ ,  ̃)) are respectively called a soft open ball, a soft closed ball 

and a soft sphere with center at  ̃ and radius  ̃. 

 

Definition 2.25 [11] A sequence of soft elements {  ̃} in a soft normed space ( ̃,‖  ‖, P) called convergent 

sequence if  ‖  ̃     ̃‖    ̅ as n    , we say the sequence converges to a soft element  ̃. In other words for 

all    ̃  ̅, there exist  N   , N = N ( ̃) and  ̅  ̃  ‖  ̃     ̃‖  ̃  ̃  every time n > N. 

i.e., n > N           ̃   B ( ̃,  ̃) . We symbolize this by   ̃    ̃ as n     or by          ̃    ̃ . The soft 

element  ̃ said to be the limit of the sequence   ̃ as n    . 

Definition 2.26 [11] A sequence {  ̃} of soft elements in a soft normed space ( ̃ , ‖ ‖ , P) is said to be a 

Cauchy sequence in  ̃  if corresponding to each  ̃  ̃  ̅ , there exist m   N such that ‖  ̃      ̃‖  ̃  ̃ , for all  i,j 

   i.e., ‖  ̃      ̃‖    ̅   as i; j    . 
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Definition 2.27 [11] Let ( ̃ , ‖ ‖, P) be a soft normed space. Then  ̃  is called a soft complete if every Cauchy 

sequence in  ̃  converges to a soft element of  ̃. The soft complete normed space is said to be a soft Banach 

Space. 

Theorem 2.28 [11] every Cauchy sequence in R(P), where P is a finite set of parameters, is convergent, i.e., the 

set of all soft real numbers together with its usual modulus soft norm with respect to finite set of parameters, is a 

soft Banach space. 

Definition 2.29[12] A series ∑   ̃
 
    of soft elements called soft convergent if the partial sum of the series 

  ̃  ∑   ̃
 
     is soft convergent. 

   Let  ̃ ,  ̃  be the corresponding absolute soft normed spaces i.e.,  ̃ ( ) = X,  ̃ ( ) = Y , for all     P. We use the 

notation  ̃ ,   ̃,  ̃  to represent soft vectors of a soft vector space. 

Definition 2.30[5] Let G be a soft vector space of W over Z. Let   ̃,   ̃.,…….   ̃    . A soft vector  ̃ in G is 

said to be a linear combination of the soft vectors   ̃,   ̃.,…….   ̃ if   ̃ can be expressed as  ̃ = 

  ̃  ̃+  ̃  ̃+…….+  ̃  ̃, for some soft scalars   ̃   ̃       ̃. 

Proposition 2.31 [11] A set   *  ̃   ̃      ̃+  of soft vectors in a soft vector space G over W is linearly 

independent if and only if the sets  ( )  *  ̃( )   ̃( )      ̃( )+ are linearly independent in W, for 

all    . 

 

Proposition 2.32 [11] A set   *  ̃   ̃      ̃+  of soft vectors in a soft vector space G over W is linearly 

dependent if and only if the sets  ( )  *  ̃( )   ̃( )      ̃( )+ are linearly dependent in V, for all    . 

 

Definition 2.33 [11] A soft linear space  ̃is said to be of finite dimensional if there is a finite set of linearly 

independent soft vectors in  ̃ which also generates  ̃, i.e., any soft element of  ̃ can be stated as a linear 

combination of those linearly independent soft vectors. 

       Set of soft vectors which linearly independent is said to be the basis for  ̃ and the number of soft vectors of 

the basis is called the dimension of  ̃. 

 

Definition 2.34[11] Suppose T: SE( ̃)   SE( ̃ ) is an operator. T is called soft linear if 

(L1) T (  ̃ +   ̃) = T (  ̃) + T(  ̃) for all soft elements   ̃,   ̃  ̃  ̃. 

(L2)  For all soft scalar  ̃, T( ̃.  ̃) =  ̃ T ( ̃). for all soft element   ̃ ̃  ̃ . 

The properties (L1) and (L2) can be put in a combined form T (  ̃.   ̃ +   ̃.   ̃) =   ̃ T (  ̃) +   ̃ T(  ̃) for every 

soft elements    ̃,   ̃  ̃  ̃  and every soft scalars   ̃ ,   ̃. 

 

Definition 2.35[11] The operator T : SE( ̃)   SE( ̃) is said to be continuous at   ̃  ̃  ̃  if for every sequence 

{  ̃+  of soft elements of  ̃ with   ̃     ̃  as n   , we have T(  ̃)   T(  ̃) as n       i.e.,  ‖  ̃      ̃‖    ̅ as 

n      implies ‖ (  )̃ –  (  )̃‖    ̅ as n     . If T is continuous at every soft element of  ̃  , then T is called 

a continuous operator. 

 

Theorem 2.36[11] Let T: SE( ̃)  SE( ̃) be a soft linear operator, where  ̃,  ̃   are soft normed linear spaces: If 

T is continuous at some soft element   ̃  ̃  ̃  then T is continuous at every soft element of  ̃  . 

 

Definition 2.37[11] Let T: SE( ̃)  SE( ̃) be a soft linear operator, where  ̃,  ̃   are soft normed linear spaces 

.The operator T is said to be bounded if there exists some positive soft real number  ̃ such that for each  ̃ ̃  ̃ , 

‖ ( )̃‖  ̃  ̃ ‖ ̃‖. 

 

Theorem 2.38[11] Let T: SE( ̃)  SE( ̃) be a soft linear operator, where  ̃  ,  ̃  are soft normed linear spaces. If 

T is bounded then T is continuous. 

 

Theorem 2.39[11] (Decomposition Theorem) Suppose a soft linear operator T: SE( ̃)   SE( ̃), where  ̃  ,  ̃  

are soft normed spaces, fulfills the situation (L3). For      X, and      P the set {T ( ̃) ( ):  ̃  ̃  ̃ such that  ̃ (  ) 

=  } is a one element set. Then for each      P, the mapping     : X   Y defined by    ( ) = T ( ̃) ( ), for all   

  X and  ̃ ̃  ̃  such that  ̃ ( ) =  , is a linear operator. 
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Theorem 2.40[11] Let     : X  Y,    P be a family of crisp linear operators from the vector space X to the 

vector space Y, and   ̃  ,  ̃   be the corresponding absolute soft vector spaces. Then there exists a soft linear 

operator T : SE( ̃)   SE( ̃) defined by T ( ̃) ( ) =   ( ) if  ̃ ( ) =    ̧   P. which satisfies (L3) and T ( ) =    

for all    P. 

 

Theorem 2.41[11] Let  ̃  and  ̃  be soft normed linear spaces which satisfy (N5) and T: SE( ̃)   SE( ̃) be a 

soft linear operator satisfying (L3). If T is continuous then T is bounded. 

 

Theorem 2.42[11] Let  ̃  and  ̃  be soft normed linear spaces which satisfy (N5) and T: SE( ̃)   SE( ̃) be a 

soft linear operator satisfying (L3). If  ̃ is of finite dimension, then T is bounded and hence continuous. 

 

Definition 2.43[11] (Let T be a bounded soft linear operator from SE( ̃) into SE( ̃). Then the norm of the 

operator T denoted by ‖ ‖, is a soft real number defined as the following: 

 For each      ‖ ‖( )      *    ‖ ( ̃)‖    ‖ ̃‖( )           ̃  ̃  ̃+.  
 

Theorem 2.44[11] Let  ̃  ̃ be soft normed linear spaces which satisfy (N5) and T satisfy (L3). Then for each  

    ‖ ‖( )  ‖  ‖        ‖  ‖   is the norm of the linear operator   : X   Y. 

 

Theorem 2.45[11] ‖ ( ̃)‖  ̃ ‖ ‖‖ ̃‖          ̃   ̃  ̃. 

 

Theorem 2.46[11] Let  ̃and  ̃ be soft normed linear spaces which satisfy (N5) and T: SE( ̃)   SE( ̃) be a soft 

linear operator satisfying (L3). Then: 

  (i) ‖ ‖( )     *‖ ( ̃)‖( ) ‖ ̃‖  ̃  ̅+  ‖  ‖              . 

  (ii) ‖ ‖( )     *‖ ( ̃)‖( ) ‖ ̃‖   ̅+  ‖  ‖              . 

   (iii) ‖ ‖( )     2
‖ ( ̃)‖

‖ ̃‖
( ) ‖ ̃‖( )               3  ‖  ‖              . 

 

 

Theorem 2.47[11] Let  ̃ and  ̃ be a soft normed linear spaces which satisfy (N5). Let T: SE( ̃)   SE( ̃) be a 

continuous soft linear operator satisfying (L3).Then    is continuous on X for each    . 

  

Theorem 2.48[12] Let  ̃and  ̃ be a soft normed linear spaces which satisfy (N5). Let {       } be a family of 

continuous linear operators such that   : X   Y for each  . Then the soft linear operator T: SE( ̃ )   SE( ̃) 

defined by (T( ̃))( ) =   ( ̃( ))             is a continuous soft linear operator satisfying (L3). 

 

Definition 2.49[12] (Soft linear space of operators) Let  ̃  ̃ be soft normed linear spaces satisfying (N5). 

Consider the set W of all continuous soft linear operators S; T etc. which satisfy (L3) each mapping SE( ̃ ) into 

SE( ̃) Then using Theorem 2.43, it follows that for each    ; S,T, ……. etc. are continuous soft linear 

operators from X to Y.  

 Let  ( )  {  (  ( ))    }            . Also using definition 2.43 and Theorem 2.44, it follows that 

 ( ) is the collection of all continuous linear operators from X to Y. By the property of crisp linear operators it 

follows that  ( ) forms a vector space for each     with respect to the usual operations of addition and scalar 

multiplication of linear operators. It also follows that  ( ) is identical with the set of all continuous linear 

operators from X to Y for all    .Thus the absolute soft set generated by  ( ) form an absolute soft vector 

space. Hence W can be interpreted as to form an absolute soft vector space. We shall denote this absolute soft 

linear (vector) space by L ( ̃  ̃). 
 

Proposition 2.50[12] Each element of    ( ( ̃  ̃)) can be identified uniquely with a member of W i.e., to a 

continuous soft linear operator T: SE( ̃)   SE( ̃). 

 

Theorem 2.51[12] L ( ̃  ̃) is a soft normed linear space where for  ̂    ( ( ̃  ̃)  we can identify  ̂ to a 

unique         ‖ ̂‖               ‖ ̂‖( )  ‖ ‖( )     *‖ ( ̃)‖( ) ‖ ̃‖  ̃  ̅+             .  

 

Definition 2.52[11] Suppose T: SE( ̃)   SE( ̃) be a soft linear  operator where  ̃,  ̃ are soft normed space. 

Then T is called injective or one-to-one if T(  ̃)(  ) = T(  ̃)(  )         (  ̃)(  ) = (  ̃)(  )           ,it is called 

surjective or onto if Rang(T) = SE( ̃) ,the operator T is said to be bijective if T is both one-to-one and onto . 
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Definition2.53 [14]: let ( ̃ , ) be a soft topological space, A collection {(  , P) : i  I} of soft open sets is called 

a soft open cover of ( ̃ , η) if  ̃ =  ̃   (  , P)  

Definition2.54 [14]: An ( ̃ , η) is called soft compact if every soft open cover of  ̃ has a finite soft sub-

collection which cover  ̃ 

Theorem 2.55[12]: Let  ̃ be a real soft normed linear space satisfying (N5). Let    be a continuous soft linear 

functional on a soft subspace G of  ̃ satisfying (L3). Then there exists a continuous soft linear functional F 

defined on  ̃ satisfying (L3), such that 

(i).  ( ̃) = F( ̃) for all  ̃  ̃  ; and 

(ii). ‖ ‖  ‖ ‖ ̃  ‖ ‖  
 

 

3. SOFT COMPACT LINEAR OPERATOR 

 

 

Definition 3.1 : A soft normed space ( ̃ , ‖ ‖) is called a soft compact if every sequence {  ̃} of soft vectors in 

 ̃ has a convergent subsequence , a soft subset ( G, P) of  ̃ is called a soft compact soft set if every sequence of 

soft vectors in ( G, P ) has a convergent subsequence converges to a soft vector of ( G, P ). 

 

Proposition 3.2: A soft compact subset (G, P) of soft normed space (  ̃ , ‖ ‖) is soft closed and soft bounded. 

Proof: for each  ̃  ̃ (   )̅̅ ̅̅ ̅̅ ̅ there exist a sequence {  ̃} in (G, P) such that   ̃    ̃ , since (G, P) is soft compact 

then  ̃  ̃ (G, P). This implies that (G, P) is soft close since  ̃  ̃ (G, P) was random. 

We show that (G, P) is bounded, if (G, P) is not bounded, then it would contain an unbounded sequence {  ̃} 

such that  ‖  ̃     ̃‖  ̃  ̃ where  ̃ is a fixed soft vector in (G, P) and  ̃  ̃  ( ) . This sequence could not have 

a convergent subsequence because a convergent subsequence must be bounded. i.e., (G, P) must be bounded. 

      The converse of above Proposition is not true in common; it's true only in finite dimension soft normed 

space. 

Lemma 3.3 (Linear combinations). Let *  ̃   ̃   ̃     ̃+  be a linearly independent set of soft vectors in a soft 

normed space  ̃ (of any dimension).Then there is a soft real number  ̃  ̃  ̅ such that for every choice of soft 

scalars 

    ̃   ̃      ̃   we have 

‖  ̃  ̃    ̃  ̃      ̃  ̃‖  ̃   ̃(   ̃     ̃       ̃ ) . 
Prove of lemma was given in ( 5 ) briefly, we have proved it in another way with details. 

Proof: We write  ̃      ̃     ̃       ̃ . if  ̃   ̅, all   ̃ are  ̅ and the above statement true for any soft 

real number  ̃. Let  ̃  ̃  ̅. Dividing both sides by  ̃ and writing   
 ̃
 

  ̃

 ̃
 , that is, 

(1)………… ‖ 
 ̃
  ̃   

 ̃
  ̃     

 ̃
  ̃‖  ̃  ̃     where   ∑ |  ̃|

 
     ̅. 

      Hence it be enough to prove that there is a  ̃  ̃  ̅ such that (1) holds for all soft scalars   ̃ with ∑ |  ̃|
 
     ̅. 

Consider that this is not true. Then there is a sequence *  ̃+ of soft vectors such that  

 
 ̃
  

 
 ̃  ̃   

 
 ̃  ̃     

 
 ̃  ̃       (∑ | 

 
 ̃|   ̅ 

   )   And ‖  ̃‖   ̅         . 

Since  ∑ |  
 ̃|   ̅ 

   , we have |  
 ̃|  ̃  ̅. Hence for every static j the sequence 2 

 
 ̃3  * 

 
 ̃  

 
 ̃  + is bounded. 

Consequently, by the Bolzano-Weierstrass theorem *  
 ̃+ has a convergent subsequence. Let  

 ̃
 represent the 

limit of that subsequence, and let *    ̃+ symbolize the consistent subsequence of *  ̃+. By the same reason, 

*    ̃+ has a subsequence *    ̃+for which the consistent subsequence of soft scalars  
 
 ̃ converges; let  

 ̃
 denote 

the limit. Ongoing in this way, after n stages we get a subsequence: 

{ 
   ̃
}  { 

   ̃
  

   ̃
  }   * 

 ̃
+ Whose terms are of the form      

   ̃
 ∑  

 
 ̃  ̃

 
             (∑ | 

 
 ̃|   ̅ 

   ). 

With soft scalars  
 
 ̃ satisfying   

 ̃    ̃        . Hence      ̃   ̃  ∑   ̃  ̃
 
   . 

Where ∑ |  ̃|
 
     ̅, so that not all  

 ̃
 can be zero. Since *  ̃   ̃   ̃      ̃+  is a linearly independent set, we 

thus have  ̃   ̅. On the other side,  
   ̃

  ̃ implies‖ 
   ̃
‖  ‖ ̃‖, by the continuity of the soft norm. Since 
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‖ 
 ̃
‖   ̅ by hypothesis and *    ̃+ is a subsequence of *  ̃+, we obtained that ‖    ̃‖   ̅. Hence, ‖ ̃‖   ̅, 

so that  ̃    by (N2). This contradicts   ̃   , and the result is followed.  

 

Proposition 3.4: in a finite dimension soft normed space ( ̃ ,‖  ‖) any soft subset M  ̃  ̃ is soft compact if and 

only if M is soft close and soft bounded. 

 

Proof: (if direction)  

Let M = (G, P) be a soft closed and soft bounded subset of  ̃ , let dimension of  ̃ = n and let {  ̃,   ̃,…,   ̃}be a 

base of  ̃, we consider any sequence {  ̃} in M, then      ̃ =   ̃  ̃ +    ̃  ̃ +…..+   ̃  ̃  for all m. 

{  ̃} is soft bounded since M is soft bounded, i.e.,‖  ̃‖  ̃  ̃ for all m and for  ̃  ̃  ( ) . 

By lemma 3.3  ̃  ̃ ‖  ̃‖ = ‖∑    ̃  ̃
 
   ‖  ̃  ̃∑ |   |

 
          where  ̃  ̃  ̅  

i.e.,   ̃( )  ̃ , ̃∑ |   |
 
   ]( )    for every    P, hence the sequence of soft real number    ̃( )   (i fixed ) is soft 

bounded. Bolzano-weierstrass theorem states that it has a point of accumulation say   ̃ , we determine that {  ̃} 

has a subsequence {  ̃} which converge to  ̃  = ∑   ̃  ̃
 
    , because M is soft closed, then  ̃  ̃ M .this shows that 

the sequence {   ̃} in M (which is random) has a subsequence which converges in M . Therefor M is soft 

compact. 

 

Theorem 3.5: Let  ̃,  ̃  be two soft normed spaces. Consider T: SE( ̃)   SE( ̃) to be a soft continuous linear 

operator. Then the image of any soft compact subset of  ̃ under T is soft compact. 

 

proof : let M = (G,A) be a soft compact subset of  ̃ , it suffices to show that every sequence{  ̃}in the image  

T(M)  ̃ SE( ̃) contain a convergent subsequence such that converges in T(M). Since  
 ̃
  ̃T(M) , then there 

exist   ̃   ̃ M such that  
 ̃
 = T(  ̃)  for all n   N.  

Since M is soft compact, then {   ̃} contain subsequence {   ̃} which converge in M .the image of     ̃  is a 

subsequence of {   ̃} which converge in T(M) because T is continuous ( if     ̃      ̃  then T   ̃  T   ̃  ). 

So T   ̃  converges. Hence T(M) is soft compact. 

 

      Now the definition of soft compact operator is given: 

Definition 3.6: (soft compact operator) let  ̃,  ̃  be two soft normed spaces.  T: SE( ̃)   SE( ̃) be a soft 

operator. T is called a soft compact operator if for each bounded soft subset M of  ̃ , the image T(M) is 

relatively soft compact i.e.,  ( )̅̅ ̅̅ ̅̅  is soft compact .  

 

Proposition 3.7: Let  ̃,  ̃  be two soft normed spaces then every soft compact operator T: SE( ̃)   SE( ̃) is 

soft bounded , hence soft continuous . 

Proof: the set M = {  ̃  ̃ SE( ̃ ) : ‖ ̃ ‖ =  ̅} is soft bounded . Since T is soft compact then  ( )̅̅ ̅̅ ̅̅  is soft compact 

and  ( )̅̅ ̅̅ ̅̅  is soft bounded, so   sup‖  ̃ ‖  ̃  ̃     where   ̃  ̃  ̅ , hence T is soft bounded therefore T is soft 

continuous. 

Theorem 3.8 : let  ̃,  ̃  be two soft normed spaces and let T : SE( ̃)   SE( ̃) be soft linear operator then T is 

soft compact if and only if it maps every soft bounded sequence of soft vectors  {   ̃} in  ̃ onto a sequence 

(T   ̃) in  ̃ which has a convergent subsequence . 

Proof: if T is soft compact and   ̃ is soft bounded then the closure of (T   ̃) in  ̃ is soft compact and by 

Definition 3.1 {T   ̃} contain a convergent subsequence. 

 

   Conversely, assume that every soft bounded sequence {   ̃} contain a subsequence    ̃  such that {T    ̃} 

converge in  ̃ . Consider any soft bounded subset B  ̃  ̃  and let { 
 ̃
} be random sequence in T(B), then   ̃ = 

T(  ̃) for some   ̃  ̃ B, and {   ̃} is soft bounded since B is soft bounded. 
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By assumption {T   ̃}contain a convergent subsequence , hence T(B) is soft compact by Definition 3.1 and 

T(B) is soft closed by proposition 3.2 i.e., T(B) =  ( )̅̅ ̅̅ ̅̅  is soft compact .because  
 ̃
 in T(B) was arbitrary, hence 

T is soft compact by  Definition 3.6 

 

Theorem 3.9 : let  ̃,  ̃  be two soft normed spaces which satisfies   . Consider T : SE( ̃)   SE( ̃) to be a soft 

compact linear operator satisfy    then    : X   Y is a compact linear operator . 

Proof: since T satisfy    , then    : X   Y is a linear operator  for all    P. 

Consider    ̃ to be a soft bounded sequence of soft vectors in  ̃ , then for fixed         ̃( )   X  and    =   ̃( ) 

for all n  N (fixed  ), so    is a bounded sequence of crisp element in X . 

( In fact if ‖  ̃‖  ̃  ̃  for all   ̃ and   ̃  ̃  ̅ , then ‖  ̃‖( )  ̃  ̃( ) . hence ‖  ̃( )‖   M  for M =  ̃( ) , M  R 

. and that implies ‖  ‖   M , hence {  } is bounded sequence in X ) . 

Now, since T is soft compact, then T   ̃ having a convergent subsequence says T    ̃  . Hence T    ̃( ) is 

converge. But  T    ̃( ) = T       Y  f            N ( fixed   ) ,hence for every bounded sequence    in X 

implies T(  ) have a convergent subsequence T(   ) in Y. 

  i.e.,   : X   Y is a compact linear operator for all    P  

Theorem 3.10: let   : X   Y be a soft linear operator and let  ̃,  ̃  be the corresponding absolute soft vector 

spaces satisfies    , if     is compact for all    P , then T : SE( ̃)   SE( ̃) is soft compact linear operator . 

Poof: since    is linear for all    A, then T: SE( ̃)   SE( ̃) is linear and satisfy   by (Theorem 2.36). 

Consider {  ̃} to be a soft bounded sequence of soft vectors in  ̃   i.e.,  ‖  ̃      ̃‖  ̃  ̃ for each n,m  N and  

 ̃  ̃  ̅ , then ‖  ̃      ̃‖( )  ̃  ̃( )   for each    P. hence ‖(  ̃      ̃)( )‖   M  for M =  ̃( ) , M   R . and 

that implies ‖     ‖   M  where   =   ̃( ) ,   =   ̃( ) for all n,m  N, hence{  }is bounded sequence in X. 

   is compact for each   P implies   (  ̃( )) =   (  ) has a convergent subsequence say T(   ̃) =  (   ̃( )). 

Hence T(   ̃) is convergent subsequence . i.e., for all {  ̃} bounded sequence in  ̃, T(  ̃) has a convergent 

subsequence . Hence T is soft compact.                                                

 □ 

 

Theorem 3.11: (soft compactness of product)  

   Let T: SE( ̃)   SE( ̃) be a soft compact operator and S : SE( ̃)   SE( ̃) a soft bounded operator . Then ST 

and TS are soft compact. 

Proof : let B  ̃  ̃ be any soft bounded subset , since S is soft bounded , S(B) is a soft bounded set and the soft 

set T(S(B)) = TS(B) is relatively soft compact since T is soft compact . Hence TS is soft compact. 

In the other hand, consider {   ̃} to be a soft bounded sequence in  ̃. We get T(  ̃) has a convergent 

subsequence say {T(    ̃)} by definition of soft compact linear operator . S(T(   ̃))= ST(   ̃) converge since S is 

soft bounded hence soft continuous . Hence ST is soft compact. 

 

 

Theorem 3.12: (finite dimensional domain or range) 

Let  ̃,  ̃  be two soft normed spaces which satisfy     , consider T: SE( ̃)   SE( ̃) to be a soft compact linear 

operator  then : 

a) If T is soft bounded and dim T( ̃)    , then T is soft compact. 

b) if dim  ̃    , then T is soft compact . 

Proof: (a) let {  ̃} be any soft bounded sequence in  ̃ . Since T is soft bounded, then ‖   ̃‖   ‖ ‖ ‖  ̃‖. 

So {T(  ̃)} is soft bounded , hence {T(  ̃)} is soft compact by proposition (3.4). 
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It follows that {T(  ̃)} has a convergent subsequence by definition (3.1). Because {  ̃} was random soft 

bounded sequence in  ̃ , then T is soft compact. 

(b) Since dim  ̃   , we obtained that T is soft bounded. Now, with fact that dim T( ̃)   dim  ̃ and from (a) 

we complete the proof. 

 

 

4. SOFT ADJOINT OPERATOR 

Definition 4.1:  Consider T: SE( ̃)   SE( ̃) to be soft bounded linear operator, where  ̃ and  ̃ are soft normed 

spaces satisfying (  ). Then the soft adjoint operator   : SE( ̃
 
)   SE( ̃

 
) of T is symbolized by :   

                g = f         where g  ̃ SE( ̃
 
) and f  ̃ SE( ̃

 
) 

            (   g) ( ̃) = g(T( ̃)) = f( ̃)      ̃  ̃  ̃    where  ̃
 
and  ̃

 
 are the dual spaces of  ̃ and  ̃, correspondingly. 

Theorem  4.2: The soft adjoint operator    in previous definition is soft linear and soft bounded, and ‖  ‖ = 

‖ ‖. 

Proof: let   ,  
 
  ̃ SE( ̃

 
) and  ̃,  ̃ be two soft scalar , 

[  ( ̃ 
 
 +  ̃ 

 
)]( ̃) = ( ̃ 

 
  ̃ 

 
)T( ̃)  

                                =  ̃ 
 
, ( ̃)- +  ̃ 

 
, ( ̃)-  

                                =  ̃   
 
( ̃) +  ̃   

 
( ̃) 

                                = [ ̃   
 
 +  ̃   

 
]( ̃)  

Hence   is soft linear. Now, ‖ ‖( ) =sup {‖ ( ̃)‖( ) : ‖ ̃‖ =  ̅ }for all    . 

Hence  ‖  ‖( ) = sup{‖    ‖( ) : ‖ ‖ =  ̅ } = sup{‖ ( ( ̃))‖( ) : ‖ ‖ =  ̅ }  

                            sup{‖ ‖‖ ( ̃)‖( ) : ‖ ‖ =  ̅} = sup{‖ ( ̃)‖( ) :  ̃  ̃  ̃}, in particular if ‖ ̃‖ =  ̅    

 = ‖ ‖( )    for all    . 

So  ‖  ‖  ̃ ‖ ‖ . Hence    is soft bounded.  

 

 

Proposition 4.3:  Let T: SE( ̃)   SE( ̃) be soft bounded linear operator, where  ̃ and  ̃ are soft normed spaces 

satisfying (  ). Then the soft adjoint operator   : SE( ̃
 
)   SE( ̃

 
) of T possess the succeeding possessions : 

 1) (   )  =       

 2) ( ̃ )  =  ̃    

 3)  if  ̃ , ̃ , ̃    are soft normed spaces such that   : SE( ̃
 
)   SE( ̃

 
) and   : SE( ̃

 
)   SE( ̃

 
) then :  

                     (  )        

 

Proof: (1) [(   ) g]( ̃) = g[(R + T)(  ̃)] 

                                        = g[R( ̃) + T( ̃)] 

                                        = g(R( ̃)) + g(T( ̃)) 

                                        =   g( ̃) +   g( ̃) 

                                       = (  g +   g)( ̃)  

                                           = [(   +   ) g]( ̃) 

Hence (   )  =    +     

 

 (2) [( ̃ ) g]( ̃) = g[ ̃ ( ̃)- =  ̃g(T( ̃)) =  ̃   ( ̃). Hence ( ̃ )  =  ̃  . 

 

  (3) Let                    where g ̃  ̃
 
, h ̃  ̃

 
  

 

[(  )  -( ̃) =  (  )( ̃) =  , ( ( ̃))- =    ( ( ̃)) = ( ( ( ̃)) =    ( ̃) = (    ) ( ̃). 

 Hence  (  )       . 
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   We shall consider a soft compact linear operator T: SE( ̃)   SE( ̃)  on a soft normed space , the soft adjoint 

operator   : SE( ̃
 
)   SE( ̃

 
). We try to discovery the result of the equation T( ̃)   ̃   ̃  where    .Firstly 

we need to prove the following lemma. 

 

Lemma 4.4 :( existence of functional)  

     Cosider Y to be a proper soft closed subspace of soft normed space  ̃ . Let  ̃  ̃  ̃     be random and the 

distance from  ̃  to Y is  ̃     
 ̃ ̃ 

‖ ̃   ̃ ‖. Then we can find f  ̃  ̃
 
 such that ‖ ‖ =  ̅ , f( ̃) =  ̅  for all 

 ̃  ̃   , f( ̃ ) =  ̃ . 

 

Proof: we consider the subspace Z  ̃  ̃ spanned by Y and  ̃ .every  ̃  ̃   = span(Y ̃  ̃ ) has a unique 

representation     ̃   ̃   ̃ ̃    where   ̃  ̃   . Define on Z a soft bounded linear functional f by: 

f( ̃) = f( ̃   ̃ ̃ ) =  ̃ ̃  . becuase Y is soft closed and  ̃  ̃  ̅, we obtained that f   .  

If  ̃   ̅, then f( ̃) =  ̅ with any  ̃  ̃  . When  ̃   ̅ and  ̃    we have f( ̃ ) =  ̃. 

We show that f is soft bounded.  ̃   ̅ gives f( ̃) =  . Let  ̃   ̅ . 

  ( ̃)  =   ̃  ̃ =   ̃    
 ̃ ̃ 

‖ ̃   ̃ ‖  ̃   ̃ ‖ 
 ̅

 ̃
 ̃   ̃ ‖ = ‖ ̃   ̃ ̃ ‖   since  

 ̅

 ̃
  ̃   ̃   . 

That is    ( ̃)   ̃ ‖ ̃‖. Hence f is soft bounded and ‖ ‖  ̃  ̅. We now prove that ‖ ‖  ̃  ̅. Use the infimum 

definition, Y has a sequence { 
 ̃
+ satisfy ‖ ̃   ̃ ‖   ̃. Let   ̃   

 ̃
  ̃ . Then we have f(  ̃) =   ̃ with 

 ̃  (  )̅̅ ̅̅ ̅̅ . Also ‖ ‖      ̃ ̃ 
 ̃  

  ( ̃) 

‖ ̃‖
 

  (  ̃) 

‖  ̃‖
 

 ̃

‖  ̃‖
  

 ̃

 ̃
   ̅        .  

Hence ‖ ‖   ̅. Use the hahan Banach statement for soft normed space; we can enlarge f to all  ̃ . 

 

     We shall consider a soft compact linear operator T: SE( ̃)   SE( ̃) on a soft normed space  ̃. The soft 

adjoint operator   : SE( ̃
 
)   SE( ̃

 
). The equation: 

(1) ………….T ̃    ̃   ̃  where  ̃  ̃  ̃ given,    . 

The corresponding homogeneous equation: 

 (2) ……………. T ̃    ̃     

And two similar equation involving the soft adjoint operator, 

 (3)………………              where g ̃  ̃
 
given,    . 

And the corresponding homogeneous equation: 

 (4)………………          

 

Theorem 4.5: Let T: SE( ̃)   SE( ̃) be a soft compact linear operator on a soft normed space  ̃ ,and let     0. 

Then (1) has a solution  ̃ if and only if  ̃ is such that f( ̃) =  ̅ for each f  ̃  ̃ filling (4). So if (4) has one  

solution f   0, then (1) with any assumed  ̃  ̃  ̃ is solvable. 

 

Proof: suppose (1) has a solution  ̃    ̃, that is  ̃     ̃     ̃      ̃. 

Let f be any solution for (4). Then we have  ( ̃)   (   ̃     ̃)   (   ̃)    (  ̃). 
Now,   (   ̃)  (   )(  ̃) by the definition of the soft adjoint operator.  

Hence by (4) ( ̃)  (   )(  ̃)    (  ̃)   ̅ . 

Conversely, we assume that  ̃ in (1) satisfies  ( ̃)   ̅ for every solution of (4) and show that (1) has a solution. 

Suppose that (1) has no solution, hence  ̃     ̃ for no  ̃. Then  ̃  ̃   ( ̃). 

Since   ( ̃) is soft closed, the distance  ̃ from  ̃ to   ( ̃) is positive soft scalar. By lemma 4.4 there existe 

  ̃  ̃  such that  ( ̃)   ̃      (  )   ̅  for every  ̃  ̃   ( ̃). 

Since    ̃   ( ̃), we have       ( ̃) for some  ̃  ̃  ̃. So that  (  )   ̅ becomes: 

 .  ( ̃)/   (  ̃)    ( ̃)     ( ̃)    ( ̃)   ̅ . 

This holds for every  ̃  ̃  ̃ since    ̃   ( ̃) was arbitrary. Hence f is a solution of (4). By assumption it 

satisfies ( ̃)   ̅. But this contradicts ( ̃)   ̃  ̃  ̅. Consequently, (1) must have a solution. This proves first 

part of theorem. The proof of second part follows.  

 

     For equation (3) there is an analogue of Theorem 4.5 which we shall obtain from the following lemma. 

Lemma 4.6: Let T: SE( ̃)   SE( ̃) be a soft compact linear operator on a soft normed space  ̃ ,and let     0 

be assumed. We can find a soft real number  ̃  ̃  ̅ which is free of  ̃ in (1) and such that for every  ̃ for which 

(1) has a solution, at least one of these solution call it  ̃ satisfies ‖ ̃‖  ̃  ̃‖ ̃‖ where  ̃    ( ̃). 
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Proof: firstly, we show that if (1) with a given  ̃ has a solution at all, the set of these solution contains a solution 

of minimum norm call it  ̃. 

Let   ̃ be a solution of (1). If  ̃ is any other solution of (1), the difference  ̃   ̃    ̃ fulfills (2). Therefore each 

solution of (1) can be written  ̃    ̃   ̃ where    ̃   (  ). And, conversely, for every     ̃   (  ) the sum 

  ̃   ̃ is a solution of (1). For a fixed   ̃ the norm of  ̃ depends on   , we write  (  )  ‖  ̃    ‖ and   

     ̃ ̃  (  )
 (  ). By definition of infimum,   (  ) contain a sequence {  ̃+such that  (  ̃)  ‖  ̃    ̃‖  

          . 

Since * (  ̃)+ converge, it is bounded. Also {  ̃} is bounded because: 

             ‖  ̃‖  ‖  ̃    ̃    ̃‖  ̃ ‖  ̃    ̃‖  ‖  ̃‖   (  ̃)  ‖  ̃‖. 

Becuase T is soft compact, {T(  ̃)}possess a convergent subsequence. But     ̃   (  ) means that   (  ̃)   , 

that is, T  ̃     ̃ ; where    . Hence {  ̃} has a convergent subsequence say,    ̃    ̃ where    ̃  ̃   (  ) 

since   (  ) is closed. Also  (   ̃)   (  ̃) since   is soft continuous. We thus obtain that  (  ̃)  

‖  ̃    ̃‖   . This mean that if the equation (1) with a assumed  ̃ has a solution, then one of these solutions 

 ̃    ̃    ̃ has a smallest norm. 

Secondly, we have proven that there exist  ̃  ̃  ̅ (independent of  ̃) such that ‖ ̃‖  ̃  ̃‖ ̃‖ for a solution  ̃ of 

minimum norm consistent to any  ̃    ( ̃) wherefore (1) is solvable. 

Suppose that is not true. Then there is a sequence *  ̃+ such that 
‖  ̃‖

‖  ̃‖
         . Where   ̃ is of least norm 

and satisfies   
 ̃
   (  ̃). Multiplication by  ̃ shows that to  ̃  ̃ there corresponds  ̃  ̃ as a solution of least 

norm. Hence we may accept that ‖  ̃‖   ̅, without Influence the general meaning. 

Then  
‖  ̃‖

‖  ̃‖
        ‖  ̃‖   ̅        ‖  ̃‖   ̅. Since T is soft compact and *  ̃+ is soft bounded, * (  ̃)+ 

has a convergent subsequence say,      
̃     ̃. We can write for convenience     

̃     ̃       . 

Since  
 ̃
   (  ̃)   (  ̃)     ̃, we have    ̃   (  ̃)    ̃. Thus we obtain: 

                      
̃  

 

 
( .   

̃/     ̃)    ̃. 

Since T is soft continuous, we have  (   
̃ )   (  ̃). Hence  (  ̃)     ̃ because  (  ̃)     ̃. Also we see 

that  ̃    ̃    ̃ satisfies    ̃   (  ̃).  

     Since   ̃is of minimum norm, ‖ ̃‖  ‖  ̃    ̃‖  ̃ ‖  ̃‖   ̅. But this contradicts the convergence in, 

    
̃  

 

 
( .   

̃/     ̃)    ̃. Hence 
‖  ̃‖

‖  ̃‖
   cannot hold. But the sequence of quotients must be soft 

bounded; that is, we must have        ̃ ̃  ( ̃)
‖ ̃‖

‖ ̃‖
  ̃  ̃         ̃    ( ̃). This implies ‖ ̃‖  ̃   ‖ ̃‖. 

 

      Using this lemma, we can now give a characterization of the solvability of (3) similar to that for (1) given in 

Theorem 3.5:  

 

Theorem 4.7: (solution of (3)) 

Let T: SE( ̃)   SE( ̃) be a soft compact linear operator on a soft normed space  ̃ ,and let     0 be assumed. 

Then (3) has a solution f if and only if g is such that  ( ̃)   ̅ for all  ̃  ̃  ̃ which satisfy (2). Hence if (2) has 

the petty solution  ̃        , then (3) with any   ̃  ̃  is solvable. 

 

Proof: (a) if (3) has a solution f and  ̃ satisfies (2), then 

                                        ( ̃)  (   )( ̃)    ( ̃)   (  ̃    ̃)   ( )   ̅. 

             (b) Conversely, assume that g satisfies  ( ̃)   ̅ for every solution  ̃ of (2). Consider any  ̃  ̃  ̃ and 

set  ̃     ( ̃). Then  ̃  ̃   ( ̃). We may define a functional         ( ̃) by: 

   ( ̃)     (  ( ̃)   ( ̃). This definition is unambiguous because if   (  ̃)     (  ̃), then   (  ̃    ̃)   . 

So that   ̃    ̃ is a solution of (2); hence  (  ̃    ̃)   ̅ by assumption, that is  (  ̃)   (  ̃).    is linear since 

         are linear. Lemma 4.6 implies that for every  ̃  ̃   ( ̃), at least one of the corresponding  ̃  satisfy 

‖ ̃‖  ̃  ̃‖ ̃‖ where  ̃    ( ̃) and  ̃ does not depend on  ̃. So we have     ( ̃)    ( ̃)  ̃ ‖ ‖‖ ̃‖  ̃  ̃‖ ‖‖ ̃‖. 

Hence ‖   ‖  ̃  ̃‖ ‖. 

So    is soft bounded. Useing the Hahn-banach statement show that the functional    has an expanding       ̃ 

which is a soft bounded linear functional defined on all  ̃. By the definition of    , 
 ( ( ̃)    ̃)   (  ( ̃)     (  ( ̃)   ( ̃). 
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    Definition of the soft adjoint operator show that we have for all  ̃  ̃  ̃: 

 ( ( ̃)    ̃)   ( ( ̃)     ( ̃)  (   )( ̃)    ( ̃). From this we conclude that f is a solution of (3) and first 

Demands of theorem is proves. Consequently, the second Demands follow freely.  

 

Theorem 4.8: Let T: SE( ̃)   SE( ̃) be a soft compact linear operator on a soft normed space  ̃, And let     

0 then: 

(a) Equation (1) has a solution  ̃ for every  ̃  ̃  ̃ if and only if the homogeneous equation (2) has only the petty 

solution  ̃   . In this situation the equation (1) has a unique solution, and    has a soft bounded inverse. 

(b) Equation (3) has a solution   for all    ̃  ̃  if and only if (4) has only the petty solution    . In this 

situation the equation (3) has a unique solution. 

 

Proof: Let for each   ̃  ̃  ̃ the equation (1) is solvable. Suppose that  ̃    is not the single solution of (2). Then 

there exist a solution   ̃   . Because (1) for any  ̃ is solvable,   ( ̃)   ̃    ̃ has a solution   ̃. That 

is   (  ̃)    ̃. For the same reason there exist   ̃ such that   (  ̃)    ̃, etc. thus for each k = 2,3,…….   

      ̃    (  ̃)    
 (  ̃)              

   (  ̃)   and     (  ̃) =   
 (  ̃). 

Hence   ̃  ̃  (   
 )       ̃  ̃  (   

   ). This means that  (   
   ) is a proper subspace of  (   

 ) for all 

k. but this contradiction. Hence  ̃    must be the unique solution for (2). 

On the other hand, suppose that  ̃    is the only solution of (2). Then equation (3) for every g is solvable by 

(Theorem 4.7) 

Now, since    is soft compact, So that by first part of the proof and replace by   , we conclude that     

should be the only solution of (4). Solvability of (1) with any  ̃ now follows from Theorem 4.5. 

   Uniqueness of the solution comes from the fact that the difference of two solutions of (1) is a solution of (2). 

Clearly, such a unique solution  ̃    
  ( ̃) is the solution of least norm. And the boundedness of   

   follows 

by Lemma 4.6. i.e., ‖ ̃‖  ‖  
  ( ̃)‖  ̃  ̃‖ ̃‖. 

 (b) Is a consequence of (a) and note that    is compact.              
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ABSTRACT. 

  In this paper, we define the Soft Contraction Operator, soft Picard and soft Mann iteration 

processes. After that we establish some stability results for the soft Picard and soft Mann 

iteration processes considered in soft normed spaces. 

