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Abstract. Rényi entropy is an important concept developed by Rényi in information theory. In this 

paper, we study in detail this measure of information in cases multivariate skew Laplace 

distributions then we extend this study to the class of mixture model of multivariate skew Laplace 

distributions.  The upper and lower bounds of Rényi entropy of mixture model are determined. In 

addition, an asymptotic expression for Rényi entropy is given by the approximation. Finally, we 

give a real data example to illustrate the behavior of entropy of the mixture model under 

consideration.  

1.  Introduction  

The  distributions mixture model is an essential thing for a lot of implementations like,  image 

processing,  data mining and density estimation [1-4]. Azzalini et. al. [5] proposed a multivariate 

skew normal distribution. Lin and  Pyne  [6-7] studied some developments of  mixture of skew t 

distributions and skew normal distributions in multivariate case.  the mixture of multivariate skew 

Laplace distributions was introduced by Doǧru et al. [8]. In the entropy theory, Shannon in [9] 

proposed an information measure of a random vector z belong to  as follows  

(z; )                                                                       (1) 

where, p  is a probability density function of z. Shannon measure was generalized by Rényi 

[10] as follows:  

                                                   (2) 

The relation between both measures is shown  by . Also  for any 

 then   [1]. Contreras-Reyes et. al.  in [11] and [3] determined 

the bounds of entropy of mixture of skew normal distribution. Some results of entropy for 

asymmetric exclusion process was introduced by Wood [12]. 

In this work, the mixture of skew Laplace distributions in the multivariate case is considered.  The 

expression of (Shannon, Rényi) entropy of this model is derived.  Also, the bounds of entropy are 

determined.  Finally, a real data example is given.   

2.  Preliminaries  

Multivariate skew Laplace distribution was proposed by Azzalini [13]. A d-random vector   has a 

multivariate skew Laplace distribution denoted by (x  if its probability density 

function is given as follows  

                                             (3) 

mailto:uoday1977@gmail.com
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where,  ,   is a location vector in , Ꝡ is a scale matrix and  is a skewness 

vector. The stochastic representation of x   can be obtained as a mixture of variance 

and mean of multivariate normal distribution and inverse gamma distribution [14] 

                                                                                                            (4) 

where, x ,  and z , the notations  and  represent 

inverse gamma distribution and multivariate normal distributions  respectively. Arslan [14] showed 

that the conditional distribution of x given y will be normal distribution with mean   and 

variance . The joint density function of x and z is 

                                          (5)  

and the conditional density function of z given x is  

                                                                  (6) 

we note clearly that when  then the distribution of skew Laplace can be reduced to the 

symmetric Laplace distribution. The expected and variance of x were derived as [14] 

                                                                                                                      (7) 

                                                                                                           (8)  

The probability density function of mixture model of these distributions denoted by 

(x   is  

                                                                                   (9) 

where, , , , . Let 

 be a set of m latent allocations of densities of observations x. then 

, where  then for each density of  j-th 

component in (9)  is shown as follows  

  ,   where  and . 

Directly, from equations (7-8), we get  

                                                                                              (10) 

                                      (11) 

Lemma 1. [15] The upper bound for any random vector z with zero mean and variance  (not 

necessary normal) is 
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                                                                                                          (12) 

with equality if  .    

Lemma 2.  Let  . Then  

(i)                                                                                      (13) 

(ii)                                                                (14) 

Proof:  Directly,  

 

 

Now, to prove part (ii), if we use  the conditional density function in equation (6) then the 

conditional expectation of  given x can be written as  

                                                                                   (15) 

where,  and . By taking the expectation of above equation, we 

obtain 

 

Therefore,  

  

But  then 

  

Lemma 3. [16] (Multinomial Theorem)  Let   be real numbers. 

Then the equation  

                                                                                  (16) 

is accomplished  where,  

Lemma 4. [16] Let    be real numbers. Then for any positive integer , 

we have  

 

                                         (17) 
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is satisfied. where,   

Lemma 5. [16] Let  and  be real numbers and let  

and . Then,  

                   (18) 

where,   

Proposition 6. Let . Then, for any , the Shannon and Rѐnyi entropies of x are 

                                                                                    (19) 

                                                  (20) 

Proof:  from the equations (1-2), Then the proof is immediate.  

3.  Results and Discussion  

3.1. Rényi Entropy of Multivariate Skew Laplace Distributions  

Proposition 7.  Let   and x . Then   

                                                                                           (21) 

where,    and   

Proof:  from equation (3), we get 

  

Using lemma 2., we obtain  

  

Lemma 8. Let x  . Then   

                                                      (22)                      
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Proof:  Replacing    by ,      by  and using change of variables   in 

equation (3), we have 

                 

where, .  

Corollary 9. If   and x , then Rényi entropy can be written as 

                                                                              (23)                        

Proof : Taking logarithm for both sides of equation (22) and multiplying by , we get  

                                                 (24) 

Proposition 6. gives us the result of this corollary. 

 

3.2. Approximate Rényi Entropy of Mixture Model  

Lemma 10.  Let x . Then  

                                                                                              (25) 

where, 

                                                                                                         (26) 

                             (27) 

                                                                                   (28) 

                                                                                                    (29) 

Proof: By applying lemma 1., then we get on the upper bound. From the probability density 

function of mixture of distributions, we have   

   

But the function   is a concave then from Jensen’s inequality, we get  

  

By using proposition 7. then the proof is finished.    



818 
 

Lemma 11.  Let  x . Then  

                                                                                                        (30) 

where,  

  

                               (31) 

Proof:  

  

By using lemma 5., we obtain  

  

If we take the integration of this inequality, then  

 

     

Again, by taking logarithm  for both sides and multiplying by   of above inequality , we get  

  

  

Lemma 12.  Let x . Then for each positive integers   

 the approximation 

                       (32) 

is accomplished as  , where     

Proof:  

 

  

By using approximation value of factorial in the last equation, we have  
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But  , this gives . Consequently,  

        

But . Then the result of this lemma is accomplished.  

Lemma 13.  The approximation  

                  (33) 

is satisfied as .where,   

,  

Proof:  

                                                   

By applying multinomial theorem on above equation, we obtain 

                                      (34)         

where,  , . By replacing right 

side of equation (34) in equation (32), we get 

  

Therefore,  

  

If we take logarithm for both sides and multiplying by   of the last approximation, then the result 

of proof is hold. 

Lemma 14. Consider x , then the lower bound of Rényi entropy is  

                                                                                                             (35)                   

where,                                                                                                   

Proof:   
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By applying multinomial theorem on above equation, we obtain 

  

Applying generalized HӦlder’s Inequality, we obtain 

           

where,   and . Then  

   

If we choose    ,  then  and , therefore,   

  

If we take the logarithm  for both sides and multiplying by    then the proof is ccompleted.   

Theorem 15.  Let x . Then the approximate form of Renyi entropy of x is   

  

 

        (36) 

Proof: The proof is directed from lemmas 11. and 14., by taking the mean of Renyi entropy bounds.    

Example 1.  Consider x  with the following cases: 

Case (1):  d=1 

m=2,  ,  ,         

m=3 , ,  ,   

m=4, ,  ,       

m=5 , , ,       

Case (2): d=2 

m=2, ,    ,     



821 
 

m=3 , ,  , 

  

m=4 , , 

 ,    .  

m=5 , ,   ,  

. 

Case (3): d=3 

m=2, ,   ,   

m=3 , ,  ,  

      

m=4 , ,  ,  

  

m=5 , ,  , 

 

Table 1. Shannon entropy of  is computed of the cases m = 2,3,4 and 5 in 

one , two and three dimensions. 
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d 
m 

Approximate Shannon entropy 

   Error 

1 2 3.3841 3.7180 3.5511 0.1669 

3 3.1475 3.5316 3.3396 0.1921 

4 2.9356 3.3246 3.1301 0.1945 

5 3.0050 3.4062 3.2056 0.2006 

2 2 5.1119 6.0311 5.5715 0.4596 

3 5.1747 7.1005 6.1376 0.9629 

4 4.9633 6.8127 5.8880 0.9247 

5 4.9650 6.7900 5.8775 0.9125 

3 2 8.8184 9.4704 9.1444 0.3260 

3 8.0156 9.7645 8.8900 0.8744 

4 7.8976 9.4687 8.6831 0.7855 

5 7.8305 9.6221 8.7263 0.8958 

 

 

Figure 1. The horizontal and vertical lines represent the values of  parameter  and Shannon 

entropy of  in example 1. 
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Figure 2.  illustrates the relationship between Rѐnyi entropy of x~  (ξ,Ꝡ,λ,v,ɤ) and  

parameter ω in example 1. 

4.  Conclusions  

Our statistical tools were extended to determine the expressions of bounds of the class of mixture 

model of these distributions. Using such a pair of bounds, the approximate formula of entropy can 

be determined. In fact, there is not an analytical method to find the exact value of the Rényi entropy 

of mixture model of distributions therefore, our approximation is effective and more accurate. We 

have seen through the example given in this article that the error in the values of Rényi entropy by 

approximation was almost acceptable.  
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Abstract: In this paper, we present a generated class of continuous distributions named H-G 

distributions. A new family of this class named generalized gamma - G along with one of its special 

cases, generalized gamma - generalized Gompertz distribution, are discussed. The cumulative 

distribution, probability density, reliability and hazard rate functions are introduced. Furthermore, the 

most vital statistical properties for instance, the  r-th moment, characteristic function, quantile and 

simulated data, Shannon entropy, relative entropy and stress strength are obtained. 

Keywords. Generalized Gamma distribution, Generalized Gompertz distribution, Shannon entropy, 

Relative entropy, Stress strength.  

1. Introduction 

Many procedures have been suggested and considered to generalized families of probability 

distributions based on the extension of the common continuous distributions via using differential 

equations, compounding weighting, adding parameter(s) to the baseline distribution, and so on. These 

generalized families aim to create more and more flexible distributions for modeling different types 

of data. The generalized families were initiated to Mudholkar et al. [1][2][3], Marshall and Olkin [4], 

Gupta et al. [5]. Recently many new generated families can be seen in, among others, Ahmad et al. 

[6], Hamedani et al. [7], Alizadeh et al. [8], Hosseini et al. [9], Korkmaz [10], Jamal et al. [11]. In 

this article, a new generated family of continuous distributions besides one of its special cases are 

presented and proposed. This family is based on composing two cumulative distribution functions 

"say H and G" with each other.  

     Assume that  and  are any baseline cdf and pdf "i.e. cumulative distribution function and 

probability density function respectively" of a continuous random variable . Also assume that 

and  respectively represent the cdf and pdf of any continuous distribution with the 

interval . The overall formula of reliability function for this class named H - G is given by 

 

Corresponding to , the general formulas of cdf and its associated pdf will be 

 

 

2. The remains of this article are prearranged as follows: In section 2, a brief detail about the 

generalized Gamma – G distributions is provided. Sections 3 and 4 respectively address the 

Generalized Gamma – Generalized Gompertz distribution with its essential statistical properties. 

Finally, the conclusions are presented in section 5. 

 

mailto:nadialnoor@gmail.com
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3. Generalized Gamma – G distributions 

Stacy [12] presented the generalized gamma  distribution "sometimes called by his name as 

Stacy distribution" as an elastic family for modeling data in the set of shape and hazard rate function. 

The  distribution includes special sub-models, among others, exponential, gamma, Weibull, and 

Rayleigh. It has been used in a number of research fields like hydrology, engineering, reliability "or 

survival" analysis as well as a statistical model of speech signals [13]. 

     Let  and  that mentioned in  and  be the cdf and pdf of  distribution [14] 

with positive parameters as 

 

 

where  and  are respectively the gamma and incomplete gamma functions. 

     By substituting  and  in  and , the cdf and pdf of new family named generalized 

gamma – G (for short ) distributions will be 

 

 

     It should be noted that we need to find the general expanded formula to  which is 

important for obtaining the basic statistical properties when dealing with some special cases. 

By using  the pdf in  can be rewritten as 

 

 

For  , using  we have 
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Now  become 

 

Then the pdf in (7) can be rewritten with an expanded formula as 

 

where  for and  for  .  

4. Generalized Gamma – Generalized Gompertz distribution  

El-Gohary [15] proposed a new generalization of Gompertz, exponential and generalized exponential 

distributions named as the generalized Gompertz . The main feature of  is a  flexibility that 

may be skewed to both sides "right and left", and the most common distributions are special sub-

models of it [16].  

     Let  and  in  and  be the cdf and pdf of generalized Gompertz [15] with three 

positive parameters  and  given respectively by 

 

 

     According to  the cdf of new distribution named generalized gamma – generalized Gompertz 

(for short ) distribution will be 

 

The pdf of  distribution can be obtained according to  as  



827 
 

 

Now since 

 
Then according to  and , the expansion formula for the pdf of  distribution can be 

obtained by 

 

The  reliability and hazard rate functions can be obtained by 

 

 

 

Figures 1 - 4 show some shapes of  functions with specific choices of its parameters.  

5. Statistical properties of the  distribution 

Here, the most necessary properties of  distribution are defined. 

r-th Moment: The  non-central r-th moment can be gained as follows 
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Let  which it represents the r-th moment 

of  distribution [15] with parameters and  as 

 , then  will be 

 

Thus the  non-central r-th moment is given by  

 

With  extra properties like the mean, variance, coefficient of skewness and coefficient 

of kurtosis can be attained. 

Characteristic Function: The  characteristic function can be found by 
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Quantile Function: The quantile of  random variable is defined as a solution of  

 with respect to  where and  . Therefore it may be 

obtained by solving numerically the following non-linear equation 

 

     A random variable  has  distribution can be simulated by solving numerically the 

following nonlinear equation 

 

where  has the standard uniform distribution. 

Shannon Entropy: The  Shannon entropy can be obtained by 

 . Adopting  the natural logarithm to the pdf in  and using 

 we have 
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Now  Shannon entropy is given by 

 

where and  as in  with  and   respectively. Also we need to obtain the 

following expectations  

and  .  

Now  By using 

 

,  is Binomial coefficients 

and  we have 
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Therefore 

 

For  using the same agreement ,  and      

we have 
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Therefore  will be 

 

Also for  by using and  we get 
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Therefore  will be 

 
Now from  the  Shannon entropy is given by  

 
where 

and  as in 

 and  respectively. 

and  as in  with  and   respectively. 

Relative Entropy: The  relative entropy can be obtained from 

 . Taking the natural logarithm of  in  w.r.t.  

 with parameters  we get 
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Then  relative entropy will be   

 
where 

and  as in  with  and   respectively and the other expectations recall from 

 and  with specified parameters. 

Stress Strength: Let  and  be present the stress strength random variables that independent of each 

other follows respectively  with different parameters, then the stress strength can be 

obtained by 

 
where 

 

     Now in order to find the stress strength we firstly expansion the incomplete gamma function in the 

 according to  as 

 

 

Recall the same steps of getting we can get 
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Then  will be 

 
Based on  the  stress strength can be obtained as 

 

where as in  . 

Conclusions 

Here we present H-G generated class of continuous distributions on the basis of composing two 

cumulative distribution functions. A new family of this class named generalized gamma - G 

distributions along with generalized gamma - generalized Gompertz as a special case are discussed. 