  

1. INTRODUCTION 

   Let ( ̃, ‖ ‖) be a complete soft normed space and let T : SE( ̃) → SE( ̃) be a self-map of 

 ̃. Consider F(T) ={ ̃  ̃   ̃ : T ̃   ̃} denote the set of fixed points of T. Let * ̃ +   
  be the 

sequence generated by an iteration procedure involving the operator T,  

  That is  ̃     (   ̃ ), n = 0, 1, 2, ...      ( 1) 

Consider  ̃  ̃   ̃ is the initial approximation and f is some function. Suppose * ̃ +   
  

converges to a fixed point  ̃ of T. Let * ̃ +   
  ̃   ̃ and set    ‖ ̃     (   ̃ )‖ ,n = 0, 1, 

2, .... Then, the iteration procedure (1) is said to be T-stable or stable with respect to T if and 

only if           ̅ implies         ̃   ̃. Using this concept, we proved some stability 

results under soft contraction conditions. 

 

2. PRELIMINARIES 

The basic definitions and theorems were introduced in this section that may found in earlier 

studies.  

Definition 2.1 [1] Suppose X is a universe set; T is a set of parameters. Consider  (X) is the 

set of all subsets of X and B    is a subset of T. An ordered pair (H, B) is named a soft set 

over X, where H is a mapping given by H: B   (X). We can say that a soft set over X is 

parameterized kindred of subsets of the universe X. H (  ) can consider like a set of  - 

approximate elements of (H, B) for all    B. 

Definition 2.2 [2] Supposes (H, B) and (J, D) are two soft sets over a shared set X, then (H, 

B) is a soft subset of (J, D) if: 

(1) B   D.  

(2) For all    B, H ( )   J ( ). We write (H, B)  ̃ (J, D). 

  (J, D) is said to be a soft superset of (H, B), We write (H, B)  ̃( (J, D) if (H, B) is a soft 

subset of (J, D).  
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Definition 2.3 [3] Two soft sets (H, B) and (J, D) over a shared set X are called identical, if 

(H, B) and (J, D) are soft subset of each other. 

Definition 2.4 [3] Let (H, B), (J, D) be two soft sets over the shared set X. The union of (H, 

B) and (J, D) is the soft set (L, M); Assuming M = B   D and for all    M, 

L ( ) =         

 ( )                                         

 ( )                                         

 ( )   ( )                            

 

   In Mathematical expression (H, B)  ̃ (J, D) = (L, M). 

Definition 2.5 [4] Let (H, B), (J, D) be two soft sets over the shared set X. The intersection of 

(H, B) and (J, D) is the soft set (K, M); Assuming M = B ⋂ D and for all    M, K ( ) = 

H( )    J( ). In Mathematical expression (H, B)   ̃(J , D) = (K , M). 

Suppose X be an initial universal set and B is a non- flatulent set of parameters. In the 

upstairs definitions the set of parameters may differ from soft set to another, but in our 

considerations, through this paper all soft sets have the same set of parameters B. The 

upstairs definitions are also useable for these types of soft sets as a particular case of those 

definitions. 

Definition 2.6 [5] for a soft set (F, B), the complement of (F, B) is symbolized by (   ) = 

(  , B), assuming   : B  (X) defined by   (  ) = X   F (  ), with any     B. 

Definition 2.7 [3] A soft set (F, B) over X is called an absolute soft set symbolized via  ̃ if F 

( ) = X with every     B. 

Definition 2.8 [3] A soft set (F, A) over X is called a null soft set symbolized via  ̃ if , F( ) 

=   with every     B. 

Definition 2.9 [6] Let (H, B), (J, D) be two soft sets over the shared set X.  The difference 

(H, B) of (F, B) and (G, B), symbolized by (F, B) \ (J, B), is defined via H ( ) = 

F( )\G( ) with any     B. 

Proposition 2.10 [6] for two soft sets (F, B) and (J, B) we have: 

(i) ,(    )   ̃ ( (   )-  = (   )   ̃(   ) . 

(ii)  ,(    )    ̃( (   )-  = (   )  ̃ (   ) . 

Definition 2.11 [7] Let X be a non- flatulent set of elements and B    is a set of parameter. 

The function  : B   X is called a soft element of X. A soft element   of X is belongs to a soft 

set R of X, which is symbolized by    ̃ R, if  ( )   R ( ) for every    A. consequently, 

for a soft set R of X we obtained that R ( ) = {  ( ),   ̃R},    B. 
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 We can recognized each singleton soft set (a soft set (H, B) for which H ( ) is a singleton 

set, for every     B) with a soft element by just identifying the one element set with the 

element that it contains for all     B. 

Definition 2.12 [8] Let   ( ) be the collection of all non-empty bounded subsets of   (  is 

real number) and B booked as a parameters set. Then, a mapping H: B     ( ) is named a 

soft real set. and symbolized with (H, B). If specifically (H, B) is a singleton soft set, then 

when identifying (H, B) with the corresponding soft element, it will be named a soft real 

number. 

    The collection of each soft real numbers is symbolized by   (B) while the collection of 

non-negative only is symbolized by  ( ) . 

Definition 2.13 [9] Let   ( ) be the collection of all non- flatulent bounded subsets of the set 

of complex numbers  . B is a set of parameters. Then, a mapping H: B     ( ) is named a 

soft complex set symbolized by (H, B). If in particular (H, B) is a singleton soft set, and then 

identifying (H, B) with the agreeing soft element, it will be named a soft complex number. 

The collection of each soft complex numbers is symbolized by  (B).  

Definition 2.14 [9] Let (H, B) be a soft complex set. The complex conjugate of (H, B) is 

symbolized with ( ̅, B) and is defined by  ̅( ) = { ̅ : z   H ( )}, for every     B, 

assuming  ̅ is complex conjugate of the ordinary complex number z. The complex conjugate 

of a soft complex number (H, B) is  ̅( ) =  ̅ : z   H( ), for every     B. 

Definition 2.15 [9] Let (L, B), (J, B)  ̃  (B). Then, the sum, difference, product and division 

are defined by: 

(L + J) ( ) = z + p, z   L ( ), p   J ( ), for all     B. 

(L   J) ( ) = z    p; z   L ( ), p   J ( ), for all     B. 

(LJ) ( ) = zp, z   L ( ), p   J ( ), for all     B. 

(L/J) ( ) = z/p, z   L ( ), p   J ( ), on condition that J ( )   , for all     B. 

 

Definition 2.16 [9] Let (L, B) be a soft complex number. The modulus of (L, B) is denoted 

by (   , B) and is defined by    ( ) =   ; z   L ( ), for all     B, assuming z is an 

ordinary complex number. 

       Since the modulus of all ordinary complex number and ordinary real number are a non-

negative real number and by definition of soft real numbers it follows that (   , B) is a non-

negative soft real number for every soft complex number (L, B). 

      Let X be a non-flatulent set and  ̃ be the absolute soft set i.e., V ( ) = X, for each     

B, where (V, B) =  ̃. Suppose S ( ̃) be the collection of all soft sets (H, B) over X with 

condition H ( )    , for all     B together with the null soft set  ̃. Let (H, B) (  ) 

  ̃S( ̃), then the collection of all soft elements of (H, B) will be denoted by SE (H, B), For a 

collection   of soft elements of  ̃, the soft set generated by   is symbolized with SS( ). 
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Definition 2.17 [10] A mapping M: SE( ̃)   SE( ̃)    ( ) , is called a soft metric on the 

soft set  ̃if d fulfills the following situations: 

(1) M ( ̃;  ̃)  ̃  ̅, with any   ̃,  ̃  ̃  ̃ . 

(2) M ( ̃,  ̃) =  ̅, if and only if  ̃ =  ̃. 

(3) M ( ̃,  ̃) = M ( ̃,  ̃) with any  ̃,  ̃  ̃  ̃ . 

(4) With any  ̃  ̃  ̅   ̃  ̃ , M ( ̃    ̅)  ̃ M ( ̃   ̃) + M ( ̃   ̅ ). 

The soft set  ̃  together with a soft metric M on  ̃ is called a soft metric space and is 

symbolized by ( ̃, M, A) or ( ̃, M). 

Definition 2.18 [11] Let Q is a vector space over a field K and B is a set of parameters. Let L 

be a soft set over (Q, B). If for all     B,L ( ) is a vector subspace of Q, Then L is called a 

soft vector space of Q over K.  

Definition 2.19 [12] Suppose L is a soft vector space of Q over K. Let H: B     (Q) be a 

soft set over (Q, B). If for each      B, H ( ) is a vector subspace of Q over K and L ( ) 

  H ( ), then H is called a soft vector subspace of L.  

 

Definition 2.20 [11] Suppose LL is a soft vector space of Q over a field K, then, a soft 

element of L is called a soft vector of L. In the same sense a soft element of the soft set (K, 

B) is called a soft scalar. 

Definition 2.21 [11] Let  ̃ ,  ̃ be soft vectors of L and  ̃ be a soft scalar. The addition  ̃ +  ̃ 

of  ̃ ,  ̃ and scalar multiplication  ̃ ̃ of  ̃ and  ̃ are defined by ( ̃ +  ̃) ( ) =  ̃ ( ) +  ̃ ( ) 

,   ̃ ̃ ( ) =  ̃ ( )  ̃ ( ) for all     B. Obviously,  ̃ +  ̃,    ̃ ̃ are soft vectors of L. 

Definition 2.22 [13] Let  ̃ be the absolute soft vector space i.e.,  ̃ ( ) = X, for all     B. 

Then a mapping ‖ ‖ : SE( ̃ )    ( ) is called a soft norm on the soft vector space  ̃  if ‖ ‖ 

fulfills the succeeding situations: 

(1). ‖ ‖  ̃  ̅ for every  ̃  ̃  ̃.  

(2). ‖ ̃‖ =  ̅  if and only if  ̃ =  . 

(3). ‖ ̃   ̃‖ =   ̃  ‖ ̃‖ for each  ̃  ̃  ̃ as well as for each soft scalar  ̃ . 

(4).With any  ̃,  ̃  ̃  ̃,  ‖ ̃    ̃‖  ̃ ‖ ̃‖ + ‖ ̃‖ 

       The soft vector space  ̃  with a soft norm ‖ ‖on  ̃  is called a soft normed linear space 

and is symbolized with ( ̃ ,‖  ‖, B) or ( ̃  , ‖ ‖). The exceeding conditions are called soft 

norm axioms. 
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Theorem 2.23 [11] Suppose a soft norm ‖ ‖ achieves the situation (N5). For     X and      

B the set {‖ ̃‖(  ) :  ̃(  ) =  } is a one element set. Then with any     B, the 

function ‖ ‖  : X      defined with ‖  ‖  = ‖ ̃‖(  ), with any      X and   ̃  ̃  ̃ such 

that  ̃ ( ) =  , can be considered as a norm on X. 

Definition 2.24 [12] Consider ( ̃ ‖  ‖, B) is a soft normed linear space,      ̃ ̅ is a soft real 

number. We realize the following concepts: 

   ( ̃ ,   ) = {  ̃  ̃  ̃ :‖ ̃     ̃‖  ̃    }  SE( ̃), 

  ̅( ̃ ,   ) = {  ̃  ̃  ̃ :‖ ̃     ̃‖  ̃    }  SE( ̃), 

 S( ̃ ,   ) = {  ̃  ̃  ̃ :‖ ̃     ̃‖ =    }  SE( ̃), 

    ( ̃ ,   ) ,   ̅( ̃ ,   ) ,  S( ̃ ,   ) are respectively called an open ball, a closed ball and a sphere 

with center at  ̃ and radius   . SS(  ( ̃ ,   )), SS( ̅( ̃  ,   )) and SS(S( ̃ ,   )) are respectively 

called a soft open ball, a soft closed ball and a soft sphere with center at  ̃ and radius   . 
 

Definition 2.25 [11] A sequence of soft elements {  ̃} in a soft normed space ( ̃,‖  ‖, B) 

called convergent sequence, if  ‖  ̃     ̃‖    ̅ as n    , we say the sequence converges to a 

soft element  ̃. In other words for each    ̃  ̅, there exists N   , N = N (  ) and  ̅  ̃  

‖  ̃     ̃‖  ̃     whenever n > N. 

i.e., n > N           ̃     ( ̃,   ) . We symbolize this by   ̃    ̃ as n     or 

by          ̃    ̃ . The soft element  ̃ called the limit of the sequence   ̃ as n goes to  . 

Definition 2.26 [11] A sequence {  ̃} of soft elements in a soft normed space ( ̃ , ‖ ‖ , B) is 

called a soft Cauchy sequence in  ̃, if matching to each     ̃  ̅ , there exists m   N satisfy : 

          ‖  ̃      ̃‖  ̃    , for all  i,j    i.e., ‖  ̃      ̃‖    ̅   as i; j goes to  . 

Definition 2.27 [11] Suppose ( ̃ , ‖ ‖ , B) is a soft normed space. Then,  ̃  is called soft 

complete if every soft Cauchy sequence in  ̃  converges to a soft element of  ̃. The soft 

complete normed space is called a soft Banach Space. 

Theorem 2.28 [11] Every soft Cauchy sequence in R(B) is convergent provided that B is a 

finite set of parameters, i.e., the set of all soft real numbers together with its usual modulus 

soft norm is a soft Banach space, provided that the set of parameters is finite 

Definition 2.29[12] A series ∑   ̃
 
    of soft elements called soft convergent, if the partial 

sum of the series   ̃  ∑   ̃
 
     is soft convergent. 

   Let  ̃ ,  ̃  be the corresponding absolute soft normed spaces i.e.,  ̃ ( ) = X,  ̃ ( ) = Y , 

for all     B. We use the notation  ̃ ,   ̃,  ̃  to represent soft vectors of a soft vector space. 

 

Definition 2.30[11] Suppose T: SE( ̃)   SE( ̃ ) is an operator. T is called soft linear, if 

(L1). T is additive, i.e., T (  ̃ +   ̃) = T (  ̃) + T(  ̃) with any soft elements   ̃,   ̃  ̃  ̃. 

(L2). T is homogeneous, i.e., with any soft scalar  ̃, T( ̃.  ̃) =  ̃ T ( ̃), with any soft element 

 ̃ ̃  ̃.  

The properties (L1) and (L2) can be combined in one condition T (  ̃.   ̃ +   ̃.   ̃) =   ̃ T 

(  ̃) +   ̃ T(  ̃) for every soft elements    ̃,   ̃  ̃  ̃  and every soft scalars   ̃ ,   ̃. 
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Definition 2.31[11] The operator T : SE( ̃)   SE( ̃) is called soft continuous at   ̃  ̃  ̃, if for 

every soft sequence {  ̃+  of soft elements of  ̃ with   ̃     ̃  as n goes to  , the image T(  ̃) 

  T(  ̃) as n goes to  . i.e.,  ‖  ̃      ̃‖    ̅ as n goes to    implies ‖ (  )̃ –  (  )̃‖    ̅ 

as n goes to   . If T is soft continuous at every soft element of  ̃  , then T is called a soft 

continuous operator. 

 

Theorem 2.32[11] Let  ̃,  ̃ are two soft normed linear spaces and T: SE( ̃)  SE( ̃) be a soft 

linear operator, If T is soft continuous at some soft element   ̃  ̃  ̃, then T is soft continuous 

at every soft element of  ̃. 

 

 

3. Soft Contraction Operator, soft Picard and soft Mann iteration processes  

Definition 3.1:  

 Let  ̃ be a soft normed space. A soft operator T:SE( ̃)  SE( ̃) is called a soft contraction 

operator if there  exists a soft real number  ̃ such that  ̅   ̃   ̃   ̃   ̅ and for every  ̃  ̃  ̃  ̃ we 

have:               ‖  ̃    ̃‖  ̃  ̃‖ ̃   ̃‖. 

Example 3.2 

Let  ̃ be a soft vector space where X =    and A={1, 2, ..., n}. 

Let T: SE( ̃)  SE( ̃) be a soft operator on  ̃ such that  ( ̃)     ̅̅ ̅̅  ̃   ̅ 

For all  ̃  ̃  ̃  ̃, we have ‖  ̃    ̃‖  ‖   ̅̅ ̅̅  ̃   ̅     ̅̅ ̅̅  ̃   ̅‖ 

                                                             = ‖   ̅̅ ̅̅  ̃     ̅̅ ̅̅  ̃‖ =    ̅̅ ̅̅ ‖ ̃   ̃‖ 

So, we have  ‖  ̃    ̃‖  ̃    ̅̅ ̅̅ ‖ ̃   ̃‖ for all  ̃  ̃  ̃  ̃. That is T is soft contraction. 

Proposition 3.3 

 Every soft contraction operator is soft continuous operator. 

Proof: Let  ̃  ̃  ̃ be arbitrary soft element. For any    ̃  ̅, let ‖ ̃   ̃‖  ̃  ̃ . Choose  ̃  ̃ ̃ . 

Since T is soft contraction, then ‖  ̃    ̃‖  ̃  ̃‖ ̃   ̃‖  ̃  ̃ ̃  ̃  ̃. Hence T is soft 

continuous. 

Definition 3.4 

 Let T:SE( ̃)  SE( ̃) where  ̃ is a soft normed space. A soft element  ̃ called soft fixed 

element if,  ( ̃)   ̃. 

Theorem 3.5  

Let  ̃ be a soft Banach space and      ( ̃)    ( ̃). If T is a soft contraction operator, then 

there exists a unique soft element  ̃  ̃  ̃ such that  ( ̃)   ̃. 
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Proof: Let   ̃ be any soft element in  ̃. We set   ̃   (  ̃)    ̃   (  ̃)      ̃     (  ̃) . 

‖ ̃      ̃‖  ‖   ̃    ̃   ‖  ̃  ̃‖  ̃   ̃   ‖     

                      =  ̃‖  ̃      ̃   ‖ 

                       ̃  ̃ ‖ ̃     ̃   ‖….. ̃  ̃ ‖  ̃    ̃‖. 

Therefore, we have ‖ ̃     ̃ ‖  ̃  ̃ ‖  ̃    ̃‖. 

Now, for     we have: 

 ‖ ̃   ̃ ‖  ̃ ‖  ̃   ̃   ‖  ‖ ̃     ̃   ‖    ‖ ̃     ̃ ‖ 

                   ̃ ( ̃     ̃       ̃ )‖  ̃    ̃‖ 

                   ̃
 ̃ 

 ̅  ̃
 ‖  ̃    ̃‖  

(Since 
 ̃ 

 ̅  ̃
 ( ̃     ̃       ̃ )  

 ̃ 

 ̅  ̃
        ̃     ̃       ̃  ̃

 ̃ 

 ̅  ̃
 ) 

When n,m   , ‖  ̃    ̃‖   ̅ . This implies that {  ̃+ is a soft Cauchy sequence. By 

completeness of  ̃, there is a soft element  ̃  ̃  ̃ such that   ̃   ̃       . Therefore, 

 ‖  ̃   ̃‖  ̃ ‖   ̃    ̃‖  ‖   ̃   ̃‖  ̃  ̃‖  ̃   ̃‖  ‖ ̃     ̃‖. 

We obtained that ‖  ̃   ̃‖   ̅        (i.e., T ̃   ̃). 

If  ̃ is another soft fixed element of T, then: 

                ‖ ̃   ̃‖  ‖  ̃    ̃‖  ̃  ̃‖ ̃   ̃‖. 

This implies that ‖ ̃   ̃‖   ̅  (since  ̃  ̃  ̅) and  ̃   ̃. Hence, the soft fixed element of T is 

unique. 

The iteration procedure using in the last theorem called (soft Picard iteration procedure). 

Definition 3.6 (soft Mann iteration) 

Let  ̃ be a soft normed space and T: SE( ̃)   SE( ̃) is a soft operator on. Let {  ̃+ be a 

sequence of non-negative soft real number such that  ̅   ̃   ̅             and  ∑  ̃ 
 
    

is diverge. 

Define a soft sequence {  ̃} in  ̃ by  ̃  ̃  ̃ and  ̃     (  ̃       )       

Where M(  ̃      )  (   ̃ )  ̃   ̃    ̃. 

The sequence {   ̃+ is called the soft Mann iteration. 

Theorem 3.7 
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 Let  ̃ be a soft Banach space and T: SE( ̃)  SE( ̃) is a soft continuous operator on  ̃. If 

the soft Mann iteration {   ̃+ defined in previous definition converges strongly to a soft 

element  ̃  ̃  ̃, then  ̃ is a soft fixed element of T. 

Proof: since *  ̃+ converges to  ̃, then         ̃   ̃. We want to prove that   ̃   ̃. 

Suppose not, that is   ̃   ̃        ‖  ̃   ̃‖  ̃  ̅. 

We set  ̃    ̃     ̃  ( ̃    ̃). 

Because         ̃   ̃  and T is soft continuous, we obtained that: 

       ̃         (  ̃     ̃  ( ̃    ̃))    ̅. So,  ‖ ̃ ‖   ̅. 

Now, since ‖  ̃   ̃‖  ̃  ̅, there exists               ‖ ̃ ‖  ̃ ‖  ̃   ̃‖   ̅. 

For every Cauchy sequence in  ̃,  ‖  ̃    ̃‖  ̃ ‖  ̃   ̃‖  ̅⁄                   . 

Let H be any positive integer such that ∑   
   
     . 

We have:  ̃    (   ̃ ) ̃   ̃   ̃  

             ̃     ̃   ̃ (  ̃   ̃ ) 

Therefore, ‖ ̃   ̃     ‖  ‖∑ ( ̃   ̃   
   
   ‖ 

                                             ‖∑  ̃ ( ̃    ̃   ̃ )
   
   ‖ 

                                             ̃ ‖∑  ̃ ( ̃    ̃)   
   ‖  ‖∑    ̃ 

   
   ‖ 

                                             ̃ ∑  ̃ ,‖  ̃   ̃‖  ‖  ̃   ̃‖  ̅⁄ -   
    

                                             ̃
 ̅‖  ̃  ̃‖

 ̅
 

But ‖ ̃   ̃     ‖  ̃ ‖  ̃   ̃‖   ̅, which is contradiction. 

So,   ̃   ̃. That is  ̃ is a soft fixed element. 

Example 3.8 

 Let  ̃ be an absolute soft vector space where X =    and A = {1, 2, 3}. 

Let T: SE( ̃)  SE( ̃) be a soft operator on  ̃ such that  ( ̃)   ̅   ̃ 

It is clear that T is continuous. We choose  ̃  (
 

 
)

̅̅ ̅̅
           ̅   ̃   ̅     

Let   ̃  *(  (     )) (  (     )) (  (     ))+. 

We have  ̃    ( ̅   ̃ )  ̃   ̃    ̃                
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                         . ̅  (
 

 
)

̅̅ ̅̅
/   ̃  (

 

 
)

̅̅ ̅̅
( ̅   ̃) 

                         . ̅  (
 

 
)

̅̅ ̅̅
/   ̃  (

 

 
)

̅̅ ̅̅
 

n = 
      

  

  

  

  
1 1 2 3   ̃={(1,(1,1,1)),(2,(2,2,2)),(3,(3,3,3))} 

2 0 -1 -2   ̃={(1,(0,0,0)),(2,(-1,-1,-1)),(3,(-2,-2,-2))} 

3 0.5 0.5 0.5   ̃={(1,(0.5,0.5,0.5)),(2,(0.5,0.5,0.5)),(3,(0.5,0.5,0.5))} 

4 0.5 0.5 0.5   ̃={(1,(0.5,0.5,0.5)),(2,(0.5,0.5,0.5)),(3,(0.5,0.5,0.5))} 

5 0.5 0.5 0.5   ̃={(1,(0.5,0.5,0.5)),(2,(0.5,0.5,0.5)),(3,(0.5,0.5,0.5))} 

It is clear that   ̃   ̃           ̃  *(  (           )) (  (           )) (  (           ))+ 

So by theorem,  ̃ is a soft fixed element of T. 

Let   ̃  *(  (      )) (  (     )) (  (         ))+. 

n= 
          

1 -1 0 1 1 2 0 -2 1 -1   ̃={(1,(-1,0,1)),(2,(1,2,0)),(3,(-2,1,-1))} 

2 2 1 0 0 -1 1 3 0 2   ̃={(1,(2,1,0)),(2,(0,-1,1)),(3,(3,0,2))} 

3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5   ̃={(1,(0.5,0.5,0.5)),(2,(0.5,0.5,0.5)),(3,(0.5,0.5,0.5))} 

4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5   ̃={(1,(0.5,0.5,0.5)),(2,(0.5,0.5,0.5)),(3,(0.5,0.5,0.5))} 

5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5   ̃={(1,(0.5,0.5,0.5)),(2,(0.5,0.5,0.5)),(3,(0.5,0.5,0.5))} 

It is clear that   ̃   ̃           ̃  *(  (           )) (  (           )) (  (           ))+ 

So by theorem,  ̃ is a soft fixed element of T. 

Example 3.9 

 Let  ̃ be an absolute soft vector space where X =    and A = {1, 2, 3}. 

Let T: SE( ̃)  SE( ̃) be a soft operator on  ̃ such that  ( ̃)   ̅ ̃ 

It is clear that T is continuous. We choose  ̃  (
 

 
)

̅̅ ̅̅
           ̅   ̃   ̅ 

Let   ̃  *(  (     )) (  (     )) (  (     ))+. 
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We have  ̃    ( ̅   ̃ )  ̃   ̃    ̃                

                         . ̅  
 

 

̅
/   ̃  

 

 

̅
( ̅ ̃) 

                         .
   

 
/

̅̅ ̅̅ ̅̅ ̅
  ̃ 

n= 
     

1 1 2 3 
 

  ̃={(1,(1,1,1)),(2,(2,2,2)),(3,(3,3,3))} 

2 2 4 6 
 

  ̃={(1,(2,2,2)),(2,(4,4,4)),(3,(6,6,6))} 

3 3 6 9 
 

  ̃={(1,(3,3,3)),(2,(6,6,6)),(3,(9,9,9))} 

4 4 8 12 
 

  ̃={(1,(4,4,4)),(2,(8,8,8)),(3,(12,12,12))} 

5 5 10 15 
 

  ̃={(1,(5,5,5)),(2,(10,10,10)),(3,(15,15,15))} 

6 6 12 18 
 

  ̃={(1,(6,6,6)),(2,(12,12,12)),(3,(18,18,18))} 

7 7 14 21 
 

  ̃={(1,(7,7,7)),(2,(14,14,14)),(3,(21,21,21))} 

8 8 16 24 
 

  ̃={(1,(8,8,8)),(2,(16,16,16)),(3,(24,24,24))} 

9 9 18 27 
 

  ̃={(1,(9,9,9)),(2,(18,18,18)),(3,(27,27,27))} 

10 10 20 30 

 

 ̃  ={(1,(10,10,10)),(2,(20,20,20)),(3,(30,30,30))} 

   Although that T is soft continuous operator, the soft Mann iteration not converges to a soft 

element in  ̃. 

Proposition 3.10 

 Let  ̃ be a soft normed space and T: SE( ̃)   SE( ̃) is a soft operator on  ̃.   ̃ is a fixed 

element of T such that ‖  ̃   ̃‖  ̃ ‖ ̃   ̃‖          ̃  ̃  ̃, then for the soft Mann 

iteration  ̃    ( ̅   ̃ )  ̃   ̃    ̃                 the       ‖  ̃   ̃‖        . 

Proof: Because ‖ ̃     ̃‖  ‖( ̅   ̃ )  ̃   ̃    ̃       ̃‖ 

                                                ‖( ̅   ̃ )  ̃   ̃    ̃      (    ) ̃     ̃‖ 

  ̃ ‖( ̅   ̃ ),  ̃   ̃-‖  ‖ ̃ (   ̃   ̃)‖ 

  ( ̅   ̃ )‖  ̃   ̃‖   ̃ ‖   ̃   ̃‖ 

  ̃ ( ̅   ̃ )‖  ̃   ̃‖   ̃ ‖  ̃   ̃‖ 

  ‖  ̃   ̃‖                

It follows that       ‖  ̃   ̃‖        . 

4. Stability of soft iteration processes 

Definition 4.1  
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Let  ̃ be a soft normed space and let     ( ̃)    ( ̃) be a soft operator on  ̃. Let  (  )  

*  ̃  ̃  ̃   ̃   ̃+ a set of soft fixed element of T, consider  ̃  ̃  ̃ and * ̃ + be a soft 

sequence such that: 

 ̃   (   ̃ )                        ……. ( 1 ) 

Where   ̃  ̃  ̃, is the initial soft element and f is some function. Assume that * ̃ + converges 

to a soft fixed element   ̃. Let * ̃ + be another soft sequence in  ̃.  

   We consider    ‖ ̃     (   ̃ )‖                

The soft iteration procedure ( 1 ) is called soft T-stable  or soft stable with respect to T if and 

only if           ̅  implies        ̃   ̃.   

Lemma4.2 

 if  ̃ is a soft real number such that  ̅  ̃  ̃  ̃  ̅ and *   +   
  is a soft sequence of positive soft 

real number with             ̅, then for all * ̃ +   
   ( ) satisfies: 

      ̃    ̃  ̃ ̃                       , we have          ̃   ̅. 

 Proof: if   ̃   ̅, the statement is true. Assume  ̅  ̃  ̃  ̃  ̅, we can multiply both side of 

Inequality by   
 ̅

 ̃   
  ̃    , we obtained that: 

      ̃    ̃
     ̃  ̃   ̃   ̃                                                   

By sum all inequalities for                 and after simplify we obtained that: 

                          ̅  ̃   ̃    ̃  ̃     ̃  ∑  ̃      
 
     

Now, using lemma in ((stability of k-stable fixed point iteration methods for Persic type 

contraction mapping)) we get; 

      ,∑  ̃      -   ̅ 
   . Therefore,          ̃   ̅. 

 

Stability of soft iteration processes (with contraction operator) 

Theorem 4.3 (stability of Picard iteration procedure) 

Let  ̃ be a soft banach space and let     ( ̃)    ( ̃) be a soft operator on  ̃ satisfies the 

condition: 

‖  ̃    ̃‖  ̃  ̃‖ ̃   ̃‖ Where,     ̅  ̃  ̃  ̃  ̅. 

Then, the soft Picard iteration process where   ̃  ̃  ̃ and   ̃      ̃        , is soft T-

stable. 
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Proof: by soft contraction theorem, T has unique soft fixed point  ̃. Consider  * ̃ +   
  be a 

soft sequence in  ̃ such that  ̃      ̃  and let      ‖ ̃      ̃ ‖. 

Suppose that            ̅ to prove that         ̃   ̃. 

‖ ̃     ̃‖  ̃ ‖ ̃      ̃ ‖  ‖  ̃   ̃‖ 

                     ‖  ̃    ̃‖      

                     ̃  ̃‖ ̃   ̃‖      

Since    ̅  ̃  ̃  ̃  ̅ and by lemma, we obtained that       ‖ ̃   ̃‖   ̅ that 

is         ̃   ̃. 

On the other hand, let         ̃   ̃. 

    ‖ ̃      ̃ ‖  ̃ ‖ ̃     ̃‖  ‖ ̃    ̃ ‖ 

                                  ̃ ‖ ̃     ̃‖   ̃‖ ̃   ̃‖  

When    , we have            ̅. 

Therefore, the Picard iteration procedure is T-stable. 

Theorem 4.4 : (stability of Mann iteration procedure) 

Let  ̃ be a soft banach space and let     ( ̃)    ( ̃) be a soft operator on  ̃ satisfies the 

condition: ‖  ̃    ̃‖  ̃  ̃‖ ̃   ̃‖ where    ̅  ̃  ̃  ̃  ̅. 

Then, the soft Mann iteration process where   ̃  ̃  ̃ and 

   ̃    ( ̅   ̃ ) ̃   ̃   ̃      ̃          ̅  ̃  ̃  ̃  ̅             , is soft T-stable. 

Proof: by soft contraction theorem, T has unique soft fixed point  ̃. Consider  * ̃ +   
  be a 

soft sequence in  ̃ such that  ̃    ( ̅   ̃ ) ̃   ̃   ̃  and let 

      ‖ ̃    ( ̅   ̃ ) ̃   ̃   ̃ ‖. 

Suppose that            ̅ to prove that         ̃   ̃. 

‖ ̃     ̃‖  ̃ ‖ ̃    ( ̅   ̃ ) ̃   ̃   ̃ ‖  ‖( ̅   ̃ ) ̃   ̃   ̃   ̃‖ 

                     ‖( ̅   ̃ ) ̃   ̃   ̃  (( ̅   ̃ )   ̃ ) ̃‖      

                     ‖( ̅   ̃ )( ̃   ̃)   ̃ (  ̃   ̃)‖      

                     ̃ ( ̅   ̃ )‖ ̃   ̃‖   ̃ ‖  ̃    ̃‖      

                     ̃ ( ̅   ̃ )‖ ̃   ̃‖   ̃  ̃‖ ̃   ̃‖      

                     ( ̅   ̃   ̃  ̃)‖ ̃   ̃‖      
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Since ( ̅   ̃   ̃  ̃)  ̃  ̅ and by lemma, we obtained that       ‖ ̃   ̃‖   ̅ that 

is         ̃   ̃. 

On the other hand, let         ̃   ̃. 

    ‖ ̃    ( ̅   ̃ ) ̃   ̃   ̃ ‖ 

      ̃ ‖ ̃     ̃‖  ‖ ̃  ( ̅   ̃ ) ̃   ̃   ̃ ‖ 

      ̃ ‖ ̃     ̃‖  ‖(( ̅   ̃ )   ̃ ) ̃  ( ̅   ̃ ) ̃   ̃   ̃ ‖  

      ̃ ‖ ̃     ̃‖  ( ̅   ̃ )‖ ̃   ̃‖   ̃ ‖  ̃   ̃‖ 

      ̃ ‖ ̃     ̃‖  ( ̅   ̃ )‖ ̃   ̃‖   ̃  ̃‖ ̃   ̃‖ 

When    , the             ̅. 

Therefore, the Mann iteration procedure is T-stable. 
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Abstract: 

This paper  introduces a new notion of algebra called BS-algebra and some 

of its properties are discussed in detail. Also, we define a S(a,b) of  BS-algebra  

and  discus  of properties and theorems of  it. Some of  theorems  of  a new ideals of    BS-

algebra are introduced and proved .Also, we introduced some new types of  idealᵴ of  Z-algebra 

and we linked these ideals with some theorems and properties .Also , we define the concept of  

pseudo Z-algebra and introduced  some examples and new concepts in it, including the concept of  

pseudo b-subalgebra and introduced some theorems and  properties in this new concepts. 

 

 

Keywords : BS-algebra , S(a,b) of  BS-algebra , Bs –idel , Z-algebra, associative Z-algebra, 

pseudo Z-algebra, Z -ideal , pseudo b-subalgebra. 

1. Introduction. 

Algebras structures have an important role in many applications of science such as computer 

science, information theory, control engineering, etc. In 1966 the world  introduced  the 

concept  of  BCK –algebra and then emerged other concepts and types of algebra. In 2002 ,  

J. Neggers and H. S. Kim introduced the concept of B-algebra which is the generalization of 

concepts of  some types of algebras .In 2008, C. B. Kim and H. S .Kim  introduced BG- 

algebra which is the generalization of  B-algebra. In 2012 introduced the  of  BO-algebra .In 

this paper we will introduce a new type of algebra namely BS-algebra and we will try to 

connected  it to other types of algebras. Some theorems and properties .Also , we define  a 

new concept of  sub- algebra and introduced some theorems and characteristics Finally ,we 

define a new type of  ideals in this type and we will connected to  other types of  ideals of  

BS-algebra. M. Chandramouleeswaran, P. Muralikrishna, K. Sujatha and S. Sabarinathan   (2017) 

introduced the concepts of  Z-algebra. They tried to provide some theorems  that link this type of 

algebra to other types. They also introduced  some types of ideals and filters in this type of algebra. 

mailto:adilh.alhajjar@%20uokufa.edu.iq
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In this paper, we introduce the notion of  some types of ideas of Z-algebra, and investigate its 

characterization. We also introduce the concepts of associative Z-algebra, and 

investigate related  properties. We define a pseudo Z-algebra . Some concepts and theorems are given 

and proved. 

 

2. Preliminaries.  

Ɗefinition. 2.1.[ 3 ] Let  Ж  be a null  set has a constant of  " Ѻ "  with a binary  operation   " ⟐"  

satisfying  the following  axioms :  

i.     ᵯ ⟐ ᵯ = Ѻ,    ᵯ     Ж. 

ii.  ᵯ ⟐ Ѻ = ᵯ,       ᵯ     Ж . 

iii.  ( ᵯ ⟐ ᵰ) ⟐ ᵶ =  ᵯ ⟐ (ᵶ ⟐ (Ѻ ⟐ ᵰ))   ,    ᵯ, ᵰ , ᵶ     Ж . 

Main Resu ltThen   Ж  is called a B -algebra . 

Ɗefinition.. 2.2.[ 1] Let  Ж  be a null  set has a constant of  " Ѻ "  with a binary  operation  

 " ⟐"  satisfying  the following  axioms : 

i.     ᵯ ⟐ ᵯ = Ѻ,    ᵯ     Ж. 

ii.  ᵯ ⟐ Ѻ = ᵯ,       ᵯ     Ж . 

iii.   ( ᵯ ⟐ ᵰ) ⟐ (Ѻ ⟐ ᵰ ) =  ᵯ    ,    ᵯ, ᵰ , ᵶ     Ж . 

Main Resu ltThen   Ж  is called a BG -algebra . 

Ɗefinition. 2.3.[ 2 ] Let  Ж  be a null  set has a constant of  " Ѻ "  with a binary operation  

 " ⟐"  satisfying  the following  axioms :   

 

i.     ᵯ ⟐ ᵯ = Ѻ,    ᵯ     Ж. 

ii.  ᵯ ⟐ Ѻ = ᵯ,       ᵯ     Ж . 

iii.  ᵯ ⟐ ( ᵰ ⟐ ᵶ ) =  ( ᵯ ⟐ ᵰ) ⟐ (Ѻ ⟐ ᵶ)   ,    ᵯ, ᵰ , ᵶ     Ж . 
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Main Resu ltThen   Ж  is called a BO -algebra . 

Ɗefinition..2.4. : Let Ж be a non-empty set have a constant " Ѻ " and a binary operation "⟐" 

satisfying the following axioms:  

i.    ᵯ ⟐ Ѻ  = Ѻ ,     ᵯ   Ж. 

ii.    Ѻ ⟐ ᵯ = ᵯ,    ᵯ   Ж. 

iii.   ᵯ ⟐ ᵯ = 𝛋 ,   ᵯ   Ж. 

iv.   ᵯ ⟐ ᵰ  = ᵰ ⟐ ᵯ ,   ᵯ, ᵰ   Ж.  

Then  Ж is called a Z-algebra. 

Ɗefinition 2.5. Let Ж  be a Z-algebra, then  Ɨ  is called an  ideal  of  Ж  if :- 

i. Ѻ   Ɨ .  

ii. ᵯ ⟐ ᵰ   Ɨ  , ᵰ       ᵯ   Ɨ ,   ᵯ, ᵰ   Ж. 

3. BS-algebra 

Ɗefinition. 3.1. Let  Ж  be a null  set has a constant of  " Ѻ "  with a binary operation  

 " ⟐"  satisfying  the following  axioms :   

 

i.      ᵯ ⟐ ᵯ = Ѻ,    ᵯ     Ж. 

ii.     ᵯ ⟐ Ѻ = ᵯ,       ᵯ     Ж . 

iii.   (ᵯ ⟐ ᵰ ) ⟐( ᵰ ⟐ ᵶ ) = ᵯ  ,       ᵯ , ᵰ , ᵶ     Ж .  

ResultThen   Ж  is called a BS -algebra 

Example .3.2. Let  Ж = { Ѻ,1,2,3} be a set with the following  Cayley tables: 

   

⟐ Ѻ 1 2 3 

Ѻ Ѻ 1 2 3 

1 1 Ѻ 1 1 

2 2 2 Ѻ 2 

3 3 3 3 Ѻ 

 



711 
 

Then  Ж is a BS-algebra . 

Definition. 3.3.Let Ж is a BS –algebra , then Ж is called a commutative if  

ᵯ ⟐ ᵰ = ᵰ ⟐ ᵯ  ,    ᵯ, ᵰ     Ж . 

Definition. 3.4..Let Ж is a BS –algebra , then Ж is called a associative  if  

ᵯ ⟐( ᵰ⟐ ᵶ ) = (ᵯ ⟐ ᵰ )⟐ ᵶ ,    ᵯ, ᵰ , ᵶ    Ж . 

 

Proposition.3.5. If Ѻ ⟐ ᵯ = ᵯ , then  every  B-algebra  Ж if and only if a BS-algebra. 

Proof : Let Ж be B-algebra satisfies Ѻ ⟐ ᵯ = ᵯ . 

Let (ᵯ ⟐ ᵰ ) ⟐ (ᵰ ⟐Ѻ) = (ᵯ ⟐ ᵰ ) ⟐ ᵰ = ᵯ ⟐ (ᵰ ⟐ (Ѻ ⟐ ᵰ))  

      = ᵯ ⟐ (ᵰ ⟐ ᵰ) = ᵯ 

Hence , Ж is  BS-algebra.  

Conversely , Let Ж be BS-algebra satisfies Ѻ ⟐ ᵯ = ᵯ . 

Let  ᵯ ⟐ (ᵰ ⟐ (Ѻ ⟐ ᵰ)) = ᵯ ⟐ (ᵰ ⟐ ᵰ) = ᵯ ⟐ Ѻ 

 =  ᵯ = (ᵯ ⟐ ᵰ ) ⟐ (ᵰ ⟐Ѻ) = (ᵯ ⟐ ᵰ ) ⟐ ᵰ . 

 Hence , Ж is  B-algebra.  

Proposition.3.6. If Ѻ ⟐ ᵯ = ᵯ , then  every  BG-algebra  Ж if and only if a  BS-algebra. 

Proof : Let Ж be BG-algebra satisfies Ѻ ⟐ ᵯ = ᵯ . 