The essential functions "cdf, pdf, reliability and hazard rate" are presented. In addition, the vital 

statistical properties such as r-th moment, characteristic function, quantile function and simulated 

data, Shannon and relative entropies besides stress strength are attained.  
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Figure 1. Plots of the  cumulative distribution for  

some parameter values and the others equal to 1. 
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Figure 2. Plots of the  density for  

some parameter values and the others equal to 1. 

 
Figure 3. Plots of the  reliability function for  

some parameter values and the others equal to 1. 



838 
 

 
Figure 4. Plots of the  hazard rate function for some  

parameter values and the others equal to 1. 

 



839 
 

Properties of two Doubly-Truncated Generalized Distributions 

Salah Hamza Abid 

 

abidsalah@gmail.com 

Hind Husham Jani  

 

hind.mathematic13@gmail.com 

Mathematics department / University of Mustansiriyah / Bagdad- Iraq 

 

Abstract : In this paper, some properties of doubly truncated generalized gamma distribution and 

doubly truncated Generalized Invers Weibull distribution are derived. These properties are the 

reliability and hazard functions, rth raw moments, stress-strength reliability, Shannon entropy and 

relative entropy. 

 Keywords: Doubly truncated Generalized Gamma distribution, Doubly truncated Generalized 

Inverse Weibull distribution, hazard function, characteristic function, Shannon entropy, relative 

entropy, Stress-strength reliability.  

I. Introduction  

   In recent years, many authors have concentrated their consideration on the suggestion of new and 

more flexible probability distributions, established using different techniques to represent a set of 

data. Properties of a distribution are very useful to show the ability of that distribution.  

   The doubly truncated distributions are more realistic to represent phenomena, without losing the 

generality, since the truncated parameters can take any values. 

   In this paper, properties of doubly truncated generalized gamma distribution (DTGG) and Doubly 

truncated Generalized Invers Weibull distribution (DTGIW) are derived. These properties are the rth 

raw moments, stress-strength reliability, Shannon entropy and relative entropy.  

II. The generalized gamma distribution 

   The generalized Gamma distribution GGD is a continuous probability distribution with three 

parameters, Presented by Stacy in 1962. It is contains some of important densities as special cases as 

Exponential, Gamma,   Weibull , half-Normal and lognormal distributions. A lot of literature has 

been written about GGD, some of which will be mentioned below. Khodabin and Ahmadabadi in 

2010 derived some other properties of GGD with Kullback-Leibler discrimination , Akaike and 

Bayesian information criterion. Cordeiro et al. 2011 derived another generalization of Stacy’s GGD 

using exponentiated method, and applied it to life time and survival analysis. Cox and Matheson in 

2014 compared exponentiated Weibull (EW) and matching GG distributions graphically and using 

the Kullback-Leibler distance. They found that the survival functions for the EW and matching GG 

are graphically indistinguishable, and only the hazard functions can sometimes be seen to be slightly 

different. In 2017, Abid and Abdulrazak presented [0,1] truncated Frechet GGD. They derived the 

distribution properties such as reliability function, hazard function, the rth raw moment function, 

Stress-Strength reliability, Shannon and Relative entropies. Barriga in 2018 defined a new extension 

of the GGD based on the generator pioneered by Marshall and Olkin in 1997. It is shown by Kiche et 

al  in 2019 that GGD has three sub-families and its application to the analysis of a survival data has 

also been explored. 

 

The probability density function of the GG variable is, 

                                                               (1) 

And the cumulative distribution function is, 

https://en.wikipedia.org/wiki/Gamma_distribution
https://en.wikipedia.org/wiki/Weibull_distribution
https://en.wikipedia.org/wiki/Half-normal_distribution
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
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Where   denotes the gamma function which defined as , 

and  denotes the lower incomplete gamma function, which is generally can written as  

                                                         (3) 

The upper incomplete gamma function also is,  where,  

 

1 II.1 Essential properties of DTGG  

     We consider here the doubly truncated Generalized Gamma Distribution DTGG  of 

random variable , where the lower and upper limits are a and b respectively, then the probability 

density function (pdf) and the commutative density function (cdf) are respectively, 

                                  (4) 

 

                                     (5) 

Then, the reliability and the hazard functions of  are respectively, 

                                    (6) 

                                                    (7) 

Since,                     (8) 

Then, the rth raw moment of DTGG  distribution is, 

                                                 (9) 

Then, the characteristic function can easily get by using the relation, 

           

https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Incomplete_gamma_function
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2 II.2  Stress-Strength Reliability 

     Inferences about , where  and  are two independent random variables, is very 

common in the reliability literature. For example, if X is the strength of a component which is subject 

to a stress Y, then  is a measure of system performance and arises in the context of mechanical 

reliability of a system. The system fails if and only if at any time the applied stress is greater than its 

strength. Let  and  be the stress and the strength random variables, independent of each other, 

follow respectively  and , then, 

 

                                  

   

 

 

Let   

 

   

By using (3), we get 

 , Then by (8) 

  

So the stress- strength reliability of DTGG is, 
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II.3 Shannon entropy  

The Shannon entropy of a random variable X is a measure of variation of the uncertainty. It is 

defined for a random variable X with values in a finite set X as . So, the 

Shannon entropy of DTGG random variable is, 

   

  

 

  

 

Since,   

Let   ,   then,  

  

  

Since, ,  then, 

     (11) 

And by using (9), we get, 

             (12) 

Then the entropy of DTGG random variable is:- 
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II.4 The relative entropy  

  The relative entropy (or the Kullback–Leibler divergence) is a measure of the difference between 

two probability distributions  and . In applications  typically represents the "true" distribution 

of data, observations, or a precisely calculated theoretical distribution, while  typically represents a 

theory, model, description, or approximation of . Specifically, the Kullback–Leibler divergence of 

 from , denoted , is a measure of the information gained when one revises ones 

beliefs from the prior probability distribution  to the posterior probability distribution . More 

exactly, it is the amount of information that is lost when  is used to approximate , defined  

operationally as the expected extra number of bits required to code samples from  using a code 

optimized for  rather than the code optimized for .  

The relative entropy  for DTGG random variable is,  

 

  

  

  

So,     

  

   

Where,   By using (11) and (12), we get, 

  

  

Then, the relative entropy is, 
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                                        (14) 

III.  The generalized inverse weibull distribution 

   A three parameter generalized inverse Weibull distribution (GIWD) with decreasing and unimodal 

failure rate is introduced and studied by de Gusmao et al in 2011. They provided a comprehensive 

treatment of the mathematical properties of GIWD. The mixture model of two generalized inverse 

Weibull distributions is investigated. They also proposed a location-scale regression model based on 

the log- GIWD for modeling lifetime data. In addition, some diagnostic tools for sensitivity analysis 

is developed. Khan and King in 2014, introduced five parameter transmuted GIWD. They derived 

moments, moment generating function, entropy, mean deviation, Bonferroni and Lorenz curves. 

Maximum likelihood for estimating the model parameters is used and based on the observed 

information matrix is obtained. Elbatal and Muhammed in 2014, presented the Exponentiated GIWD. 

They derived the moment generating function and the rth moment. Expressions for the density, 

moment generating function and rth moment of the order statistics also are obtained. They discussed 

the parameters estimation by maximum likelihood and provide the information matrix. GIW- GIW 

distribution is proposed by Abid et al in 2019 as new distribution. The probability density function, 

cumulative distribution function, reliability and hazard rate functions are introduced. Furthermore, 

they derived most important statistical properties of GIW- GIW distribution such as Shannon 

entropy, relative entropy, stress-strength model. Salem in 2019 studied the Marshall–Olkin GIWD. 