Let  (ᵯ ⟐ ᵰ ) ⟐ (ᵰ ⟐Ѻ) = (ᵯ ⟐ ᵰ ) ⟐ ᵰ = (ᵯ ⟐ ᵰ )⟐ (Ѻ ⟐ ᵰ) = ᵯ  

  Hence , Ж is  BS-algebra. 

Conversely , Let Ж be BS-algebra satisfies Ѻ ⟐ ᵯ = ᵯ . 

Let ᵯ = (ᵯ ⟐ ᵰ ) ⟐ (ᵰ ⟐Ѻ) =  (ᵯ ⟐ ᵰ ) ⟐ ᵰ =(ᵯ ⟐ ᵰ )⟐ (Ѻ ⟐ ᵰ) 

Hence , Ж is  BG-algebra 

Proposition.3.7. Every   associative BO-algebra  Ж satisfies Ѻ ⟐ ᵯ = ᵯ is a BS-algebra. 
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Proof : Let Ж be BO-algebra satisfies Ѻ ⟐ ᵯ = ᵯ . 

Let  ᵯ = ᵯ ⟐Ѻ =  ᵯ ⟐( ᵰ ⟐ ᵰ) =   (ᵯ ⟐ ᵰ )⟐ (Ѻ ⟐ ᵰ)   

= (ᵯ ⟐ ᵰ )⟐ ᵰ  = (ᵯ ⟐ ᵰ ) ⟐ (ᵰ ⟐Ѻ)  

  Hence , Ж is  BS-algebra 

 

Proposition.3.8. Let Ж be BS-algebra ,then the  following results are hold: 

1.  ᵯ  = (ᵯ ⟐ ᵰ ) .  

2. (ᵯ ⟐ ᵰ ) ⟐ ᵰ = ᵯ . 

3.  ᵯ ⟐ ((ᵯ ⟐ ᵰ ) ⟐ ᵰ) = Ѻ . 

Proof : 

1. ᵯ = (ᵯ ⟐ ᵰ ) ⟐( ᵰ ⟐ ᵰ ) = (ᵯ ⟐ ᵰ ) ⟐ Ѻ =  ᵯ ⟐ ᵰ . 

2. (ᵯ ⟐ ᵰ ) ⟐ ᵰ = (ᵯ ⟐ ᵰ ) ⟐ (ᵰ ⟐Ѻ)  = ᵯ . 

3. ᵯ ⟐ ((ᵯ ⟐ ᵰ ) ⟐ ᵰ) = ᵯ ⟐ ((ᵯ ⟐ ᵰ ) ⟐ (ᵰ ⟐Ѻ)) =  ᵯ ⟐ ᵯ = Ѻ . 

 

4.    S (a,b) of  BS-algebra 

Definition. 4.1. Let S be a subset of BS  -algebra Ж . Then S is called a sub-algebra  

of  Ж if ᵯ ⟐ ᵰ   S , for all  ᵯ, ᵰ     S . 

 

Definition. 4.2.  Let S be a sub-algebra of  BS -algebra Ж .Then S is called S (a,b)  

of  Ж , if   ( a ⟐ ᵯ) ⟐ ( b ⟐ ᵰ)    S , for all ᵯ, ᵰ    S and for some a,b    Ж . 

 

Proposition.4.3.  Ѻ   S (a,b)  of  BS-algebra. 

Proof : Let S (a,b) of  BS-algebra Ж .  

Let ( a ⟐ ᵯ) ⟐ ( b ⟐ ᵰ)   S , where a,b   Ж  and for all ᵯ, ᵰ   S . 

Put a= ᵯ and b= ᵰ , we get : ( a ⟐ a) ⟐ ( b ⟐ b)    S. 
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Imply Ѻ ⟐ Ѻ = Ѻ   S (a,b) of  Ж . 

Proposition.4.4. Let  Ж be a commutative BS-algebra, then  S (a,b)= S (b,a). 

Proof : Let S (a,b) of  commutative  BS-algebra Ж .  

Let ( a ⟐ ᵯ) ⟐ ( b ⟐ ᵰ)   S , where a,b   Ж  and for all ᵯ, ᵰ   S . 

Since Ж is a commutative BH-algebra, then  ( b ⟐ ᵰ)  ⟐ ( a ⟐ ᵯ)    S. 

By definition of  S (b,a) ,we get  S (a,b)= S (b,a) , where  ᵯ ⟐ ᵰ = ᵰ ⟐ ᵯ   . 

5.  Bs –ideal  of ƁS-algebra  

Definition.5.1 Let  Ж  be a ƁS-algebra , then  Ɨ  is called an  ideal  of Ж  if :- 

iii. Ѻ     Ɨ . 

iv. ᵯ ⟐ ᵰ   Ɨ  and  ᵰ   Ɨ   ᵯ    Ɨ , ⩝ ᵯ,     Ж. 

 

Definition.5.2.  Let  Ж  be a ƁS-algebra , then  Ɨ  is called an Bs-ideal  of  Ж  if :- 

i. Ѻ     Ɨ . 

ii. ((ᵯ ⟐ ᵰ) ⟐( ᵰ ⟐ ᵶ)) ⟐ ᵰ    Ɨ  and  ᵰ   Ɨ   ᵯ    Ɨ , ⩝ ᵯ, ᵰ     Ж. 

 

Proposition.5.3 Let Ж be a ƁS-algebra , then every ideal of  Ж if and only if  an  Bs-ideal of  Ж. 

Ҏɍoof : Suppose that  Ɨ is an  ideal of  Ж , ⩝ ᵯ, ᵰ , ᵶ    Ж 

Let ((ᵯ ⟐ ᵰ) ⟐( ᵰ ⟐ ᵶ)) ⟐ ᵰ    Ɨ  and  ᵰ   Ɨ   

Since Ж is  a ƁS-algebra , we get (ᵯ ⟐ ᵰ) ⟐( ᵰ ⟐ ᵶ) = ᵯ 

Imply ᵯ ⟐ ᵰ   Ɨ and  ᵰ   Ɨ .  

Since  Ɨ is an  ideal of  Ж , we get ᵯ    Ɨ  

Hence ,  Ɨ is an Bs- ideal of  Ж . 

Conversely , Suppose that  Ɨ is an  Bs-ideal of  Ж , ⩝ ᵯ, ᵰ , ᵶ    Ж 

Let ᵯ ⟐ ᵰ   Ɨ and  ᵰ   Ɨ . 
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Since Ж is  a ƁS-algebra , we get (ᵯ ⟐ ᵰ) ⟐( ᵰ ⟐ ᵶ) = ᵯ 

Imply  ((ᵯ ⟐ ᵰ) ⟐( ᵰ ⟐ ᵶ)) ⟐ ᵰ    Ɨ  and  ᵰ   Ɨ   

Since  Ɨ is an  Bs-ideal of  Ж , we get ᵯ    Ɨ  

Hence ,  Ɨ is an  ideal of  Ж . 

 

6  .Some types of ideals of  Z-algebra 

Dęfįnįtįoņ.6.1.A nonempty  subset Ɨ of  a Z-algebra Ж is called a Z1- ideal  of Ж if : 

(i) 𝟢   Ɨ . 

(ii) ((ᵯ⟐ ᵶ)⟐ )⟐    Ɨ and  ᵰ   Ɨ  imply  ᵯ   Ɨ,   ᵯ,ᵰ,ᵶ   Ж. 

Example .6.2. Let  Ж = (Z, ⟐,Ѻ) be the Z-algebra, where  Ж = { Ѻ,1,2,3} and ⟐ is given by the 

table : 

⟐ Ѻ 1 2 3 

Ѻ Ѻ 1 2 3 

1 Ѻ 1 1 1 

2 Ѻ 1 2 2 

3 Ѻ 1 2 3 

  

 

Let Ɨ ={ Ѻ,2,3} be a subset of  Z-algebra, then Ɨ is Z1- ideal of  a Z-algebra. 

Dęfįnįtįoņ.6.3. A Z-algebra Ж is called associative  Z-algebra if:  

(ᵯ⟐ᵰ) ⟐ᵶ =  ᵯ ⟐ (ᵰ ⟐ᵶ ) ,   ᵯ,ᵰ,ᵶ   Ж.  

Proposition.6.4. Let Ж be a associative  Z-algebra. Then the following properties hold for all ᵯ, ᵰ   

Ж. 

1- (ᵯ⟐ᵰ)⟐ ᵯ = ᵰ ⟐ ᵯ . 

2- ᵯ ⟐ (ᵰ ⟐ ᵯ) = ᵯ⟐ᵰ . 

3- (ᵯ ⟐( ᵰ ⟐ ᵯ)) ⟐ᵰ = ᵰ ⟐ ᵯ. 

Proof : 

1- (ᵯ⟐ᵰ)⟐ ᵯ= (ᵰ ⟐ ᵯ) ⟐ ᵯ =             ᵰ ⟐(ᵯ⟐ ᵯ)    = ᵰ ⟐ ᵯ . 

2- ᵯ ⟐ (ᵰ ⟐ ᵯ) = ᵯ ⟐ (ᵯ ⟐ ᵰ) = (ᵯ⟐ᵯ) ⟐ᵰ    =  ᵯ⟐ᵰ . 
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3- (ᵯ ⟐( ᵰ ⟐ ᵯ)) ⟐ᵰ=  ᵰ ⟐( ᵯ ⟐( ᵰ ⟐ ᵯ))  = (ᵰ ⟐ ᵯ) ⟐( ᵰ ⟐ ᵯ) =  ᵰ ⟐ ᵯ.       

Proposition.6.5. Let Ж be a Z-algebra, then every Z1- ideal of Ж is an ideal of  Ж.  

Proof : Suppose  that  Ɨ is a Z1- ideal of Ж ,    ᵯ,ᵰ,ᵶ   Ж. 

Let ((ᵯ⟐ ᵶ)⟐ ᵯ) ⟐ ᵰ   Ɨ and  ᵰ   Ɨ  . 

Put ᵶ = Ѻ , we have : 

((ᵯ⟐ Ѻ)⟐ ᵯ) ⟐ ᵰ   Ɨ and  ᵰ   Ɨ ,then 

(Ѻ ⟐ ᵯ) ⟐ ᵰ   Ɨ and  ᵰ   Ɨ  [Ж is a Z-algebra] 

ᵯ⟐ᵰ   Ɨ and  ᵰ   Ɨ [Ж is a Z-algebra,] 

Imply  ᵰ   Ɨ .  [Ɨ is an ideal of  Ж ]. 

Hence ,  Ɨ  is a  Z1- ideal of Ж. 

Dęfįnįtįoņ.6.6.A nonempty  subset   of  a Z-algebra, Ж is called a Z2-ideal  of Ж if  

 

(i) Ѻ   Ɨ . 

(ii) (ᵯ⟐ ᵶ) ⟐(ᵯ⟐ ᵰ)   Ɨ and  ᵰ   Ɨ  imply  ᵯ   Ɨ,   ᵯ,ᵰ,ᵶ   Ж. 

 

Proposition.6.7. Let Ж be a Z-algebra,, then every Z2- ideal of Ж is an ideal of  Ж . 

Proof : Suppose  that  Ɨ is a Z2- ideal of Ж ,       ᵯ,ᵰ,ᵶ   Ж. 

Let  (ᵯ⟐ ᵶ)⟐(ᵯ⟐ ᵰ)   Ɨ and  ᵰ   Ɨ 

Put ᵶ = Ѻ , we have : 

Let  (ᵯ⟐ Ѻ)⟐(ᵯ⟐ ᵰ)   Ɨ and  ᵰ   Ɨ,then 

Ѻ⟐(ᵯ⟐ ᵰ)   Ɨ and  ᵰ   Ɨ [Ж is a Z-algebra,] 

Then(ᵯ⟐ ᵰ)   Ɨ and  ᵰ   Ɨ [Ж is a Z-algebra,] 

Imply  ᵰ   Ɨ .  [Ɨ is an ideal of  Ж ]. 

Hence ,  Ɨ  is a  Z1- ideal of Ж. 

Proposition.6.8.  Every Z1- ideal of   associative Z-algebra, Ж  if and only if is  Z2- ideal of  Ж. 

Proof : Suppose  that  Ɨ is a Z1- ideal of Ж ,    ᵯ,ᵰ,ᵶ   Ж. 

Let (ᵯ⟐ ᵶ) ⟐ (ᵯ⟐ᵰ)  Ɨ and  ᵰ   Ɨ. 
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Since Ж is  an associative Z-algebra,,we get 

((ᵯ⟐ ᵶ)⟐ᵯ)⟐ᵰ  Ɨ and  ᵰ   Ɨ . 

Imply ᵯ   Ɨ [Ɨ  is a Z1- ideal of Ж  ] 

Hence , Ɨ is a Z2- ideal of  Ж . 

Similarly, Suppose  that  Ɨ is a Z2- ideal of Ж ,     ᵯ,ᵰ,ᵶ   Ж. 

Let ((ᵯ⟐ ᵶ))⟐ᵯ)⟐ᵰ  Ɨ and  ᵰ   Ɨ . 

Since Ж is  an associative Z-algebra,,we get 

(ᵯ⟐ ᵶ)⟐ᵯ)⟐ᵰ  Ɨ and  ᵰ   Ɨ. 

Imply ᵯ   Ɨ [Ɨ  is a Z1- ideal of Ж  ] 

Hence , Ɨ is a Z2- ideal of  Ж . 

 

7.  Pseudo Z-algebra  

In this section, we define a new type of algebras .It is called a pseudo Z-algebra, and then we 

introduced  some of the concepts and examples in it. Also , some properties and  theorems linking 

them are  studied and proved. 

Dęfįnįtįoņ.7.1.Let Ж be a non-empty set   have a constant " Ѻ " and a two binary operations "⟐"  

and"◊" satisfying the following axioms :  

i.    ᵯ ⟐ Ѻ  = ᵯ ◊ Ѻ  = Ѻ ,     ᵯ   Ж. 

ii.    Ѻ ⟐ ᵯ = Ѻ ◊ ᵯ = ᵯ,    ᵯ   Ж. 

iii.   ᵯ ⟐ ᵯ = ᵯ ◊ ᵯ = ᵯ ,   ᵯ   Ж 

iv.   ᵯ ⟐ ᵰ  = ᵰ ◊ ᵯ ,   ᵯ, ᵰ   Ж.  

 Then  Ж is called a pseudo Z-algebra 

Example .7.2. Let  Ж = { Ѻ,1,2} be a set with the following  Cayley tables: 

⟐ Ѻ 1 2 3 

Ѻ Ѻ 1 2 3 

1 Ѻ 1 1 2 

2 Ѻ 2 2 1 

3 Ѻ 1 1 3 

◊ Ѻ 1 2 3 

Ѻ Ѻ 1 2 3 

1 Ѻ 1 2 1 

2 Ѻ 1 2 1 

3 Ѻ 2 1 3 
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Then (Ж, ⟐,◊,Ѻ) is a pseudo Z-algebra. 

Proposition.7.3. Let Ж be a pseudo Z-algebra. Then the following results hold for all ᵯ, ᵰ   Ж. 

1- ᵯ⟐ ᵰ = (Ѻ⟐ ᵰ) ◊ (Ѻ⟐ ᵯ) ,  

     ᵯ◊ ᵰ = (Ѻ◊ ᵰ) ⟐ (Ѻ◊ ᵯ). 

2- Ѻ ⟐( ᵯ◊ ᵰ)= (Ѻ⟐ ᵯ) ◊(Ѻ⟐ ᵰ) 

     Ѻ ◊ ( ᵯ⟐ ᵰ)= (Ѻ◊ ᵯ) ⟐ (Ѻ◊ ᵰ) 

3- ᵯ ⟐(Ѻ◊ ᵰ)=( ᵰ ◊ ᵯ) 

   ᵯ ◊ (Ѻ⟐ ᵰ)=( ᵰ ⟐ ᵯ). 

Proof : 

1- ᵯ⟐ ᵰ = ᵰ ◊ ᵯ = (Ѻ⟐ ᵰ) ◊(Ѻ ⟐ ᵯ), similarly ,ᵯ◊ ᵰ = (Ѻ◊ ᵰ) ⟐ (Ѻ◊ ᵯ).  

2- Ѻ ⟐( ᵯ◊ ᵰ)= ᵯ◊ ᵰ= (Ѻ⟐ ᵯ) ◊(Ѻ⟐ ᵰ) , similarly, Ѻ ◊ ( ᵯ⟐ ᵰ)= (Ѻ◊ ᵯ) ⟐ (Ѻ◊ ᵰ). 

3- ᵯ ⟐(Ѻ◊ ᵰ)= ᵯ⟐ ᵰ =  ᵰ ◊ ᵯ                      =  (Ѻ⟐ ᵰ) ◊(Ѻ ⟐ ᵯ) 

Similarly, ᵯ ◊ (Ѻ⟐ ᵰ)=( ᵰ ⟐ ᵯ). 

Dęfįnįtįoņ.7.4. A subset S of a pseudo Z-algebra Ж is called  a pseudo subalgebra of Ж  , if  :  

(ᵯ⟐ ᵰ), (ᵯ◊ ᵰ)   S , for all ᵯ, ᵰ   S . 

Dęfįnįtįoņ.7.5.A  subset S of a pseudo Z-algebra Ж is called  a pseudo b- subalgebra of Ж ,if  :  

b ◊(ᵯ⟐ ᵰ), b ⟐ (ᵯ◊ ᵰ)   S , for some b   Ж and for all ᵯ, ᵰ   S . 

 Example .7.6. In above example, let S={1,2} 

3⟐(1◊2)= 1   S , 3⟐(2◊1)= 1   S . 

3◊ (1⟐2)= 2   S , 3◊ (2⟐1)= 1   S 

Hence, S is  a pseudo 3- subalgebra of Ж 

Proposition.7.6. Every a pseudo Ѻ-subalgebra of a pseudo Z-algebra Ж is a pseudo subalgebra of Ж.  

Proof :Let S be a  pseudo Ѻ-subalgebra Ж .         Let Ѻ ◊(ᵯ⟐ ᵰ), Ѻ ⟐ (ᵯ◊ ᵰ)   S . 

Since Ж is pseudo Z-algebra, we get 

 (ᵯ⟐ ᵰ), (ᵯ◊ ᵰ)   S. 

Hence, S is pseudo subalgebra of  Ж.  
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Abstract 

For n ϵ    the dihedral group D3, the part g ϵ D3 is supposed as a D3 non–vanishing when  (g)  0; for 

whole   Irr(D3). It’s evaluated that the whole the D3 non–vanishing part locate in its Fitting subset F(D3). 

In this work, an allied is found to the non–vanishing basics of the dihedral set D3 that holds when D3 is 

solvable set.                                                    

      

Keywords: Soluble set, Feature, Fitting subset, Non–vanishing part, 

 Dihedralset D3. 

 

1. Introduction 

For n    , the dihedral set is Dn = < r,s > ={    ; 0  i  n-1 & 0  j  1}, where    =1,    =1 , srs =    , 

(    )2
 =1, sr

i
s =       0  i  n-1, such that  

 D3 = {1, r, r
2
, s, sr, sr

2
}, where r

3
 =1, s

2
 =1, and srs = sr

-1  
= sr

2
.                                   

Geometrically, D3 consists of certain rigid motiaes of an equilateral triangle.                                                                                                          

r is a clock wise rotation about the center with angle 
  

 
 .    

r
2
 is a clock wise rotation about the center with angle 

  

 
 .    

S, sr, and sr
2
 are reproductions near: shapes L1, L2, and L3 in that order [1]; and carve Irr(D3) for the 

complete set of (D3) complex irreducible features; if gD3 satisfies (g)  0, then g is considered as D3 non-

vanishing parts. In [2], it’s estimated that the whole non–fading parts of a limited soluble collection (D3) 
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locate in its correct subset F(D3) [3]. In the present research, V(D3) is used to represent the subset created by 

the whole non–vanishing parts of D3, i.e. V(D3) ={g| (g)  0; for all  Irr (D3}, which is named the 

vigorously (D3) vanishing off subset, and the V(D3) locates in the center Z(F(D3)) of F(D3). Expressed in 

term of V(D3), this conjecture equally confirms that the inequality V(D3  F(D3) is satisfied for the solvable 

dihedral set D3. In this work, Isaacs [4] is used as a reference for the standard symbols and outputs from the 

feature theory.                                                                                                                      

 

2. The preliminaries 

The next lemma states few principle things of V(D3). 

Lemma 2.1 [5]:  

Suppose that D3 is a finite solvable set, and V(D3) is its vigorously vanishing off subset, then                                                                              

1. V(D3) is a D3 feature subset.                                                                      

2. V(D3) is a suitable D3 subset when D3 is non abelian.                               

3. When Cn is a regular D3 cyclic subset, thus V(D3/Cn) in D3 includes V (D3).                                                                                                            

Lemma 2.2 [5]:   

Let M  N is regular D3 subsets. When     =     for   Irr(N), l Irr(M) and (e) is a positive integer, thus 

there is   Irr (D3 ), where                      (a)=0 for whole aM–N.                                                                            

Lemma 2.3 [6]: 

Let V(D3) is a loyal and totally reducible P–module, where P is a G-equivalent, then  P possesses 2 normal 

orbits on V(D3) at least.                   

  

3. Principal Outputs 

Some definitions and propositions of the character table of the dihedral set D3 will be given in this item, and in 

this way, we will show that related to the set D3 non–vanishing part.                                                       

Definition 3.1 [1]:  

The centralizer of x in G is a subset of G defined by CG (x) = {a   G: ax = xa} of course x  CG(x). 

Theorem 3.2 [7]:  
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Let G as a limited set, then the function, : G/CG(g) CL(g) is given by (xCG(g))=xgx
-1

 is bijective and also 

|CL(g)|=[G: CG (g)]=|G| / |CG(g)|. 

Proposition 3.3 [1]:  

The characters table of G is an invertible matrix. 

 

Example 3.4: 

Consider the dihedral set D3. It has three conjugate classes: 

[(1)] = {(1)}, [r] ={r,r2} and [s] = {s, sr, sr2} and it has three non-equivalent irreducible representations, T1 

is the principal representation, i.e. T1(g) = [1],   g D3. 

T2(g) = 8
, -            

,  -          
     ,   g D3                                                                                 i.e. T2(1) = T2(r) = 

T2(r
2
) = 1, T2(s) = T2(sr) = T2(sr

2
) = -1, and T3 is defined as follows:  

T3(1) = 0
  
  

1 ,   T3(r) = 0
  
   1 , T3(r

2
) = 0 

  
  

1          

T3(s) = 0
  
  

1 ,  T3(sr) = 0   

  
1 , T3(sr

2
) = 0

  
   

1 

Where,   =     /3 

If   
 ,   

  and   
  are the features of T1, T2 and T3, respectively since all the parts in the conjugate classes are 

equivalent, thus they have the same character. 

 

                            

≡D3= 

 

 

   

 

 

Definition 3.5 [7]: 

CLα [1] [r] [s] 

|CLα| 1 2 3 

|CG(CLα)| 6 3 2 

  
  1 1 1 

  
  1 1 -1 

  
  2 -1 0 
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 Let G as a set and x, y  G, then x
-1

,
 
y

-1
 and

 
xy are named commutates of x and y. The subset of G created by 

the whole commutates is named commutates subset or the derived set of G and denoted by  .  

Theorem 3.6:  

Let the dihedral group D3 be a solvable set. Then, V(D3)  F(D3).  

Proof: By definition 3.5 D3 has three conjugate classes: 

[(1)] = {(1)}, [ r] = {r ,r
2
} and [s] = {s , sr, sr

2
}, then  

|G\CL1| = | D3\ CL1| = |6\1|=6  is the Centralizer of 1 in D3 then D3\C6=C1  

|G\CLr| = | D3\ CLr| = |6\2| = 3 is the Centralizer of r in D3 then D3\C3 =C2 And,  

|G\CLs| =| D3\ CLs|=|6\3|=2 is the centralizer of s in D3 then D3\C2 =C3 such that C n is the normal cyclic 

subset, using Lemma 2.1, and applying Lemma 2.3, it can be concluded that r and r
2
 are G-equivalent in D3 

that has a regular orbit in P, since D3 is a limited solvable set, it’s evident that D3 ⊴ C2 ⊴ [{1}]. So, Lemma 

2.2 gives that each V(D3) - F(D3) part is a vanishing part of few D3 irreducible characters. Thus, V(D3)  

F(D3). This proof is ended.                                                                                       

 

References 

[1] C. Curits and I. Reiner,“Methods of Representation Theory with Application to Finite Groups and Order”, 

John Wily & Sons, New York, 1981.                                                                                                    

 [2] I. M. Isaacs, G. Navarro and T. R. Wolf, “Finite group elements where no irreducible character 

vanishes”, J. Algebra, 222, pp. 413–423, 1999.   

[3] A. Moreto and T. R. Wolf, “Orbit sizes, character degrees and Sylow 

    pp.18–36, 2004, . .,184,  .,184”subgroup  

[4] I. M. Isaacs, “Character Theory of Finite Groups”, Academic Press, New York, 1976.                                                                                           

 [5] L. G. He, “Notes on non-vanishing elements of finite solvable groups”, Bull. Malays. Math. Sci. Soc., (2) 

35 (1), pp.163-169, 2012. 

[6] O. Manz and T. R. Wolf,“Representations of Solvable Groups”, Cambridge Univ. Press, Cambridge, 1993.                                                   

[7] J. Moori, “Finite Groups And Representation Theory”, University of Kawzulu – Natal, 2006.                                                                                 

 

 



713 
 

On Fuzzy p-Separation Axioms 

Marwa yasir Mohsen 

Directorate-General of Education of Wasit 

Marwayasir91@gmail.com 

 

Abstract: in this paper we study a type of fuzzy generalized open sets in fuzzy topological 

spaces namely p- open set ,and study all types of fuzzy p- Separation axioms. 

Properties and relationship of fuzzy p- Separation axioms are investigated. 

Keywords:  fuzzy p- open set; fuzzy p- Separation axioms; fuzzy p-regular space; 

fuzzy p-normal space. 

 

 

1. Introduction:   

the concept of fuzzy set was introduced by L.A.Zadeh. The notation of a fuzzy subsets naturally plays a significant role 

in the study of fuzzy topology was introduced by C.L.Chang  [1] in 1968 , On the other hand  A.S.Bin Shahna (1991) 

introduced  the concept of fuzzy -open sets .Sabiha I.Mahmood  introduced  and developed a new type of generalized 

open sets in topological space  namely, pre--open sets ,Rubasri.M
1 
and Palanisamy.M

2
 , are studied the fuzzy pre--

open sets[3] (2017), In this paper, we introduce and study a fuzzy p-Separation Axioms.  

2. Preiminaries    

Throughout this paper by (X,) or simply by X we mean a topological space   and   : X   Y means a mapping from a 

fuzzy topological space X to a fuzzy topological space Y. If A is a fuzzy set in X then     ,   ,    will denote 

respectively, the interior of A, the closure of A and complement of A. 

Now we recall some of the basic definitions in the fuzzy topological space.  

2.1.Definition [1,P.182-190] 

Let f : X → Y be a mapping from a set X to another set Y . 

(i) If    is a fuzzy set of X, then f( ) is a fuzzy set of Y defined as: 

[f( )](y) =8
    ( ) ( )

                        ( )
     

                                            
   

 
 (ii) If μ is fuzzy set of Y , then f

−1
(μ) is a fuzzy set of X defined as: 

 [f
-1

(μ)](x) = μ(f(x)), for each x   X. 

 

  2.2.Definition  [1,P. 182-190] 

 Let X be a non- empty set and   be a family of fuzzy sets of X. Then   is called a fuzzy topology on X if it satisfies the 

following conditions: 

(i) 0X and 1X belong to  . 

(ii) Any union of members of   is in  . 

mailto:Marwayasir91@gmail.com
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(iii) Any finite intersection of members of   is in  . 

 

2.3.Definition  [1,P. 182-190]  

A fuzzy singleton p in X is a fuzzy set defined by: p(x) = t, for x = x0 and p(x) = 0 otherwise, where 0 < t ≤ 1. The point 

p is said to  have support x0 and value t. 

 

2.4.Definition [3,P. 2395-4396] 

(i) A fuzzy set A in a fuzzy topological space X is called a fuzzy p-open set if A ≤    
 
. 

(ii) A fuzzy set A in a fuzzy topological space X is called a fuzzy -open set if A ≤     
 
. 

(iii) A fuzzy set A in a fuzzy topological space X is called a fuzzy P-open set if A ≤     
  

. 

 

 The complement of a fuzzy  open sets respectively is defined to be. 

(i) a fuzzy p-closed.  

(ii) a fuzzy -closed. 

(iii) a fuzzy p-closed. 

 

2.5.Theorem 2.1:[3,P. 2395-4396]  

let (X, ) be a fuzzy topological space and  A,B   X. then  

(i) A          A  

(ii) A  
  
  . 

(iii)          
  

. 

 

2.6.Theorem  

 A subset A of a fuzzy topological space (X, ) is a fuzzy p-open set if there is an fuzzy open set U such that U  A  

 
   

. 

 

 

Proof: ) Let A be a fuzzy subset of (X,) and assume that A is p-open set in X then A ≤    
  

. since A =A  A  ≤ 

A ≤    
  

. Put U = A  U  A    
   

. 

 

) Assume that there is an fuzzy open set U of X such that U  A   
   

  

Since  U  A  U      
 

≤  
 
  

  
     

  
. But A   

   
 

 A     
  
 it's mean A is p-open subset of X. 

 

2.7.Remark  

 if U is a fuzzy open set in (X, ) then U    
 

     
 

 for any subset A of X. 

 

2.8.Remark  

 the family of all fuzzy p-open subsets of X is denoted by    . 

 

2.9.Theorem  [3,P.2395-4396] 

the family of all fuzzy p-open subsets of X  (    ) in a fuzzy topological space  form a fuzzy topology on X. 

  

2.10.Definition  

 let A be  a subset of fuzzy topological space (X, ) then. 

(i)  The fuzzy P-interior of a fuzzy set A is 
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      = ∨ {B : B ≤ A is a fuzzy P-open set}. 

(ii) The fuzzy P-closure of a fuzzy set A is 

 
  

=    {B : B ≥ A is a fuzzy P-closed set}. 

 

2.11.Theorem  [3,P. 2395-4396]  

let A be a subset of a fuzzy topological space (X,) then the following statement are equivalent: 

(i) A is fuzzy p -closed. 

(ii)  
  

  A  

(iii) There is a fuzzy closed sub set F of X such that    
  

  A. 

 

 

2.12.Theorem  

 every fuzzy open sets is p-open, but the converse is not true.  

 

Proof: let  (X, ) be a fuzzy topological space and A be any fuzzy open set in X it is mean  A=     
 

= 

  
 
 

  
=  

  
 

But A≤  
 
A≤     

  
 A is p -open set in X. 

 

2.13.Example  

  the convers is not true in general. 

 Let X = {a, b} 

= {0, 1, {a0.1, b0}, {a0.01, b0}, {a0.001, b0}, …}  

C(x) = {0, 1, {a0.9, b1}, {a0.99, b1}, {a0.999, b1}, …}   

  = {0, 1, {a, b0}};   0 ≤  ≤ 0.1 (  is fuzzy p-open set ) 

 
 = {0, 1, {a1-, b1}}; 0 ≤  ≤ 0.1  

Now take =0.2  

 

     = {a0.2, b0}     
  = 1     

  
 

= 1      
  
  

= 1       ≤     
  
  

  

       is p-open set, but not open . 

 

2.14.Theorem  

 let A and B be a subset of fuzzy topological space (X, ) then. 

(i) A        A ;  A    
  
  . 

(ii)      is a fuzzy p-open set in X. 

        
  

 is a fuzzy p-closed set in X. 

(iii) If A  B then             ; and   
  

   
  

. 

(iv) A is a fuzzy p-open            

A is a fuzzy p-closed    
  

   . 

(v) (   )                       
  

   
  

  
  
 . 

(vi) (   )               
  

  

  
  
 . 

(vii)         if and only if there exist a fuzzy p-open set U in X such that         . 

(viii)    
  

if for every fuzzy p -open set U containing  x ,  U     . 

 

Proof: it is obvious,  
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2.15.Theorem  

 every fuzzy p -open set is a fuzzy  -open. 

 

Proof: let A be any fuzzy p -open set in X, then           
  

. 

Since   
  
    

   
, thus      

 
  ,therefore  A is an fuzzy   -open in X. 

 

2.16.Example 

 Let X={a, b} ,    = {0, 1, {a0.1, b0}, {a0.3, b0}, {a0.5, b0}} 

Then (X,) is a fuzzy topological space. 

C(x) = {0, 1, {a0.9, b1}, {a0.7, b1}, {a0.5, b1}}   

 A = {0, 1, {a, b0}}, A is p-open set in X such that [0.9, 1]  [0, 0.5].  

 
 = {0, 1, {a1-, b1}} 

 

  Now if we take the set A0.2 = {a0.2, b0} which is -open set such that  

But     
     = {a0.1, b0}  

           
  = {a0.5, b1} 

    
 
 
= {a0.5, b0}  A0.2 ≤     

 
 
. 

 

    
     = {a0.1, b0}  

    
 
 

= {a0.1, b1}  

    
 
  

= {a0.1, b0} 

 A0.2      
 
  

 it's mean A0.2 is not p-open set . 

 

2.17.Proposition  

 if A is a fuzzy p-open set in (X, ) and A     
   

 , then B is a fuzzy  p-open set in X.. 

 

proof: let A be a fuzzy p-open set in (X, ), then by theorem (2.2) there exist an open set U of X such that U  A  

 
   

. Since A  B  U  B But  
   

   
   
 U  B   

   
.  

Thus B is a fuzzy  p-open set in X. 

 

2.18.Proposition  

  if A is a fuzzy p-closed set in (X, ) and           , then B is a fuzzy p-closed set in X. 

Proof:  Since  A
c   Bc      

 
= (     )  =   

   
then by proposition (2.1) B

c 
 is a fuzzy  p-open set in X  it's  mean B is 

a fuzzy  p-closed set in X. 

 

2.19.Proposition[3,P. 2395-4396]  

let (X,1) and (Y,2) be a fuzzy topological space. If A1≤ X, A2≤Y, then A1 A2 is a fuzzy p-0pen set in X Y if and 

only if A1 and A2 are fuzzy p-0pen sets in X and Y respectively. 

 

2.20.Definition  

 let Y be a subset of a fuzzy topological space (X,); then (Y, 
 ) is a fuzzy topological subspace on X, if 

  
   *           -open set in X}. 

  

2.21.Proposition 
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 if (Y, 
 ) is a fuzzy topological subspace of (X,), and A≤Y. then  

(i)     = Y    
 . 

(ii)   
 

=Y  
 

. 

 

2.22.Definition  [2,P. 189-202]  

A fuzzy topological space (X, ) is said to be: 

(i)  Fuzzy T0 (FT0) if for every pair of fuzzy singletons p, q with different supports there exists a fuzzy open set 

U such that either p ≤ U ≤ q
c
 or q ≤ U ≤ p

c
. 

 

(ii)   Fuzzy T1 (FT1) if for every pair of fuzzy singletons p, q with different supports there exist fuzzy open sets 

U and V such that p ≤ U ≤ q
c
 and q ≤ V ≤ p

c
. 

 

(iii)   Fuzzy stronger T1 (FTs) if every fuzzy singleton is a fuzzy closed set. 

 

(iv)  Fuzzy housdorff (FT2) if for every pair of fuzzy singletons p, q with different supports, there exist two 

fuzzy open sets U and V such that p ≤ U ≤ q
c
, q ≤ V ≤ p

c
 and U ≤ V

c
. 

 

(v)  Fuzzy Uryshon (FT2½  ) if for every pair of fuzzy singletons p, q with different supports, there exist two 

fuzzy open sets U and V such that p ≤ U ≤ q
c
, q ≤ V ≤ p

c
 and  ≤( )

c
. 

 

(vi)  Fuzzy regular space (FR) if for a fuzzy singleton p and a fuzzy closed set V, there exist two fuzzy open sets 

U1 and U2 such that V ≤ U2, p ≤ U1 and U1 ≤ U2
c
 . 

 

(vii)   Fuzzy T3 (F ST3) if it is (FR) as well as (F STs). 

 

(viii) Fuzzy normal space (FN) if for every pair of fuzzy closed sets V1 and V2 such that V1 ≤ V
c
2 , there exist two 

fuzzy open sets U1 and U2 such that V1 ≤ U1, V2 ≤ U2 and U1 ≤ U
c
2. 

 

(ix)   Fuzzy T4 (FT4) if it is (FN) as well as (FTs). 

 

3.  p-separation axioms. 

In this section we introduce fuzzy p-separation axioms ( p-  space for = 0, 1, 2,2½, 3,4} as follows: 

  

3.1.Definition 

A fuzzy topological space is said to be fuzzy p-T0 space if for every pair of fuzzy singletons p, q with different supports 

there exists a fuzzy  p-open set U such that either, 

 p ≤ U ≤ q
c
 or q ≤ U ≤ p

c
. 

 

3.2.Remark 

 it's clear that fuzzy T0 implies p-T0, but the converse is not true. 

 

3.3.Example 

 X= {a, b} 

    = {0, 1, {a¾ , b0}}  

   
p 

= {0, 1, {a , b0}}; (0, 1] 

Now if we take v={a1 , b0} is a fuzzy p- open set  in (X,) but is not a fuzzy open set  then (X,) is  a fuzzy p-T0 but 

not  fuzzy T0 space  

 

3.4.Theorem 
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 a fuzzy topological space (X, ) is fuzzy p-T0 space  if and only if any two crisp fuzzy singletons with different 

supports, have disjoint fuzzy p-closures. 

 

Proof: Let (X, ) be fuzzy p-T0 space and p, q be two crisp fuzzy singletons with supports x1, x2, respectively, where x1 

 x2, 

Since  (X,) being fuzzy p-T0. There exists a fuzzy p-open set U such that p ≤ U ≤ q
c
. This implies that q ≤   

  
≤ U

c 
, 

since p   U
c
, 

p   
  

. But p ≤  
  

. Therefore  
  
  

  
. 

Conversely, let p, q be any two fuzzy singletons with different supports x1, x2, respectively. Let p1, q1 be fuzzy 

singletons such that 

 p1(x1) = q1(x1) = 1. By hypothesis   
  
   

  
  and p1 ≤   

  
 implies  

p
c
1 ≥ (  

  
)

c
, but p ≤ p1 implies that p

c
 ≥ p

c
1 ≥ (  

  
)

c
. Thus (  

  
)

c
 is a fuzzy p-open set such that q ≤ (  

  
)

c
 ≤ p

c
. 

Hence (X, ) is fuzzy p − T0 space ∎. 

 

3.5.Definition  

 A fuzzy topological space (X, ) is said to be a fuzzy p-T1 space  if for every pair of fuzzy singletons  p, q  with 

different supports there exist a fuzzy p-open sets U and V such that       p ≤ U ≤ q
c
 and q ≤ V ≤ p

c
. 

 

3.6.Remark 

 Every fuzzy p-T1 space is obviously fuzzy p -T0 space. But the converse does not need to be true. 

 

3.7.Example 

 the space in example ( 3.3 ) is a fuzzy p -T0 space but not fuzzy p-T1 space.  

 

3.8.Theorem  

 A fuzzy topological space (X, ) is fuzzy p − T1 if and only if every crisp fuzzy singleton is a fuzzy p-closed set. 

 

Proof: Let (X, ) be fuzzy p − T1 ; and p0 be a crisp fuzzy singleton with support x0. Now, for any fuzzy singleton p 

with support x in X such that 

 x  x0 there exist fuzzy p-open sets U and V such that  

p ≤ U ≤ q
c
 and q ≤ V ≤ p

c
. 

 Since, every fuzzy set is considered as the union of fuzzy singletons it contains; we obtain in particular p
c
0 = ∨{p: p  

p0
c
}  from  p

c
0(x0) = 1 − p0(x0) = 0.  

We deduce that p
c
0 = ∨{V: pp

c
0} and thus p

c
0 is a fuzzy p-open set 

   p0 is a fuzzy p-closed set. 

Conversely, let p1 and p2 be a fuzzy singleton with different supports x1, x2. Also let q1 and q2 be fuzzy singletons with 

different supports x1, x2, respectively and such that q1(x1) = q2(x2) = 1. The fuzzy sets q
c
1 and q

c
2 are fuzzy p-open sets 

and satisfy the conditions: 

 p1 ≤ q
c
2 ≤ p

c
2  and  p2 ≤ q

c
1 ≤ p

c
1. Hence the space (X, ) is fuzzy p − T1 space . 

 

3.9.Definition  

 A fuzzy topological space (X, ) is said to be a fuzzy p-stronger-T1 space.(p− Ts) if every fuzzy singleton is a fuzzy 

p-closed set. 

 

3.10.Remark  

 Every fuzzy p−Ts space is a fuzzy p−T1, but the converse need not be true. 

 

3.11.Example 

 let X = {a, b} 
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       = { 0, 1, { a , b0 }, { a0 , br},{ a , br }} ; ,r [½,1] . 

       
p

  =    every fuzzy crisp singleton is p-closed set. 

      Then (X, 
p

) is fuzzy p−T1 but not every fuzzy singleton p-closed set. 

3.12.Definition 

 A fuzzy topological space (X, ) is said to be fuzzy p-Housdorff (p−T2) if for every pair of fuzzy singletons p, q with 

different supports, there exist two fuzzy p-open sets U and V such that p ≤ U ≤ q
c
, q ≤ V ≤ p

c
 and U ≤ V

c
. 

 

3.13.Remark 

 every fuzzy p-Housdorff (p−T2) is a fuzzy p−T1, but the converse not needs to be true. 

 

3.14.Definition 

 A fuzzy topological space (X, ) is said to be fuzzy p-Uryshon (p−T2½)  if for every pair of fuzzy singletons p, q with 

different Supports, there exist two fuzzy p-open sets U and V such that p ≤ U ≤ q
c
, q ≤ V ≤ p

c
 and   

  
≤   

  
. 

 

3.15.Remark 

 it's easy to show that if (X,) is fuzzy p−T2½ space then (X, ) is p−T2 space.     