The new distribution is flexible and contains sub-models such as inverse exponential, inverse 

Rayleigh, Weibull, inverse Weibull, Marshall–Olkin inverse Weibull and Fréchet distributions. Some 

properties are obtained. Maximum likelihood, least square estimators, interval estimators, estimators, 

fisher information matrix and asymptotic confidence intervals are described. 

The probability density and cumulative functions of GIWD random variable  with three parameters 

,  and  are respectively given by, 

                                                          (15) 

                                                         (16) 

III.1 Essential properties of DTGIW ,  

The pdf and cdf of DTGIW  random variable are respectively, 

                                                    (17)    
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                                                    (18)  

Also the reliability and hazard functions of DTGIW  distribution are respectively, 

                                                        (19) 

                                              (20) 

So, the rth raw moment is, 

     

  

  

  

  

Let  , then,  

                                                      (21) 

Then, the characteristic function can easily get by using the relation, 

           

III.2  Stress-Strength Reliability 

Suppose 𝑋~ DTGIW  and 𝑌~ DTGIW  with unknown parameters 

, where X and Y are independently distributed, then the stress-stress 

reliability function is, 
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Let  and   ,  then 

  

   

Then the stress-strength reliability function will be, 

           (22) 

 

III.3 Shannon entropy  

   The Shannon entropy of DTGIW  can be found as, 

   

   

Let  , then  
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Since   , then, 

  (23)  

With . 

 Let  then,  

  

  

                       (24) 

Finally, the Shannon entropy will be,  

  

   (25) 

 

III.4 The relative entropy  

The relative entropy  for DTGIW random variable is,  

 , then,  
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By using the same steps for equations (23) and (24) , we get, 

  

  

  

                (26) 

Where  ,    ,   

and   . 

IV- Summary and Conclusion 

   Distributions are used to represent set(s) of data in statistical analysis. The composing of some 

distributions with each other's in some way to generate new distributions more flexible than the 

others to model real data . In this paper, we derived Properties of DTGG and DTGIW distributions, 

since doubly truncated distributions are more realistic to represent phenomena. We provided forms of 

rth raw moment, reliability function, hazard rate function, Shannon entropy function and Relative 

entropy function. This paper deals also with the determination of stress-strength R=p[y<x] when x 

(strength) and y (stress) are two independent DTGG (DTGIW) distribution with different parameters. 
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Abstract :It is well known that the truncated distributions are more matches with reality. Therefore, 

in this paper, some properties of doubly truncated generalized Gompertz distribution and doubly 

truncated Marshal-Olkin extended Uniform distribution are derived. These properties are the 

reliability and hazard functions, rth raw moments, stress-strength reliability, Shannon entropy and 

relative entropy. 
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IV. Introduction  

   It is well known that the Statistical distributions are very salutary in describing and predicting real 

life phenomena. There are many probability distributions  of which some can be fitted more strictly 

to the frequency of the data than others, depending on the characteristics of the phenomenon and of 

the distribution.  

   The doubly truncated distributions are more realistic to represent phenomena, without losing the 

generality, since the truncated parameters can take any values. 

   In this paper, properties of doubly truncated generalized Gompertz distribution (DTGGO) and 

Doubly truncated Marshall-Olkin extended Uniform distribution (DTMOEU) are derived. These 

properties are the rth raw moments, The characteristic function,  stress-strength reliability, Shannon 

entropy and relative entropy. 

V. The generalized Gompertz distribution 

 El-Gohary et al in 2013 introduced the generalized Gompertz distribution (GGO). The main 

advantage of this new distribution is that it has increasing or constant or decreasing or bathtub curve 

failure rate depending upon the shape parameter. This property makes GGD is very useful in survival 

analysis. Some statistical properties are derived and some issues related with parameters estimation 

are discussed.  Khan et al in 2017  introduced the transmuted generalized Gompertz distribution. 

They studied  its statistical properties. Explicit expressions are derived for the quantile, moments, 

moment generating function and entropies. Maximum likelihood estimation is used to estimate the 

model parameters.  De Andrade et al in 2019 presented the  exponentiated generalized extended 

Gompertz distribution. The hazard function of this distribution includes inverted bathtub and bathtub 

shapes. For the new model, several properties are derived and the maximum likelihood estimation is 

discussed. Mazucheli et al in 2019 derived a new distribution from the Gompertz distribution by a 

transformation of the type X = exp(-y) , where Y has the Gompertz distribution. The proposed 

distribution encompasses the behavior of and provides better fits than some well-known lifetime 

distributions. Karamikabir et al in 2019 proposed an extended generalized Gompertz (EGGo) family 

of densities. Certain statistical properties of EGGo family including distribution shapes, hazard 

function, skewness, limit behavior, moments and order statistics are discussed. The flexibility of this 
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family is assessed by its application to real data sets and comparison with other competing 

distributions. The performances of the some estimators are discussed. Boshi et al in 2019 introduced 

generalized Gompertz - generalized Gompertz distribution. The probability density, cumulative 

distribution, reliability and hazard rate functions are derived. The most essential statistical properties 

of this new distribution such as the rth raw moments function, characteristic function, quantiel, 

median, Shannon and relative entropies along with stress strength model are obtained. 

The probability density function of the GGO variable is, 

                                                              (1) 

And the cumulative distribution function is, 

                                                                                               (2) 

II.1 Essential properties of DTGG  

     We consider here the doubly truncated Generalized Gompertz Distribution DTGGO  

of random variable , where the lower and upper limits are a and b respectively, then the probability 

density function (pdf) and the commutative density function (cdf) are respectively, 

 

  

                                                                                  (3)             

  

           (4)  

Then, the reliability and the hazard functions of  are respectively, 

  

          (5)   

  

                   (6)  

 

https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
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The rth moment of  DTGGO  distribution is, 

   

Let   ,  then,  

  

  

Since  ,  then, 

 

 , and then, 

  

  

  

Since,     , then,                       

   

  

                                                                

  

                                        (7) 

 

Then, the characteristic function can easily get by using the relation, 

           



853 
 

II.2  Stress-Strength Reliability 

     Inferences about , where  and  are two independent random variables, is very 

common in the reliability literature. For example, if X is the strength of a component which is subject 

to a stress Y, then  is a measure of system performance and arises in the context of mechanical 

reliability of a system. The system fails if and only if at any time the applied stress is greater than its 

strength. Let  and  be the stress and the strength random variables, independent of each other, 

follow respectively  and , then, 

  

  

 

  

                     

Let   

And  , then,   

         

Since,  and   

 , then, 
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Since     and                              

              then,                            

  

  

                            (8)  
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II.3 Shannon entropy  

The Shannon entropy of a random variable X is a measure of variation of the uncertainty. It is 

defined for a random variable X with values in a finite set X as . So, the 

Shannon entropy of DTGGO random variable is, 

  

 

 

Since,    

                                                             

And    Then, 

 

  =   

                                       

  

And,   

  

  

Since,    
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Then the entropy of DTGGO random variable is, 

  

 

 

 

  

                (9)  

II.4 The relative entropy  

  The relative entropy (or the Kullback–Leibler divergence) is a measure of the difference between 

two probability distributions  and . In applications  typically represents the "true" distribution 

of data, observations, or a precisely calculated theoretical distribution, while  typically represents a 

theory, model, description, or approximation of . Specifically, the Kullback–Leibler divergence of 

 from , denoted , is a measure of the information gained when one revises ones 

beliefs from the prior probability distribution  to the posterior probability distribution . More 

exactly, it is the amount of information that is lost when  is used to approximate , defined 

operationally as the expected extra number of bits required to code samples from  using a code 

optimized for  rather than the code optimized for .  

The relative entropy  for DTGGO random variable is,  
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So,   

   

 

Let   ,  , then, 

 

  

 

Since,   

                                                                  

And, , where 

  

And, 

    

 =  
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Then, the relative entropy is, 
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      (10) 

VI. Marshall-Olkin extended Uniform distribution 

   Jose and  Krishna in 2011 introduced the Marshall-Olkin Extended Uniform (MOEU) distribution. 

MOEU distribution is expressed as a mixture distribution with exponential distribution as mixing 

density. They derived also the limiting distributions of sample maxima and sample minima. Record 

value properties of the new distribution are discussed. Simulation studies are conducted to Estimate 

unknown parameters. The MOEU stress-strength model R is obtained in 2015 by Abid and Hassan, 

where the stress and the strength are independent MOEU distributions with different scale parameters 

and different shape parameters. Different methods to estimate R and MOEU distribution parameters 

are studied, maximum likelihood estimator, method of moments estimator, percentiles estimator, 

least squares estimator, weighted least squares estimator, L-moment estimator and regression 

estimator. An empirical study was conducted to support the theoretical aspect. In 2015 Abid and 

Hassan introduced the Beta Marshall-Olkin extended uniform (BMOEU) distribution. The rth 

moment, , the cumulative distribution function, the reliability function and the hazard rate function is 

obtained for the new distribution. The BMOEU strength-stress model with different eight parameters 

will be derived here.  In reliability theory, a combination of two distributions failure rate model for 

reliability studies is paid much attention. In 2015 also Abid and Hassan derived the failure rate model 

of  MOEU(𝛼,𝜃) and every one of MOEU(𝑎,𝑏), MOEU(𝑎,𝜃), Uniform(𝜃), truncated exponential 

(𝜆,𝜃), truncated Weibull(𝜆,𝑘,𝜃), truncated Frechet (𝑎,𝑏,𝜃), truncated Rayleigh (𝜎2,𝜃), doubly 

truncated Cauchy(𝑎,𝑏,𝜃)and doubly truncated Gumbel (𝑎,𝑏,𝜃) distributions. 

 

The probability density and cumulative functions of MOEU random variable are respectively given 

by, 

                                          (11) 

      (12) 

 

III.1 Essential properties of DTMOEU ,  

The pdf and cdf of DTGIW random variable are respectively, 

  

 , Where,     (13)  

  

      (14) 

 

Also the reliability and hazard functions are respectively, 

 

      (15) 

 



860 
 

  

     (16) 

So, the rth raw moment is, 

  

  

Suppose   , then, 

  

   

Since,   

Then,   , where, 

       (17)  

Then, the characteristic function can easily get by using the relation, 

          

III.2  Stress-Strength Reliability 

Suppose 𝑋~ DTMOEU  and 𝑌~ DTMOEU  with unknown parameters 

, where X and Y are independently distributed, then the stress-stress reliability 

function is, 

  

   ,    

    ,   

  

Let    
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Let,  

Since  where c and d are constant, then, 

   

Suppose   

Then and , then,  

   

  

   

                                                                                         

Since    and   ,  then, 

=

, then 

 

   (18) 
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III.3 Shannon entropy  

   The Shannon entropy of DTMOEU random variable can be found as, 

   

Suppose  Then   

   

Let  

Then  And  

 ,  

, Since    , then the Shannon entropy is, 

       (19) 

 

III.4 The relative entropy  

The relative entropy  for DTGIW random variable is,  

 , then,  

  

   

Suppose  And  

Then  

Suppose  
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Then  

And  

Then  

Since  

  

Then, 

   

                                                      (20) 

 

IV- Summary and Conclusion 

   Distributions are used to represent set(s) of data in statistical analysis. The composing of some 

distributions with each other's in some way to generate new distributions more flexible than the 

others to model real data . In this paper, we derived Properties of DTGGO and DTMOEU 

distributions, since doubly truncated distributions are more realistic to represent phenomena. We 

provided forms of rth raw moment, reliability function, hazard rate function, Shannon entropy 

function and Relative entropy function. This paper deals also with the determination of stress-

strength R=p[y<x] when x (strength) and y (stress) are two independent DTGGO (DTMOEU) 

distribution with different parameters. 
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Abstract: In this paper, a new compound distribution named Rayleigh Rayleigh (RaRa) is presented. 

Several structural statistical properties of new distribution containing explicit expressions for the r-th 

moments, characteristic function, quantile function, order statistics, Shannon and relative entropies, 

besides stress strength reliability were considered and studied. The unknown parameters of RaRa 

distribution have been estimated under the maximum likelihood estimation method. Moreover, the 

RaRa distribution is applied upon a simulation study and real data set in order to evaluate its utility 

and flexibility. 

Keywords. Rayleigh distribution, Compound distribution, Statistical properties, Shannon and relative 

entropies, Stress strength.  

6. Introduction 

Practically, it is observed that most common distributions are not sufficiently flexible to 

accommodate various phenomena of nature. For this purpose, researchers have focused on the 

expansion of these distributions in order to create a more and more realistic and flexible model for 

modeling data. The generalized families have been established by Mudholkar et al. [1], Marshall and 

Olkin [2], and Gupta et al. [3]. Newly, a number of new-generation families can be found in, for 

example, Ristic and Balakrishnan [4], Alzaatreh et al. [5], Nadarajah et al. [6], Tahir et al. [7], 

Ahmad et al. [8] and Al-Noor et al. [9].  

     Among probability distributions, the Rayleigh model is one of the most commonly used 

distributions. The Rayleigh distribution introduced by Rayleigh and it has appeared as a special case 

of the Weibull distribution. It plays a key role in modeling and analyzing life-time data such as 

project effort loading modeling, survival and reliability analysis, theory of communication, physical 

sciences, technology, diagnostic imaging, applied statistics and clinical research. With regard to this 

importance and the desire to give greater flexibility to this distribution, several researchers have 

developed extensive extensions to Rayleigh distribution for example, among others, Kundu and 

Raqab [10],   Voda [11], Merovci [12][13], Merovci and Elbatal [14], Ateeq et al. [15]. In this paper, 

a new generation family of continuous distributions based on Rayleigh distribution is presented and 

suggested. This family is built on inspired by the composing two cumulative distribution functions 

together, say H and G, as follows.  

     Assume that  and  be any continuous baseline cumulative distribution and probability 

density functions (cdf and pdf) of a random variable . Also assume respectively that and  

be the cdf and pdf of any continuous distribution. The general formula of reliability function 

for this class named H - G is given by 

 

The general formulas of cdf and its associated pdf are 
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     Based on the above general formulas, a new family named Rayleigh–G distributions along with 

one of its special cases "sub-model" named Rayleigh– Rayleigh distribution are proposed and 

offered. The remains of this article are established as follows: In section 2, a brief detail about the 

Rayleigh – G distributions is provided. Sections 3, 4 and 5 respectively address the new Rayleigh – 

Rayleigh distribution with its structural statistical properties and the maximum likelihood estimation 

of its parameters. Sections 6 address the numerical illustration via a simulation study and a real data 

set application. Finally, the conclusions are presented in section 7. 

7. Rayleigh – G distributions 

Let  and  that mentioned in  and  be the cdf and pdf of Rayleigh distribution [14] 

with positive scale parameter as 

 

 

By substituting  and  in  and , the cdf and pdf of new family named Rayleigh – G (for 

short ) distributions will be 

 

 

The pdf in  can be rewritten as an expanded formula that is relevant for obtaining the moments as 

one of the basic statistical properties when dealing with some particular cases. Thus, via using 

 we get 

 

and then 

 

For  , using  we have 

 

Now the above formula of  will be 
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Then the expansion formula for the pdf in  will be  

 

where  for and  for  .  