 

3.16.Definition  

 A fuzzy topological space (X, ) is said to be fuzzy p-regular space (p-R) if for a fuzzy singleton p and a fuzzy 

closed set V, 

There exist two fuzzy p-open sets U1 and U2 such that V ≤ U2, p ≤ U1 and U1 ≤ U
c
2. 

 

3.17.Theorem 

 A fuzzy topological space (X, ) is said to be fuzzy p-regular space (p-R) if for every  fuzzy singleton p and a fuzzy 

open subset U of X, with pU, there exist V
p 

such that 

 pV     U. 

 

 

 

Proof:) 

let (X, ) be a fuzzy p-regular space (p-R) ,and let p any fuzzy singleton in X and U fuzzy open subset of X , with 

pU ;  

It's mean U
c 
is a fuzzy closed set, since (X, ) a fuzzy p-regular space and pU

c 
, then there exist V1, V2  

p
 ; such 

that p V1 ,  U
c 
 V2  and  

V1  V2
c
; since U

c
  V2    V2

c
  U  and  V1  V2

c
       

   But V2
c 
is closed        V2

c
  we obtained pV1      

U . 

         ) let p be any fuzzy singleton and suppose that F be a fuzzy closed set in X such that pF  PF
c 


 
 

Then there exist there exist V
p 

such that pV     F
c 
 F ≤  

 
  and since V≤ (  

 
)   

  (X, ) is  fuzzy p-regular space. 

  

 

3.18.Theorem 

 let (X, ) be a fuzzy p-regular space (p-R), then for any fuzzy  closed subset F  of X  and a fuzzy singleton p where 

pF
c 
there exist U, V 

p
 such that pU , F ≤ W and 

   ≤ (  )
c 
. 

 

Proof: let F be any fuzzy closed subset of X, then F
c 
is fuzzy closed subset of X then by theorem ( 3.17 ), there exist V 


p

 such that pV      U = F
c 
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Take V= (   )
c
 then   ≤ ( )

c 
.  

 

3.19.Theorem  

 if (X, ) fuzzy p − T0 space and p − R space then it's p − T2½ space. 

 

Proof: let (X, ) fuzzy p − T0 space and p − R space, and let p, q be two fuzzy singleton with different supports, 

since(X, ) fuzzy p − T0 space then there exist U
p 

such that 

 pU ≤ q
c
, take F = U

c 
  F

c 
=U which is p-open set and pF

c
 now by theorem( 3.18 ) since F is  p-closed subset of a 

fuzzy p − R space then there exist ; V, W 
p

 , such that pV and F≤W with    ≤( )
c
, but q U

c
 =F

 
≤W. we 

obtained pV and qW and   ≤( )
c
 then  

(X, )  p − T2½ space. 

 

3.20.Corollary  

 if (X, ) fuzzy p − T0 space and p − R space then it's p − T2 space. 

Proof: it is obvious.  

                               

3.21.Definition  

 A fuzzy topological space (X, ) is said to be fuzzy p-T3 space  (p− T3) if it is (p-R) as well as (p− Ts) space. 

 

3.22.Definition  

 A fuzzy topological space (X, ) is said to be fuzzy p-normal space (p-N) if for every pair of fuzzy closed sets V1 

and V2 such that       V1 ≤ V
c
2, there exist two fuzzy p-open sets U1 and U2 such that, V1 ≤ U1,   V2 ≤ U2 and U1 ≤ U

c
2. 

 

3.23.Definition  

 A fuzzy topological space (X, ) is said to be fuzzy p-T4(p− T4) if it is (p-N) as well as (p− Ts) space. 

 

3.24.Theorem  

 a fuzzy closed subset of a fuzzy p-normal space (p-N) is fuzzy p-normal. 

 

Proof: let (X, ) be a fuzzy p-normal space (p-N)  and let B be a closed subset of X, then (B,  
  ) is a subspace. 

Take F1, F2 any two fuzzy closed subsets of B with F1≤ F2
c 
 in B , 

Since B is fuzzy closed subset of X  F1≤ F2
c 
in X but (X,) a fuzzy p-normal space, then there exist U, V 

p 
such 

that F1≤U,   F2≤V and  

U ≤ V
c
. now B⋀U and B⋀V are two fuzzy p-open subsets of   

  such that  

F1≤ B⋀U,   F2 ≤ B⋀V and  B⋀U ≤ (B⋀V)
c
 then B a fuzzy p-normal . 
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Abstract 

In this paper,  the classification of (k; 4)-arcs up to projective inequivalence for k < 10  in PG(2, 13) is 

introduced in details according to their inequivalent number, stabilisers, the action of each stabiliser on 

the associated arc, and the inequivalent classes Nc of secant distributions of arcs. Here, the strategy is to 

start from the projective line PG(1,13) where there are three projectively inequivalent tetrads. 

1 Basic concepts 

1.1 Finite fields 

A field F is a set of elements with two operations, addition (+) and multiplication (×), satisfying the following 
properties: 

 

(a) (F, +) is an abelian group with identity 0; 

(b) (F \{0},×) is an abelian group with identity 1; 

(c) x (y + z) = xy + xz, for all x, y, z   F. 

1.2 Note 

A finite field is defined up to an isomorphism by the number q of its elements. So, q must be an integer power 

ph of a prime p. Here, p is the characteristic of the finite field. Then, every 
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element x   Fq satisfies xq − x = 0.  When q = p, then Fp = {0, 1, . . . , p− 1}; when q = ph, h > 1, then Fq = 

{0, 1, α, α2, . . . , αq−2 | αq−1 = 1} for some α   Fq. The non-zero elements of Fq form a group F 
q  of order q 

− 1 such that F q 
∼= Zq−1. 

1.3 Finite groups 

Definition .1 A group is an ordered pair (G,  ), where G is a non-empty set and   is a binary 
operation on G such that the following properties hold. 

(1) For all a, b, c  G, a * (b * c)=(a * b) * c. 

(2) There exists e   G such that for all a   G, a e = a = e a. 

(3) For all a   G, there exists b   G such that a b = e = b a. 

1.4 Group action on a set 

Let G be a group acts on a set X if for each g   G and x   X an element gx   X is defined, such that 
g2(g1x) = (g2g1)x and ex = x for all x   X, g1, g2   G. 

The set 

Orb(x) = {gx | g   G}, 

is called the orbit of the element x. The stabilizer of an element x of X is the subgroup 

 

S = {g   G | gx = x}. 

The fixed points set of an element g of G is the set defined as follows: 

 

Fix(g) = {x   X | gx = x}. 

2 The projective plane PG(2, q) 

The projective plane PG(2, q) over Fq contains q2 + q + 1 points and lines. There are q + 1 points on each line and q 

+ 1 lines passing through each point. The value of q that has been used in this work is q = 13. Therefore the 

projective plane PG(2, 13) has 183 points and lines, with 14 points on each line and 14 lines passing through 

each point. The point P(x0, x1, x2) in the projective plane, PG(2, q), can be represented as a vector of three 

coordinates over Fq as shown in Table 1. 



723 
 

Table 1: The points in PG(2, q) Point 

format Number of points 

P (x0, x1, 1)  q2 

P (x0, 1, 0) q 

P(1, 0, 0) 1 

 

A line in PG(2, q) is a set of points P(x0, x1, x2) satisfying the homogeneous linear equation 

 

ax0 + bx1 + cx2 = 0, 

 

with a, b, c   Fq not all zero; it is denoted by L(a, b, c). Thus, a projective plane is an incidence structure of 
points and lines with the following properties: 

 

(i) every two points are incident with a unique line; 

(ii) every two lines are incident with a unique point; 

(iii) there are four points, no three collinear. 

 

3 General linear group of a vector space 

Let Fq is a finite field and let V (n, q) is a vector space of dimension n over Fq, then the linear map V (n, q) −→ V (n, q), 
such that x −→ xA, for x   V a row vector and A a non-singular n× n matrix over Fq. The group consisting of all 
linear maps of V (n, q), that is, the group consisting of all 

non-singular n× n matrices over Fq, is called the general linear group and is denoted by GL(n, q). The order of 
GL(n, q) is as follows: 

 

|GL(n, q)| = (qn − 1)(qn −q)(qn −q2) · · · (qn −qn−1). 

In addition, the subgroup SL(n, q) consisting of all matrices with determinant 1, and it is called the special linear 

group of degree n over Fq. The group SL(n, q) contains a subgroup UT(n, q) consisting of those matrices with all 
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entries below the main diagonal zero, and with the entries on the main diagonal equal to the identity. This 

subgroup is called the unitriangular group of degree n over Fq. 

 

3.1 The fundamental theorem in PG(2, q) 

If φ : P −→ P J  is a bijective mapping from one projective plane, PG(2, q), to another, then there is a unique 

projectivity shifting any quadrangle, that is, a set of four points no three collinear, to 

another quadrangle. 

 

11.1.1 Definition .2 

A (k; n)-arc K in PG(2, q) is a set of k points such that no n + 1 of them are collinear but some n 

are collinear. 

 

3.2 Lexicographically least set 

Given the sets A = {a1, . . . , ar} and B = {b1, . . . , br} of integers,   with   a1 < a2 < · · · < ar and b1 < b2 

< · · · < br. Then A ≤ B lexicographically if either A = B or if, for some i with 1 ≤ i < r, we have a1 = b1, . . 
. , ai = bi, but ai+1 < bi+1. 

4 Classification of (k; 4)-arcs up to projective inequivalence, for k < 10 

The number of projectively inequivalent (k; 4)-arcs for k < 10 is given in the following subsections. 

4.1 Projectively inequivalent (4; 4)-arcs 

In this classification, the number of tetrads is constructed by fixing a triad, U1 = {1, 2, 9}. There are eleven 

tetrads containing U1. The lexicographically least sets in the G-orbits of tetrads, where G = PGL(2, 13) took 2104 

msec. Then among these canonical sets there are three projectively 

inequivalent tetrads; this took 1699 msec. Also, the three tetrads have sd-equivalent secant distri- bution. It took 

1734. The statistics are shown in Table 2. 
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Table 2: Projectively inequivalent tetrads 

  Number Tetrad {t4, t3, t2, t1, t0}  

1 {1, 2, 9, 21} {1, 0, 0, 52, 130} 

2 {1, 2, 9, 83} {1, 0, 0, 52, 130} 

  3 {1, 2, 9, 115} {1, 0, 0, 52, 130}  

 

Theorem .3 In PG(1, 13), there are exactly three projectively inequivalent tetrads. 

 

4.2 Projectively inequivalent (5; 4)-arcs 

The (5; 4)-arcs are constructed by adding all the points from the plane, PG(2, 13), which are not on the line to 

each inequivalent tetrad given in Table 2. So, the constructed number of (5; 4)-arcs is 507. The lexicographically 

least set images of the 507 (5; 4)-arcs are computed. This shows that 

the number Φ4 of projectively inequivalent (5; 4)-arcs is three. The three (5; 4)-arcs all have the same secant 

distribution, that is, {1, 0, 4, 58, 120}. In addition, the stabiliser of each of the three 

projectively inequivalent (5; 4)-arcs is Z3 × ((Z4 × Z4) w Z2), Z3 × (Z8 w Z2), Z3 × (SL(2, 3) w Z2). 

The statistics are given in the following tables: 

 

Table 3: Projectively inequivalent (5; 4)-arcs 

Number Φ4 Stabiliser {t4, t3, t2, t1, t0} 

1 {1, 2, 9, 83, 3} Z3 × ((Z4 × Z4) w Z2) {1, 0, 4, 58, 120} 

2 {1, 2, 9, 21, 3} Z3 × (Z8 w Z2) {1, 0, 4, 58, 120} 

3 {1, 2, 9, 115, 3} Z3 × (SL(2, 3) w Z2) {1, 0, 4, 58, 120} 

 

Theorem .4 In PG(2, 13), there are exactly three projectively inequivalent (5; 4)-arcs. 
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Table 4: Points added 

Tetrad Points added 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 
 
 

3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 

27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 

74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 

99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 

118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 134, 135, 136, 137, 138, 

139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 

158, 159, 160, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 

177, 178,  179, 180, 181, 183 

3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 

27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 

74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 

99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 

118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 134, 135, 136, 137, 138, 

139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 

158, 159, 160, 162, 163, 164, 165, 166, 167,168, 169, 170, 171, 172, 173, 174, 175, 176, 

177, 178,  179, 180, 181, 183 

3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 

27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39,40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 

51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 

74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88,90, 91, 92, 93, 94, 95, 96, 97, 98, 

99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116, 117, 

118, 120, 121, 122, 123, 124, 125, 126, 127, 129, 130, 131, 132, 134, 135, 136, 137, 138, 

139, 140, 141, 142, 143, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 

158, 159, 160, 162, 163, 164, 165, 166, 167,168, 169, 170, 171, 172, 173, 174, 175, 176, 

177, 178,  179, 180, 181, 183 
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11.2 Remark 

The stabiliser groups in Table 3 split the associated projectively inequivalent (5; 4)-arcs into 2 orbits. They are 

given as follows. 

(1) The group Z3 × ((Z4 × Z4) w Z2) partitions the (5; 4)-arc {1, 2, 9, 83, 3} into 2 orbits {1, 9, 2, 83}, 

{3}. 

(2) The group Z3 × (Z8 w Z2) splits the (5; 4)-arc {1, 2, 9, 21, 3} into 2 orbits {1, 9, 2, 21}, {3}. 

(3) The group Z3 × (SL(2, 3) w Z2) divides the (5; 4)-arc {1, 2, 9, 115, 3} into 2 orbits {1, 2, 115, 9}, 

{3}. 

4.3 Projectively inequivalent (6; 4)-arcs 

In Table 3, for each projectively inequivalent (5; 4)-arc the points from the plane which are not on any 4-secant 

are added to construct the (6; 4)-arcs. Therefore, the number of (6; 4)-arcs that constructed is 504. Among the 504 

(6; 4)-arcs the lexicographically least set image and the stabiliser are calculated. So, the number Φ4 of projectively 

inequivalent (6; 4)-arcs is 10. Also, the secant 

distribution {t4, t3, t2, t1, t0} for each of the 10 projectively inequivalent (6; 4)-arcs is computed. It 

shows that there are only two sd-inequivalent classes Nc of secant distributions. The statistics of 

the 10 projectively inequivalent (6; 4)-arcs are given in the following tables: 

 

Table 5: Projectively inequivalent (6; 4)-arcs 

Number Φ4 Stabiliser Orbits 
 

1 {1, 2, 9, 83, 3, 4} Z2 × Z2 {1},{2},{3, 4},{9, 83} 

2 {1, 2, 9, 21, 3, 4} Z2 {1},{2},{3, 4},{9},{21} 

3 {1, 2, 9, 115, 3, 4} Z6 {1},{2, 115, 9},{3, 4} 

4 {1, 2, 9, 83, 3, 8} Z4 × Z2 {1, 9, 2, 83}, {3, 8} 

5 {1, 2, 9, 21, 3, 5} Z2 {1},{2},{3, 5},{9},{21} 

6 {1, 2, 9, 21, 3, 12} Z2 {1},{2},{3, 12}, {9},{21} 

7 {1, 2, 9, 21, 3, 14} Z2 × Z2 {1, 2},{3, 14}, {9, 21} 
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8 {1, 2, 9, 83, 3, 5} Z2 {1},{2},{3, 5},{9},{83} 

9 {1, 2, 9, 115, 3, 7} Z2 × Z2 {1, 115}, {2, 9},{3, 7} 

  10 {1, 2, 9, 115, 3, 5} Z6 {1},{2, 115, 9},{3, 5}  

 

Table 6: Nc of t4, t3, t2, t1, t0 

Number 
{ 

Nc }
Number of N 

c 

1 

2 

{  1, 1, 6, 65, 110 } 
{  1, 0, 9, 62, 111 } 

3 

7 

 

Theorem .5 In PG(2, 13), there are exactly ten projectively inequivalent (6; 4)-arcs. 

 

Projectively inequivalent (7; 4)-arcs 

In this process, the constructed number of (7; 4)-arcs is 1670. According to their lexicographically least set images, 

the number of projectively inequivalent (7; 4)-arcs is 207. Among the 207 arcs, 

there are eleven types of the stabiliser groups. In addition, the secant distribution {t4, t3, t2, t1, t0} 

of each of the (7; 4)-arcs is also computed. It shows that there are five sd-inequivalent classes of 

secant distributions. The statistics are given in Tables 7 and 8. 
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Table 7: Projectively inequivalent (7; 4)-arcs 

Number Φ4 Stabiliser 
1 {1, 2, 9, 83, 3, 4, 57} 

{1, 2, 9, 83, 3, 4, 5} 
{1, 2, 9, 21, 3, 4, 20} 
{1, 2, 9, 21, 3, 4, 5} 
{1, 2, 9, 21, 3, 4, 22} 
{1, 2, 9, 21, 3, 4, 32} 
{1, 2, 9, 21, 3, 4, 37} 
{1, 2, 9, 21, 3, 4, 58} 
{1, 2, 9, 115, 3, 4, 22} 
{1, 2, 9, 115, 3, 4, 5} 
{1, 2, 9, 83, 3, 4, 51} 
{1, 2, 9, 83, 3, 4, 6} 
{1, 2, 9, 83, 3, 4, 19} 
{1, 2, 9, 21, 3, 4, 13} 
{1, 2, 9, 21, 3, 4, 19} 
{1, 2, 9, 21, 3, 4, 96} 
{1, 2, 9, 21, 3, 4, 27} 
{1, 2, 9, 21, 3, 4, 28} 
{1, 2, 9, 21, 3, 4, 56} 
{1, 2, 9, 21, 3, 4, 149} 
{1, 2, 9, 21, 3, 4, 122} 
{1, 2, 9, 21, 3, 4, 6} 
{1, 2, 9, 83, 3, 4, 30} 
{1, 2, 9, 115, 3, 4, 50} 
{1, 2, 9, 115, 3, 4, 15} 
{1, 2, 9, 83, 3, 4, 27} 
{1, 2, 9, 83, 3, 4, 33} 
{1, 2, 9, 115, 3, 4, 10} 
{1, 2, 9, 115, 3, 4, 30} 
{1, 2, 9, 21, 3, 4, 101} 
{1, 2, 9, 21, 3, 4, 30} 
{1, 2, 9, 83, 3, 4, 47} 
{1, 2, 9, 21, 3, 4, 40} 
{1, 2, 9, 21, 3, 4, 75} 

I 
2 I 

3 I 

4 I 

5 I 

6 I 

7 I 

8 I 

9 
10 

Z2 

I 
11 I 

12 I 

13 I 

14 I 

15 I 

16 I 

17 I 

18 I 

19 I 

20 I 

21 I 

22 I 

23 I 

24 I 

25 I 

26 I 

27 

28 

I 

I 

29 I 

30 I 

31 I 

32 I 

33 I 

34 I 
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35 {1, 2, 9, 21, 3, 4, 127} 

{1, 2, 9, 21, 3, 4, 100} 

{1, 2, 9, 21, 3, 4, 14} 

{1, 2, 9, 21, 3, 4, 111} 

{1, 2, 9, 21, 3, 4, 12} 

{1, 2, 9, 83, 3, 4, 15} 

{1, 2, 9, 83, 3, 4, 16} 

{1, 2, 9, 115, 3, 4, 103} 

{1, 2, 9, 115, 3, 4, 6} 

{1, 2, 9, 83, 3, 4, 8} 

{1, 2, 9, 83, 3, 4, 43} 

{1, 2, 9, 115, 3, 4, 7} 

{1, 2, 9, 115, 3, 4, 20} 

{1, 2, 9, 21, 3, 4, 18} 

{1, 2, 9, 21, 3, 4, 65} 

{1, 2, 9, 83, 3, 4, 20} 

{1, 2, 9, 83, 3, 4, 92} 

{1, 2, 9, 21, 3, 4, 136} 

{1, 2, 9, 21, 3, 4, 95} 

{1, 2, 9, 21, 3, 4, 49} 

{1, 2, 9, 21, 3, 4, 44} 

{1, 2, 9, 115, 3, 4, 18} 

{1, 2, 9, 83, 3, 4, 11} 

{1, 2, 9, 83, 3, 4, 31} 

{1, 2, 9, 83, 3, 4, 10} 

{1, 2, 9, 83, 3, 4, 17} 

{1, 2, 9, 83, 3, 4, 49} 

{1, 2, 9, 83, 3, 4, 23} 

{1, 2, 9, 83, 3, 4, 28} 

{1, 2, 9, 83, 3, 4, 54} 

{1, 2, 9, 83, 3, 4, 13} 

{1, 2, 9, 83, 3, 4, 37} 

{1, 2, 9, 83, 3, 4, 40} 

{1, 2, 9, 83, 3, 4, 26} 

{1, 2, 9, 83, 3, 4, 76} 

{1, 2, 9, 83, 3, 4, 25} 

{1, 2, 9, 83, 3, 4, 7} 

{1, 2, 9, 83, 3, 4, 82} 

{1, 2, 9, 83, 3, 4, 71} 

{1, 2, 9, 83, 3, 4, 108} 

I 

36 I 

37 I 

38 I 

39 I 

40 I 

41 I 

42 I 

43 I 

44 I 

45 I 

46 I 

47 I 

48 I 

49 I 

50 I 

51 I 

52 Z2 

53 I 

54 I 

55 I 

56 I 

57 D4 

58 I 

59 Z2 

60 I 

61 I 

62 Z2 

63 I 

64 I 

65 I 

66 Z2 

67 I 

68 I 

69 Z2 

70 I 

71 I 

72 Z2 

73 I 

74 Z2 

75 Z2 



731 
 

76 {1, 2, 9, 83, 3, 4, 126} 

{1, 2, 9, 83, 3, 4, 14} 

Z2 

77 {1, 2, 9, 83, 3, 4, 130} 

{1, 2, 9, 83, 3, 4, 100} 

{1, 2, 9, 21, 3, 4, 35} 

{1, 2, 9, 115, 3, 4, 24} 

{1, 2, 9, 21, 3, 4, 16} 

{1, 2, 9, 21, 3, 4, 43} 

{1, 2, 9, 21, 3, 4, 46} 

{1, 2, 9, 21, 3, 4, 51} 

{1, 2, 9, 115, 3, 4, 8} 

{1, 2, 9, 115, 3, 4, 16} 

{1, 2, 9, 21, 3, 4, 50} 

{1, 2, 9, 21, 3, 4, 82} 

{1, 2, 9, 21, 3, 4, 17} 

{1, 2, 9, 21, 3, 4, 152} 

{1, 2, 9, 21, 3, 4, 76} 

{1, 2, 9, 21, 3, 4, 55} 

{1, 2, 9, 21, 3, 4, 94} 

{1, 2, 9, 115, 3, 4, 17} 

{1, 2, 9, 115, 3, 4, 33} 

{1, 2, 9, 115, 3, 4, 34} 

{1, 2, 9, 21, 3, 4, 8} 

{1, 2, 9, 21, 3, 4, 57} 

{1, 2, 9, 21, 3, 4, 103} 

{1, 2, 9, 21, 3, 4, 47} 

{1, 2, 9, 21, 3, 4, 48} 

{1, 2, 9, 21, 3, 4, 34} 

{1, 2, 9, 21, 3, 4, 26} 

{1, 2, 9, 21, 3, 4, 108} 

{1, 2, 9, 21, 3, 4, 25} 

{1, 2, 9, 115, 3, 4, 74} 

{1, 2, 9, 115, 3, 4, 26} 

{1, 2, 9, 21, 3, 4, 15} 

{1, 2, 9, 21, 3, 4, 7} 

{1, 2, 9, 21, 3, 4, 118} 

{1, 2, 9, 115, 3, 4, 35} 

{1, 2, 9, 21, 3, 4, 23} 

{1, 2, 9, 21, 3, 4, 71} 

Z6 

78 I 

79 I 

80 Z2 

81 I 

82 I 

83 I 

84 I 

85 I 

86 I 

87 I 

88 I 

89 I 

90 I 

91 I 

92 I 

93 I 

94 I 

95 I 

96 I 

97 I 

98 I 

99 I 

100 I 

101 I 

102 I 

103 I 

104 I 

105 I 

106 I 

107 I 

108 I 

109 I 

110 Z2 

111 Z3 

112 Z2 

113 I 

114 I 
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119 {1, 2, 9, 21, 3, 4, 66} 

{1, 2, 9, 21, 3, 4, 130} 

{1, 2, 9, 21, 3, 4, 77} 

{1, 2, 9, 115, 3, 4, 32} 

{1, 2, 9, 115, 3, 4, 14} 

{1, 2, 9, 115, 3, 4, 130} 

{1, 2, 9, 83, 3, 8, 17} 

{1, 2, 9, 21, 3, 5, 56} 

{1, 2, 9, 21, 3, 12, 18} 

{1, 2, 9, 83, 3, 5, 7} 

{1, 2, 9, 115, 3, 7, 12} 

{1, 2, 9, 115, 3, 7, 6} 

{1, 2, 9, 21, 3, 5, 31} 

{1, 2, 9, 83, 3, 8, 60} 

{1, 2, 9, 83, 3, 8, 7} 

{1, 2, 9, 83, 3, 8, 18} 

{1, 2, 9, 83, 3, 8, 57} 

{1, 2, 9, 83, 3, 8, 40} 

{1, 2, 9, 83, 3, 8, 24} 

{1, 2, 9, 83, 3, 8, 62} 

{1, 2, 9, 83, 3, 8, 26} 

{1, 2, 9, 83, 3, 8, 5} 

{1, 2, 9, 83, 3, 8, 19} 

{1, 2, 9, 83, 3, 8, 12} 

{1, 2, 9, 21, 3, 12, 17} 

{1, 2, 9, 21, 3, 5, 13} 

{1, 2, 9, 115, 3, 7, 16} 

{1, 2, 9, 83, 3, 5, 6} 

{1, 2, 9, 21, 3, 12, 68} 

{1, 2, 9, 21, 3, 5, 6} 

{1, 2, 9, 21, 3, 14, 52} 

{1, 2, 9, 83, 3, 5, 13} 

{1, 2, 9, 115, 3, 7, 49} 

{1, 2, 9, 115, 3, 5, 13} 

{1, 2, 9, 21, 3, 5, 111} 

I 

120 Z3 

121 I 

122 I 

123 I 

124 

125 

Z3 × S3 

Z2 

126 I 

127 I 

128 I 

129 Z2 

130 Z2 

131 I 

132 

133 

Z4 × Z2 

I 

134 I 

135 Z12 

136 Z2 

137 I 

138 I 

139 I 

140 I 

141 Z4 

142 I 

143 I 

144 Z2 

145 Z2 

146 I 

147 Z2 

148 I 

149 

150 

Z2 × Z2 

Z2 

151 

152 

Z2 × Z2 

Z6 

153 I 

154 I 

115 {1, 2, 9, 21, 3, 4, 110} 

{1, 2, 9, 21, 3, 4, 74} 

{1, 2, 9, 21, 3, 4, 54} 

{1, 2, 9, 21, 3, 4, 31} 

{1, 2, 9, 21, 3, 4, 33} 

I 

116 I 

117 I 

118 I 
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155 {1, 2, 9, 21, 3, 5, 79} 

{1, 2, 9, 21, 3, 5, 50} 

{1, 2, 9, 21, 3, 12, 30} 

{1, 2, 9, 83, 3, 5, 44} 

{1, 2, 9, 115, 3, 7, 19} 

{1, 2, 9, 115, 3, 7, 41} 

{1, 2, 9, 21, 3, 5, 76} 

I 

156 I 

157 I 

158 Z2 

159 I 

160 I 

161 {1, 2, 9, 21, 3, 5, 106} 

{1, 2, 9, 21, 3, 5, 95} 

{1, 2, 9, 21, 3, 12, 58} 

{1, 2, 9, 83, 3, 5, 17} 

{1, 2, 9, 21, 3, 5, 65} 

{1, 2, 9, 21, 3, 5, 66} 

{1, 2, 9, 21, 3, 5, 99} 

{1, 2, 9, 21, 3, 5, 45} 

{1, 2, 9, 21, 3, 5, 42} 

{1, 2, 9, 83, 3, 5, 16} 

{1, 2, 9, 83, 3, 5, 32} 

{1, 2, 9, 21, 3, 5, 40} 

{1, 2, 9, 21, 3, 14, 55} 

{1, 2, 9, 21, 3, 12, 66} 

{1, 2, 9, 115, 3, 5, 6} 

{1, 2, 9, 21, 3, 14, 31} 

{1, 2, 9, 83, 3, 5, 40} 

{1, 2, 9, 115, 3, 7, 92} 

{1, 2, 9, 115, 3, 5, 40} 

{1, 2, 9, 21, 3, 5, 28} 

{1, 2, 9, 21, 3, 5, 26} 

{1, 2, 9, 21, 3, 5, 8} 

{1, 2, 9, 21, 3, 5, 41} 

{1, 2, 9, 21, 3, 5, 27} 

{1, 2, 9, 21, 3, 5, 20} 

{1, 2, 9, 21, 3, 5, 126} 

{1, 2, 9, 21, 3, 5, 17} 

{1, 2, 9, 21, 3, 5, 100} 

{1, 2, 9, 21, 3, 5, 29} 

{1, 2, 9, 21, 3, 5, 43} 

{1, 2, 9, 21, 3, 5, 167} 

{1, 2, 9, 21, 3, 5, 15} 

{1, 2, 9, 115, 3, 7, 8} 

I 

162 I 

163 I 

164 I 

165 I 

166 I 

167 I 

168 I 

169 I 

170 I 

171 I 

172 Z3 

173 Z2 

174 Z3 

175 Z3 

176 Z6 

177 Z3 

178 Z6 

179 

180 

Z3 × Z3 

I 

181 I 

182 Z2 

183 I 

184 I 

185 I 

186 I 

187 I 

188 I 

189 Z2 

190 I 

191 I 

192 I 

193 I 

194 I 
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195 {1, 2, 9, 115, 3, 7, 26} 

{1, 2, 9, 115, 3, 7, 15} 

{1, 2, 9, 83, 3, 5, 42} 

{1, 2, 9, 115, 3, 5, 42} 

{1, 2, 9, 115, 3, 7, 13} 

{1, 2, 9, 21, 3, 12, 14} 

{1, 2, 9, 115, 3, 7, 45} 

{1, 2, 9, 83, 3, 5, 27} 

{1, 2, 9, 115, 3, 7, 25} 

I 

196 I 

197 Z3 

198 I 

199 Z2 

200 Z3 

201 I 

202 I 

 

 

 

 

 

 

 

Table 8: Nc of t4, t3, t2, t1, t0 

Number 
{ 

Nc } 
Number of N 

c 

1 { 1, 0, 15, 64, 103 } 

{ 1, 1, 12, 67, 102 } 

{ 1, 2, 9, 70, 101 } 

{ 1, 3, 6, 73, 100 } 
{ 2, 0, 9, 72, 100 } 

62 

2 106 

3 30 

4 3 

5 6 

 

 

Theorem .6 In PG(2, 13), there are exactly 207 projectively inequivalent (7; 4)-arcs. 

11.3 Remark 

In Table 7, there are 11 types of the stabiliser groups as follows: 

 

I, Z2, Z3, Z4, Z6, D4, Z3 × S3, Z4 × Z2, Z12, Z2 × Z2, Z3 × Z3. 

These stabiliser groups of order at least two divide their corresponding projectively inequivalent (7; 4)-arcs into a 

number of orbits. All orbits of these groups are listed in Table 9. 

 

203 {1, 2, 9, 115, 3, 7, 5} 

{1, 2, 9, 115, 3, 7, 20} 

{1, 2, 9, 115, 3, 7, 52} 

{1, 2, 9, 21, 3, 12, 96} 

{1, 2, 9, 21, 3, 12, 15} 

I 

204 Z3 

205 Z2 

206 Z2 

207 I 



735 
 

Table 9:  Group orbits of projectively inequivalent  (7; 4)-arcs 

Φ4 Stabiliser Orbits 

{1, 2, 9, 115, 3, 4, 22} Z2 {1, 2},{3},{4, 22}, {9, 115} 

{1, 2, 9, 21, 3, 4, 136} Z2 {1, 2},{3, 136}, {4},{9, 21} 

{1, 2, 9, 83, 3, 4, 11} D4 {1},{2, 3},{4, 11, 83, 9} 

{1, 2, 9, 83, 3, 4, 10} Z2 {1, 2},{3},{4, 10}, {9, 83} 

{1, 2, 9, 83, 3, 4, 23} Z2 {1},{2},{3},{4},{9, 83}, {23} 

{1, 2, 9, 83, 3, 4, 37} Z2 {1, 2},{3},{4, 37}, {9},{83} 

{1, 2, 9, 83, 3, 4, 76} Z2 {1},{2},{3, 4},{9, 83}, {76} 

{1, 2, 9, 83, 3, 4, 82} Z2 {1},{2},{3, 4},{9, 83}, {82} 

{1, 2, 9, 83, 3, 4, 108} Z2 {1},{2},{3, 4},{9, 83}, {108} 

{1, 2, 9, 83, 3, 4, 126} Z2 {1},{2},{3, 4},{9, 83}, {126} 

{1, 2, 9, 83, 3, 4, 14} Z2 {1},{2},{3, 4},{9, 83}, {14} 

{1, 2, 9, 83, 3, 4, 130} Z6 {1},{2},{3, 4, 130}, {9, 83} 

{1, 2, 9, 115, 3, 4, 24} Z2 {1, 2},{3, 24}, {4},{9, 115} 
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{1, 2, 9, 21, 3, 4, 118} Z2 {1, 2},{3, 118}, {4},{9, 21} 

{1, 2, 9, 115, 3, 4, 35} Z3 {1, 9, 115}, {2},{3, 35, 4} 

{1, 2, 9, 21, 3, 4, 23} Z2 {1},{2, 3},{4, 21}, {9, 23} 

{1, 2, 9, 21, 3, 4, 130} Z3 {1},{2},{3, 4, 130}, {9},{21} 

{1, 2, 9, 115, 3, 4, 130} 

{1, 2, 9, 83, 3, 8, 17} 

Z3 × S3 

Z2 

{1},{2, 3, 9, 115, 130, 4} 

{1, 2},{3, 8},{9, 83}, {17} 

{1, 2, 9, 115, 3, 7, 12} Z2 {1, 9},{2, 115}, {3, 12}, {7} 

{1, 2, 9, 115, 3, 7, 6} Z2 {1, 115}, {2, 9},{3, 7},{6} 

{1, 2, 9, 83, 3, 8, 60} 

{1, 2, 9, 83, 3, 8, 57} 

Z4 × Z2 

Z12 

{1, 9, 2, 83}, {3, 8},{60} 

{1, 9, 2, 83}, {3, 8, 57} 

{1, 2, 9, 83, 3, 8, 40} Z2 {1, 2},{3, 8},{9, 83}, {40} 

{1, 2, 9, 83, 3, 8, 19} Z4 {1, 9, 2, 83}, {3},{8},{19} 

{1, 2, 9, 21, 3, 5, 13} Z2 {1},{2},{3, 13}, {5},{9},{21} 

{1, 2, 9, 115, 3, 7, 16} Z2 {1, 115}, {2, 9},{3},{7},{16} 

{1, 2, 9, 21, 3, 12, 68} Z2 {1},{2},{3},{9},{12, 68}, {21} 

{1, 2, 9, 21, 3, 14, 52} 

{1, 2, 9, 83, 3, 5, 13} 

Z2 × Z2 

Z2 

{1, 2},{3},{9, 21}, {14, 52} 

{1},{2},{3, 13}, {5},{9},{83} 

{1, 2, 9, 115, 3, 7, 49} 

{1, 2, 9, 115, 3, 5, 13} 

Z2 × Z2 

Z6 

{1, 115}, {2, 9},{3},{7, 49} 

{1},{2, 115, 9},{3, 13}, {5} 

{1, 2, 9, 115, 3, 7, 19} Z2 {1, 115}, {2, 9},{3, 7},{19} 

{1, 2, 9, 21, 3, 5, 40} Z3 {1},{2},{3, 5, 40}, {9},{21} 

{1, 2, 9, 21, 3, 14, 55} Z2 {1, 2},{3},{9, 21}, {14}, {55} 

{1, 2, 9, 21, 3, 12, 66} Z3 {1},{2},{3, 12, 66}, {9},{21} 

{1, 2, 9, 115, 3, 5, 6} Z3 {1},{2, 9, 115}, {3},{5},{6} 

{1, 2, 9, 21, 3, 14, 31} Z6 {1, 2},{3, 14, 31}, {9, 21} 

{1, 2, 9, 83, 3, 5, 40} Z3 {1},{2},{3, 5, 40}, {9},{83} 

{1, 2, 9, 115, 3, 7, 92} Z6 {1, 115}, {2, 9},{3, 7, 92} 

{1, 2, 9, 115, 3, 5, 40} 

{1, 2, 9, 21, 3, 5, 8} 

Z3 × Z3 

Z2 

{1},{2, 9, 115}, {3, 5, 40} 

{1, 2},{3},{5, 8},{9, 21} 

{1, 2, 9, 21, 3, 5, 29} Z2 {1, 2},{3, 29}, {5},{9, 21} 

{1, 2, 9, 115, 3, 5, 42} Z3 {1, 9, 115}, {2},{3, 5, 42} 

{1, 2, 9, 21, 3, 12, 14} Z2 {1, 2},{3, 14}, {9, 21}, {12} 

{1, 2, 9, 115, 3, 7, 45} Z3 {1, 9, 115}, {2},{3, 45, 7} 

{1, 2, 9, 115, 3, 7, 20} Z3 {1, 2, 9},{3, 7, 20}, {115} 

{1, 2, 9, 115, 3, 7, 52} Z2 {1, 115}, {2, 9},{3, 7},{52} 

{1, 2, 9, 21, 3, 12, 96} Z2 {1, 2},{3, 96}, {9, 21}, {12} 

 

4.4 Projectively inequivalent (8; 4)-arcs 

In PG(2, 13), the number of projectively inequivalent (8; 4)-arcs is 7399. The stabliser groups of 7399 projectively 

inequivalent (8; 4)-arcs are as follows: 
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I, Z2, Z3, Z4, Z6, Z12, Z2 × Z2, Z4 × Z2, (Z4 × Z4) w 

Z2, Z3 × S3, D4. 

The number of these groups is listed in Table 10. Also, the 

7399 projectively inequivalent (8; 4)-arcs have eleven sd-

inequivalent classes of secant distributions as shown in 

Table 11. 

 

Table 10: Group statistics of the projectively 

inequivalent (8; 4)-arcs 

 

 

 

 

 

 

8 Z4 × Z2 2 

9 (Z4 × Z4) w Z2 1 

10 Z3 × S3 1 

11 D4 7 

Note that the groups of order at least eight are as 

follows: 

Z4 × Z2, Z12, (Z4 × Z4) w Z2, Z3 × S3. 

These groups partition the associated projectively 

inequivalent (8; 4)-arcs into a number of orbits as 

shown below. 

(1) The group Z12 splits the (8; 4)-arc {1, 2, 9, 83, 

3, 8, 57, 19} into 3 orbits of sizes 4, 3, 1. They 

are 

{1, 9, 2, 83}, {3, 8, 57}, {19}. 

(2) The group Z4 × Z2 partitions the (8; 4)-arcs 

{1, 2, 9, 83, 3, 8, 60, 19} and {1, 2, 9, 83, 3, 8, 57, 

59} 

into 3 orbits. They are {{1, 9, 2, 83}, {3, 

60}, {8, 19}} and {{1, 9, 2, 83}, {3, 59}, 

{8, 57}}. 

(3) The group (Z4 × Z4) w Z2 divides the (8; 4)-

arc {1, 2, 9, 83, 3, 8, 19, 59} into one orbit, 

that is, 

{1, 2, 3, 19, 8, 83, 59, 9}. 

(4) The group Z3 × S3 separates the (8; 4)-arc 
{1, 2, 9, 115, 3, 5, 6, 132} into two orbits of 

sizes 2, 6. Thay are {{1, 5},{2, 6, 9, 115, 

132, 3}}. 
 

Table 11: Nc of 

Number Stabiliser Number of stabiliser 

   

  443 

  12 

   

   

   

  18 
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t4, t3, t2, t1, t0 

 

Number 
{ 

Nc } 
Number of N 

c 

1 { 1, 0, 22, 64, 96 } 

{  1, 1, 19, 67, 95 } 

{ 1, 2, 16, 70, 94 } 

{ 1, 3, 13, 73, 93  } 

{ 2, 0, 16, 72, 93 } 

{ 1, 4, 10, 76, 92 } 

{ 2, 1, 13, 75, 92  } 

{ 1, 5, 7, 79, 91 } 

{ 2, 2, 10, 78, 91 } 

{ 1, 6, 4, 82, 90 } 
{ 2, 3, 7, 81, 90 } 

534 

2 2272 

3 2905 

4 1188 

5 146 

6 182 

7 128 

8 10 

9 30 

10 1 

11 3 

 

Theorem .7 In PG(2, 13), there are exactly 7399 

projectively inequivalent (8; 4)-arcs. 

 

4.5 Projectively inequivalent (9; 4)-arcs 

In PG(2, 13), the number of projectively inequivalent (9; 

4)-arcs is 222536 according to the inequi- valent 

lexicographically least set in the G-orbit of each (9; 4)-

arc. These arcs have one of the groups 

I, Z2, Z3, Z4, Z6, Z2 × Z2, Z4 × Z2, D4, S3, S4, A4. In 

addition, the secant distribution of each 

of the 222536 projectively inequivalent arcs is 
calculated. There are 21 sd-inequivalent classes of 

secant distributions of the projectively inequivalent (9; 

4)-arcs. The statistics are given in Tables 12, 13, and 

14. 

 

Table 12: Group statistics of the projectively 

inequivalent (9; 4)-arcs 

Num

b

e

r

S

t

a

b

i

l

i

s

e

r

N

u

m

b

e

r

 

o

f

 

s

t

a

b

i

l

i

s

e

r

 

1

I
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2

2

0

7

1

9 

2 Z2 1702 

3 Z3 59 

4 Z4 14 

5 Z6 8 

6 Z2 × Z2 22 

7 Z4 × Z2 1 

8 S3 4 

9 S4 2 

10 D4 3 

11 A4 2 

 

 

11.3.1 Remark 

In Table  12, the large groups of order at least 4 are 
Z4, Z6, Z4 × Z2, S3, S4, D4, A4.  The action   of these 
groups is shown in the following table: 

 

Table 13: Group orbits of projectively 

inequivalent (9; 4)-arcs 

Φ4 Stabiliser Orbits 

{1, 2, 9, 83, 3, 4, 57, 99, 105} Z4 {1, 9, 2, 83}, {3, 105, 57, 4},{99} 

{1, 2, 9, 83, 3, 4, 5, 24, 135} Z4 {1},{2, 4},{3, 83, 135, 9},{5, 24} 

{1, 2, 9, 21, 3, 4, 22, 24, 108} Z4 {1, 2},{3, 22, 24, 4},{9, 21}, {108} 

{1, 2, 9, 115, 3, 4, 18, 151, 159} Z4 {1, 115}, {2, 9},{3, 18, 159, 4},{151} 

{1, 2, 9, 83, 3, 4, 30, 84, 124} Z4 {1, 9, 2, 83}, {3},{4, 124, 84, 30} 

{1, 2, 9, 83, 3, 4, 92, 135, 118} Z4 {1},{2, 4},{3, 83, 135, 9},{92, 118} 

{1, 2, 9, 83, 3, 5, 13, 49, 101} Z4 {1},{2},{3, 49, 13, 101}, {5},{9, 83} 

{1, 2, 9, 21, 3, 12, 68, 56, 151} Z4 {1, 2},{3},{9, 21}, {12, 56, 68, 151} 

{1, 2, 9, 83, 3, 5, 13, 16, 33} Z4 {1, 2},{3, 16, 13, 33}, {5},{9, 83} 

{1, 2, 9, 83, 3, 5, 13, 58, 97} Z4 {1, 2},{3, 58, 13, 97}, {5},{9},{83} 

{1, 2, 9, 83, 3, 8, 17, 32, 61} Z4 {1, 9, 2, 83}, {3, 32, 8, 61}, {17} 

{1, 2, 9, 83, 3, 8, 17, 79, 147} Z4 {1, 9, 2, 83}, {3, 79, 8, 147}, {17} 

{1, 2, 9, 115, 3, 7, 6, 154, 160} Z4 {1, 154, 115, 160}, {2, 3, 9, 7},{6} 

{1, 2, 9, 21, 3, 14, 31, 8, 74} Z4 {1, 14, 2, 74}, {3, 21, 31, 9},{8} 

{1, 2, 9, 115, 3, 4, 5, 25, 148} Z6 {1, 3},{2, 25, 115, 9, 148, 5},{4} 

{1, 2, 9, 115, 3, 4, 30, 43, 59} Z6 {1, 4},{2, 43, 9, 115, 59, 30}, {3} 

{1, 2, 9, 115, 3, 4, 18, 35, 39} Z6 {1, 3, 2, 115, 39, 35}, {4, 18}, {9} 

{1, 2, 9, 115, 3, 4, 8, 51, 130} Z6 {1},{2, 4, 9, 3, 115, 130}, {8, 51} 

{1, 2, 9, 115, 3, 4, 16, 37, 145} Z6 {1, 9, 3, 115, 37, 145}, {2},{4},{16} 

{1, 2, 9, 115, 3, 4, 32, 31, 130} Z6 {1},{2, 115, 130, 9, 3, 4},{31, 32} 

{1, 2, 9, 115, 3, 4, 32, 29, 130} Z6 {1},{2, 3, 115, 4, 9, 130}, {29, 32} 

{1, 2, 9, 115, 3, 4, 32, 130, 149} Z6 {1},{2, 4, 115, 9, 130, 3},{32, 149} 

{1, 2, 9, 83, 3, 4, 57, 60, 147} 

{1, 2, 9, 21, 3, 4, 58, 7, 80} 

Z4 × Z2 

S3 

{1, 9, 3, 2, 60, 83, 147, 57}, {4} 

{1, 2, 3, 7, 58, 4},{9, 21, 80} 

{1, 2, 9, 115, 3, 4, 5, 130, 131} S3 {1, 2, 4},{3, 9, 131, 115, 5, 130} 

{1, 2, 9, 21, 3, 4, 96, 163, 166} S3 {1, 2, 163}, {3, 9, 21, 96, 4, 166} 

{1, 2, 9, 115, 3, 4, 15, 130, 45} S3 {1, 9, 130}, {2, 3, 45, 115, 15, 4} 

{1, 2, 9, 83, 3, 4, 11, 10, 84} S4 {1, 2, 3},{4, 9, 83, 84, 11, 10} 

{1, 2, 9, 83, 3, 4, 11, 37, 129} S4 {1, 2, 3},{4, 83, 11, 9, 37, 129} 

{1, 2, 9, 83, 3, 4, 10, 82, 86} D4 {1, 2},{3, 86, 10, 4},{9, 83}, {82} 

{1, 2, 9, 115, 3, 7, 12, 77, 76} D4 {1, 2, 9, 115}, {3, 12, 7, 77}, {76} 

{1, 2, 9, 115, 3, 7, 12, 70, 177} D4 {1, 2, 9, 115}, {3, 70, 12, 177}, {7} 

{1, 2, 9, 83, 3, 4, 5, 12, 135} A4 {1, 2, 4},{3, 83, 135, 5, 9, 12} 

{1, 2, 9, 83, 3, 4, 92, 135, 164} A4 {1, 2, 4},{3, 83, 135, 164, 9, 92} 

Table 14: Nc of 
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t4, t3, t2, t1, t0 

Number 
{ 

Nc } 

Number of N 
c 

1 { 1, 0, 30, 62, 90 } 

{ 1, 1, 27, 65, 89 } 

{ 1, 2, 24, 68, 88 } 

{ 1, 3, 21, 71, 87 } 

{ 2, 0, 24, 70, 87 } 

{ 1, 4, 18, 74, 86 } 

{ 2, 1, 21, 73, 86 } 

{ 2, 2, 18, 76, 85 } 

{ 1, 5, 15, 77, 85 } 

{ 1, 6, 12, 80, 84 } 

{ 2, 3, 15, 79, 84 } 

{ 3, 0, 18, 78, 84 } 

{ 1, 7, 9, 83, 83 } 

{ 2, 4, 12, 82, 83 } 

{ 3, 1, 15, 81, 83 } 

{ 1, 8, 6, 86, 82 } 

{ 2, 5, 9, 85, 82 } 

{ 3, 2, 12, 84, 82 } 

{ 2, 6, 6, 88, 81 } 

{ 3, 3, 9, 87, 81 } 

{ 3, 4, 6, 90, 80 } 

1199 

2 13688 

3 50341 

4 74174 

5 1776 

6 47139 

7 7227 

8 8259 

9 12848 

10 1487 

11 3388 

12 182 

13 68 

14 518 

15 151 

16 2 

17 39 

18 42 

19 2 

20 5 

21 1 

 

 

Theorem .8 In PG(2, 13), there are exactly 222536 projectively inequivalent (9; 4)-arcs. 

 

4.6 Projectively inequivalent (10; 4)-arcs 

The number of (10; 4)-arcs is paralleled into 5 processes; each took 6 : 22 : 54 : 11, 4 : 15 : 36 : 77, 5 : 

09 : 28 : 12, 5 : 12 : 40 : 46, 3 : 21 : 52 : 13 of CPU time respectively for the construction. Then according to the 

canonical images of the (10; 4)-arcs found from 4 processes, there are at least 5268378 projectively inequivalent 

(10; 4)-arcs. This took 2403232618 msc. The 5268378 arcs have 36 sd-inequivalent classes Nc of i-secant 

distributions as listed in Table 15. The total time is 1726578 msc where it was computed in six processes. Then 

according to the number of Nc there 

are 36 sd-inequivalent (10; 4)-arcs, which have five types of stabilisers I, Z2 × Z2, Z2, S3, Z3 × S3. 

The timing of these groups was 3633 msec. The statistics of the sd-inequivalent (10; 4)-arcs are 

given in Table 16. 
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Table 15: Nc of t4, t3, t2, t1, t0 

Number 
{ 

Nc } 

Number of N 
c 

1 {1, 7, 18, 79, 78 } 

{1, 0, 39, 58, 85 } 

{1, 1, 36, 61, 84 } 

{1, 2, 33, 64, 83 } 

{1, 3, 30, 67, 82 } 

{1, 4, 27, 70, 81 } 

{1, 5, 24, 73, 80 } 

{1, 6, 21, 76, 79 } 

{1, 8, 15, 82, 77 } 

{1, 9, 12, 85, 76 } 

{1, 10, 9, 88, 75 } 

{1, 11, 6, 91, 74  } 

{2, 0, 33, 66, 82 } 

{2, 1, 30, 69, 81 } 

{2, 2, 27, 72, 80 } 

{2, 3, 24, 75, 79 } 

{2, 4, 21, 78, 78 } 

{2, 5, 18, 81, 77 } 

{2, 6, 15, 84, 76 } 

{2, 7, 12, 87, 75 } 

{2, 8, 9, 90, 74 } 

{2, 10, 3, 96, 72 } 

{3, 0, 27, 74, 79 } 

{3, 1, 24, 77, 78 } 

{3, 2, 21, 80, 77 } 

{3, 3, 18, 83, 76 } 

{3, 4, 15, 86, 75 } 

{3, 5, 12, 89, 74 } 

{3, 6, 9, 92, 73 } 

{3, 7, 6, 95, 72 } 

{4, 0, 21, 82, 76 } 

{4, 1, 18, 85, 75 } 

{4, 2, 15, 88, 74 } 

{4, 3, 12, 91, 73 } 

{4, 4, 9, 94, 72 } 
{5, 0, 15, 90, 73 } 

192599 

2 661 

3 15664 

4 145027 

5 592731 

6 1227187 

7 1322219 

8 719144 

9 24434 

10 1399 

11 31 

12 3 

13 4572 

14 52934 

15 207496 

16 344994 

17 255989 

18 87359 

19 13784 

20 954 

21 38 

22 1 

23 3944 

24 17244 

25 22990 

26 11598 

27 2477 

28 257 

29 12 

30 2 

31 222 

32 297 

33 97 

34 13 

35 2 

36 3 

 

 

Theorem .9 In PG(2, 13), there are at least 5268378 projectively inequivalent (10; 4)-arcs. 
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Table 16: sd-inequivalent (10; 4)-arcs 

Symbol (10; 4)-arc {t4, t3, t2, t1, t0} Stabiliser 

K1
J 

{1, 2, 9, 83, 3, 4, 57, 6, 166, 8} 

{1, 2, 9, 83, 3, 8, 17, 40, 72, 78} 

{1, 2, 9, 83, 3, 4, 6, 50, 67, 63} 

{1, 2, 9, 83, 3, 4, 57, 166, 99, 40} 

{1, 2, 9, 83, 3, 4, 57, 6, 107, 18} 

{1, 2, 9, 83, 3, 4, 57, 6, 166, 33} 

{1, 2, 9, 83, 3, 4, 57, 6, 166, 16} 

{1, 2, 9, 115, 3, 4, 5, 6, 7, 8} 

{1, 2, 9, 115, 3, 4, 5, 6, 7, 90} 

{1, 2, 9, 83, 3, 4, 5, 129, 137, 178} 

{1, 2, 9, 83, 3, 4, 5, 129, 178, 104} 

{1, 2, 9, 83, 3, 4, 5, 30, 37, 51} 

{1, 2, 9, 83, 3, 4, 6, 11, 167, 33} 

{1, 2, 9, 83, 3, 4, 57, 166, 11, 33} 

{1, 2, 9, 83, 3, 4, 57, 6, 11, 18} 

{1, 2, 9, 83, 3, 4, 57, 6, 166, 7} 

{1, 2, 9, 83, 3, 4, 57, 6, 166, 17} 

{1, 2, 9, 83, 3, 4, 57, 6, 166, 87} 

{1, 2, 9, 83, 3, 4, 57, 6, 166, 163} 

{1, 2, 9, 83, 3, 4, 5, 129, 137, 37} 

{1, 2, 9, 83, 3, 4, 5, 129, 68, 11} 

{1, 2, 9, 115, 3, 4, 18, 183, 35, 39} 

{1, 2, 9, 83, 3, 4, 57, 166, 11, 51} 

{1, 2, 9, 83, 3, 4, 57, 6, 11, 17} 

{1, 2, 9, 83, 3, 4, 57, 6, 113, 77} 

{1, 2, 9, 83, 3, 4, 5, 129, 137, 87} 

{1, 2, 9, 83, 3, 4, 57, 142, 131, 163} 

{1, 2, 9, 83, 3, 4, 57, 6, 95, 163} 

{1, 2, 9, 83, 3, 4, 5, 129, 51, 37} 

{1, 2, 9, 83, 3, 4, 5, 51, 37, 122} 

{1, 2, 9, 83, 3, 4, 57, 166, 38, 160} 

{1, 2, 9, 83, 3, 4, 57, 6, 153, 91} 

{1, 2, 9, 83, 3, 4, 57, 142, 163, 96} 

{1, 2, 9, 83, 3, 4, 5, 129, 112, 39} 

{1, 2, 9, 83, 3, 4, 5, 129, 37, 11} 

{1, 2, 9, 21, 3, 4, 37, 91, 90, 178} 

{1, 7, 18, 79, 78} 

{1, 0, 39, 58, 85} 

{1, 1, 36, 61, 84} 

{1, 2, 33, 64, 83} 

{1, 3, 30, 67, 82} 

{1, 4, 27, 70, 81} 

{1, 5, 24, 73, 80} 

{1, 6, 21, 76, 79} 

{1, 8, 15, 82, 77} 

{1, 9, 12, 85, 76} 

{1, 10, 9, 88, 75} 

{1, 11, 6, 91, 74} 

{2, 0, 33, 66, 82} 

{2, 1, 30, 69, 81} 

{2, 2, 27, 72, 80} 

{2, 3, 24, 75, 79} 

{2, 4, 21, 78, 78} 

{2, 5, 18, 81, 77} 

{2, 6, 15, 84, 76} 

{2, 7, 12, 87, 75} 

{2, 8, 9, 90, 74} 

{2, 10, 3, 96, 72} 

{3, 0, 27, 74, 79} 

{3, 1, 24, 77, 78} 

{3, 2, 21, 80, 77} 

{3, 3, 18, 83, 76} 

{3, 4, 15, 86, 75} 

{3, 5, 12, 89, 74} 

{3, 6, 9, 92, 73} 

{3, 7, 6, 95, 72} 

{4, 0, 21, 82, 76} 

{4, 1, 18, 85, 75} 

{4, 2, 15, 88, 74} 

{4, 3, 12, 91, 73} 

{4, 4, 9, 94, 72} 

{5, 0, 15, 90, 73} 

I 

K2
J I 

K3
J I 

K4
J I 

K5
J I 

K6
J I 

K7
J I 

K8
J I 

K9
J I 

K1
J 
0 

I 

K1
J 
1 

I 

K1
J 
2 Z2 × Z2 

K1
J 
3 

I 

K1
J 
4 

I 

K1
J 
5 

I 

K1
J 
6 

I 

K1
J 
7 

I 

K1
J 
8 

I 

K1
J 
9 

I 

K2
J 
0 

I 

K2
J 
1 

Z2 

K2
J 
2 Z3 × S3 

K2
J 
3 

I 

K2
J 
4 

Z2 

K2
J 
5 

I 

K2
J 
6 

I 

K2
J 
7 

I 

K2
J 
8 

I 

K2
J 
9 

I 

K3
J 
0 

S3 

K3
J 
1 

I 

K3
J 
2 

I 

K3
J 
3 

I 

K3
J 
4 

I 

K3
J 
5 

Z2 

K3
J 
6 Z2 
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11.3.2 Remark 

In Table 17, The classification timings of the projectively inquivalent (k; 4)-arcs for k = 5, . . . , 9 are given. 

 

Table 17: Timing (msec) of projectively inequivalent (k; 4)-arcs for k = 5, . . . , 9 

(k; 4)-arcs Construction Lexicographically least sets {t4, t3, t2, t1, t0} Stabilisers 

(5; 4)-arcs 2011 2134 2193 2181 

(6; 4)-arcs 2138 2168 2329 2230 

(7; 4)-arcs 2516 2201 2999 3615 

(8; 4)-arcs 26606 711630 19554 80338 

(9; 4)-arcs 22729912 32126643 176130 3848131 

 

5 Complete (38; 4)-arcs from the sd-inequivalent (10; 4)-arcs 

In Table 16, there are 36 sd-inequivalent (10; 4)-arcs together with the corresponding sd-inequivalent classes of the i-

secant distributions. Therefore, at this stage of the classification the 36-arcs of Table 16 have been extended. The 

aim of this process is to discover the largest complete (k; 4)-arc in 

PG(2, 13)  that  can  be  established.   The  result  of  this  method  is  a  complete  (38; 4)-arc  KJ.   This 

complete arc is comes from the sd-inequivalent (10; 4)-arc K8
J .  The complete (38; 4)-arc is as follows: KJ = {1, 

2, 9, 115, 3, 4, 5, 6, 7, 8, 10, 19, 25, 60, 74, 98, 107, 78, 130, 27, 106, 69, 116, 46, 63, 126, 99, 

51, 81, 65, 52, 176, 88, 92, 53, 181, 169, 178}.  The properties of KJ are given in Table 18. 

Table 18: Complete (38; 4)-arc in PG(2, 13) 
Symbol Complete (38;4)-arc Stabiliser {t4, t3, t2, t1, t0} 

KJ 

98, 107

{

,

1, 2, 9, 115, 3, 4, 5, 6, 7, 8, 10, 19, 25, 60, 74,

99, 51,

 

78, 130, 27, 106, 69, 116, 46, 63, 126, 

D12 {102, 24, 19, 14, 24} 

 81, 65, 52, 176, 88, 92, 53, 181, 169, 178}   

 

11.3.3 Remark 

In Table 19, The classification timing of the projectively inquivalent (k; 4)-arcs for k = 5, . . . , 9 are given. 
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Table 19: Timing (msec) of projectively inequivalent (k; 4)-arcs for k = 5,.. . , 9 

(k; 4)-arcs Construction Lexicographically least sets {t4, t3, t2, t1, t0} Stabilisers 

(5; 4)-arcs 2011 2134 2193 2181 

(6; 4)-arcs 2138 2168 2329 2230 

(7; 4)-arcs 2516 2201 2999 3615 

(8; 4)-arcs 26606 711630 19554 80338 

(9; 4)-arcs 22729912 32126643 176130 3848131 
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Abstract 

The purpose of this paper is to find best multiplier approximation of unbounded functions in   

      –space by using Trigonometric polynomials and by two dimensions de la Vallee- Poussin 

operator for       ( )   ,    -   ,    -, in terms of the modulus of smoothness of 

order    and the average modulus. 

      

Keywords: multiplier convergence, multiplier Integral. 

  

 الخلاصـة

عزخذاَ اٌؾذٚد٠بد اٌّضٍض١خ بث      اٌغشع ِٓ ٘زا اٌجؾش ٘ٛ ا٠غبد افؼً رمش٠ت ِؼبػف ٌٍذٚاي غ١ش اٌّم١ذح فٟ اٌفؼبء 

ثبعزؼّبي ِمبعبد  إٌؼِٛخ  ثٛاعْٛ اٌّؼبػف راد اٌجؼذ٠ٓ ٌٍذٚاي اٌذٚس٠خ راد اٌّزغ١١ش٠ٓ -ب١ٌخلا فٞ ٚ ِزؼذداد ؽذٚد د

  ٚوزٌه ثبعزؼّبي ّٔبرط اٌّؼذي  رٚاد اٌشرجخ 

  
1. Introduction and Results 

In 1949, [1] G. Hardy defined the multiplier sequence for a converge of the series as.   

A series ∑   
 
    is called a multiplier convergent if there is convergent sequence of real 

numbers*   +   
  ,such that ∑   

 
         where, *   +   

  is called a multiplier for the 

convergence, for example.  

The series ∑
 

 
 
     is a divergent series and the sequence 2 

 

 
3
   

 

 convergent sequence. Since  

∑
 

 
 
 

 
 
    ∑

 

  
 
    which is convergent series then the series  ∑

 

 
 
     is a multiplier 

convergent. 

And from above we have  

If  ∑   
 
    is convergent series then it is multiplier convergent, since the sequence  

*   +   
  * +   

  may be taken.  But the convers is not true in general. 

Similar to the above we provide the following definition    

mailto:sahebalsaidy@gmail.com
mailto:nsaif642014@yahoo.com
mailto:ali.zaboon1@gmail.com
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For any real valued function   defined on   ,   -,   is called multiplier integral if there is 

a sequence  *   +   
  of real numbers such that ∫    ( )     

 
, as      where *   +   

   is 

called a multiplier for the integral. 

Let   ( ) be the space of all bounded measurable functions defined on   ,   -  with the 

norm  

‖ ( )‖   ‖ ( )‖  (∫   ( )  )
 

 

 
             . 

 Now for any real valued function   the multiplier integral norm can be defined as follows, 

  ‖ ( )‖      {(∫     ( ) 
 

 
  )

 

     }  , 

where    is the multiplier for the integral  

Let us define the norm ‖ ‖      by ‖ ‖      

Let      ( ) , be the space of all real valued unbounded functions    

such that ∫     ( ) 
      

 
 with the norm  

  ‖ ( )‖     {(∫     ( ) 
    

 
)
 

     } , where    is the multiplier for the 

integral, ‖   ( )‖  ‖ ( )‖     and     ,    -  

Now, before we give some examples for the define of      ( )       , we present the 

following theorem, (Lebesgue Dominated Convergence Theorem). 

Let *  ( )+   
  be a sequence of Lebesgue measurable functions defined on a Lebesgue 

measurable set E such that  

*  ( )+   
   Converges pointwise almost everywhere to   ( ) , then   

      ∫   ( ) 
   ∫         ( ) 

   ∫  ( )  
 

  

Example 1:    

      Let   ( )        with      (   ) which is unbounded function,    2
 

  
3
   

 

  be a 

sequence. Then we have  

    ( )    ( )  
    

  
  is a sequence of Lebesgue measurable functions defined on a 

Lebesgue measurable set  (   ) ,  since 

     ( )    ( )  
    

  
  Converges pointwise almost everywhere to   ( )    , then by using 

the above theorem we get the following  
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∫    ( )   ∫   ( )   ∫  ( )    
   

 , as       ,which means that      2
 

  
3
   

 

  

is a multiplier for   the Integral . 

Example 2: 

Let        be a function defined as follows  

 ( )  
     

 
   for     ,    )  (   -. 

And let    2
 

 
3
   

 

 be the multiplier for integral. 

Thus        ( )  where       .  

Now, suppose that    
 

 
  where    be a positive real numbers.  

Thus   
 

 
      as         and for      we get the following inequality   

     ( )  .
(     )

 
/
 

 
 

(     )
 

 

 
 (     )

 

 
   ( )           

Thus    ( )    ( )         that     ( )    ( )    
 

 
 

 

 
    

i.e.,    ( )  
(     )

 

 

 
   ( )               

 

 
                        

Therefor if we take       then  
 

 
     and we get that   

   ( )  
(     ) 

 

 
   ( )          for all    (

 

 
  - 

 This means that   

∫    ( )   
 ∫   ( )

 
        .

 

 
  1  From all above we have  

  ( )       ( ) .  

Many researchers presented research in studying the approximation of unbounded periodic 

functions using multiple types of modulus of smoothness in one dimension [2, 3].  

In this paper we approximate the function   which is unbounded function lies in       ( )   

,    -   ,    - by two dimensions de la Vallee Poussin sums for periodic functions of two 

variables. 
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First for   ,    -   ,    -        and for any real valued function   of two variables 

we can define the multiplier integral norm as follows  

‖ (   )‖      ‖ (   )‖     8.∬     (   ) 
      

 
/

 
 
9    

      .          is called the multiplier for integral.  Also  

Let       ( )   ,    -   ,    -          be the space of all real valued unbounded 

functions   such that  ∬    (   ) 
        ,      

with the following norm.  

‖ (   )‖      ‖ (   )‖     8.∬     (   ) 
      

 
/

 
 
9 , 

where    is the multiplier for the integral ,  (    ) is called multiplier integral 

Now let      ( )    ,    - . The Fourier series of     is given by, [4]  

 ( )    
 
 ∑ (  ( )

 
           ( )      )                  (   )   

The   th partial sums of  (   ) is given by  

  (   )  
  
 
 ∑ (  ( )

 
           ( )      )    

and the de la Vallee-Poussin partial sum of  (   ) is defined by  

    (   )  
 

   
∑   
   
   (   )                     

Where      
 

 
∫    ( )  
 

  
   

   
 

 
∫    ( )                  
 

  
 

 

 
∫    ( )          
 

  
  

Let      ( )  be the class of real valued functions of two variables that are continuous 

unbounded on   ,    -   ,    - and    periodic in each variable separately.  

For        ( )    ,    -   ,    -        the multiplier Fourier series of    is 

given by, [5]    

    (     )  ∑ ∑     (
 
                                   

   

                             ) . Where 
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     >

 

 
                                             

 

 
                            

                       

  

     
 

  
∬    (   )                
 

 , 

     
 

  
 ∬    (   )           

 
    , 

     
 

  
 ∬    (   )           

 
            

     
 

  
 ∬    (   )            

 
    , 

and the partial sum of multiplier Fourier series is given by  

    (     )  

∑ ∑       (
 
    

                                      
 
    

                                       )   

Also the partial sum of multiplier Fejer series is given by  

    (     )  
 

(   )(   )
∑ ∑       (     )

 
    

 
    

 , and the partial sum of multiplier de la 

Vallee-Poussin is given by  

     
    (     )  

 

(    )

 

(    )
 ∑ ∑       (     )

    
    

    
    

     

(            ) .  

Denote by  ( )     the degree of best multiplier approximation of a function by 

trigonometric polynomials of order not exceeding  , i.e. 

  ( )              {‖    ‖           } , where    is the set of all trigonometric 

polynomials 

In two dimensions we present this definition,  

for        ( )    ,    -  ,    -         the degree of best multiplier 

approximation of a function   with respect to the set of trigonometric polynomial           is 

given by     
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    ( )        ⏟
         

2‖      ‖     
3 , where       be the set of all trigonometric 

polynomials of two variables        with order     in    and order     in    .  

Now to convert the formulas    (     ),     (     )and      
    (     )  from the sum 

formula to the integration formula take the following results. 

Proposition 1.1:  

Let        ( )    ,    -  ,    -     we have   

    (     )  
 

  
∫ ∫    (       )    (   )    

 

  

 

  
  , where 

    Dirichlet kernel   ( )  is given by  

  ( )  
 

 
 ∑       

    
   (    )

 

 

    
 

 

 , and 

    (   )  
   (    )

 

 
     (    )

 

 
 

    
 

 
     

 

 

  

     : 

    (     ) 

 ∑ 
    

∑       (
 
    

                                        

                                        )  

 

 

  
∫ ∫    (   )[∑

 
    

∑       (             
 
    

             
 

  

 

  

                                                   

                          )]       

 
 

  
∫ ∫    (   )[∑

 
    

∑       (
 
    

            (                           )  
 

  

 

  

            (                            ))]       

 

  
∫
 

  
∫    (   )[∑

 
    

∑       (
 
    

              
 

  

            ) (                           ) ]      
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∫ ∫    (   )

 

  

 

  
   

0( 
 

 
 

∑ (                          ))(
 

 
 ∑                            )

 
    

 
    

) 1       

 
 

  
∫ ∫    (   ) 0(

 

 
 ∑      (   )) (

 

 
 ∑      (   )) 

    
 
    

1
 

  

 

  
       

 
 

  
∫ ∫    (   )  (   )   (   )    

 

  

 

  
 . Then 

    (     )  
 

  
∫ ∫    (       )    (   )     

 

  

 

  
  , where 

    (   )  
   (    )

 

 
     (    )

 

 
 

    
 

 
     

 

 

                   ∎  

Proposition 1.2:   

Let        ( )    ,    -  ,    -     we have   

    (     )  
 

  
∫ ∫    (       )  ( )  ( )    

 

  

 

  
  

  
 

  
∫ ∫    (       )    (   )    

 

  

 

  
  , where 

  ( )  
 

   
,  ( )    ( )     ( )-  

    
  

 

    
 

 

   and 

    (   )  
    

  

 
      

  

 

    
 

 
       

 

 

  

Proof: 

Since       (     )  
 

  
∫ ∫    (   )  (   )   (   )    

 

  

 

  
 

And        (     )  
 

(   )(   )
∑ ∑       (     )

 
    

 
    

 , we have  

    (     )   

 
 

(   )(   )
∑ ∑

 

  
∫ ∫    (   )   

(   )   (   )    
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∫ ∫    (   )

 

   
∑    (   )

 

   

 
    

 ∑    (    ) 
    

     
 

  

 

  
   

 
 

  
∫ ∫    (   )  (   )  (   )     

 

  

 

  
  

 
 

  
∫ ∫    (       )  ( )  ( )     

 

  

 

  
  

 
 

  
∫ ∫    (       )    (   )    

 

  

 

  
 , where 

    (   )    ( )   ( )  
    

  

 

    
 

 

  
    

  

 

    
 

 

 
    

  

 
      

  

 

    
 

 
       

 

 

      ∎  

Proposition 1.3:   

Let        ( )    ,    -  ,    -   we have   

     
    (     )  

 

  (    )(    )
∫ ∫    (       )     

    (   )    
 

  

 

  
 , where 

     
    (   )   

   
       

 
          

    

 
  

      
 

 

   
       

 
         

    

 
  

      
 

 

  

Proof: 

Since       
    (     )  

 

(    )

 

(    )
 ∑ ∑       (     )

    
    

    
    

 . And 

      (     )  
 

  
∫ ∫    (       )   ( )   ( )     

 

  

 

  
 . Then 

       
    (     )  

 

(    )

 

(    )
 ∑ ∑  

 

  
∫ ∫    (       )   ( )   ( )     

 

  

 

  

    
    

    
    

   

     
    (     )  

 

  (    )(    )
 ∫ ∫    (       )∑    ( )

    
    

 ∑    
(   )

    
    

     
 

  

 

  
    

But  ∑    
( )  [  ( )      ( )      ]

    
    

 

  
   

       

 
          

    

 
  

      
 

 

  .Thus we get 

∑    ( )
    
    

 ∑    
(   )   

   
       

 
          

    

 
  

      
 

 

  
   

       

 
         

    

 
  

      
 

 

    
    

         
    (   )   

Therefore 
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    (     )  

 

  (    )(    )
∫ ∫    (       )     

    (   )    
 

  

 

  
        ∎  

Before presenting the modulus of smoothness of   in two dimensions that we will use in the 

Main Results, we introduce the following concept, [6] 

  (   )             ‖  
  ( )‖

    
 , the multiplier modulus of smoothness of the 

function   of order    where  

   
 (   )  ∑ .

 
 
/ (  )    .  

  

 
   /      

 

 
      the    symmetric difference of 

the function    . 

The averaged modulus of smoothness of order  , ( -modulus) of the function   is the 

following function of   0  
  

 
1 

  (   )     ‖  (     )‖     2∫ (  (   ( )  
 

  
))   )

 
 3.  

Let   ,    -  ,    -  and   *       + be collection pairwise disjoint set with    is 

index set from   
   such that            , where   

   ∏   
 0  

(  )   
(    ) 1  [  

     
    ]  [  

     
    ] form a partition of     and .     be 

positive integer numbers 

Now for      
   ,     (i.e.          ),   (      )          and  

  (     )     we define the following  

  
 (   )     

       
  ( (     ) is the   th symmetric difference of    where    

  (   )  

∑ .
  
 
/ (  )     .  

    

 
    /

  
   , 

is the    th difference of step length    with respect to     and        such that  

  
 ( ( ))     

      
 ( ( ))     

  (   
 ( (   ))   (         )   (      )  

 (      )   (   ) and  

  
 (   )     

      
 ( (   ))   (   )   

Let  (   )  {   (        )   
    for all             

  },        
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Then we define: 

   (   )       (     )  ( (   ))            ‖  
 (   )‖

 ( (   ))   
. 

Before we present the modulus of smoothness of   with respect to the derivative, we present the 

following concept  

Let   be a positive integer. A vector of  -tuples   (          ), where              are 

non-negative integers, is called multi-index of dimension   . The number     ∑   
 
    is called 

the length of the multi-index, for      , we have  

     (      ,             )  

We say that multi-index     are related by     if       for all   

Now for the function     ( ) ,   (          ) let 

  ( )  
    

   
        

  ( ) will be called derivative of a function    of order   . 

For special case if      ,  (  ,  )  (   ) we have  

  ( )   (   )( )  
  

   
      

    . From above let   

     
 ( )  {         ( )   

        ( ) } , be multiplier Sebolov space. 

Here: Since convexity in two dimensions is very important in approximate theory we introduce 

the following concept, [7]   

Let   ,    -  ,    - then    satisfies the following   

[ if      and          for some     ,         then           for all         

,where    (   )  ,    (   )  and       
      where     is a rectangle and for each   there is 

rectangle     with one of its vertices is   (   )  such that if          then      

 ]   (   )     

2. The Main Results 

Before we state our main results, we need the following Lemmas and notes 
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Lemma 2.1[5]: 

For the kernel  
 

 (    )
∫      ( )
 

  
  , where  

  
      

( )   
   

       

 
          

    

 
  

      
 

 

    , with 

    we have 

      |
 

 (    )
∫      ( )  
 

  
|  

 

 (    )
∫

|   
       

 
          

    

 
  |

      
 

 

 

  
      

 
 

  
   

       

    
  +   (1)  

Note 2.2:[8] 

For         are two functions we have 

 ( )   *  ( )+  if         
 ( )

 ( )
   ,  A is a constant and  ( )   .  In particular,   (1) 

means bounded function. 

 

Note 2.3[5]: 

For the kernel   
 

  (    )(    )
∫ ∫      

    (   )    
 

  

 

  
 , where 

     
    (   )   

   
       

 
          

    

 
  

      
 

 

  
   

       

 
         

    

 
  

      
 

 

,   with          we have 

     
     | 

 

  (    )(    )
∫ ∫      

    (   )    
 

  

 

  
|  

  
 

  (    )(    )
∫ ∫

|   
       

 
          

    

 
      

       

 
         

    

 
   |

      
 

 
        

 

 

 

  

 

  
  

 
  

  
   

       

    
   

       

    
  +   (1)  

Lemma 2.4:  

Let        ( )    ,    -  ,    -          we have   

‖    (     )‖    
  ( )‖ ‖     , where  ( ) a constant depends on   
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Proof: 

Since      (     )  
 

  
∫ ∫    (       )  ( )  ( )    

 

  

 

  
  

And by using Jensen's Inequality we have  

‖    (     )‖    
 

 {.∫ ∫ |
 

  
∫ ∫    (       )  ( )  ( )    

 

  

 

  
|
  

  

 

  
    /

 

 
}      

 {.∫ ∫ |   (       )
 

 

 

 
∫ ∫   ( )  ( )    

 

  

 

  
|
  

  

 

  
    /

 

 
}  

 8.∫ ∫     (       )  
 

  

 

  
     

 

 
∫   ( )  

 

 
∫   ( )  
 

  

 

  
/

 

 
9    

 {(∫ ∫     (       )  
 

  

 

  
     )

 

 }  ( )   ( )‖ ‖     Thus    

‖    (     )‖    
  ( )‖ ‖       

Lemma 2.5: 

Let        ( )    ,    -  ,    -          we have 

‖     
    (     )‖

    
      

    ‖ ‖       where  

     
       

  

  
   

       

    
   

       

    
  +   (1) 

Proof: 

‖     
    (     )‖

    
 

 {.∫ ∫ |
 

  (    )(    )
∫ ∫    (       )     

    (   )    
 

  

 

  
|
  

  

 

  
    /

 

 
}  

 {.∫ ∫ |   (       )
 

  (    )(    )
∫ ∫      

    (   )    
 

  

 

  
|
  

  

 

  
    /

 

 
}   
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 {(∫ ∫     (       )  
 

  

 

  
     )

 

 |
 

  (    )(    )
∫ ∫      

    (   )    
 

  

 

  
|}    

 {(∫ ∫     (       )  
 

  

 

  
    )

 

 }       
          

     ‖ ‖     . 

Where       
     

  

  
   

       

    
   

       

    
 +O(1). Thus ‖     

    (     )‖
    

 

      
     ‖ ‖      ∎ 

Lemma 2.6[7]: 

If   satisfy (1.2) and     is rectangle with side length vector   then for each     ( ) 

there exists     
 ( )  such that  

‖   ‖ ( )    ‖   ‖ ( )     (     ) ( ) . 

Lemma 2.7: 

For each        ( )    ,    -  there exists           
 ( )  

Such that  ‖      ‖    
    (   )      .  

Proof: 

Since    (   ) is bounded such that  ∫ ∫    (   )   
 

  

 

  
 and 

           
 ( )for each         , then by using Lemma 2.6 we have  

‖      ‖ ( )   
   ‖      ‖ ( )   

  

 ‖(      )  ‖ ( )    ‖        ‖ ( )  ‖          ‖ ( )    ‖        ‖ ( )  

   (       ) ( )     (   )     , thus 

‖      ‖    
   ‖      ‖ ( )   

    (   )      

But     ‖      ‖ ( )   
   .  

 Then for each        ( ) there is           
 ( )  such that   
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‖      ‖    
    (   )               ∎ 

Lemma 2.8: 

Let        ( )    ,    -  ,    -          we have 

  (   )      ‖  ‖    ,   where      (   )( )  
  

         
( )   

 is the second derivative of function          (      )           

Proof: 

  (   )             ‖  
 ( )‖     

         {{(∫ ∫  (  
 (       )) 

  

  

 

  
    )

 

 }}  

         {.∫ ∫ |(∫ ∫ (   )
 (       )

  

 

  

 
    )|

  

  

 

  
    /

 

 
}   

             {.∫ ∫ |(   )
 (       ) ∫   

  

 
∫   
  

 
|
  

  

 

  
    /

 

 
}     

         {(∫ ∫  (   )
 (       )  

 

  

 

  
    )

 

          }  

         {‖ 
 ‖    }     ‖  ‖     

Thus    (   )      ‖  ‖                   ∎  

Lemma 2.9: 

Let        ( )    ,    -  ,    -          we have 

  (     )          (      )      

Proof:  

  (   )             ‖  
 ( )‖
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         8(∫ ∫ |(  
 (   (   ))|

  

  

 

  
    )
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         {.∫ ∫ |(  
   ∫ ∫ (   )

   

 

  

 
(       ))    )|

  

  

 

  
    /

 

 
}     

         {.∫ ∫ |(  
   (   )

 (       )) ∫   
  

 
∫   
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    /

 

 
}   

         8(∫ ∫ |  
   (   )

 (       )|
  

  

 

  
    )

 

      9  

         2‖  
   (  )‖

    
   3  

     (      )        (      )      

. Thus       (     )          (      )              ∎ 

Lemma 2.10: 

For         ( )    ,    -  ,    -          we get 

  (   )        ‖ ( )‖
    

   

Where   ( )    ( )   (     )( )  
      

       
    

( )   

       

     Lemma 2.9 we have  

  (   )           (    )             (     )        

      ⏟  
        

  ( (   )  )
    

 . 

Then using Lemma 2.8 we get 

  (   )         ⏟  
        

  ( (   )  )
    

  

     ⏟    
        

‖ ((   )  )‖
    

   ‖ ( )‖
    

  , thus 
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     (   )        ‖ ( )‖
    

          ∎     

Lemma 2.11: 

For          ( )    ,    -  ,    -            (     ) , 

  (     )  and    (     ) ,   we get    (   )       (   )      

Proof: 

  ( (     )  )      

         8.∫ ∫ |(  
 (   (     )))|

       

  

        

  
      /

 

 
9  

         8.∫ ∫ |(  (   (   
    
 

      
    
 
)  )|

        

  

       

  
      /

 

 
9  

         >(∫ ∫  (  (   (      )  ) 
    

    
 

 

    
    
 

   

   
    
 

  

    
    
 

   
      *

 

 

?     

          
 (   )       (   )     .    Thus  

  (   )       (   )                       ∎  

In this paper we prove the following results  

Theorem 2.12: 

Suppose that         ( )    ,    -  ,    -         . Then  

      ( )        (   )     where   (     ),   (     )        (     )  .    

Proof: 

Using Lemma 2.7 there exists           
 ( ) such that  

    ( )        ⏟
         

2‖      ‖     
3  ‖      ‖     

  

    (   )    .Then from Lemma 2.11 we get 

     ( )         (   )        (   )     ∎      



761 

 

Theorem 2.13: 

Let          ( )    ,    -  ,    -          . Then  

‖ (   )      ( )‖    
 (   ( ))   (   )    , where  ( )a constant  

Proof: 

Let     
 (   ) be the best multiplier approximation of function   (   ) 

Using linearity and bounded of      and      (    
 )      

  , Lemma 2.4 and Theorem 2.12 we 

get  

‖ (   )      ( )‖    
 ‖ (   )      

 (   )      
 (   )      ( )‖    

 

 ‖ (   )      
 (   )‖

    
 ‖    

 (   )      ( )‖    
 

 ‖ (   )      
 (   )‖

    
 ‖    (    

 )      ( )‖    
 

 ‖      
 ‖

    
 ‖    (    

   )‖
    

 

     ( )      ( )‖    
   ‖

    
     ( )      ( )    ( )     

 (   ( ))    ( )     (   ( ))    (   )     (   ( ))    (   )             Thus 

‖ (   )      ( )‖    
 (   ( ))   (   )                ∎  

Corollary 2.14: 

If         ( )    ,    -  ,    -         and from Theorem 2.13 we have 

 ‖ (   )      ( )‖    
 (   ( ))    (   )     

Then by using Lemma 2.10 we have that  

‖ (   )      ( )‖    
 (   ( ))   ‖ ( )‖

    
         ∎  

Theorem 2.15: 

If         ( )    ,    -  ,    -          ,we get  
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‖ (   )       
    (     )‖

    
 (       

    )   (   )     , where 

     
     

  

  
   

       

    
   

       

    
  +   (1)  

Proof: 

Let     
 (   ) be the best multiplier approximation of function (   ). 