8. Rayleigh – Rayleigh distribution  

Suppose that  and  in  and  be the cdf and pdf of Ra with positive parameter  

given respectively [14] as 

 

 

The cdf and pdf of new distribution named Rayleigh – Rayleigh (for short ) can be found 

according to  and as 

 

 

The expansion formula of  density function can be found according to  as 

 

The  reliability and hazard rate functions can be found as 

 

 
Figures 1 - 2 show the shapes of the cdf and pdf of  distribution under a variety of selected 

values of parameters.  
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Figure 1. plot of   cdf under a variety values of parameters 

 
Figure 2. plot of   pdf under a variety values of parameters 

 

9. Statistical properties of the  distribution 

In this section, the most necessary statistical properties of the  distribution are given 

respectively as 

4.1 The r-th moment: The r-th moment of distribution can be obtained as follows 

Firstly recall  in  where have two cases  and  via 

using  

 

 
where 
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Now   for  will be 

 

and   for  will be 

 

The  can be rewritten as 

 

where 

 
Now the r-th moment of distribution can be obtained as  
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 where  represents the r-th moment of  distribution with 

parameter  i.e. .  

Thus the  will be 

 

where  as in  and  is the gamma function. 

Additional properties of  distribution for instance the mean, variance, coefficients of kurtosis 

and skewness can be found with specific value of   . 

4.2 The characteristic function: The characteristic function of  distribution can be found by 

 

where  as in  and  is the gamma function. 

4.3 The quantile function: The quantile function of  random variable is defined as a solution 

of   w.r.t.  ; and  . Therefore it can be found via 

using  as  

 
The median of  random variable can be found via setting   . A random variable  has 

the  distribution can be simulated by  

 
where  has the standard uniform distribution. 

4.4 Order statistics: Consider  as a random sample of size  taken independently from 

 distribution. Let  be the corresponding order statistics. Then the pdf of 

can be found via the following standard formula statistics 

 

and then based on  and  we get 



871 
 

 
The joint pdf of order statistics can be found via the following standard formula statistics 

 

and then 

 

4.5 Shannon Entropy: The  Shannon entropy can be found 

via  . Taking the natural logarithm of  we get 

 

Now  is given by 

 

Now for recall  we get 
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Let  and   then 

 

Since   and via using  we get 

 so 

 

For  using  and  we get 

 

 Then  

 

where as in  with  . 

For  using the above formula of as well as using 

,  

,  is Binomial coefficients, 

and   we get 
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Then 

  

where as in  with  . 

For   using and  

we get 

 

 

Then 

 

where as in  with  and  for  

with  and  . 

Now from  the  Shannon entropy can be found by 
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where 

 as in 

,  respectively and  as in  with .  

4.6 The Relative Entropy: The  relative entropy can be found via 

 . Taking the natural logarithm of the  in 

 w.r.t.   with parameters  we get 

 

Then  relative entropy will be  

 

where 

  as in  with and the extra expectations respectively as in ,  with 

indicated parameters. 

4.7 The stress strength: Let  be the stress and  be the strength of  independent random 

variables with different parameters, then the stress strength can be found by 

 where  

. Using  ,  can rewritten as 
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For using  and follows the previous similar steps of 

getting  we get 

 

 

Then 

 
 

The  stress strength can be found based on as 

 

where as in  with  and  for 

 with  and  . 

5 Estimation of Ra-Ra parameters  

The method of maximum likelihood estimation is considered here to estimate the parameters of 

 distribution with complete sample. Consider a complete  random sample, say 

, with parameter vector . The natural logarithm likelihood function  in 

relation to  is 
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The maximum likelihood estimates (MLEs) of two parameters can be found via solving the 

nonlinear system of natural logarithm likelihood equations through 

iterative numerical techniques. 

6 Numerical illustrations 

Numerical illustrations is presented here to exhibit the abilities of  distribution via 

simulation study and application with real data set.  

6.1 Simulation study 

In this subsection a simulation study is carried out to exhibit the performances of the MLEs of 

 distribution. The steps of process are as follows 

1. Generate an i.i.d. random samples follow  distribution. The number of replicated samples 

was made 1000 times each with sizes  and  . 

2. Select the initial "true" values of parameters to be as in Tables (1-3) with  

 and  . 

3. Calculate Bias and RMSE "root mean squared error" where 

 and  

4. Repeat step 3 for other parameter   . 

The empirical results are shown in Tables (1-3). It clearly appears that RMSE values increase as the 

values of the parameters increasing and the RMSE values decrease as the sample size increases. 

 

Table 1. The Bias and RMSE of the Ra-Ra parameters estimation using MLE with  . 

n Par. Initial Bias RMSE Initial Bias RMSE 

25  1 0.1164 0.3277 0.5 0.0758 0.2054 

 3 1.1336 2.9564 1 0.2784 0.7177 

50  1 0.0586 0.2066 0.5 0.0379 0.1282 

 3 0.4818 1.4252 1 0.1218 0.3766 

100  1 0.0288 0.1341 0.5 0.0182 0.0817 

 3 0.2336 0.8214 1 0.0604 0.2261 

200  1 0.0133 0.0929 0.5 0.0084 0.0562 

 3 0.1040 0.5224 1 0.0266 0.1460 

 

Table 2. The Bias and RMSE of the Ra-Ra parameters estimation using MLE with  . 

n Par. Initial Bias RMSE Initial Bias RMSE 

25  3 0.4593 1.2391 1 0.1960 0.5064 

 1 0.2812 0.7206 0.5 0.1200 0.3059 

50  3 0.2300 0.7751 1 0.0958 0.3084 

 1 0.1243 0.3821 0.5 0.0530 0.1679 

100  3 0.1094 0.4899 1 0.0449 0.1924 

 1 0.0607 0.2265 0.5 0.0263 0.1016 

200  3 0.0504 0.3388 1 0.0209 0.1317 

 1 0.0268 0.1469 0.5 0.0116 0.0663 

 



877 
 

Table 3. The Bias and RMSE of the Ra-Ra parameters estimation using MLE with  . 

n Par. Initial Bias RMSE Initial Bias RMSE Initial Bias RMSE 

25  0.5 0.0975 0.2529 1 0.1559 0.4173 3 0.3479 0.9802 

 0.5 0.1193 0.3041 1 0.2875 0.7309 3 1.1461 2.9769 

50  0.5 0.0480 0.1546 1 0.0771 0.2594 3 0.1769 0.6250 

 0.5 0.0532 0.1684 1 0.1251 0.3843 3 0.4899 1.4447 

100  0.5 0.0224 0.0963 1 0.0362 0.1639 3 0.0847 0.3939 

 0.5 0.0263 0.1019 1 0.0603 0.2268 3 0.2268 0.8005 

200  0.5 0.0104 0.0662 1 0.0167 0.1128 3 0.0387 0.2779 

 0.5 0.0116 0.0666 1 0.0267 0.1467 3 0.1018 0.5208 

 

6.2 Real data application 

In this subsection, the application of real data set is analyzed to verify the flexibility of the proposed 

family. The  distribution has been compared with four distributions "Gamma Rayleigh  

(GaRa), Marshal Olkin Rayleigh (MORa), Truncated-Exponential Skew Symmetric Rayleigh 

(TESRa), and Rayleigh (Ra) distributions. For more details about the compared distributions see 

[2][4][6]. The R software has been used to compute the analytical measures "negative log-likelihood 

(NLL), Akaike Information Criteria (AIC), Consistent Akaike Information Criteria (CAIC), Bayesian 

Information Criteria (BIC), Hanan and Quinn Information Criteria (HQIC)", and values of 

parameters estimation via MLE method.  