Using linearity and bounded of      
      and        

    (    
 )      

    ,  

Lemma 2.5, Theorem 2.12 and Lemma 2.11 we get 

‖ (   )       
    (     )‖

    
  

 ‖ (   )      
 (   )      

 (   )       
    (     )‖

    
 

 ‖ (   )      
 (   )‖

    
 ‖    

 (   )       
    (     )‖

    
 

 ‖ (   )      
 (   )‖

    
 ‖     

    (    
 )       

    (     )‖
    

 

 ‖      
 ‖

    
 ‖     

    (    
   )‖

    
     ( )          

    ‖    
   ‖

    
 

     ( )          
         ( )      

 (       
    )     ( )     (       

    )   (   )      

 (       
    )    (   )     ,     where 

     
     

  

  
   

       

    
   

       

    
  +   (1) . Thus 

‖ (   )       
    ( )‖

    
 (       

    )   (   )                 

Corollary 2.16: 

For          ( )    ,    -  ,    -          , and from Theorem 2.15 we get 

‖ (   )       
    ( )‖

    
 (       

    )   (   )      

Then by using Lemma 2.10 we have  

‖ (   )       
    ( )‖

    
 (       

    )   ‖ ( )‖
    

   ∎ 
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Abstract. Mathieu groups are one type of the sporadic simple groups, they turn out not to be isomorphic 
to any member of the infinite families of finite simple groups. Study these groups is interesting since their 
orders are very high. Groupoid can be used to find the presentation of the subgroups of the Mathieu 
groups. The idea is creating a groupoid by acting the Mathieu group on a subset of this group and then 
calculating the presentation of the vertex group of the groupoid which represents the presentation of the 
subgroup as the vertex groups are isomorphic. 

 

 

1. Introduction 

Émile  Léonard  Mathieu  (1861,  1873)  introduced  a  special  type  of  groups,  they  are  
multiply transitive permutation groups on n objects (n   {11, 12, 22, 23, 24}). The Mathieu 
groups were the first five sporadic simple groups to be discovered and they are denoted by M11, 
M12, M22, M23 and M24 [7]. 

Groups that act on sets of 9, 10, 20, and 21 points, respectively are denoted by M9, M10, M20 
and M21.  These group are not sporadic simple groups but they are subgroups of the larger   
groups and can be used to construct the larger ones. One can extend this sequence up to obtain  
the Mathieu groupoid M13 acting on 13 points. Also M21 which is simple group, but is not a 
sporadic group, being isomorphic to projective special linear group PSL(3,4) [5]. 

Table 1 is showing the orders of the Mathieu group. 

 

 

Table 1. Order table of the Mathieu groups 

Mathieu Group Order 

11 7920 

12 95040 

22 443520 

23 10200960 

24 244823040 

mailto:1nisreen.alokbi@gmail.com
mailto:2faik.mayah@gmail.com
mailto:2faik.mayah@gmail.com
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M12 has a maximal simple subgroup of order 660 which is isomorphic to PSL2(F11) over the 
field of 11 elements.  M11 is the stabilizer of a point in M12.M10, the stabilizer of two  points,     
is not sporadic, but is an almost simple group whose commutator subgroup is the alternating  
group A6. The stabilizer of 3 points is the projective special unitary group PSU(3,22). The 
stabilizer of 4 points is the quaternion group. Also, M24 has a simple subgroup of order 6072 
which is a maximal subgroup and it is isomorphic to PSL2(F23).  The stabilizers of 1 and 2  
points, M23 and M22 also becomes sporadic simple groups. The stabilizer of 3 points is simple  
and isomorphic to PSL3(4) (the projective special linear group) [4, 8]. 

We will try to find a presentation of a subgroup of Mathieu group by construction first 
a finitely presented groupoid by acting the Mathieu group on the set that generate the 
subgroup of the Mathieu group and then finding the presentation of the vertex group of the 
groupoid. 

The groupoid is an algebraic structure which is a generalization of the group. It is a 
category in which all arrows are isomorphisms. So a group is a groupoid with one object 
and arrows the elements of the group. 

In the context of topology, the best example of groupoid is the fundamental groupoid of a 
topological space in which the objects set is a set of point taken from the space and an arrow  
from point a to point b to be equivalence classes of paths from a to b [3]. This is generalisation 
of the idea of the fundamental group. 

In this paper, we construct a groupoid whose objects set is the left cosets 

gH = {mh | h an element H} 

and m is an element in M (Mathieu group) and H is a subgroup of M . The morphism of 
the groupoid is induced by the group action, more details later. 

 

2. Groupoids and vertex group 

2.1. Groupoids, free groupoids and finitely presented groupoids 

A groupoid is a special type of category which is a generalization of a group. 

Deftnition 2.1. [6] A groupoid is a category in which for each morphism (arrow) f : A B there is a 
morphism (arrow) f 

−1
 : B  A such that f  f 

−1
 = 1B, f 

−1
  f = 1A . The morphism f 

−1
 is called the 

inverse of f . 

A groupoid is connected if for each pair of objects A and B Obj( ) there is at least one 
arrow w Arr( ) with the property source(w) = A and target(w) = B. 

The notion ―free groupoid‖ is the corner stone of this work. Since for any free groupoid there 
is an underlying graph (directed graph). So let us recall the definition and required 
mathematical  fact that help to construct such free groupoid. 

Deftnition 2.2. A directed graph Γ = (V, E, s, t) consists of a set V called the set of vertices, a set E 
called the set of edges of Γ and two functions s, t : E → V . The vertex s(e) is the source of an edge e   
E. The vertex t(e) is the target of an edge e   E. 

A map of directed graphs (V, E, s, t) ›→ (V 
J
, E

J
, s

J
, t

J
) consists of functions f1 : V  → V 

J
,  f2 : 

E → E
J
 such that s(f2(e)) = f1(s(e)) and t(f2(e)) = f1(t(e)) for all e   E. 

Deftnition 2.3. The disjoint union Γ = Γ1 H Γ2 of directed graphs Γ1 and Γ2 with disjoint vertex sets V 
(Γ1)  and V (Γ2) and edge sets E(Γ1)  and E(Γ2)  is the directed  graph with    V (Γ) = V (Γ1)   V (Γ2) 
and E(Γ) = E(Γ1)   E(Γ2). 

Deftnition 2.4. A maximal tree T of a directed graph Γ is a subgraph which includes every vertex of Γ 
and contains no cycle. 
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G 
→ U G → U G 

 

     

 

 

Let raphs denote the category whose objects are directed graphs and whose morphisms are 
maps of directed graphs. Let roupoids denote the category whose objects are groupoids and 
whose morphisms are functors between groupoids. There is a functor 

U : Groupoids → Graphs (1) 

which simply forgets the partial composition on a groupoid. If  is a 
groupoid, then the vertices of (   ) are precisely the objects of .  The 
directed edges of (   ) are the arrows of . 

There is a functor 

F : Graphs → Groupoids (2) 

where for a directed graph  Γ,  the groupoid (Γ) is characterized, up to isomorphism, by the 
following universal property. 

 

Universal  property  of  a  free  groupoid  on  Γ.   There is a map of directed graphs  ι : Γ      (   
(Γ)).   For  any  groupoid      and any  map of directed graphs f : Γ      (  ) there     exists a unique 

groupoid morphism  f̄  :     (Γ)        for which the following diagram commutes in     the category of 
directed graphs. 

Γ
 
  
ι
 .¸ U (F(Γ)) 

U (f¯) 

f 

U (G) 

We call F(Γ) the free groupoid on Γ. The existence of F(Γ) is established by an explicit 
si+1 

construction  in  terms  of  words  x
s1 x

s2 ... x
sn   where  s  =  ±1, xi    E(Γ),  and  s(x

si )  =  t(x ). 

When the directed graph Γ has just a single vertex we say that (Γ)  is the free group on the 

set E(Γ). 

Proposition 2.1. F(Γ) is unique up to isomorphism of groupoids. Proof. 

For simplicity we denote U (G) by G for any groupoid G. 

Let Γ be a directed graph, and let F (Γ) and F J(Γ) be free groupoids on Γ.  Let ι : Γ → F (Γ) be 

a map, and another map ι
J
 = Γ → F J(Γ).  By the universal property of free groupoid there is a  

unique groupoid morphism ῑ = F (Γ) → F J(Γ) such that the following digram 

 

 

 

 

 

 

 

 

 

 

 



767 

 

 

Γ 
 
 

ι
  .¸ F (Γ) Γ 

ι
J   

¸. F J(Γ) 

ιJ 
ῑ ι ῑJ 

 

 

commutes. Now we obtain 

F J(Γ) 

Γ
 
 

ι
 ¸. F(Γ) 

F(Γ) 

ιJ 
ῑ 1F(Γ) 

G 

ῑJ 

 

ι ˛¸ F (Γ) 

By  uniqueness,  ῑ
J
 ◦ ̄ ι  =  1F(Γ).   Similarly,  ῑ ◦ ̄ ι

J
  =  1F J(Γ).   Therefore,  F (Γ)  is  isomorphic  

to 

F J(Γ) 
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G N 
G   N  

G N G N 

G N → Q 
G → Q N 

 
N N G N 

G G N  

G  → G N Q Q 

G G  

Let    be a groupoid with object set Obj(  ) = V .  Let    be a discrete subgroupoid of    with the 
same object set Obj( ) = V . Thus every arrow of is an arrow of and  is closed under groupoid 
composition. The collection of groups (v, v) v V is an example of a discrete subgroupoid of .  
We say that a discrete subgroupoid  is normal in  if  (v, v) is a normal subgroup of   (v, v) for 
each v    V .  Given a discrete normal subgroupoid    in    we can form the quotient groupoid / 
which is characterized up to groupoid isomorphism by the following universal property. 

Universal   property   of   a   quotient   groupoid.     There  is  a  morphism  of  groupoids υ  :
  /   .   For  any  groupoid       with  object  set  Obj(   )  =  V ,  and  for  any  
morphism ψ : that is the identity on V  and 
that sends each element of      to an identity element, there exists a unique morphism of 
groupoids ψ

J
 :    / such that the following diagram 

in the category of groupoids commutes. 

υ 

G .¸ G/N 

ψJ 

ψ Jx 

Q 

Proposition 2.2. For discrete N, G/N is unique up to isomorphism of groupoids. 

Proof. Similar to the proof of the proposition 2.1. 

Deftnition 2.5. We say that a set r of arrows in a discrete subgroupoid N normally generates 

N if any normal discrete subgroupoid of G containing r also contains the subgroupoid N. 

Let be a groupoid with vertex set  V  =  Obj(  ),  and let (Γ) be a free groupoid on a 
directed graph Γ = (V, x, s, t), and suppose that there is a morphism of groupoids 

υ : F(Γ) ‹ G (3) 

that is the identity on objects and that is surjective on arrows. By ker υ we mean the groupoid 
with vertex set V  and with arrows those elements r in F(Γ) mapping to an identity arrow 1s(r)  
in G. The groupoid ker υ is a discrete normal subgroupoid and F(x)/ker υ is isomorphic to G. 
Let r be a set of elements in ker υ that normally generates ker υ. The data (x | r) is called a  
free presentation of the groupoid G. 

2.2. Vertex group 
Let G be a groupoid with object set Obj(G) = V . For each object (vertex) v   V we let G(v, v) 
denote the group of arrows with source and target equal to v. We refer to G(v, v) as the vertex 
group or isotropy group or object group at v. The vertex group G(v, v) actually is a subgroupoid 
consisting of one object v and all arrows of the form v → v. 

Let G be a connected groupoid, we can define a homomorphism 

θ : G → G(v, v) (4) 

in the following sense. 

Let Γ be the generating graph of G, (i.e. F(Γ) = G), and let T be a maximal tree in Γ.  The  tree 
T generates a subgroupoid H of G, which called a tree of groupoid. The map θ is defined as 

θ(a)   =   v a   Obj(G) 

θ(w)   =  xwy,  w   Arr(G), x, y   H (5) 

such that t(y) = s(w), s(x) = t(w) and s(y) = t(x) = v. 

For c, d   H (such that s(c) = t(d) = u and t(c) = s(d) = v), the product dc = 1u. Its obvious 
that the map θ maps the whole H onto 1v. 
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→ G 
 

 

  
 

 

 

 

Proposition 2.3. The vertex groups of a connected groupoid are all isomorphic. 

Proof. Let G be a groupoid with Obj(G) = V . Let v   V and G(v, v) is the vertex group on v. To 
prove that all vertex groups are isomorphic to G(v, v), let us choose any object w   V , and any 
arrow x such that s(x) = v and t(x) = w. The map h ›→ xhx

−1
 is an isomorphism from the vertex 

group at G(v, v) to the vertex group at G(w, w). 

Theorem 2.1.  Let G = (x | r) be a finitely presented connected groupoid, If G(v, v) is the vertex group at v 
  Obj(G), then G(v, v) = (x

J
 | r

J
   t), where x

J
 = {θ(x) : x   x} and r

J
 = {θ(r) : r   r 

with expressing θ(r) as a word x
s1 x

s2 ...x
sk ,  xi   x

J
, si   ±1} and t = {t : t edge in a maximal 

tree of G}. 

1 2 k 

Proof. Let x = (V, E, s, t) be a connected directed graph. Let F(x) denote the free groupoid on 

x. An arrow r   Arr(F(x)) is said to be a loop if s(r) = t(r). Let r denote a set of loops in the 
groupoid F(x). Let R denote the normal subgroupoid of F(x) generated by x. 

The data (x | r) is a presentation for the quotient groupoid 

G = F(x)/R. 

Let t denote a maximal tree in the graph x. Fix some vertex v V . Then each vertex w V 
determines a unique simple path p(w) in the tree t with s(p(w)) = w and t(p(w)) = v. In other 
words, p(w) is a path in t from w to v. 

For each arrow a in the groupoid F(x) let us set 

θ(a) = p(s(a))
−1

   a   p(t(a)). 

Thus θ(a) is a loop in  the groupoid (x) with source and target equal to v. 
Now define 
 

x
J
 =   {θ(a) : a is a dircted edge in x and a ƒ  t}, rJ

 =   {θ(a) : a is an arrow in r}. 

Note that x
J
 is a free generating set for the free group (v, v).  here we are writing = (x) 

and letting (v, v) denote the vertex group at v. 

Note that r
J
 is a subset of (v, v).  Let (v, v) denote the normal subgroup of (v, v) normally 

generated by r
J
. 

We can now regard (x
J
 | r

J
) as a free presentation for the finitely presented group 

F(v, v)/R(v, v). 

To  prove  the  theorem  we  need  to see that (v, v)/ (v, v) is isomorphic to the vertex group 
(v, v) in . 

There  is  a  canonical  set  theoretic  function  λ
J
  :  x . This  function  induces  a  

group homomorphism 

λ : F(v, v) → G(v, v) 

The kernel of λ, by definition, consists of all loops in    (x) at v that can be written as a 
product of conjugates of loops in r.  So clearly the kernel of λ is normally generated by r

J
 

and the proof is complete. 

The theorem and propositions above are implemented in GAP as a part of the package 

FpGd 

[2] available in GitHub website [1]. 
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3. Group actions produce a groupoid 
Proposition 3.1. Suppose that a group tt acts on a set S and that x is a set of generators for tt. Then the 
groupoid Gpd(tt, S) is generated by the collection of arrows x × S = {(x, s) : x   x, s   S}. 

Proof. An arbitrary arrow (g, s) in Gpd(tt, S) can be expressed as 

(x
s1 , x

s2 ...x
sn s)(x

s2 , x
s3 ...x

sn s)...(x
sn−1 , x

sn s)(x
sn , s) 

 

where 

1 2 n 2 3 n n−1 n n 

g = x
s1 x

s2 ...x
sn

 

and xi   x, si = ±1. If si = 

−1 then 

1 2 n 

(x
−1

, s) = (x , 
x−1 

s)
−1

. 

 

i i 

 

Each arrow in Gpd(tt, S) is a sequence of arrows in x × S. 

Let tt be a group with subgroup U . Let tt/U = {gU : g   tt} denote the collection of left  cosets 
gU = {g u : u   U }. There is an action of tt on the set X = tt/U given by (g, hU ) → ghU for g, h   
tt. This action gives rise to a groupoid Gpd(tt, U ). 

Proposition 3.2. For a group tt and subgroup U the groupoid Gpd(tt, U ) is connected and all vertex 
groups are isomorphic to U . 

Proof. The object set of the groupoid Gpd(tt, U ) is 

{U, U1, ..., Un}, where n = Index(U ) − 1. 

Since any coset Ui = yiU for some yi   tt, the groupoid is 

connected. 

To prove that all vertex groups are isomorphic to U , let us choose any object Ui and any 
element 

x = x
s1 ...x

sn such that x
s2 ...x

sn U = Ui. The map h ›→ x
−1

hx is an isomorphism between the 

vertex group at U to the vertex group at Ui. 

Proposition  3.3.  Let  tt  =  x  r   be  a finitely presented group with finite index subgroup  U .  Then 
the groupoid  G  =  Gpd(tt, U )  is finitely presented  as follows.  The objects of G  are the left cosets 
gU . The generators of G are the arrows (x, gU ) for x   x. Each relator 

r = x
s1 x

s2 ... x
sn   r and coset gU give rise to a word 

1 2 n  

(r, gU ) = 
(x

s1 , x
s2 ... 

x
sn gU 

)...(x
sn−1 , 

x
sn gU 

)(x
sn , gU 

) (6) 

1 2 n n−1 n n 
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in the groupoid generators. These words (r, gU ) are the relators for the groupoid. 

Proof. Let F (x) be the free group on x. Let R denote the normal subgroup of F normally 
generated by r. It yields 

F/R ∼= tt = (x | r) 

Let U be a subgroup of the group tt and let tt/U be the set of left cosets of U in tt. 

Let G denote the finitely presented groupoid Gpd(tt, U ). By definition G is generated by the set 

x
J
 = {(x, gU ) | x   x, gU   tt/U }. 

Let F be the free groupoid generated by x
J
 (i.e.  F = Gpd(F, U )).  So each arrow a F can 

be expressed as 

a = (gi, Sj), 

 

where Sj   F/U and 
 

 

s s s 
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    g  = x 
i1 x 

i2 ...x 
ik     F 

There is a groupoid homomorphism υ : F → G such that the kernel of υ consists of 
all arrows  of the form (gi, gU ) for which the source and target is gU . That means 
υ(gi) = 1gU and that yields gi   R. It is readily seen that (r) = R. 

 

 

4. Algorithms  and implementation 

In order to get the presentation of a subgroup H of a finite fp group tt, we need 
to create an fp groupoid induced by the group action of tt on H. We then 
evaluate the vertex group on the subgroup under consideration. This is one of 
the applications of the groupoid techniques. We implement Propositions 3.1 and 

3.3 This implementation follows the Algorithm 1. 

Algorithm 1: Fp groupoid induced by group action 

Result: Fp groupoid 

proced
ure 
obj(G) 
= tt/H; 
gens(G)
= [ ]; 

for x in 
GeneratorsOfGroup(tt) do 
for c in obj(G) do 

add(gens(G),
x
c); 

14 end 

end 

rels(G) = [ ]; 

for r in 
RelatorsOfFpGroup(tt) do 
for c in obj(G) do 

add(rels(G),
r
c); 

15 end 

end 

return FpGroupoid(obj(G), gens(G), rels(G)); 

16 end procedure 

Example 4.1. Consider the Mathieu group M11 which  is  generated by  two  generators,  
say  a and b. Let L = [a

−1
ba, (ab)

−1
b] is a set of some members of M11. The presentation 

for the  subgroup  S  = M11/L can  be  calculated  using  our  algorithm  which  is  
implemented  in  GAP as a function FpGroupoid, the input Mathieu group M and a 
subgroup S M and it returns a  presentation for the groupoid G(M, S) and finally 
calculate the presentation for the vertex group  using our GAP function VertexGroup 
which serves as the presentation for the subgroup S. 

S = (x, y | (yx)
2
, x

4
, y

4
, yx

2
yx
−1

y)) 
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The calculation is shown in the following GAP session: 

 

 

gap> M:=MathieuGroup(11);; 

gap> 
H:=Image(IsomorphismFpGroup(M))
;; gap> h:=GeneratorsOfGroup(H);; 

gap> L:=[h[1]^-1*h[2]*h[1],h[2]^-
1*h[1]^-1*h[2]]; [ a^-1*b*a, b^-1*a^-
1*b ] 

gap> U:=Subgroup(H,L); 

Group([ a^-1*b*a, b^-1*a^-1*b ]) 

 

gap> G:=FpGroupoid(H,L);; 

gap> v:=Source(GeneratorsOfGroupoid(G)[1]);; 

gap> S:=VertexGroup(G,v);; S:=SimplifiedFpGroup(S); 

<fp group on the generators [ 
f1, f2 ]> gap> 
RelatorsOfFpGroup(S); 

[ (f2*f1)^2, f1^4, f2^4, f2*f1^2*f2*f1^-1*f2 ] 
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ABSTRACT 

The two-dimensional integro-differential partial equations is one of the so 

difficult problems to be solved analytically and/or approximately, and therefore, a 

method that is efficient for solving such type of problems seems to be necessary. 

Therefore, in this paper, the iteration methods, which is so called the variational 

iteration method have been used to provide a solution to such type of problems 

approximately, in which the obtained results are very accurate in comparison with the 

exact solution for certain well selected examples which are constructed so that the 

exact solution exist. Main results of this work is to derive first the variational iteration 

formula and then analyzing analytically the error term and prove its convergence to 

zero as the number of iteration increases. 

 

Keywords: Variational Iteration Method, Partial Integro-Differential Equations, 

Two-Dimensional Integro-Differential Partial Equation. 

 

1. INTRODUCTION 

In applied mathematics, an interesting attempts that concerning real life 

phenomena’s usually leads to functional equations, such as ordinary and differential 

partial equations, integro-differential and integral equations and others [1], [2]. 

Several formulations that are mathematical of such phenomena leads to integro-

differential equations [3], [4 

]. In some cases, the solution that is analytical could cause difficulty to evaluate; 

for this reason, approximate and numerical methods appear to be helpful to use which 

highlight the problem that is under consideration. Mathematicians focus their 

attention on the development of more efficient and advanced and methods for integro-

differential and integral equations, such as semi numerical analytical techniques, 

Adomian’s decomposition method, method of homotopy perturbation. The Homotopy 

method perturbation and the method of Adomian’s decomposition were used for the 

mailto:1,2amina1975_kas@yahoo.com
mailto:nursalasawati@unimap.edu.my
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solution of integral equation by Poushokouhi etal.[5], variational iteration method 

(VIM) have been used by Xu L. for the solution of Fredholm and Volterra Integral 

equations of the second type [6] and for solving Volterra integral equations by 

Abbasbandy [7], while for the two-dimensional integro-differential and integral 

equations equation which is an extension of the previously proposed methods for 

solving one-dimensional cases. Also, there is many studies has been done for the 

solution of a class of two-dimensional problems for example using the VIM for 

solving mixed nonlinear Volterra-Fredholm integral equation [8], by using transform 

method that is deferential for the solution of nonlinear and linear two-dimension 

Volterra integral equations [9], solving two-dimensional Volterra integral equations 

by using iterated collocation and collocation method [10], providing a solution of a 

class of two-dimensional nonlinear Volterra integral equations by using Legendre 

polynomials [11], providing a solution of mixed nonlinear Volterra-Fredholm integral 

equations with block-pulse functions that are two dimensional by using a method that 

is direct [12].  

Whenever very little attempts have been paid to give a solution to the partial two-

dimensional integral equations, for example, d’Halluin in 2004 [13] solved the 

integro-differential two-dimensional equations by using a semi-Lagrangian approach. 

The VIM that has been proposed by Ji-Huan recently. In 1998 he studied and used 

intensively by several engineers and scientists, which is favorably applied to several 

types of nonlinear and linear problems.  

In this paper, the VIM will be used to provide a solution to partial two-

dimensional integro-differential equations in which the analysis is based on deriving 

first the iterated formulas for evaluating the sequence of iterated approximate 

solutions, and then it will be used to prove the obtained sequence convergence to the 

precise solution.  
The method may be considered as a modified approach to the method of General 

Lagrange multiplier into a method of iteration in correction with variational approach 

to derive the so called the correction functional, where the form of considered integro-

differential two-dimensional equation is as follows: 

0 0

( , )
( , ) ( ( , ))

x t

x

u x t
g x t k u s y dy ds

t
t


 


  , x  [0,b], t  [0,T] ...(1) 

with the condition that is initial: 

u(x,0)  u0(x) ...(2) 

where k is represents function of kernel, g is the function that is given and u stands for 

real unknown function to be evaluated. 

Several studies were achieved to compare the method of VIM with available 

techniques, and it is reflected by all that this method gives precise solutions that are 

faster than other methods, in which the concept of convergence has been emonstrated 

to be an amount that is substantial for work of research and the studies of the VIM 

have been directed by many remarkable researchers, [14].  

The VIM has been applied successfully to many kinds of problem, for instance, 

He first proposed the VIM to provide a solution for the nonlinear and linear integral 

and differential equations. In 1998, He used this method to solve some well known 

problems for example the classical Blasiu’s equation with more accurate results and 

then extensively used in 1999 by him to study and solve some non-linear well known 

problems. In 2000, VIM was used by him to solve systems of autonomous differential 
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ordinary equations. In 2006, Soliman applied the VIM to solve equation of kdv-

Burger and then to solve equation Lax's seventh-order, Abulwafa and Momani used 

the VIM to give a solution to coagulation nonlinear problem that is with mass loss. In 

addition, in 2006, Odibat et al used the VIM to give a solution differential nonlinear 

equations of order that is fractional and the VIM has been used to give a solution to 

several types of problems, such as providing a solution to nonlinear PDE’s by Bildiki 

et al., for solving the equation of Fokker-Plank by Dehghan and Tateri, for solving 

differential equation of quadratic Riccati with constant coefficients by Abbasbandy. 

In 2007, Wang and He applied VIM to solve integro-differential equations, while 

Sweilam used VIM to solve boundary value problems of the nonlinear and linear 

fourth order equations that are integro-differential. In 2009, Wen-Hua Wang used the 

VIM to solve certain types of fractional integro-differential equations, [15], [16], [17]. 

Muhammet Kurrulay and Adin Secer in 2011 used the VIM to solve nonlinear 

integro-differential equations of fractional order, [18] and A.Husaain et al in 2016 

applied the VIM for solving one-dimensional partial integro-differential 

equations,[19].  

 

2. The Main Aspects of the VIM for Solving Two-Dimensional Integro-

Differential Partial Equations 

As it is said previously, the VIM which was suggested has been illustrated to 

easily and effectively solve a large class of nonlinear and linear problems, where it 

may happen that one or two iteration may result in accurate high solutions. Generally, 

procedure of the solution of the VIM is very operative, convenient and 

straightforward for most problems given in advanced forms as a functional form, 

[20,21]. 

The non-linear general equation below that is given in operator form could be 

regarded to show the basic idea of the VIM: 

L(u(x)) + N(u(x))  g(x), x  [a,b] ...(3) 

where L represents a linear operator, N stands for an operator nonlinear and g 

represents any function that is given and  named the non-homogenous term. 

Now, rewrite equation (3) as shown below  

L(u(x)) + N(u(x))  g(x)  0 ...(4) 

and let un be the n-th equation approximate solution (4), and it is then shown as 

follows:  

L(un(x)) + N(un(x))  g(x)  0 ...(5) 

and therefore the functional correction connected with equation (5), is provided by:  

 1( ) ( ) ( ) ( ( ) ( ( )) ( )
x

n n n n

a

u x u x s L u s N u s g s ds     , n  0, 1, ... ...(6) 

where  is recognized as the general Lagrange multiplier, which can be optimally 

specified by the calculus of variation theory, and nu  is regarded as a variation that is 

restricted that satisfy 0nu , [20]. 

Generally, it is plain now that the essential steps of the method of He’s 

variational iteration require first optimal determination of the multiplier value of 

Lagrangian . After recognizing the multiplier of Lagrang, the approximations that 

are successive un+1, for all n  0, 1, ... of the solution u will be obtained rapidly by the 
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use of any function that is selective u0, which is favored to be equal to the terms that 

are non homogenous for the integral equations. Thus, it could be demonstrated that 

the solution un show convergence to the exact solution u as n  .  

In the next theorem, the equation approximate solutions general form (1) by the 

use of the correction functional (6) is obtained which is based on the evaluation of the 

Lagrange multiplier that is general and that is connected with the integro-differential 

partial equation (1). 
 

Theorem (1): 

Consider the nonlinear partial two-dimension integro-differential equation (1) 

with initial condition (2). Then the sequence of iterative approximate solutions using 

VIM is provided by: 

1

0 0 0

( , ) ( , ) ( , ) ( , ) ( ( , )
t x

n
n n n

u
u x t u x t x g x k u s y dy ds d



  




 
    

  
    ...(7) 

for all n  0,1,… 

Proof: 

The correction that is functional (6) connected with equation (1) is provided by:  

1

0 0 0

( , ) ( , ) ( , ) ( , ) ( ( , ))
t x

n
n n n

u
u x t u x t x g x k u s y dyds d



   




 
    

  
    ...(8) 

where  represents the general Lagrange multiplier, that must be evaluated using 

calculus that is variational, the subscript n indicates the n
th 

approximation and ( )nu t  is 

regarded as the variation that is restricted.  

Now, by having the first variation  with regard to un for the two sides of equation (8) 

and setting un  0, provides:  

1

0 0 0

( , ) ( , ) ( ) ( , ) ( , ) ( ( , ))

t x
n

n n n
u

u x t u x t x g x k u s y dy ds d



       




 
    
 
 

    ...(9) 

and noting that 0nu  , which will consequently reduce equation (9) to:  

 1

0

( , ) ( , ) ( , )
t

n
n n

u
u x t u x t x d      





 


  ...(10) 

Thus, by using the integration method by parts, equation (10) will have the form: 

0 0

( ) ( , ) ( ) ( , ) ( , ) ( )
t t

n
n n

u
x d u x u x d          




 


   ...(11) 

and substituting equation  (11) back into equation (10) will give: 

1

0

( , ) ( , ) ( ) ( , ) ( , ) ( )
t

n n n nu x t u x t u x t u x d              ...(12) 

Consequently, the following stationary conditions is gained:  

()  0 ...(13) 

with initial condition:  

1 ( ) 0


 
t

   ...(14) 
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Now, providing solution to the ordinary differential equation (13) will provide the 

general Lagrange multiplier value connected with equation (1) to be:  

()  1  ...(15) 

Consequently, substituting ()  1 into the correction functional (8) will lead to the 

following approximate solution in the form that is iterated:  

1

0 0 0

( , ) ( , ) ( , ) ( , ) ( ( , )
t x

n
n n n

u
u x t u x t x g x k u s y dy ds d



  




 
    

  
   .     

 

3. Convergence of the Sequence of Approximate Iterated Solutions 

In this section, the sequence convergence of approximate iterated solution (7) 

using the VIM for solving partial integro-differential two-dimensional equation will 

be demonstrated. The central proof idea depends on the evaluation of the error term 

upper bound between the exact approximate solution of equation (1) which is 

demonstrated to be zero as n  . 
 

 

Theorem (2): 

Let u, un  ([ , ] [0, ])n
tC a b T  be the approximate and equation exact solutions (1) 

and (7), respectively. If En(x,t)  un(x,t)  u(x,t), for all n  0, 1, ... and the kernel k 

satisfies Lipschitz condition with constant M. Afterwards, the sequence of the 

approximate solutions {un}, n  0, 1, ... shows convergence to the solution that is 

exact u. 

Proof: 

From theorem (1), the approximate solution using the VIM is provided by: 

1

0 0 0

( , ) ( , ) ( , ) ( , ) ( ( , )
t x

n
n n n

u
u x t u x t x g x k u s y dy ds d



  




 
    

  
    ...(16) 

and since u is the exact solution of the equation (1), thus it satisfies VIM formula: 

( , )
(x, t) ( , ) ( , ) ( ( , )

0 0 0

t xu x
u u x t g x k u s y dy ds dn




 


 
    
 

 

    ...(17)  

Subtract u from un+1 and recall that En(x,t)  un(x,t)  u(x,t),indicate: 

un+1(x,t)  u(x,t)  un(x,t)  u(x,t)  
(x, )

0

(x, )
( , ) ( , )

t
unu

g x g x


 
 


   

 


 

   ( , ) ( , )

0

yx
k u s y k u s y ds dy dn

a







       ...(18) 

Thus: 

En+1(x,t)  En(x,t)     
0 0

(x, )
( , ) ( , )

yt x
n

n

a

E
k u s y k u s y ds dy d






 
  

  
  

 

 ...(19) 

 

   
0 0 0

( , ) ( , ) ( ,0) ( ( , )) ( ( , ))
t x

n n n nE x t E x t E x k u s y k u s y ds dy d


         ...(20) 
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0 0 0

( ( , )) ( ( , ))
t x

nk u s y k u s y ds dy d


   , where En(x,0)  0  ...(21) 

Taking the norm to the both equation sides (21), give: 

 1

0 0 0

( , ) ( ( , )) ( ( , ))
t x

n nE x t k u s y k u s y ds dy d


      ...(22) 

 ( ( , )) ( ( , ))

00 0

t x
k u s y k u s y dy ds dn


      

0 0 0

( , y) ( , y)   
t x

nM u s u s dy ds d


   

Therefore: 

1( , )

0 0 0

( , )
t x

n x t nE M E s y dy ds d


     , for all n  0, 1, ... 

Now, if n  0, then: 

1 0

0 0 0

( , ) ( , )
t x

E x t M E s y dy ds d


      

0

0 0 0

( , )
t x

M E s y dy ds d


      

2

0( , )
2!

t
M E s y x   

If n  1, then: 

12

0 0 0

( , ) ( , )
t x

E x t M E s y ds dy d


      

 
0

2 4
2 ( , )

4

x t
M E s y   

If n  2, and then: 

23

0 0 0

( , ) || ( , ) ||
t x

E x t M E s y dydsd


      

 
0

3 6
3 ( , )

6

x t
M E s y   

If n  3, then: 

34

0 0 0

( , ) || ( , ) ||
t x

E x t M E s y dydsd


      

 
0

4 8
4 ( , )

12

x t
M E s y   

   
2

0( , ) ( , )
! (2 )!

n n
n

n

x t
E x t M E x t

n n
 , x  [0,b], t  [0,T] 
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therefore having the supermom value of x and t over [0,b] and [0,T] respectively to 

obtain 

 

2

0( , ) ( , )
! (2 )!

n n
n

n

b T
E x t M E x t

n n
   

and as n   implies to En  0, i.e., un  u, as n  .     

 

 

4. Illustrative Examples  

In the present section, three examples that are illustrative are considered to 

examine the validity and illustrate the convergence of the variation iteration formula 

given by equation (8) for linear and nonlinear two-dimensional partial integro-

differential equations. 
 

Example (1): 

Consider the linear partial integro-differential two-dimensional equation: 

0 0

( , ) ( )( 3)
( ) ( , )

6

x tu x t tx t x tx
x s y u s y dyds

t

  
   


  , (x,t)  [0,1][0,1] ...(23) 

with initial condition: 

u(x,0)  1, 0  x  1 

For the purpose of comparison, the exact solution of equation  (23) is provided by: 

u(x,t)  1 + xt 

Hence iteration formula of equation (23) that is related and variational is provided by: 

un+1(x,t)  un(x,t)  

0 0 0

( )( 3)
( , ) ( ) ( , )

6

t x
n

n

u x x x
x x s y u s y dyds d

  
 



   
    

  
    

and consider the initial approximation u0(x)  u(x,0)  1, then: 

u1(x,t)  
4 2 3 3

1
24 18

t x t x
tx    

u2(x,t)  
4 2 3 3 3 2 4 3 2 2 3(100 245 168 12600 16800 )

1
24 18 302400

t x t x t x t x t x t x t x
tx

   
     

        
Table (1) presents the results that are numerical for the approximate and exact 

solutions u, u1, u2, u3 and u4 for different values of x and t between 0 and 1. While 

table (2) shows the absolute error between u and u1, u2, u3, u4, respectively. 
 

Table (1) 

Numerical results of the approximate and exact solutions of example (1) 

x T u(x,t) u1(x,t) u2(x,t) u3(x,t) u4(x,t) 

0 0 1 1 1 1 1 

0 0.25 1 1 1 1 1 

0 0.5 1 1 1 1 1 

0 0.75 1 1 1 1 1 

0 1 1 1 1 1 1 

0.25 0 1 1 1 1 1 
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0.25 0.25 1.0625 1.062497 1.0625 1.0625 1.0625 

0.25 0.5 1.125 1.124932 1.125 1.125 1.125 

0.25 0.75 1.1875 1.187225 1.1875 1.1875 1.1875 

0.25 1 1.25 1.249295 1.25 1.25 1.25 

0.5 0 1 1 1 1 1 

0.5 0.25 1.125 1.125054 1.125 1.125 1.125 

0.5 0.5 1.25 1.249783 1.25 1.25 1.25 

0.5 0.75 1.375 1.373535 1.374999 1.375 1.375 

0.5 1 1.5 1.49566 1.499993 1.5 1.5 

0.75 0 1 1 1 1 1 

0.75 0.25 1.1875 1.187958 1.1875 1.1875 1.1875 

0.75 0.5 1.375 1.375366 1.374999 1.375 1.375 

0.75 0.75 1.5625 1.560028 1.562496 1.5625 1.5625 

0.75 1 1.75 1.739746 1.749968 1.75 1.75 

1 0 1 1 1 1 1 

1 0.25 1.25 1.251736 1.249997 1.25 1.25 

1 0.5 1.5 1.503472 1.499992 1.5 1.5 

1 0.75 1.75 1.75 1.749985 1.75 1.75 

1 1 2 1.986111 1.999924 2 2 

 

Table (2) 
The absolute error between the approximate and exact solutions of example (1) 

x T |u(x,t)  u1(x,t)| |u(x,t)  u2(x,t)| |u(x,t)  u3(x,t)| |u(x,t)  u4(x,t)| 

0 0 0 0 0 0 

0 0.25 0 0 0 0 

0 0.5 0 0 0 0 

0 0.75 0 0 0 0 

0 1 0 0 0 0 

0.25 0 0 0 0 0 

0.25 0.25 0.000003 0 0 0 

0.25 0.5 0.000068 0 0 0 

0.25 0.75 0.000275 0 0 0 

0.25 1 0.000705 0 0 0 

0.5 0 0 0 0 0 

0.5 0.25 0.000054 0 0 0 

0.5 0.5 0.000217 0 0 0 

0.5 0.75 0.001465 0 0 0 

0.5 1 0.00434 0 0 0 

0.75 0 0 0 0 0 

0.75 0.25 0.000458 0 0 0 

0.75 0.5 0.000366 0 0 0 

0.75 0.75 0.002472 0 0 0 

0.75 1 0.010254 0 0 0 

1 0 0 0 0 0 

1 0.25 0.001736 0 0 0 

1 0.5 0.003472 0 0 0 

1 0.75 0 0 0 0 

1 1 0.013889 0 0 0 
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Example (2): 

Consider the nonlinear partial two-dimensional integro-differential equation: 

2 2
2

0 0

( , ) (4 9)
( , )

36

x tu x t t x tx
x sy u s y dyds

t

      
 
  , (x,t)  [0,1][0,1] ...(24) 

with initial condition: 

u(x,0)  0, 0  x  1 

For the purpose of comparison, the equation exact solution (24) is provided by: 

u(x,t)  xt 

Thus the related the iteration variational formula of equation (24) is provided by: 

un+1(x,t)  un(x,t)  

2

0 0 0

( )( 3)
( , ) ( , )

6

t x
nu x x x

x x sy u s y dyds d
  

 


            
    

and consider the approximation that is initial u0(x)  u(x,0)  0, then: 

u1(x,t)  
3 2 3 3( 36)

36 12

x t x t x
  

u2(x,t)  
4 3 7 5 10 7 3 2( 36)

36 3780 816480 36

t x t x t x tx t x 
    

        

Table (3) shows results that numerical for the approximate and exact solutions 

u, u1, u2, u3 and u4 for different values of x and t between 0 and 1. While table (4) 

presents the error that is absolute between the exact solution u and solutions that are 

approximate u1, u2, u3, u4, respectively. 
 