2.1.1 The data set taken from Mathers et al. [16] representing the crude mortality rate (CMR) 

among people who inject drugs. The data set consist of the following observations  

2.01, 6.32, 3.52, 2.15, 5.42, 2.04, 2.77, 2.26, 1.95, 1.00, 2.45, 0.74, 0.98, 1.27, 2.77, 3.68, 1.18, 1.09,  

1.60, 0.57, 3.33, 0.91, 7.14, 2.08, 3.85, 1.99, 7.76, 2.52, 1.57, 4.67, 4.22, 1.92, 1.59, 4.08, 2.02, 0.84,  

6.85, 2.18, 2.04, 1.05, 2.91, 1.37, 2.43, 2.28, 3.74, 1.30, 1.59, 1.83, 3.85, 6.30, 4.83, 0.50, 3.40, 2.33,  

4.25, 3.49, 2.12, 0.83, 0.54, 3.23, 4.50, 0.71, 0.48, 2.30, 7.73. 

The fitting results for each of the fitted distributions are shown in Table 4.  

 

Table 4. Results of fitting real data set. 

Distribution NLL AIC CAIC BIC HQIC MLE 

RaRa 118.4921 240.9842 241.1777 245.333 242.7000 
0.2526222 

 0.0383351 

GaRa 120.3703 244.7406 244.9342 249.0894 246.4565 
 2.2483838 

 0.0532035 

MORa 119.0476 242.0952 242.2888 246.444 243.8111 
 0.2742291 

 0.0920414 

TESRa 119.6947 243.3893 243.5829 247.7381 245.1052 
 2.5100785 

 0.0985120 

Ra 123.6520 249.3039 249.3674 251.4783 250.1618  0.1864005 

 

From Table 4 the newly proposed  distribution displays a precise good representation as it 

has the lowest values for the analytical measures NLL, AIC, CAIC, BIC, and HQIC. Furthermore, 

Figures 3 and 4 present respectively the histogram plot of the data set with the other compared 

distributions and the corresponding empirical cdf plot. The fitted of  density is closer to the 

empirical histogram than the fits of other compared distributions. 
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Figure 3. Histogram plot of the dataset with other compared probability distributions 

 
Figure 4. Empirical cdf of the dataset with other compared probability distributions 

7. Conclusions  

In this article, a new extended family to the Rayleigh distribution built on composing two cumulative 

distribution functions (cdfs) is adopted. This adoption leads to a new family of continuous 

distributions, named the Rayleigh - G distributions. General formulas for the basic functions of the 

new family are investigated. A special case "sub-model" of the new family, named Rayleigh - 

Rayleigh distribution is considered. The most essential statistical properties of the new distribution 

are investigated. There is a certain advantage of using the proposed distribution like its cdf has a 

closed-form. The parameters estimation via the maximum likelihood method is discussed. Numerical 

illustrations via simulation study and application with real data set are conducted. Through the 

simulation study, the proficiency and consistency of the maximum likelihood estimators (MLEs) of 

the proposed distribution are illustrated. In the practical application, the real data set taken from 

Mathers et al. [16] representing the crude mortality rate (CMR) among people who inject drugs. The 

proposed distribution "Rayleigh – Rayleigh" reveals better fits "more flexibility" to this real data set 

than the other compared distributions. This flexibility enables using Rayleigh – Rayleigh distribution 

in various application areas.  
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Abstract: Tuberculosis (TB) is one of the most common infectious diseases worldwide and continues 

to be a major public health problem for low and middle-income countries. Undoubtedly, Lack of 

knowledge about tuberculosis among health care and education workers, as well as if knowledge and 

practices of tuberculosis among students were generally insufficient causes an increased risk of 

contracting the disease.       

Tuberculosis (TB) is a chronic communicable bacterial disease caused by Mycobacterium 

tuberculosis. The Latest World Health Organization (WHO) Report shows that there were 9.0 Million 

new TB cases and 1.5 Million tuberculosis deaths. The Transmission of the TB disease by 

Mycobacterium tuberculosis (a bacterium of a group that includes the causative agents of 

tuberculosis). takes place by air in the form of sneeze, talk, cough, spit, etc.[1,9,11,12,13] 

This applied study attempt to identify, assess and analyze teachers' knowledge about tuberculosis in 

primary schools. A descriptive design, cross-sectional study was carried out in order to achieve the 

earlier stated objectives of this study by find out the relationship between teachers' knowledge and 

social demographic data (sex, age, academic achievement, ….). 

       The present study lasted for four months by prepared a questionnaires to assess the level of 

teachers' knowledge, and these questionnaire contains many themes, each theme contained a number 

of questions to evaluate and analyze teachers ’knowledge of tuberculosis by answering a set of 

questions (as a variables); (mode of transmission, symptoms and signs, diagnostic features of  TB, 

duration of treatment, prevention methods, risk of developing tuberculosis).The research hypothesis 

also states that (mycobacterium tuberculosis factor) has a direct impact on TB infection, and to 

achieve this hypothesis, a questionnaire was distributed to a sample with a size of (58) teachers and 

the method of Multiple Logistic Regression was used for statistical treatment. Finally, the research 

concluded a set of results and conclusions included in tables by comparing Likelihood-ratio chi-

square statistics and classification table of the observed versus predicted responses.  

Keywords: Tuberculosis (TB); Assessment teachers' knowledge; Statistical analysis, Describing 

Demographic Characteristics, Logistic Regression 

1. Introduction 

In recent years, some models of modern statistical applications have increased in the analysis of 

categorical data, especially in the medical, social, cognitive and other fields, and logistic regression 

analysis is one of the most important statistical models used in describing and analyzing data for 

these phenomena.    

The importance of using multiple logistic regression has increased because it is concerned with 

analyzing data when the dependent variable is a nominal scale and includes more than two 

mailto:w.s.hasanain@uomustansiriyah.edu.iq
mailto:w_a_fairness@yahoo.com
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categories[2,3,5,6,8,10,14], and it depends on choosing one of the categories of the dependent variable as a 

reference class and then a binary regression analysis is done by comparing this reference class with 

other categories. 

  Multiple logistic regression can be represented as: 

  

  Using the logit transformation, we now have 

 

 

The logistic function curve as in (figure1).  

 

 

                                                 Figure 1. Graphing the logistic function curve[4,7] 

2. Design of the Study 

A descriptive design, cross-sectional study was carried out in order to achieve the earlier stated 

objectives of this study, the present study is started for the period on (4 December 2018 to 3 April 

2019). The study was carried out to determine the assessment of teacher's knowledge about 

tuberculosis in balad city as a main objective in this study. 

3. Administrative Arrangement 

In order to initiate this study and collecting the data, the researcher obtained the necessary official 

approvals. addition to these approvals, the researcher obtained the agreement from participants 

before distribution of the questionnaire. 

4. Setting of the Study 

The current study was conducted on the teachers who are working at the schools in Balad City. 

5. Sample of the Study 

The population in this study is the entire cohort of teachers who are working at schools in Balad. The 

target population of this study was the teachers who are working in Balad city,(58) teachers. 

5.1. Inclusion Criteria 
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1- All participating teachers working at schools in Balad city. 

2- Both sexes (male and female). 

3- Those who are voluntary participated. 

4- Those who are working at schools and are engaged in teachers tasks and responsibilities. 

5.2  Exclusion criteria 

 1. Those are not willing to participate in the Study. 

 2. Respondent did not fill the questionnaire completely. 

6. Instrument of the study    

A questionnaire was designed by the researcher through adoption and modification of the scales that 

contribute in achieving the objectives of this study. The researcher was developing the instrument 

of the study depending on the followings:  

1. Extensive review of available literature.  

2. The validity of the questionnaire was determined through a panel of experts (6 experts).   The 

questionnaire was appropriately designed and considered valid after taking into consideration their 

suggestion and after getting all the comments and recommendation in attention.           