Table (3) 
Numerical results of the approximate and exact solutions of example (2) 

x T u(x,t) u1(x,t) u2(x,t) u3(x,t) u4(x,t) 

0 0 0 0 0 0 0 

0 0.25 0 0 0 0 0 

0 0.5 0 0 0 0 0 

0 0.75 0 0 0 0 0 

0 1 0 0 0 0 0 

0.25 0 0 0 0 0 0 

0.25 0.25 0.0625 0.062498 0.0625 0.0625 0.0625 

0.25 0.5 0.125 0.124986 0.125 0.125 0.125 

0.25 0.75 0.1875 0.187454 0.1875 0.1875 0.1875 

0.25 1 0.25 0.249891 0.25 0.25 0.25 

0.5 0 0 0 0 0 0 

0.5 0.25 0.125 0.124973 0.125 0.125 0.125 

0.5 0.5 0.25 0.249783 0.25 0.25 0.25 

0.5 0.75 0.375 0.374268 0.375 0.375 0.375 

0.5 1 0.5 0.498264 0.499998 0.5 0.5 

0.75 0 0 0 0 0 0 

0.75 0.25 0.1875 0.187363 0.1875 0.1875 0.1875 

0.75 0.5 0.375 0.373901 0.374999 0.375 0.375 

0.75 0.75 0.5625 0.558792 0.562492 0.5625 0.5625 

0.75 1 0.75 0.741211 0.749965 0.75 0.75 

1 0 0 0 0 0 0 
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1 0.25 0.25 0.249566 0.25 0.25 0.25 

1 0.5 0.5 0.496528 0.499992 0.5 0.5 

1 0.75 0.75 0.738281 0.749937 0.75 0.75 

1 1 1 0.972222 0.999737 0.999999 1 

 

Table (4) 

The absolute error between the approximate and exact solutions of example (2) 

x T |u(x,t)  u1(x,t)| |u(x,t)  u2(x,t)| |u(x,t)  u3(x,t)| |u(x,t)  u4(x,t)| 

0 0 0 0 0 0 

0 0.25 0 0 0 0 

0 0.5 0 0 0 0 

0 0.75 0 0 0 0 

0 1 0 0 0 0 

0.25 0 0 0 0 0 

0.25 0.25 0.000002 0 0 0 

0.25 0.5 0.000014 0 0 0 

0.25 0.75 0.000046 0 0 0 

0.25 1 0.000109 0.000002 0 0 

0.5 0 0 0 0 0 

0.5 0.25 0.000027 0 0 0 

0.5 0.5 0.000217 0.000001 0 0 

0.5 0.75 0.000732 0.000008 0 0 

0.5 1 0.001736 00.000035 0 0 

0.75 0 0 0 0 0 

0.75 0.25 0.000137 0 0 0 

0.75 0.5 0.001099 0.000001 0 0 

0.75 0.75 0.003708 0.00008 0 0 

0.75 1 0.008789 0.000035 0 0 

1 0 0 0 0 0 

1 0.25 0.000434 0 0 0 

1 0.5 0.003472 0.000008 0 0 

1 0.75 0.011719 0.000063 0 0 

1 1 0.027778 0.000263 0.000001 0 

 

 

5. Conclusions 

This paper has two main goals. The first goal is to employ the variational iteration 

method to investigate nonlinear and linear two-dimensional equations that are 

Volterra integro-differential and partial as well as studying the convergence of this 

method. The second goal is to show significant features of this method and its power. 

The VIM gives convergent that is rapid, successive, and approximate without any 

restrictive transformation or assumptions that could change physical behaviour of the 

problem. Generally, the procedure of VIM solution is very straightforward, 

convenient, and effective. Numerical results and a comparison with the exact solution 

are provided, which reveal its efficiency. 
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Abstractt .  

In tthis work we consider and studyy uthe structures spacee of gamma acts by considering 

strongly prime gamma subacts. Also we study compactness and connectedness properties of this space 

as well as the separation axioms.  
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1.  Introduction     
The Hausdorff property for the ring C(X) of continues real-valued  functions on X has been studied 

by L. Gillman in [1]. Cg.Wh. Kohls in [2] studiedg the spaceu of oprime idealsy of an arbitrary  ring 

while S. Chattopadhyay and S. Kar introduced and studied the structure space of gamma semigroups 

[3]. 

In this work, we introduce and study the gstructure uspace of gamma acts. Forb this object, let M be 

an SΓ-act, we considerb the collectionv SP(M) of all stronglyp mprime gamma subacts. By means of 

intersection and inclusion we define a closure operator on SP(M) and give a topology    ( ) on 

SP(M). We callb this topological space (SP(M),    ( ) ) the structureb spaceh of thej gamma act M. 

We discuss separationb maxioms in ythis ospace, also we consider the properties of connectedness 

and compactness. 

 

 

2. Basic Concept .  

 

          Let S and Γ be nonempty sets. Recall that S is Γ-semigroup if a b ∊ S and (a b)  c = 

a (b c) for all a, b, c ∊ S and  ,   ∊ Γ. S is a Γ-semigroup  with zero element if there is an 

element 0 ∊  S such that 0 a = a 0 = 0 for all a ∊ S and   ∊ Γ. A Γ-semigroup S is 

commutative if a b = b a for all a, b ∊ S, and   ∊ Γ [4]. 

 

          Let S be a semigroup and A a nonempty set. If we have a mapping   : S ⨯ A →  A, ( 

s, a )   sa =  (sa) such that (st)a = s(ta) for all s, t ∊ S and a ∊ A, we call A is a left S-act 

and write   
   S. [5]  
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        The notion of gamma acts which is a generalization of acts as well as gamma 

semigroups has been introduced in [6]. 

 
2.1. Definition. If S is a Γ-semigroup . A nonempty set M is calledn a left gamma acts over S, 

denoted by    
  , if there is a mapping S ⨯ Γ ⨯ M →  M ,   (s,  , m)   s m  ( s ∊ S,    Γ and m ∊ M 

) such that s1 1(s2 2m) = (s1 1s2) 2m for all s1, s2 ∊ S,  1,  2 ∊ Γ and m ∊ M. 

2.2. Examples (2.2).  

1. Let S = { 5n + 4 │ n ∊    }, Γ = { 5n + 1 │ n ∊     }. Then S is a Γ-semigroup"    where s1 s2 = s1 

+   + s2 ( usual addition of integers ). Now, let M = { 5n │ n ∊    }. Then M is an SΓ-act , but M is 

not Γ-semigroup with usual addition of integers. 

2. Let M be the set of all negative rational numbers. It is clear that M is not M-act under usual 

multiplication of rtional numbers. Let Γ = {  - 
 

 
 │ p is prime } and define the mapping M ⨯ Γ ⨯ M 

→ M by (x,  , y)   x y (usual multiplication of rational numbers ). It is an easy matter to see that M 

is MΓ-act. 

   A nonempty subset N of SΓ-act M is called SΓ-subact, if SΓN   N where SΓN = { s n │ s ∊ S,   ∊ 

Γ and n ∊ N }. An SΓ-subact  N of an SΓ-act  M is proper if N ≠ M. 

                   For   -acts M and N. A mapping f :M N is called <   -homomorphismn> if f(s m) = 

s f(m), for  all s   S,       and m   M. We denote Hom(M, N) the set of all   -homomorphisms 

from M into N. 

 

2.3. Definition . Let N be an    -subact of an   -act M. Define (N    M) ={ s   S  s   M   N }. In 

particular, for m   M (N    m) ={ s   S   s   m  N }.                                                                                                    

                    Recall that a nonemptyh subseth   of a Γ-semigroup" S is calledh ideal if       and 

     . 

 

Weh introduceh the following"  

2.4. Definition . Let M" be an   -act. A proper   -subact P of M called prime if for any ideal   of 

S and any   -subact N of M,        implies that N   P or    (P  M). 

In the following, the concept of prime gamma subacts can be reduces to elements 

2.5. Proposition . Let P" be a proper"   -subact of an   -act M. Then P" is primel if andk onlyl if 

s S m   P implies that m"   P" or s   (P   M) for allj s S" and jm M".                                                              

Proof. Assume that s S m   P where  s   S and m   M. Primerss  of P" kimplies that m   P" or s  

 (P  M). Conversely, assume       bfor an ideal   of S and   -subact V of M. If V   P, then there 

is an element x     and x   P. Then for any a    we have a S x       P , thus a (P  M). 

            Recall that a proper ideal T of Γ-semigroup"  S is prime" if for any two kideals I and J of S", 

     T impliesnthat        or      . Then wef haveg thej followingn corollarym 

2.6. Corollary . A proper  ideal T of  -semigroup S is prime if and only if    S    T implies 

that      or      for all         . 



788 

 

2.7. Lemma. Let M be an   -act. If P" is a prime"   -subact of M. then (P"    M) is a primem 

idealk of S. Proof. Lety          with    S     (P  M). Then    S    M  P. Since P is prime, 

then by Proposition (2.6) we have either    M   P" or    S M   P" and hence      (P"    M) or 

    (P   M).  

       For the converse we consider the following  

2.8. Definition. An   -act M is called multiplication if for any   -subact N of M, there is an ideal   

of S such that N =   M. 

         It is easy matter that an SΓ-subact N of a multiplication   -act M is of the form N = (N    M) M.  

2.9. Theorem . If M" is a multiplication   -act, then an   -subact P of M" is prime if and only if 

(P    M) is a uprime bideal of S. 

Proof. Assume that (P"   M) is a prime" ideal of S", and there exist an ideal I of S and   -subact V of 

M with V P, I (P  M) and I     P". Since M" is multiplication, then V=J     for some ideal J of 

S. Thus                so         (P  M), but (P"  M) is a prime" idealn of S and     (P"  M), then   

J'  (P"  M). Therefore V=        P whichn is a contradictionm. Thus P is prime". 

         It is easy matter to see that if I and J are two ideals of a Γ-semigroup"  S and P is a prime"  

ideal" of S" with I ⋂ J   P", then I   P" or J   P". This statement is no larger hold if we replace 

ideals of Γ-semigroup  by   -subact S of   -act. However we have the following  

2.10. Theorem . Let N be a prime   -subact of a multiplication   -act M. If        are   -subacts 

of M"  withn         N", hthen either     N" or       N.                                                                                                                                                               

Proof.  Since (        M") = (     M") (     M")   (N   M") and (N   M") is a prime ideal of S, 

then either (     M")   (N   M") or (     M")   (N   M"). Thus either   = (     M") M   (    

M") M = N or   = (     M") M   (    M") M = N". 

            Wef introduceg the followingg 

2.11. Definition . An   -subact N" of   -act M"  is calledu strongly prime (or finitely prime), if S" 

and    containb mfinite subset  ̅ and  ̅ respectivelyh suchn thatu s ̅ ̅ ̅m   N impliesy that m N or 

s   (N  M) for all s  S" and m   M". 

2.12. Proposition . Every strongly prime   -subact of   -act M is prime. 

Proof. Let N be a strongly   -subact of   -act M. For s S and m M, if s S m   N, then there are 

finite subsets  ̅ and   ̅of S and   respectively and s  ̅ ̅   ̅m   s S m   N. This implies that m   N or 

s   (N  M). 

           In the following consider intersection of (strongly) prime gamma subacts.  

2.13. Proposition. Let {  :   } be a collection of prime   -subacts of an   -act M suchn thatu 

{  :   } formsg a chainj. Then        is a prime"    -subact of M.                                                                    

Proof:" For any ideal I" of S and   -subact V of M, if I   V          with I   (     M) and V   

   , then there are       such that I        and V     . No loss of generality if we assume 

     . This implies that V      a contradiction. Thus        is a prime   -subact of M. 

    A   -act M is called uniserial, if forg anyh two SΓ-subact N" and K" of M", either  N"   K or K   

N" 
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2.14. Corollary . Let M be a uniserial SΓ-act. If {    │   ∊   } is a family of ( strongly ) prime SΓ-

subact of M, then ⋂     ∊   is ( strongly ) prime in M. 

               

3.  Structure space of SΓ-acts. 

Let M be an SΓ-act. Denote by SP(M) the collection of all strongly prime SΓ-subacts of M. For any N 

  SP(M), we define   ̅ = { K ∊ SP(M) │ ⋂         ∊   
 } it is clear that  ̅     and N    ̅ for any 

subset N of SP(M).  

3.1.   Theorem . Forg anyh two subsets  N" and L" of SP(M"), the following hold  

(1)   ̅̅ =  ̅ 

(2)  N   L implies that  ̅    ̅ 

(3)  if M" is a multiplication" SΓ-act, Hthen   ⋃  ̅̅ ̅̅ ̅̅ ̅ =   ̅̅̅̅ ⋃  ̅.  

Proof".  (1). It is clear that  ̅    ̅̅. For other inclusion, let    ∊  ̅̅. Then ⋂       ∊  ̅      , and K  ∊ 

 ̅ implies that ⋃      ∊    K  for all   ∊   . Thus ⋂      ∊      ⋂      ∊  ̅    K  that is ⋃      ∊     

   and  so    ∊  ̅ hence  ̅̅ =  ̅. 

(2). Suppose N   L and    ∊   ̅. Then ⋂      ∊   
       . Since N   L, then ⋂      ∊   

   

⋂      ∊   
      and Gthis impliesN thatH    ∊ L and" hence"  ̅    ̅. 

(3). Clearly by (2)   ̅⋃  ̅     ⋃  ̅̅ ̅̅ ̅̅ ̅. Let    ∊   ⋃  ̅̅ ̅̅ ̅̅ ̅. Then ⋂     ∊ ⋃ 
     . It is easy to see that 

⋂     ∊ ⋃ 
 = ( ⋂      ∊   

 ) ⋂ (⋂      ∊   
)      . Since     is strongly prime for each  , then    is 

prime , Proposition (2.14). By multiplication property of M  and Proposition (1.12), we have 

⋂      ∊  
      or ⋂      ∊  

      , this is    ∊  ̅ or    ∊  ̅ and hence   ⋃  ̅̅ ̅̅ ̅̅ ̅ =   ̅̅̅̅ ⋃  ̅.  

3.2.    Definition . Let M be a multiplication SΓ-act. The closure operator N →  ̅ Pgives a Ltopology 

   ( ) on SP(M). This Ltopology is calledJ the strongly prime Ltopology and the Ltopology spacej ( 

   ( ) , SP(M) ) is calledj the structure" space" of the SΓ-act  M. 

For SΓ-subact N of an SΓ-act M. We define ∆(N) = { N' ∊ SP(M)  │ N   N' } and  C∆(N) = SP(M) \ 

∆(N).      In the following we describle the closed set in SP(M)  

3.3. Proposition . Lett M" be a multiplication" SΓ-act. Then for any closed set  ̅ in SP(M), there 

is an SΓ-subact N" of M" suchn thatu  ̅ = ∆( N"). 

Proof. Let  ̅ be a closed subset in SP(M) where W   SP(M). Then W = {      SP(M) │  ∊   }. Let 

N = ⋂      ∊ 
 . Then N is an SΓ-subact of M if N' ∊  ̅, then ⋂      ∊ 

   N' . This implies that N   

N' and hence N' ∊ ∆(N) so  ̅   ∆(N). Conversely, let N' ∊  ∆(N). Then N   N' , that is ⋂      ∊ 
   

N' , this impliesj that N'    ̅ and hence ∆( N")    ̅. 

3.4. Corollary"(3.4). Any" openm set in SP(M) is of the formb C∆(N) for some SΓ-subact N of 

multiplication SΓ-act M. 

Let M be an SΓ-subact and m ∊ M. Wem definem ∆(m) = { N" ∊ SP(M) │ m ∊ N" } and C∆(m) 

=SP(M)/∆(m) 

3.5. Proposition .If M is a multiplication" SΓ-act. Then" { C∆(m) │ m' ∊ M" } forms"  an openm 

basem for the  Ltopology     ( ) on SP(M).                                                                                                               

Proof. Lett U ∊    ( ) . Then by Corollary (3.4), there is an SΓ-subact N"  of M"  suchn thatu U = 

C∆(N). Let"  K ∊ U Then N   K and there is x ∊ N with x   K. Thus K ∊ ∆C(X). To see C∆(m)   U. 

Let"  K ∊  C∆(m). Then m   K. It follows that N   K"  and  hence K" ∊ U"  and so C∆(m)   U. Thus 

{ C∆(m) │ m ∊ M } is an open base for     ( ).                       □ 
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3.6. Theorem ... The spacek (SP(M),    ( )) is hT0-space for any multiplication SΓ-act M . 

Proof. Suppose N1 and N2 are two distinct elements in SP(M). Without loss of generalityk , we 

assume that there is an element x ∊ N1, and x   N2 . Then C∆(x) is a neighborhood of  N2 not contain 

N1..                                                   

 

3.7. Theorem . The following statements are equivalent for a multiplication SΓ-act M" 

(1)  (SP(M),    ( ))" isn T1-space   

       (2)   Nodelementn of SP(M) is containedn in any otherj element" of SP(M).                                                       

Proof.  (1) → (2). Suppose (SP(M"),    ( ))" is a nT1-space and N1, N2 be distance elements of 

SP(M). Then each of N1, and  N2  bhas a neighborhood not containingh the othern. Sincem N1 and N2 

are any elementsbt. This implies that no element of SP(M) is containingh in any othern element of 

SP(M). 

 (2) → (1), assume thatj no elementh of SP(M) is containedj in any othern element of SP(M). Lett N1 

and  N2 be two different elementsj of SP(M). Then by hypothesisj, there exist x , y ∊ M with x ∊ N1\ 

N2 and y ∊ N2 \ N1 . Thus, we have N1   C∆(y) but N1   C∆(x) and N2 ∊ "C∆(x) , but" N1    

C∆(y).Thus each of N1 and N2 has a neighborhood no containing the other. Hence (SP(M),    ( ))  is 

a T1-sapce.     □   

3.8. Corollary.  Let S" be a commutative Γ-semigroup" and M" a multiplication SΓ-act. Ifk 

Max(M) is the class of maximall SΓ-subacts of M", then ( Max(M),     ( ) ) is a"   -space wherej 

    ( ) is the inducedn topologyj on Max(M") from (SP(M),    ( )). 

3.9. Theorem . If M" is a multiplication" SΓ-act. Then the following conditions are equivalent  

(1)  (SP(M),    ( ))  is a Hausdorff 

(2)  Any two distinct elements N and K of SP(M), there exist x, y ∊ M such that x   N, y   K and 

does not exist any W ∊ SP(M) such that x, y   W. 

Proof. (1) → (2). Assume that (SP(M),    ( )) is  a Hausdorff space". Then" for any" two distinct" 

N1 and N2 of SP(M), there is an open set C∆( x) and C∆( y) such" that" N1 ∊ C∆( x), N2 ∊ C∆( y) and 

C∆( x) \ C∆( y) =  . This implies that x   N1 and y   N2. If there is K ∊ SP(M) such that x   K", y   

K". Then K ∊ C∆(x) "⋂ C∆(y) =   a contradiction. Thus there does not exist any K ∊ SP(M) with x   

K and y   K. (2) → (1). Assume the given condition holds and N1, N2 ∊ SP(M) with N1 ≠ N2 . Let a, 

b ∊ M with a   N1 with b   N2 and "there does" not existu any K ∊ SP(M) such" that" a   K, b   K. 

This exactly implies N1 ∊"C∆(x), N2 ∊ "C∆(y) and "C∆( x) ⋂ "C∆(y ) =   and hence (SP(M),    ( )) 

is a Hausdorff space. 

3.10. Proposition. Let M" be a multiplication SΓ-act  and (SP(M),    ( )) is a Hausdorff". Then"  

(1) No" proper" stronglyj prime" SΓ-subact of M contains any other proper strongly prime SΓ-subact  

(2) If (SP(M),    ( )) contains" more" thanm one elementm, then there exist x, y ∊ M where SP(M) = 

C∆(x) ⋃ C∆(y) ⋃ ∆(W), where W is the SΓ-subact of M generating by x and y. 

Proof. (1).It's clear by Theorem (3.7) and the" fact" that every Hausdorff" space" is a T1-space. 

(2). Let N and K be two distinct strongly prime  SΓ-subacts of M. Then exists an open set C∆(x) and 

"C∆(y) such" that" N ∊ "C∆(x), K ∊ C∆(y) and "C∆(x) ⋂ C∆(y) =  . Suppose W is the SΓ-subact" of 

M" generating by x" and "y, namely W is the smallest SΓ-subact of M" containing x" and y" and W = 

SΓx ⋃ SΓy. Let L ∊SP(M). Then we have the following cases. (1) x", y ∊ L, (2). x" ∊ L , y   L, (3). 

x"  L, y" ∊ L and (4). x"  L", y   L. Case (4) is not possible since C∆(x) ⋂ C∆(y) =  , case (2) 

implies that L ∊ C∆(y), similarity case (3) implies that L ∊ C∆(x) and finally case (1) implies that L ∊ 
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∆(W) and thus PS(M)   C∆(x) ⋃ C∆(y) ⋃ ∆(W).       

      □ 

3.11. Theorem . The following" conditions are equivalent" for a multiplication SΓ-act  M.  

(1)  (SP(M),    ( ) ) is a regular space  

(2)  For N ∊ SP(M) and x ∊ M \ N, there exist an SΓ-subact K of M and y ∊ M such"that" N" ∊"C∆(y) 

  ∆(K")  "C∆(x"). 

Proof. (1) → (2). Let N ∊ SP(M) and x ∊ M \ N. Then N ∊C∆(x) and SP(M)\C∆(x) is closed set not 

containing N. By (1) there is disjoint open" sets"  U"  and V"  such that N ∊ U"  and SP(M) \ C∆(x)   

V". This implies that SP(M) \ V   C∆(x). Since SP(M) \ V is closed, then by Proposition (3.3), there 

is an SΓ-subact K of M such that SP(M) \ V = C∆(K) and hence we get ∆(K)   C∆(x). Since U ⋂ V = 

 , then V   SP(M) \ U. Again since  SP(M) \ U" is closed, then there"  exists"  an SΓ-subact W of M 

suchj thatj SP(M)\ U = ∆(W), this is V   ∆(W). Since N ∊ U, then N   SP(M) \ U = ∆(W). It follows 

that W   N, and hence there is y ∊ W \ N so N ∊ C∆(y). Now we show that V   ∆(y). Let L ∊ V   

∆(W). Then W   L. Since y ∊ W, then y ∊ L and hence  L ∊ ∆(y), so V   ∆(y) this implies that 

SP(M)\∆(y)   SP(M)\V = ∆(K") and hence C∆(y)   ∆(K). This shows that N ∊ C∆(y)   ∆(K) C∆(x).                                                                                                                                                          

(2) → (1). Let I ∊ SP(M) and ∆(K) be any closedj set notj containingj I". Since I"    ∆(K"), wej have"  

K   I. Then there is an element a" ∊ K\I . By (2), there is an SΓ-subact J" of M and b" ∊ M suchj thatj 

I" ∊ C∆(b)   ∆(J")  " C∆(a). Since a ∊ K"  and " C∆(a) ⋂" ∆(K") =  ,  it follows that " ∆(K)   

SP(M) \ C∆(a)   SP(M) \ ∆(J). Sincej ∆(J")is closedj, then SP(M) \ ∆(J) is an openj set containingj 

the closedj ∆(K"). Clearlyj C∆(b) ⋂ (SP(M)\∆(J)) =  , soj wej find that C∆(b) and SP(M) \ ∆(J") are 

twojj disjoint openj setsj containingj I"  and ∆(K") respectivelyj. This shows that  (SP(M),    ( ) ) is 

a regular space.  □ 

3.12. Theorem . Let M"  be a multiplication SΓ-act. Then the following are equivalent" 

(1)  (SP(M"),    ( ) ) "  is a compact space 

(2)  For any set {    ∊ M │   ∊   }  there is a finite subset { xi │ i = 1, 2, …, n } such that for any N 

∊ SP(M), there exists xi such that xi   N.  

Proof. (1) → (2). Let {    ∊ M │   ∊   } and N be any element in SP(M). Then {  C∆(  ) │    ∊ M, 

  ∊   }  is an open cover of (SP(M),    ( ) ). By (1) SP(M),    ( ) )  hasj a finitej sub cover {" 

C∆(  ) │ ij = 1, 2, …, n }  and hence N ∊ C∆(  )  for some    ∊ M. This implies that      N.  

(2) → (1). Assume that  { C∆(  ) │    ∊ M,   ∊   } is an open cover of SP(M) which has no finite 

sub cover { C∆(  ) │ i = 1, 2, …, n } of SP(M). This means that for any finite subset { x1, x2, …, xn } 

of M, C∆(X1) ⋃ C∆(X2) ⋃ …  ⋃ C∆(Xn) ≠ SP(M) and have ∆(x1) ⋂ ∆(x2) ⋂ … ⋂ ∆(xn) ≠  . Then 

there is N" ∊ SP(M) suchj thatj N ∊ ∆(x1) ⋂ ∆(x2) ⋂ … ⋂ ∆(xn) .Thus, x1, x2, …, xn ∊ N  which is 

contradicts (2). This shows that (SP(M),    ( ) ) is a compact space.         □ 

An SΓ-act M is called finitelyj generatedj if there exists a finite " subset X " of M " suchj thatj M = < 

X > = ⋃      ∊  where SΓu = { s u │ s ∊ S and   ∊ Γ }. 

3.13. Corollary . If M "is a finitely generating multiplication "SΓ-act. Then " (SP(M "),    ( ) ) is a 

compact space .  

Proof. Let {    │ i = i = 1, 2, …, n } be a generated set of M, and N a strongly prime SΓ-subact of M. 

Then there exists some    such that      N. Hence by Theorem (2.13),  (SP(M),    ( ) ) is a compactj 

spacej .                       □ 

An SΓ-act  M is called Noetherian if any ascending chain N1   N2   …   Nn   …  of  SΓ-subacts of 

M, there is a positivej jinteger n suchj thatj Nm = Nn  for  m ⩾ n.  

3.14. Theorem . If M is a Noetherian SΓ-act. Then  (SP(M),    ( ) ) is countably compact. 

Proof.  Let { ∆(  ) │ i = 1, 2, .., ∞ } be a countable collection of closed set in SP(M) with finite 

intersection property where    is an SΓ-subact of M for each i. Consider the following ascending 
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chain N1   N1 ⋃ N2   N1 ⋃ N2 ⋃ N3  ….  of  SΓ-subacts of M. Then there is a positive integer n 

such that N1 ⋃ N2 ⋃ … ⋃ Nn = N1 ⋃ N2 ⋃ … ⋃ Nn+1 . Thus it follows that N1 ⋃ N2 ⋃ … ⋃ Nn ∊ 

⋂  (  )
 
     Consequently ⋂  (  )

 
    ≠   and hence (SP(M),    ( ) ) is countably compact.  

      □ 

The following follows from Theorem (3.14) and the fact that a second countable space is compact if 

it is countably compact.  

3.15. Corollary . If M is a Noetherian SΓ-act and (SP(M),    ( ) ) is second countable, then it is 

compact.  

3.16. Definition . The structure space (SP(M),    ( ) ) is called irreducible if for any 

decomposition SP(M) = A1 ⋃ A2 where A1 and A2 are closed subsets  of SP(M) we have SP(M) = A1 

or SP(M) = A2 . 

3.17. Theorem .Let M be a multiplication SΓ-act. Then the following statements are equivalent   for 

any closed subset A of SP(M). 

(1)   A is irreducible  

(2) ⋂      ∊   is a prime SΓ-subact of  M. 

Proof. (1) → (2). Let I ba an ideal of S and V an SΓ-subact of M with IΓV   ⋂      ∊   . Then IΓV 

     for each  . Since     is a prime, then either V       or IΓM      which implies that for    ∊ 

A, either    ∊ {  ̅ } or    ∊ {    ̅̅ ̅̅ ̅ }. Hence A = ( A ⋂  ̅ ) ⋃ (A ⋂    ̅̅ ̅̅ ̅ ), since A is irreducible and 

both A ⋂  ̅ and A ⋂    ̅̅ ̅̅ ̅ are closed. Then it follows that either A = A ⋂  ̅ or   A = A ⋂    ̅̅ ̅̅ ̅ and 

hence A    ̅ or A      ̅̅ ̅̅ ̅. This implies that V   ⋂      ∊   or IΓM   ⋂      ∊    and so ⋂      ∊   

is a prime in M.  

(2) → (1). Assume A = A1 ⋃ A2 where A1 and A2 are closed of A. Then ⋂      ∊     ⋂      ∊    

and ⋂      ∊     ⋂      ∊    . Also ⋂      ∊   =  ⋂      ∊    ⋃   = (⋂      ∊   ) ⋂ ( ⋂      ∊   ). 

For each ideal I of S, IΓ(⋂      ∊   )   ⋂      ∊    and IΓ(⋂      ∊   )   ⋂      ∊    so 

IΓ(⋂      ∊   )   (⋂      ∊   ) ⋂ (⋂      ∊   ) = ⋂      ∊   . Since ⋂      ∊   is prime it follows 

that  ⋂      ∊      ⋂      ∊   or IΓM   ⋂      ∊   and hence ⋂      ∊    =  ⋂      ∊   and IΓM   

⋂      ∊   similarly ⋂      ∊    = ⋂      ∊   and IΓM   ⋂      ∊   . It follows that ⋂      ∊    = 

⋂      ∊   and ⋂      ∊    = ⋂      ∊   . Let     ∊ A. Then we have ⋂      ∊         or 

⋂      ∊         . Since A1, A2   A, so either         for all    ∊ A1 or         for all    ∊ A2 . 

Thus    ∊   
̅̅ ̅ =    or    ∊   

̅̅ ̅ =    , since A1 and A2 are closed i.e A =    or A =    . This proves 

(1).           □ 

3.18. Corollary . Let M be a uniserial multiplication SΓ-act. Then any closed subset of SP(M) is 

irreducible. 

Proof. Let A be a closed subset of SP(M). Then by Corollary (2.14) we have ⋂      ∊   is a 

prime SΓ-subact of M. Hence by Theorem (3.16) we get  A is irreducible.   

          □ 

Let M be an SΓ-act and N, K two SΓ-subacts of M. We define NK= Hom(M, K)N = ⋃ 

{ (N) │   : M → K }. 

An SΓ-subact N of M is called idempotent if N = NN = ⋃(N) where the union runs 

among all SΓ-homomorphism   : M → N. this is equivalent to saying that for each n ∊ N, 

there exist an SΓ-homomorphism θ : M → N and an element n' ∊ N such that n = θ(n'). An 

element m ∊ M is called idempotent if it generates an idempotent SΓ-subact of M, namely 

SΓm is idempotent SΓ-subact of M. We denote e(M) for the set of all idempotent elements of 

M.  
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3.19. Definition . An SΓ-subact N of an SΓ-act  M is called id-full if e(M)   N. 

Let W be the collection of all strongly prime id-full SΓ-subacts of an SΓ-act  M. Then 

clearly W   SP(M) and hence (W,   ) is a topological space where    is the subspace 

topology generally  (SP(M),    ( )) is neither compact nor connected. But in particular we 

have the following results. 

3.20. Proposition . Let M be a uniserial multiplication SΓ-act. Then every closed subset of SP(M) is 

connected. 

Proof. Let A be a closed subset of  SP(M). By Theorem (3.17). A is irreducible. Hence A is 

connected. 

3.21. Theorem .Let M be a multiplication SΓ-act . Then (W,   ) is a connected space. 

Proof. Let N be the strongly prime SΓ-subact of M generated by e(M). Since every strongly 

prime id-full K of M conteuns e(M), contains N. Thus N belongs to any closed subset ∆(N') of 

W. This implies that any two closed subsets of W are not disjoint. Hence (W,   ) is a 

connected space.        □ 

3.22. Theorem . Let M be a multiplication  SΓ-act. Then (W,   ) is a compact space. 

Proof. Let { ∆(   │   ∊   } be any collection of closed subsets on W with finite intersection 

property, and N be the strongly prime SΓ-subact generated by e(M). Since any strongly prime 

id-full SΓ-subact K contains  e(M), contains N. Hence N ∊ ⋂  (  )  ∊   and so ⋂  (  )  ∊   is 

nonempty. This implies that (W,   ) is a compact space.     

                     □ 
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Abstract 

      A ring   is said to be      - rings , if       for all    ( ) and   is called 

right (left) S F-ring , if every simple right (left)  -module is  -flat  . In this paper , 

we give some characterization of    - rings and S   F-rings . Further , it is shown 

that   is    - ring if and only if ,   is S   F-ring , with  ( )   ( ) for every 

   ( ) if and only if   is    with every essential right ideal is  -flat . 

Additionally , we have investigated     - rings with simple singular right   - 

modules are  -flat . 

       Key words :     - rings ,  -flat  ,   -rings , reduced rings . 

 S   F -ٔانحهماخ يٍ انًُظ     -حٕل انحهماخ يٍ انًُظ 

خؼش عّؼٗ خذس                             سائذح داؤد ِؾّٛد          . د. أ  

 و١ٍخ ػٍَٛ اٌؾبعٛة ٚاٌش٠بػ١بد

 عبِؼخ اٌّٛطً

اٌّٛطً –اٌؼشاق   

 هصانًسرخ

ثأٔٙب    . ٠ٚمبي ػٓ   ( )   ٌىً       ، ارا وبْ     -ِٓ إٌّؾ ثأٔٙب ؽٍمخ     ٠مبي ٌٍؾٍمخ    

فٟ .    -٘ٛ ِمبط ِغطؼ ِٓ إٌّؾ    ، ئرا وبْ وً ِمبط ا٠ّٓ ) ا٠غش ( ثغ١ؾ فٟ  S   F  -ِٓ إٌّؾ  ؽٍمخ 

. وزٌه ث١ََّٕب اْ     -بد ِٓ إٌّؾ ٚاٌؾٍم S   F  -٘زا اٌجؾش عٛف ٔؼطٟ ثؼغ ١ِّضاد اٌؾٍمبد ِٓ إٌّؾ  

( ) ٚ  S   F  -إٌّؾ  ؽٍمخ ِٓ    ارا ٚفمؾ ارا وبٔذ     -إٌّؾ ؽٍمخ ِٓ    ٌىً   ( )  

٘ٛ ِغطؼ ِٓ   ٚوً ِضبٌٟ ا٠ّٓ اعبعٟ ِٓ     -إٌّؾ ؽٍمخ ِٓ      ٚ ارا ٚفمؾ ارا وبٔذ  ( )   

ػٕذِب ٠ىْٛ وً ِمبط ِٕفشد ثغ١ؾ ا٠ّٓ ِغطؼ ِٓ     -. وزٌه عٛف ٔخزجش اٌؾٍمبد ِٓ إٌّؾ    -إٌّؾ 

    -إٌّؾ 
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 -، اٌؾٍمهبد ِهٓ اٌهّٕؾ    -، اٌّمبعهبد اٌّغهطؾخ ِهٓ اٌهّٕؾ     -اٌؾٍمبد ِٓ اٌهّٕؾ :  انكهًاخ انًفراحيح      

 ، اٌؾٍمبد اٌّخزضٌخ .   

 :اٌّمذِخ  – 1

. ً اٌّمبعبد ٟ٘ ِمبعبد اؽبد٠خ ٠ّٕهٝ ؽٍمخ رغ١ّؼ١خ راد ػٕظش ِؾب٠ذ ٚو   فٟ ٘زا اٌجؾش  ، ٔفزشع أْ      

ٚ  ( )  سِضٔهب، ٚ  فٟ اٌؾٍمهخ   ٌٍؼٕظش  ( الا٠غش )٠شِض ٌٍزبٌف الا٠ّٓ (  ( ) )  ( ) ،      ٌىً

 . ، ػٍٝ اٌزٛاٌٟ   فٟ ٌّغّٛػخ اٌؼٕبطش اٌّؼذِٚخ اٌمٜٛ ٚعزس عبوٛثغْٛ  ( ) 

ٚوزؼّه١ُ ٌٍؾٍمهبد  ( . [ 8 ]،  [ 7 ]،   [ 5 ] ،   [ 3 ]ِضهً )   ػهذح ثهبؽض١ٓدسعذ ِٓ لجً  اٌؾٍمبد اٌّغطؾخ      

٠ّٕهٝ  S F  -اٌهّٕؾ ِٓ رغّٝ ؽٍمخ    اٌؾٍمخ   . S F  -إٌّؾ اٌؾٍمبد ِٓ  [ 4 ] اٌّغطؾخ دسط فٟ اٌّظذس

. وههزٌه اػط١ٕههب    -٘هٛ ِمههبط ِغهطؼ ِههٓ اٌهّٕؾ    ) ٠غهشٜ ( ، ئرا وههبْ وهً ِمههبط ا٠ّهٓ ) ا٠غههش ( ثغه١ؾ فههٟ 

 .     -إٌّؾ ٚػلالزٙب ِغ اٌؾٍمبد ِٓ  SS F  -ّؾ إٌرؼش٠ف اٌؾٍمبد ِٓ 

( ) عٍمههخ ِخزضٌههخ ار وبٔههذ   ٌهه  ٠مههبي        ارا وبٔههذ     -ؽٍمههخ ِههٓ اٌههّٕؾ   . ٠مههبي ٌٍؾٍمههخ  [ 8 ]   

 ( ) ارا وهبْ ،  0 –ِٓ اٌهّٕؾ اػطٝ اٌجبؽش اٌؾٍمخ اٌّخزضٌخ اٌّشوض٠خ   [ 6 ]. فٟ اٌّظذس  [ 1 ] ( )  

٘ٛ ػٕظش ِشوضٞ ٚاصجهذ اْ وهً ؽٍمهخ ِخزضٌهخ رىهْٛ ِخزضٌهخ ِشوض٠هخ ِهٓ   فاْ  ،      ٚ     ٌىً 

لا رؾزٛٞ ػٍهٝ ِضهبٌٟ غ١هش   ئرا وبٔذ ؽٍمخ شجٗ ا١ٌٚخ )     طؾ١ؼ ػٕذِب رىْٛ  ٠ىْٛ اٌؼىظ، ٌىٓ  0 –إٌّؾ 

.  ( )   ٌىهً       ، ارا وهبْ  [ 10 ]    -ِهٓ اٌهّٕؾ ؽٍمهخ   طفشٞ ِؼذَٚ اٌمٜٛ ( . ٠ٚمبي ٌه  

ؽٍمخ د٠هٛ   ٠مبي ٌ    [ 9 ]، ارا وبٔذ رؾزٛٞ ػٍٝ ِضبٌٟ اػظُ ٚؽ١ذ . فٟ اٌّظذس  [ 2 ]ؽٍمخ ِؾ١ٍخ   ي ٌ  ٠ٚمب

 .   ( ِضبٌٟ فٟ    )   فاْ    ( )   ، ئرا وبْ ٌىً  ٠ّٕٝ ) ٠غشٜ (    –ِٓ إٌّؾ 

 : S F  -اٌؾٍمبد ِٓ إٌّؾ  – 2

 ٟ اٌجشا١٘ٓ :ٔغزًٙ ٘زا اٌجٕذ ثبٌمؼ١خ اٌّغبػذح اٌشئ١غ١خ ف      

 ، فاْ   ِضبٌٟ ا٠ّٓ فٟ   ارا وبْ  :  [ 10 ] 9.0لضيح يساعذج       
 -٘هٛ ِمهبط ِغهطؼ ِهٓ اٌهّٕؾ  ⁄ 

 ∎ ( )   ، ٌىً          ئرا ٚفمؾ ئرا وبْ     

ٚ   ِضهههبٌٟ ا٠ّهههٓ اػظهههُ فهههٟ   ٠ّٕهههٝ . ئرا وبٔهههذ  S F  -ِهههٓ اٌهههّٕؾ ؽٍمهههخ   ٌهههزىٓ  :  9.9لضييييح       

 ِضبٌٟ ِؼذَٚ اٌمٜٛ .  . فاْ  ( )   

   . ٚثّهب اْ  ( )   ، ٌهزٌه فهاْ     ٚ    ِضبٌٟ ا٠ّهٓ اػظهُ فهٟ   ٔفزشع أْ  انثرْاٌ :      

( .  0.8) ؽغهت لؼهخ ِغهبػذح      ثؾ١هش اْ     . ٌهزٌه فأٔهٗ ٠ٛعهذ  S F  -ِهٓ اٌهّٕؾ  رّضً ؽٍمهخ 

ػههذد طههؾ١ؼ ِٛعههت . ثّههب اْ   ؼغ ٌههج       ٔؾظههً ػٍههٝ       ٔؼههشة ؽشفههٟ اٌّؼبدٌههخ ثهه   

،       (   ) ثؾ١هش اْ     ٌٗ ِؼىٛط . ٌزٌه فأهٗ ٠ٛعهذ  (   ) فاْ  ( )     

 ∎ِضبٌٟ ِؼذَٚ اٌمٜٛ   . ٚ٘زا ٠ؼٕٟ ثأْ      ٠إدٞ اٌٝ 

 :    -ٚاٌؾٍمبد ِٓ إٌّؾ  S F  -ِٓ إٌّؾ الاْ ٔمذَ اٌؼلالخ ث١ٓ اٌؾٍمبد       

( ) ؽٍمههخ ، ٚأْ   ٌههزىٓ  :  9.3ُْييح يثر        -ؽٍمههخ ِههٓ اٌههّٕؾ   . فههاْ  ( )   ٌىههً  ( )  

 ٠ّٕٝ . S F  -ِٓ إٌّؾ ؽٍمخ   ئرا ٚفمؾ ئرا وبٔذ    
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   ، ثؾ١ههش اْ  ( )     . ٚ ٔفزههشع  S F  -ِههٓ اٌههّٕؾ ؽٍمههخ   ٔفزههشع أْ  انثرْيياٌ :      

 ( ) ( )    ْ  ثؾ١ش ا  فٟ   ، ٌزٌه ٠ٛعذ ِضبٌٟ ا٠ّٓ اػظُ      . ٚثّب اْ    
 ِمبط ⁄ 

،      ثؾ١هش اْ     ( ٠ٛعهذ  0.8لؼهخ ِغهبػذح ) ، ؽغهت   ػٍٝ اٌؾٍمهخ    -ِغطؼ ِٓ إٌّؾ  ا٠ّٓ

(   )   ( )   ( ) ( )    . ٚ٘ههزا رٕههبلغ . ٌههزٌه فههاْ     ، ٠ههإدٞ اٌههٝ         

 ∎(  [ 10 ]،  3.4ِٓ ) ِجشٕ٘خ . ثش٘بْ اٌؼىظ ٚاػؼ     -ؽٍمخ ِٓ إٌّؾ   ِٕٚٙب ٔؾظً ػٍٝ اْ 

 :    -ؽٍمخ ِٓ إٌّؾ  S F  -ِٓ إٌّؾ الاْ ٔؼطٟ ششؽ اخش ٌىٟ رىْٛ اٌؾٍمخ       

( ) ،  ٠ّٕهٝ    –ؽٍمخ د٠ٛ ِهٓ اٌهّٕؾ   ٌزىٓ  : 9.2يثرُْح         -ؽٍمهخ ِهٓ اٌهّٕؾ   . فهاْ  ( )  

 ٠ّٕٝ . S F  -ِٓ إٌّؾ ؽٍمخ   ئرا ٚفمؾ ئرا وبٔذ    

( )     ٔفزشع أْ  رْاٌ :انث       ؽٍمخ د٠هٛ ِهٓ   . ثّب اْ  ( )   . ٔفزشع ثأْ ( )  

. ٌههزٌه فههاْ       ٌههجؼغ       . ٚ٘ههز ٠ؼٕههٟ اْ   ٘ههٛ أٞ ِضههبٌٟ فههٟ    ٠ّٕههٝ ، ٚاْ     –اٌههّٕؾ 

 ٚؽغههت ).   رّضههً ِضههبٌٟ ا٠ّههٓ فههٟ  ( ) . ٚثٙههزا ثشٕ٘ ههب ثههاْ          ، ٠ههإدٞ اٌههٝ         

 ]،  3.4. ثش٘بْ اٌؼىهظ ٚاػهؼ ِهٓ ) ِجشٕ٘هخ     -ؽٍمخ ِٓ إٌّؾ    ٔؾظً ػٍٝ أْ ( [ 4 ]،  3.4ِجشٕ٘خ 

10 ]   )∎ 

 ∎ؽٍمخ اث١ٍ١خ   ، فاْ  0 –ؽٍمخ ِشوض٠خ ِخزضٌخ ِٓ إٌّؾ   ئرا وبٔذ  : [ 6 ] 9.2لضيح يساعذج       

ئرا ٚفمهؾ ئرا وهبْ وهً ِضهبٌٟ     - ؽٍمخ ِٓ اٌهّٕؾ  . فاْ     -ؽٍمخ ِٓ إٌّؾ   ٌزىٓ  :  9.2لضيح       

 .   -٠ّضً ِمبط ِغؾ ِٓ إٌّؾ   ا٠ّٓ اعبعٟ فٟ 

. ٚٔفزهشع ثهأْ    -٠ّضهً ِمهبط ِغهطؼ ِهٓ اٌهّٕؾ   ٔفزشع أْ وً ِضهبٌٟ ا٠ّهٓ اعبعهٟ فهٟ  انثرْاٌ :      

ٟ ِضهبٌ  ، ثؾ١ش اْ   ٠ىْٛ ِضبٌٟ ا٠ّٓ اعبعٟ فٟ      . ِٓ اٌٛاػؼ ثأْ      ، ثؾ١ش اْ     

ٚ ؽغهت )    -ِمهبط ِغهطؼ ِهٓ اٌهّٕؾ    . ٌزٌه فهاْ    -٠ّضً ِمبط ِٓ إٌّؾ      . ئراً   ا٠ّٓ فٟ 

ؽٍمهخ ِهٓ   . ٚ٘زا ٠ؼٕٟ أْ      ،      ،     ٌجؼغ          ( ،  0.8لؼ١خ ِغبػذح 

 ∎. ثش٘بْ اٌؼىظ ٚاػؼ     -إٌّؾ 

 الاْ ٔؼطٟ اٌزؼش٠ف اٌزبٌٟ :       

٠ّٕٝ ) ٠غشٜ ( ، ارا وبْ وً ِمهبط ا٠ّهٓ  S     F  -ِٓ إٌّؾ ثأٔٙب ؽٍمخ   ٠مبي ٌٍؾٍمخ :  9.7ذعريف       

 .   -) ا٠غش ( ِٕفشد ثغ١ؾ ٠ّضً ِمبط ِغطؼ ِٓ إٌّؾ 

ؽٍمهخ شهجٗ ا١ٌٚهخ ،   ، ِٚؾ١ٍهخ . . فهاْ  0 –ؽٍمخ ِشوض٠خ ِخزضٌخ ِٓ إٌّؾ   ئرا وبٔذ  :  9.8يثرُْح       

 ٠ّٕٝ S     F  -ّٕؾ ِٓ اٌؽٍمخ   ئرا وبٔذ 

( ) ،     ٌهجؼغ     (  )١ٌغهذ ؽٍمهخ شهجٗ ا١ٌٚهخ . فهاْ   ٔفزهشع أْ  انثرْاٌ :           ،

( )     ، فههاْ        . ثّههب اْ  ( ) ٠ؾههٛٞ   فههٟ   فأههٗ ٠ٛعههذ ِضههبٌٟ ا٠ّههٓ اػظههُ   

١ظ اعبعه١بً  ٌه  . ٔفزهشع أْ  اِب ِضبٌٟ ا٠ّٓ اػظُ اعبعٟ  اٚ ِشوجهخ عّهغ ِجبشهش فهٟ   ،  ( )   

. ٚؽغهت )لؼه١خ      ٌهزٌه فهاْ         ٌهجؼغ  ( )   ِشوجخ عّهغ ِجبشهش ، ئراً   فاْ 

( )   . ٚ٘زا ٠ؼٕٟ      ؽٍمخ اث١ٍ١خ . ٠إدٞ اٌٝ   ( فاْ  0.6ِغبػذح  ، ٌزٌه فهاْ  ( )    

 . ٚثّهب أْ   رّضً ِضبٌٟ اعبعٟ فهٟ   . ٚ٘زا رٕبلغ . ٌزٌه فاْ     
ٛ ِمهبط ا٠ّهٓ ِغهطؼ ِهٓ ٘ه ⁄  

، ٚثّهب     (   )،      ثؾ١هش اْ     ( فأهٗ ٠ٛعهذ  0.0. ٚؽغت  ) لؼخ ِغبػذح    -إٌّؾ 

(   ) ٘هههٛ ػٕظهههش ِشوهههضٞ ،   ، فهههاْ  0 –ؽٍمهههخ ِشوض٠هههخ ِخزضٌهههخ ِهههٓ اٌهههّٕؾ   اْ  . ٌهههزٌه فهههاْ       
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(   )   ( ) ؽٍمخ شهجٗ ا١ٌٚهخ   ٚػ١ٍٗ     . ٚ٘زا رٕبلغ ، ٌزٌه فاْ     ، ٠إدٞ اٌٝ    

∎ 

( ) ، ٚأْ  2 –ؽٍمههخ ِشوض٠ههخ ِخزضٌههخ ِههٓ اٌههّٕؾ   ٌهزىٓ   : 9.9يثرُْييح        فههاْ اٌؼجههبساد  ( )  

 .الار١خ ِزىبفئخ 

 .    -ؽٍمخ ِٓ إٌّؾ    - 1      

 ٠ّٕٝ . S   F -ِٓ إٌّؾ ؽٍمخ    - 0      

 ٠ّٕٝ . S     F  -ِٓ إٌّؾ ؽٍمخ    - 3      

  ( :  ٔفزهههههشع أْ 8)  ( 3( اٌجش٘هههههبْ ٚاػهههههؼ . الاْ عهههههٕجش٘ٓ )3)  ( 0)   (8) انثرْييييياٌ :      

 ( ) . ٔلاؽهع اٚلا ثهأْ   فهٟ  ( ) ٠ؾهٛٞ   فأٔٗ ٠ٛعذ ِضبٌٟ ا٠ّٓ اػظُ     . ارا وبٔذ  ( )  

أٞ اْ   ِشوجههخ عّههغ ِجبشههش فههٟ   ، لأههٗ ارا وبٔههذ ػىههظ رٌههه فههأْ   رّضههً ِضههبٌٟ ا٠ّههٓ اعبعههٟ فههٟ   

  ( ٔؾظهً ػٍهٝ أْ  0.8، ٚثطش٠مخ ِشبثٙخ ٌجش٘هبْ ) ِجشٕ٘هخ             ٌجؼغ  ( )   

 . ئراً   ِضبٌٟ ا٠ّٓ اعبعٟ فٟ 
ثؾ١ش اْ      . ٌزٌه فأٗ ٠ٛعذ   رّضً ِمبط ا٠ّٓ ِٕفشد ثغ١ؾ فٟ   ⁄ 

٠هإدٞ       فهاْ  2 –ؽٍمخ ِشوض٠خ ِخزضٌخ ِٓ اٌهّٕؾ   . ثّب اْ     (   )، ٠إدٞ اٌٝ      

(   )  رّضههً ػٕظههش ِشوههضٞ ، اراً   اْ  اٌههٝ (   )، ٠ههإدٞ اٌههٝ       ( ) ٌههزٌه فههاْ  .   

   ِخزهههضي . الاْ ٠غهههت اْ ٔجهههش٘ٓ ػٍهههٝ اْ   ( ) ٚئْ     . ٚ٘هههزا رٕهههبلغ . ٌهههزٌه فهههاْ     

 ( ) ثؾ١هش اْ   فهٟ   . ٔفزشع ػىظ رٌه ، ٌهزٌه فأهٗ ٠ٛعهذ ِضهبٌٟ ا٠ّهٓ اػظهُ  ( )   ٌىً      

    ( )  . ثّهب أهٗ   ِضبٌٟ ا٠ّٓ اعبعهٟ فهٟ   ، ٌزٌه فاْ    
،    -ِغهطؾخ ِهٓ اٌهّٕؾ ِمهبط  ⁄ 

(   )، ٠إدٞ اٌهٝ      ثؾ١ش اْ     فأٗ ٠ٛعذ    ( )   ( ) .     ، ٚ٘هزا ٠ؼٕهٟ     

( )    ٚ٘زا رٕبلغ . ٌزٌه فاْ  ، ٠إدٞ  ( )                  ، ٚثشىً خبص   

 ∎    -إٌّؾ ِٓ ؽٍمخ   .  ٌزٌه فاْ       ، ٠إدٞ اٌٝ          اٌٝ 
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 يهخص انثحث

اٌّمزشؽخ  Water Flow-Like Algorithm  (In short, WFA)شج١ٗ ثزذفك ا١ٌّبٖ  خٛاسص١ِخ رٛظ١ف اٌجؾش ٘زا فٟ رُ          

، خٛاسص١ِخ عذ٠ذح ؽشؽذ رؼزّذ ػٍٝ اٌؼ١ٍّبد Traveling Salesman  Problem (In short, TSP)  ٌّزغٛي ٌّغأٌخ اٌجبئغ ا

ثبػزجبس٘ب  (TSP)الأعبع١خ فٟ اٌز١ٙئخ، رذفك ٚعش٠بْ ا١ٌّبٖ، دِظ اٌزذفك، رجخش ا١ٌّبٖ ٚ٘طٛي الأِطبس ٌؾً ِشىٍخ اٌجبئغ اٌّزغٛي 

(، 80( ِٕطمخ ػّٓ ِشوض ِؾبفظخ اٌذ٠ٛا١ٔخ ٚأخز ث١بٔبد إٌّطمخ ػذد٘ب )62ذ ػٍٝ ). اٌزغبسة أعش٠لبئّخ ػٍٝ ِغأٌخ اٌشعُ اٌج١بٟٔ

 رُ اٌزٟ اٌزغش٠ج١خ أظٙشد إٌزبئظ (.ACSِغ ٔظبَ ِغزؼّشح إٌؾً )( WFA-TSPؽ١ش رّذ ِمبسٔخ ِزٛعؾ ٚلذ ؽغبة )

ثغٌٙٛخ  اٌؾً الأِضً ئٌٝ اٌٛطٛي صُ ِٚٓ أفؼً ؽٍٛلا ً  (TSP)اٌّزغٛي  اٌجبئغ ِغأٌخ اٌّمزشؽخ  ٌؾً(WFA) ػ١ٍٙب أْ  اٌؾظٛي

 .اٌىٍفخ ٚخفؼذ الأداء صادد   (TSP)اٌّزغٛي اٌجبئغ ِغأٌخ اٌّمزشؽخ ٌؾً(WFA)  وفبءح ٚأْ

 .   خٛاسص١ِخ اٌغبس الألشة ،ٔظبَ ِغزؼّشح إًٌّ ،شج١ٗ ثزذفك ا١ٌّبٖ اٌّزغٛي، خٛاسص١ِخ اٌجبئغ ِغأٌخ انكهًاخ انًفراحيح :

 انًمذيح :

، ٟ٘ أؽذٜ اٌّغبئً اٌىلاع١ى١خ فٟ اٌش٠بػ١بد ٚػٍَٛ اٌؾبعٛة ٚاٌزٟ رُ رمذ٠ّٙب ِٕز [1] (TSP)اٌجبئغ اٌّزغٛي  ِغأٌخ         

ثفشع أْ ٌذ٠ه ػذدا ِٓ اٌّذْ ػ١ٍه ص٠بسرٙب، ٌٚذ٠ه ِغبفخ ث١ٓ وً ِذ٠ٕز١ٓ، ٚرش٠ذ اٌّشٚس ثألظش ؽش٠ك ٠ّش فٟ وً  عٕٛاد ػذ٠ذح

ِشر١ٓ ؽ١ش رؼٛد فٟ إٌٙب٠خ اٌٝ اٌّذ٠ٕخ اٌزٟ أطٍمذ ِٕٙب ثبٌفؼً، ٚ ثألظش ؽش٠ك ٚ الً ٘زٖ اٌّذْ ثؾ١ش لا رّش فٟ اٌّذ٠ٕخ رارٙب 

٠زُ  ، (TSP)(. ئْ ِغأٌخ ئ٠غبد ٘ىزا ؽش٠ك رغّٝ ثّغأٌخ اٌجبئغ اٌّزغٛي 8رىٍفخ ٚ صِٓ ٚ لا رزشن أٞ ِذ٠ٕخ دْٚ ص٠بسح اٌشىً )

ٚ٘ٛ ِغّٛػخ ِٓ اٌؾٛاف ِٛصٚٔخ ثبٌّغبفخ ث١ٓ اٌزسٚر١ٓ )اٌّذْ(،  (vertices)اٌزؼج١ش ػٕٗ وشعُ ث١بٟٔ وبًِ ِغ ِغّٛػخ ِٓ اٌمُّ 

ٌٍؼضٛس ػٍٝ ألظش ؽش٠ك ِٓ خلاي ص٠بسح وً ِذ٠ٕخ ثبٌؼجؾ ِشح ٚاؽذح ٚاٌؼٛدح ٌٍّذ٠ٕخ الأط١ٍخ ، ٚٚطفذ ٘زٖ اٌغٌٛخ ثّخطؾ 

 ٌشأط الأخ١ش. (، ؽ١ش أْ اٌشأط الأٚي فٟ ٘زٖ اٌذاسح ٘ٛ ا0اٌشىً )  (Hamilton Circuit)٠ؼشف ثذاسح ٘بٍِزْٛ 

 

 (8اٌشىً )                                    

 

 (0اٌشىً )                       

 

. (Graph Theory)ٌٚطبٌّب أصبسد ٘زٖ اٌّغأٌخ ا٘زّبَ اٌؼذ٠ذ ِٓ اٌجبؽض١ٓ وٛٔٙب رؼزجش ِٓ أؽذٜ أُ٘ اٌّغبئً فٟ ٔظش٠خ اٌج١بْ        

اٌخٛاسص١ِخ ِغزٛؽبح ِٓ ِؾبوبح  ،[2]  (WFA)شج١ٗ ثزذفك ا١ٌّبٖ ص١ِخ عذ٠ذح رؼشف خٛاسص١ِخفٟ ا٢ٚٔخ الأخ١شح، رُ الزشاػ خٛاس

اٌغٍٛن اٌطج١ؼٟ ٌزذفك ا١ٌّبٖ ِٓ اٌّغز٠ٛبد الأػٍٝ اٌٝ الأدٔٝ ػٍٝ عطؼ الأسع، ؽ١ش ٠ّىٓ أْ ٠ٕمغُ اٌزذفك اٌٝ ػذح رذفمبد 
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خ ػٕذ ٚطٌٛٙب اٌٝ ٔفظ اٌّٛلغ ٠ؾىّٙب اٌغبرث١خ ِذفٛػخ ثضخُ فشػ١خ ػٕذِب ٠ّش ثبٌزؼبس٠ظ اٌٛػشح ٚرٕذِظ ٘زٖ اٌزذفمبد اٌفشػ١

ا١ٌّبٖ. عززٛلف اٌزذفمبد فٟ ِٛالغ سوٛد )ِغز٠ٛبد ِٕخفؼخ( أرا وبْ صخُّٙ لا ٠غزط١غ اٌضخُ ؽشد ا١ٌّبٖ ِٓ اٌّٛلغ اٌؾبٌٟ. ٠ّضً 

، رُ  0282زؼبس٠ظ اٌغغشاف١خ. فٟ ػبَ اٌزذفك ػبًِ اٌؾً، اسرفبع اٌزذفك ٠ّضً ٚظ١فخ اٌٙذف ٚ ِغبؽخ اٌؾً ٌٍّشىٍخ رزّضً فٟ اٌ

(، Hybrid Genetic Algorithmؽ١ش أظٙشد إٌزبئظ أْ ٠زفٛق ػٍٝ اٌٙغ١ٓ )اٌخٛاسص١ِخ اٌغ١ٕ١خ()، [3] (WFA)رؾغ١ٓ 

(HGA.) 

 ْذف انثحث :

 (TSP)غ اٌّزغٛي اٌّمزشؽخ ٌّغأٌخ اٌجبئ (WFA)شج١ٗ ثزذفك ا١ٌّبٖ  خٛاسص١ِخ ٠ٙذف ٘زا اٌجؾش ٌٍّغبّ٘خ فٟ دساعخ رٛظ١ف      

ٚرطج١ك اٌذساعخ ػٍٝ ِؾطبد رظش٠ف ١ِبٖ الأِطبس ِٚغبسارٙب ٚ رؾذ٠ذا فٟ ِشوض ِؾبفظخ اٌذ٠ٛا١ٔخ ٚأدٜ رطج١ك اٌخٛاسص١ِخ اٌٝ 

رم١ًٍ ػذد اٌزفشػبد فٟ ِغأٌخ اٌجؾش ِٚٓ صُ اٌٛطٛي اٌٝ اٌؾً الأِضً ث١غش ٚعٌٙٛخ. ؽ١ش أظٙشد إٌزبئظ أْ اٌخٛاسص١ِخ اٌّمزشؽخ 

 ٘ب أفؼً ِٓ ؽشق اٌم١بط اٌّغزخذِخ فٟ خٛاسص١ِخ ِغزؼّشح إٌؾً لأ٠غبد اٌؾً. وبْ أداؤ

 أًْيح انثحث :

ٚأخشْٚ  .Srour Aرشعغ أ١ّ٘خ اٌجؾش فٟ وٛٔٗ ٠غزخذَ فٟ اٌؼذ٠ذ ِٓ اٌّغبئً اٌزطج١م١خ وٛٔٙب اِزذاد ٌذساعبد عبثمخ لذِٙب        

 طج١ؼ١خ ٌزذفك ا١ٌّبٖ. ، ؽ١ش ارخزد اٌؼذ٠ذ ِٓ اٌغٍٛو١بد اٌ[4]( 0284)فٟ ػبَ 

 يٕاد ٔطرق انثحث :

اػزّذد ؽشائك اٌجؾش ػٍٝ الاؽلاع ػٍٝ اٌؼذ٠ذ ِٓ اٌّشاعغ اٌؼ١ٍّخ ٚاٌجؾٛس إٌّشٛسح ٚالاعزفبدح ِٓ ٔششاد الأثؾبس        

بس ٌّشوض ( ٌّؾطبد رظش٠ف ١ِبٖ الأِطGISٚاٌّظبدس اٌجشِغ١خ اٌّفزٛؽخ ِٓ الأٔزشٔذ ثبلإػبفخ ٌؾظٌٕٛب ػٍٝ خشائؾ ِؾذدح ة )

 .0202ِؾبفظخ اٌذ٠ٛا١ٔخ ٌؼبَ 

 : (WFA-TSP)انًُٕرج انرياضي نًسأنح 

 ١ٌىٓ ٌذ٠ٕب اٌّؼط١بد اٌزب١ٌخ :  

 

 : ؽذ ٌزىشاس.   

 : اٌىزٍخ الاثزذائ١خ ٌٍزذفك الأطٍٟ.   

 . : وزٍخ اٌزذفك    

 : اٌغشػخ الاثزذائ١خ ٌٍزذفك الأطٍٟ.   

 . : عشػخ اٌزذفك    

 : اٌضخُ الأعبعٟ.    

 : رذفك اٌؾذ الأػٍٝ ػٍٝ ػذد اٌزذفمبد اٌفشػ١خ اٌزٟ ٠ّىٓ رٕمغُ ̅ 

 ِٓ اٌزذفك.   

 . : ػذد اٌزذفمبد اٌفشػ١خ اٌّزفشػخ ِٓ اٌزذفك    

 : اٌؼذد الإعّبٌٟ ٌزذفمبد ا١ٌّبٖ فٟ اٌزىشاس اٌؾبٌٟ.   

 . : اٌؾً اٌّمبثً ٌٍزذفك    

اٌزٞ ٠ٕمغُ ِٓ    :اٌؾً اٌّمبثً ٌٍزذفك اٌفشػٟ    

 . اٌزذفك 

 . اٌزٞ ٠ٕمغُ ِٓ اٌزذفك   : وزٍخ اٌزذفك اٌفشػٟ     

اٌزٞ ٠ٕمغُ ِٓ   : عشػخ أ١ٔبة اٌزذفك اٌفشػٟ     

 . اٌزذفك 

اٌٝ اٌزذفك اٌفشػٟ   : أخفبع الاسرفبع ِٓ اٌزذفك     

  . 

 اٌغبرث١خ )اٌزؼغ١ً اٌزغبسػٟ(.: رغبسع   

: ػذد اٌزىشاساد اٌّٛطٛفخ ؽزٝ ٠زُ ئصاٌخ اٌزذفك   

 ثبٌىبًِ ػٓ ؽش٠ك اٌزجخش.
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رؼزّذ ٘زٖ اٌخٛاسص١ِخ ػٍٝ اٌؼ١ٍّبد اٌشئ١غ١خ ٌٍز١ٙئخ، رمغ١ُ اٌزذفك ٚأزمبٌٗ، دِظ اٌزذفك، رجخش ا١ٌّبٖ ٚ عمٛؽ الأِطبس ٚوّب           

 ( ؽ١ش ٠زُ رٍخ١ض أفىبس اٌزظ١ُّ ػٍٝ إٌؾٛ اٌزبٌٟ:4فٟ اٌشىً )ِٛػؼ 

 :ذمسيى انرذفك ٔعًهيح انُمم 

( ٚأْ ِٛلؼٗ ٠زُ أٔغبؤٖ ثشىً ػشٛائٟ ِذفٛع WFA. ِٓ اٌّفزشع أْ ٕ٘بن رذفك ١ِبٖ ٚاؽذ فمؾ )ٚثبرغبٖ ٚاؽذ( ٌجذء )8

ٌّٛالغ اٌغذ٠ذح لاعزىشبف ِغبؽخ اٌؾً ٌؾً عذ٠ذح ثضؽُ اٌغٛائً ٚاٌطبلخ اٌىبِٕخ، ؽ١ش أْ اٌزذفك ٠جذأ ثبلأزمبي اٌٝ ا

، [5]( Nearest Neighbor( ،)NNٚأفؼً.  ٠زُ رٌه ثاػطبء ؽٍٛي اثزذائ١خ ثبعزخذاَ ِفَٙٛ خٛاسص١ِخ اٌغبس الألشة )

 .   ٚ     ،    ( ،WFA( ِؼٍّبد )Initializationٚر١ٙئخ )

(، ارا وبْ 3(، اٌشىً ) Flow splitting and movingبد فشػ١خ )( ٠ٕزظ ػٓ أعشاء رمغ١ُ اٌزذفك ٌزذفمWFA. فٟ )0

 ٌذ٠ُٙ لٛح دفغ وبف١خ )صخُ وبفٟ(، ؽ١ش أْ اٌزذفك ِغ اٌضخُ اٌؼٍٛٞ ٠ٌٛذ رذفمبد فشػ١خ أوضش ِٓ اٌزذفك اٌغفٍٟ .

 

 (3اٌشىً )

(، أٞ opt neighbor search-2. اٌؼضٛس ػٍٝ أفؼً ؽً ِغبٚس ٌغ١ّغ اٌزذفمبد اٌفشػ١خ ثبعزخذاَ اعشاء ثؾش عبس )3

ثؼذ رٕف١ز أٚ ر١ٙئخ رذفك ٌغ١ّغ اٌزذفمبد راد اٌغشع اٌغ١ش طفش٠خ  اٌٝ ِٛالغ عذ٠ذح ثبعزخذاَ ٔمً اٌؼ١ٍّخ، ؽ١ش أْ ِٛالغ 

اٌزذفمبد اٌفشػ١خ إٌّمغّخ ِشزمخ ِٓ اٌّٛالغ اٌّغبٚسح ٌٍزذفك الأطٍٟ ٚألا فأٔٗ ٠غزّش وز١بس ثبرغبٖ ٚاؽذ ٔؾٛ ِٛلغ أفؼً 

 ك الأطٍٟ.عبس ٌٍزذف

اٌؼذد الإعّبٌٟ ٌزذفمبد ا١ٌّبٖ فٟ اٌزىشاس   ع١ّغ اٌزذفمبد اٌفشػ١خ، فارا وبْ    ٚعشػخ    . ِٓ ثؼذ ؽغبة وزٍخ 4

. اٌزذفك ِغ صخُ         ٠زؾذد ثضخّٙب ٚفك اٌؼلالخ    اٌّزفشػخ ِٓ اٌزذفك    اٌؾبٌٟ فأْ ػذد اٌزذفمبد اٌفشػ١خ 

فش ٠جمٝ ؽ١ش ٘ٛ ٠ٚؼزجش ؽً ساوذ. ٠ّىٓ أْ ٠ٕمغُ اٌزذفك اٌٝ رذفمبد فشػ١خ فمؾ ػٕذِب ٠زغبٚص صخّٗ اٌضخُ الأعبعٟ ط

 فأٔٗ ٠غزّش وز١بس ثبرغبٖ ٚاؽذ ٔؾٛ ِٛلغ أفؼً عبس ٌٍزذفك الأطٍٟ.       اٌّؾذد ِغجمبً، أِب ارا وبْ    

 ِٕٗ ٠ّىٓ اٌؾظٛي ػ١ٍٙب ٚفك اٌؼلالخ اٌزب١ٌخ: . ػٕذ أٞ رىشاس ػذد اٌزذفمبد اٌفشػ١خ إٌّمغّخ5

      *    *     (
  
 
)+   ̅+                                     ( )  

 ١خ:اٌٝ رذفمبد فشػ١خ فأْ وزٍزٗ الأط١ٍخ ٠زُ رٛص٠ؼٙب ػٍٝ اٌزذفمبد اٌفشػ١خ ٚفك اٌؼلالخ اٌزبٌ  . ػٕذِب ٠ٕمغُ اٌزذفك 6



812 

 

    (
      

∑  
  
   

*                                                 ( )   

 . ٠زُ ؽغبة عشػخ وً رذفك فشػٟ ٚفك اٌؼلالخ اٌزب١ٌخ:    7   

    >
√  

                
         

                         

                               ( )  

  أرا وبْ اٌّمذاس 
فأْ لا ٠ٛعذ رؾغٓ فٟ اٌؾً ػٍٝ اٌّغزٜٛ الأِضً اٌّؾٍٟ ثذْٚ رمغ١ُ أٚ أزمبي            

 ٌٍزذفك  أٞ ٠جمٝ ساوذ. 

 :عًهيح ديج انرذفك 

فأُٔٙ ع١ٕذِغْٛ فٟ رذفك ٚاؽذ ِغ وزٍخ ٚصخُ أوجش، ٚثبٌزبٌٟ فأْ اٌزذفك ٠شزشن . ػٕذِب ٠ٕزمً رذفم١ٓ أٚ أوضش ٌٕفظ اٌّٛلغ 8

٠شزشوبْ فٟ ٔفظ اٌشٟء فأٔٗ ٠زُ رؾذ٠ش اٌّٛلغ ٚاٌزذفك   ٚ   ( . أرا وبْ اٌزذفمبْ  WFAفٟ ٔفظ اٌّٛلغ ِغ الأخش٠ٓ فٟ )

 صُ اٌىزٍخ ٚاٌغشػخ ٚفك اٌؼلالبد الار١خ ػٍٝ اٌزٛاٌٟ:  

                                                                             ( )  

   
         

     
                                                               ( )  

( ِٓ ػذد ػٛاًِ اٌؾً ػٕذِب رإدٞ ػٛاًِ ِزؼذدح اٌٝ ٔفظ ل١ّخ اٌٙذف WFA. ثبعزخذاَ ػ١ٍّخ دِظ اٌزذفك، ٠مًٍ )0

 ٌٚزغٕت ػ١ٍّبد اٌجؾش اٌضائذح.

 : ِعًهيح ذثخير انًيا 

( ٠خؼغ WFAِٓ اٌطج١ؼٟ أْ رزجخش ا١ٌّبٖ ٚرؼٛد اٌٝ الأسع ِٓ خلاي ٘طٛي الأِطبس، ؽ١ش أْ وً رذفك فٟ ) .8

.   اٌغٛٞ وّب أْ اٌزذفك ع١زُ أصاٌزٗ ثبٌىبًِ ثؼذ سلُ رىشاس ِؾذد ٌزجخش ا١ٌّبٖ، ؽ١ش ٠زجخش عضء ِٓ ا١ٌّبٖ فٟ اٌغلاف 

ثّؼٕٝ ٠زُ رم١ًٍ وزً اٌزذفمبد ثٛاعطخ إٌغجخ 
 

 
 ( فٟ وً ِشح ٠ؾذس اٌزجخش.6اٌزؾمك وّب ِٛػؼ فٟ اٌّؼبدٌخ ) 

   (  
 

 
 )                                                               ( )  

 

 ِٓ ششٚؽ اٌزجخش، ٔمَٛ ثأعشاء ػ١ٍّخ اٌزجخش ٌىً رذفك. .0

 : عًهيح انررسية 

 . ػٕذِب  ٠زشاوُ ثخبس اٌّبء اٌٝ ؽغُ ِؼ١ٓ، فأٔٗ ع١ؼ١ذ ٔفغٗ اٌٝ الأسع ػٍٝ شىً أِطبس.8

طبس اٌمغشٞ ( الأطٍٟ ٠زُ رٕف١ز ٔٛػ١ٓ ِٓ ٘طٛي الأِطبس ٌّؾبوبح اٌذٚسح اٌطج١ؼ١خ ١ٌٍّبٖ ّ٘ب ٘طٛي الأWFAِ. فٟ )0

 ٚ٘طٛي الأِطبس إٌّزظُ. 

. ٠زُ رٕف١ز ٘طٛي الأِطبس اٌمغشٞ ػٕذِب ٠زُ أ٠مبف ع١ّغ اٌزذفمبد ثذْٚ عشػبد، رؾذ ٘زٖ اٌظشٚف ٠زُ فشع ع١ّغ 3

اٌزذفمبد رزجخش فٟ اٌغٛ صُ رؼٛد اٌٝ الأسع دْٚ رغ١ش ػذد اٌزذفمبد اٌؾب١ٌخ. ِٚغ رٌه فأْ ِٛالغ ٘زٖ اٌزذفمبد اٌشاعؼخ 

ثشىً ِزٕبعت ِغ اٌزذفمبد ثٕبءً ػٍٝ وزٍزٙب الأط١ٍخ ٚ ثٕفظ    شىً ػشٛائٟ ػٓ رٍه الأط١ٍخ. ٠زُ رٛص٠غ وزٍخ رٕؾشف ث

 ٚفك اٌؼلالخ اٌزب١ٌخ :   اٌغشػخ الاثزذائ١خ. ٚٔز١غخ ٌزٌه، ٠ّىٓ رؾذ٠ذ اٌىزٍخ اٌّؼ١ٕخ ٌٍزذفك 
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    (
  

∑   
 
   

 )                                                                 ( )  

. ٠زُ رٕف١ز ٘طٛي الأِطبس إٌّزظُ ثشىً دٚسٞ لإػبدح ا١ٌّبٖ اٌّزجخشح ِٓ ١ِبٖ الأسع، ؽ١ش أٔٗ فٟ وً رىشاس ٠زُ  رٕف١ز 4

∑   اٌؼ١ٍّخ ِشح ٚاؽذح ٌٍؾظٛي ػٍٝ ا١ٌّبٖ اٌّزجخشح. اٌىزٍخ اٌّزشاوّخ ِٓ اٌّبء اٌّزجخش    
 
اٌزٟ رُ  رؼ١ٕٙب     

 ٌزذفمبد الأسع رؼطٝ ٚفك اٌؼلالبد اٌزب١ٌخ:

    (
  

∑   
 
   

 )    ∑   
 
                                           ( )     

ٛي اٌغذ٠ذح ٌٙب ٔفظ اٌم١ّخ، أرا وبٔذ الإعبثخ ثٕؼُ، .  ثؼذ اعشاء اٞ ٔٛع ِٓ ٘طٛي الأِطبس، ٔزؾمك ِّب أرا  وبٔذ اٌؾ5ٍ

 ( ِٓ ػ١ٍّخ رمغ١ُ اٌزذفك ٚػ١ٍّخ  إٌمً .0ٔمَٛ ثأعشاء  اٌخطٛح )

 ( ٔىشس اٌخطٛاد اٌغبثمخ ؽزٝ رظجؼ ؽبٌخ الأٔٙبءTermination condition.) 

 

 

 (WFA-TSP)( اٌؼ١ٍّبد اٌشئ١غ١خ ي 4اٌشىً )

 :انرجارب ٔ انُرائج  

(، ؽ١ش رزٛفش ِغّٛػخ TSPاٌّمزشػ ثأعشاء اٌؼذ٠ذ ِٓ اٌزغبسة ثبعزخذاَ اٌّؼ١بس اٌم١بعٟ ي ) (WFA-TSP)ُ رم١١ُ اداء ٠ز          

( ِٕطمخ، ؽ١ش 62( ِغّٛػخ ث١بٔبد ٌّشوض ِذ٠ٕخ اٌذ٠ٛا١ٔخ  اٌّإٌفخ ِٓ )88. اٌزغبسة أعش٠ذ ػٍٝ )[6](، TSPLIBث١بٔبد ِٓ )

( 822( دٚساد ٌىً ِٕٙب ِغّٛػخ ث١بٔبد، ِغ )82ة ٚاٌزٟ ٠زُ اٌؾظٛي ػ١ٍٙب ِٓ )أْ اٌزغبسة رم١ظ رىٍفخ اٌؾً ٚٚلذ اٌؾغب

رىشاس ٌىً رشغ١ً ِغزمً، ِطٍٛة ػذد ِٓ اٌزىشاساد ٌٍٛطٛي اٌٝ أفؼً ؽً. اٌؾذ الأدٔٝ ٚاٌّزٛعؾ ٚالأؾشاف اٌّؼ١بسٞ ١ٌزُ 

خذاَ اٌّغبفخ الال١ٍذ٠خ، وّب رُ رؾذ٠ذ ِزٛعؾ اٌزىٍفخ ( دٚساد ِغزمٍخ. ٠زُ ؽغبة اٌّغبفخ ث١ٓ أٞ ِذ٠ٕز١ٓ ثبعز82ؽغبة رىٍفخ اٌؾً ي )

اٌّخزجشح ٠زجغ ٔفظ  (WFA-TSP)، أِب ئػذاداد اٌّؼٍّبد ي  [7]( ACSاٌؾغبث١خ. رّذ ِمبسٔخ إٌزبئظ ِغ ٔظبَ ِغزؼّشح إًٌّ )

 ، ٚوّب ِٛػؼ فٟ اٌغذٚي اٌزبٌٟ: [8]اػذاداد اٌّؼٍّبد فٟ 
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 (8عذٚي )

 ذاداد اٌّؼٍّبد ٘زٖ ؽظٍذ ػٍٝ أفؼً ٔز١غخ. رظٙش اٌزغشثخ اٌغبثمخ أْ ئػ

 

 : (ACS) يمارَح يع  (WFA-TSP)أداء 

، ٌّغّٛػبد اٌج١بٔبد اٌزٟ رزؼّٓ ِشبوً ِغ سلُ إٌّطمخ ِٓ (WFA-TSP)ٚ (ACS)ٕ٘ب ٠زُ رمذ٠ُ ٔزبئظ اٌّمبسٔخ ث١ٓ          

ٚ  (ACS)( ِمبسٔخ ث١ٓ 0ّب ٠ظٙش اٌغذٚي )ؽ١ش عٛدح اٌؾً الأفؼً، ِزٛعؾ ػذد اٌزىشاساد ٚ ٚلذ ؽغبة اٌخٛاسص١ِبد. و

(WFA-TSP ًٚأؾشاف اٌؾً ٌّزٛعؾ اٌم١ُ ثخظٛص اٌؾً الأفؼً. ٠ّض )( ِٓ ؽ١ش دلخ اٌؾً )ثبٌٕغجخ اٌّئ٠ٛخ(WFA-TSP) 

٠إصش ػٍٝ عٍٛن اٌجؾش ػٓ اٌؾً، ؽ١ش ٠غبػذ  رغ١١ش ػذد اٌزذفمبد ثبعزخذاَ رمغ١ُ  (WFA)و١ف١خ ِفَٙٛ اٌغىبْ اٌذ٠ٕب١ِىٟ فٟ 

 ٌزذفك ٚدِغٗ رؼ١١ٓ ؽغُ  ِٕبعت ِٓ اٌغىبْ ػٍٝ ؽٛي ػ١ٍّخ اٌزؾغ١ٓ.ا

 

 
 

 (0عذٚي )
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 ٚرٌه ثض٠بدح ػذد إٌّبؽك.  (ACS)صاد ِمبسٔخ ِغ  (WFA)٠ّٚىٓ ِلاؽظخ أْ رؼم١ذ            

  

 (4شىً )

 

 (5شىً )

 انًسرخهص :

( الأعبع١خ اٌزٟ ِغبٌٙب اٌّمبثً TSPٟ رخزٍف ػٓ خٛاسص١ِخ )، ٚاٌز(WFA-TSP)فٟ ٘زا اٌجؾش لذِٕب خٛاسص١ِخ            

، فٟ  (WFA-TSP)، ِٕبعت ٌٍؾظٛي ػٍٝ ؽً ع١ذ. وزٌه ٠زؼؼ ٌٕب أْ لٛح (WFA-TSP)ٌٍّشىٍخ. ٚلذ أظٙشد اٌذساعخ أْ 

 اظٙبس ٚلذ ؽغبة عش٠غ  ؽ١ش ٠غزخذَ اِىبٔبرٗ ٌؾً اٌّشىٍخ اٌزٟ رزؼٍك ثٛلذ اٌؾغبة.  

، خبطخ رذفك ا١ٌّبٖ ؽ١ش ٠ّىٓ  (WFA-TSP)غ١ٕبد اٌّؾزٍّخ اٌزٟ ٠ّىٓ رمذ٠ّٙب ثخظٛص خٛاسص١ِخ ٕ٘بٌه اٌؼذ٠ذ ِٓ اٌزؾ

 (.  opt( ٚ )4-opt-3رؾغ١ٓ اعشاء ػ١ٍّخ اٌزمغ١ُ ٚإٌمً ثبعزخذاَ اعزشار١غ١بد ثؾش عبس أفؼً ِضً )

 انًهحماخ :

 . 0202-0289( ٌؼبَ GISخ . خبسؽخ رٛػؼ شجىبد ِٚؾطبد ١ِبٖ الأِطبس ٌّشوض ِؾبفظخ اٌذ٠ٛا١ٔخ )شؼج8
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 كيف تفلت من جاذبيةالارض؟
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ن الطبٌعة تمنعك من مغادرة عندما تقفز فً الهواء ستسقط مرتطما بالأرض . هذا لا ٌعنً ان قوانٌ

، لكن قفزتك لم تكن بالقوة الكافٌة لكً تجعلك تهرب  من جاذبٌة الارض . لكً تقوم بذلك علٌك الارض

 سنحسبها هنا.للأرض والتً  escape velocityالإفلات اكبر او تساوي سرعة  ان تقفز بسرعة

 ٌمكن حساب سرعة الإفلات كما ٌلً:

 :هً kinetic energyعندما تقفز فً الهواء ستكون طاقتك الحركٌة 

   
 

 
    

 .هً سرعتك  هً كتلتك و     حٌث ان 

 الأرض لك هً سوف تواجهها نتٌجة لقوة جذب  التً  potential energyاما الطاقة الكامنة 

   
   

 
 

 هو نصف قطر الارض.  كتلة الارض و   هً كتلتك و  حٌث 

اكبر او تساوي    كً تكون قادرا على الهروب من جاذبٌة الارض ٌجب ان تكون طاقتك الحركٌة 

التعبٌر عن ذلك بشكل رٌاضٌاتً  وٌمكن لك الأرضالطاقة الكامنة التً سوف تواجهها نتٌجة قوة جذب 

 بالمتراجحه:

      

 اي ان
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√ او تساوي  اكبر من  وبحل المتراجحه اعلاه ٌجب ان تكون سرعتك 
   

 
  ان أي 

  √
   

 
 

للشًء بالافلات  هً اصغر سرعة تسمح Earth’s escape velocityان سرعة الافلات للأرض  

 مز لها بالرمز وسنر

                                                      √
   

 
                                                 (1) 

 لدٌناالآن 

              
 

   
, 

              , 

             . 

 صل على ان ( نح1بالتعوٌض عن القٌم اعلاه فً المعادلة )

            
 

 
 

                               
  

 
      

 سرعة الافلات لأي جسم كروي عُلمت كتلته ونصف قطره .حساب  أٌضامن اعلاه بإمكاننا 

. حاول الافلات مهما كانت كتلتك ، اي انت اعلاه لا تعتمد على كتلة الجسملاحظ ان صٌغة سرعة الافلا

. تجدر الاشارة الى اننا فً و التً ٌحتاجها الفٌل اٌضا لً نظرٌا نحتاج نفس سرعة الافلات للأرضوبالتا

. بالإضافة الى ذلك اذا وصلت لحساباتنا تجاهلنا تأثٌر مقاومة الهواء التً ستكون مختلفة بٌننا وبٌن الفٌ

فانه علٌك او على نب ذلك . ولتجلاف الجوي للأرض فانك سوف تحترقالى هذه السرعة العالٌة داخل الغ
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، بعدها تسارع الى سرعة الافلات فٌه الغلاف الجوي ضعٌف او معدوم فً مدار ٌكون الفٌل ان تدخلا

 .ً ستحتاجها للهروب من هذا المدارالت

 المصادر

 تمت الاستعانة بمصادر الانترنٌت

 

 

How Can You Escape from Earth's Gravity? 
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2

,       

When you jump in the air, you will hit the ground. This does not mean that the laws 

of nature prevent you from leaving the Earth, but your jump was not strong enough 

to make you escape the Earth's gravity. To do this you have to jump more quickly or 

equal the escape velocity of the Earth, which we will calculate here. 
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