     The questionnaire of the study is composed of two parts which are distributed as follows: 

6.1.  Part 1: socio-demographic information 

1.  Sex         

1.1.  Male                     

1.2.  Female      

2.  Age         

2.1.  (30 - 39)                 

2.2.  (40 - 49)            

2.3.  (50 and above) 

3.  Marital status:     

3.1.  Unmarried              

3.2.  Married             

3.3.  Divorced         

4.  Academic achievement:              

4.1.  Graduated teacher's house            

4.2.  Graduate Institute:             

4.3.  College graduate / Bachelor               

 

6.2.   Part 2: Assessment of teachers' knowledge about tuberculosis at primary school  

5.  Tuberculosis is …:               

5. 1  Communicable bacterial disease                                                            

5.2.  Disease due to smoking and alcohol               

5.3.  Hereditary disease                                                        

6.  Cause of TB:         

6.1.  Cold wind         
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6.2.  Bacteria         

6.3.  Smoking                   

6.4.  Poor hygiene:                      

7. Mode of transmission:                      

7.1.  Through coughing droplet          

7.2.  Though sharing dish               

7.3.  Through shaking hands                                    

8.  Signs and symptom:             

8.1. Cough for 2 weeks or above          

8.2.  Weight loss                        

8.3.  On-going fatigue                        

8.4.  Persistent fever                

9.  diagnostic features of TB (Detection of Tuberculosis): 

9.1.  Sputum test                 

9.2.  Blood test                    

9.3.  Chest X-ray                                           

9.4.  Based on sign and symptom        

9.5. Mantoux test (a test for immunity to tuberculosis using intradermal injection of tuberculin)    

10.  Duration of treatment:           

10.1.  (4-6) months            

10.2.  (6-8) months:                                 

10.3.  (8-10) months             

10.4.  (10-12) months                                                    

11.  Prevention methods:            

11.1.  Cover mouth when coughing/sneezing                

11.2.  Washing hands            

11.3.  Avoiding handshakes       

11.4.  Isolating TB patients               

11.5.  Vaccination                  

11.6.  Sufficient ventilation            

12.  Risk of Developing Tuberculosis:          

12.1.  Elderly                          

12.2.  Family and person in close contact to patient             

12.3.  School Children                                   

12.4.  Smokers 

7. Pilot study  

After review of the questionnaire by experts and its approval, a pilot study was carried out before 

starting the actual data collection on a purposive sample of teachers (N= 6) from both genders at 

schools in Balad  to achieve the following aims.  

1. To determine the reliability of the questionnaires. 

2. To estimate the average time required for the data collection of each respondent. 

3. The clarity of questions items 
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      The results of pilot study display that 

1. The items of the questionnaire were clear and understood. 

2. The time required for answering the questionnaire range from (10-15 minutes). 

8. Reliability of Questionnaire  

In order to determining the reliability of the present study's instrument, Statistical Package for Social 

Science Program (IBM SPSS) version 24.0 was used for the purpose of reliability' determination.       

     The Cronbach's Alpha (Alpha Correlation Coefficient) was computed in order to determine the 

internal consistency of the instrument (table 1). 
 

Table 1. Reliability Analysis of the Scale (n= 6) 

Scale Cronbach's Alpha 

Teachers knowledge 0.73 

9. Data Collection 

The data were collected for the present study through the utilization of the self-administrative 

questionnaire, for all subjects who were included in the study sample. The researcher distributed the 

questionnaire for teachers after taking their willing to participate in this study. 

11. Descriptive Statistical Data Analysis 

After the collection of data, they have been coded and analyzed by the application of statistical 

procedures and by using (IBM SPSS) program to analyse and assess the results of the study.   

       The method of analysis used was descriptive statistical. This analysis was performed through 

computation (Frequencies (F)), and (Percentages (%)), as well as the use of multiple  logistic  

regression analysis for variables. 

12.  Practical study 

12.1  study samples by demographic characteristics 

In this section, a practical study has been done to assess the result. After collecting data and relying 

on the results of the questionnaire, which was distributed to more than one teacher, and after 

excluding the non-typical answers and conforming to the fundamental rules in answering the 

questionnaire, the results of 58 questionnaires that represent the sample size in questions were fixed. 
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Table 2. Distribution of the study samples by demographic characteristics 

Demographic data groups     Study  F % 

 

Cause of TB  

  

Cold wind 12 20.7 

Bacteria 29 50.0 

Smoking and alcohol 2 3.4 

Poor hygiene 

 

15 25.9 

Sex Male 16 27.6 

Female 

 

42 72.4 

 

Age 

30 – 39 11 19.0 

40 – 49 42 72.4 

50 and above 

 

5 8.6 

 

Academic achievement 

Graduated  teachers house 8 13.8 

Graduated Institute 32 55.2 

College graduate / Bachelor 

 

18 31.0 

 

Marital Status 

Unmarried 5 8.6 

Married 53 91.4 

Divorce 

 

0 0.0 

 

Tuberculosis is 

Communicable bacterial disease 48 82.8 

Disease due to smoking and alcohol 9 15.5 

Hereditary disease 

 

1 1.7 

 

Mode of transmission 

Through coughing droplet 42 72.4 

Though sharing dish 14 24.1 

through shaking hands 

 

2 3.4 

 

Signs and Symptom 

cough for 2 weeks or above 17 29.3 

weight loss 9 15.5 

ongoing fatigue 8 13.8 

persistent fever 

 

24 41.4 

 

Diagnostic features of TB 

(Detection of Tuberculosis) 

sputum test 17 29.3 

blood test 13 22.4 

chest X- ray 27 46.6 

Based on sign and symptom 1 1.7 

Mantoux test 

 

0 0.0 

 

Duration of treatment 

4 - 6months 33 56.9 

6 - 8months 11 19.0 

8 - 10 months 2 3.4 

10-12 months 

 

12 20.7 

 

 

Prevention methods 

cover mouth when coughing / sneezing 6 10.3 

washing hands 2 3.4 

avoiding handshakes 3 5.2 

isolating TB patients 24 41.4 

Vaccination 17 29.3 

sufficient ventilation 6 10.3 

cover mouth when coughing / sneezing 

 

6 10.3 

 

Risk of Developing tuberculosis 

Elderly 7 12.1 

family and person in close contact to patient 9 15.5 

school children 23 39.7 

Smokers 19 32.8 

        

(Table 2) shows that most of the study sample were their (Cause of TB; Cold wind, Bacteria, 

Smoking and alcohol, Poor hygiene) which accounted (20.7, 50.5, 3.4, 25.9)% respectively, whereas 

most of them (50%) answer bacteria is causes the TB and it is the correct answer. The majority of 

studied sample was female (72.4%), and male (27.6%). At age group for participants in the study 
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more than a halve age ((40 – 49) years; 72.4%), followed by those who age ((30 – 39) years; 19.0%), 

those who (50 and above years; 8.6%). More than halve of study group’s participants were graduated 

from Institute, then from college and finally from teachers house as percentages (55.2,31.0, 13.8)% 

respectively. The most of teachers were married, unmarried and they are accounted (91.4 , 8.6)% 

respectively. For the Tuberculosis, most teachers diagnosed it as a (Communicable bacterial disease 

at 82.8 percentage) and this is correct diagnose. For the Mode of transmission the first transmission is 

due to coughing droplet (72.4%), followed by those who sharing dish (24.1%), and (3.4) for shaking 

hands. The answer for Signs and Symptom recorded (cough for 2 weeks or above, weight loss, on 

going fatigue, persistent fever  which accounted (29.3, 15.5, 13.8, 41.4)% respectively. The teachers 

diagnose features of TB as (sputum test, blood test, chest X- ray, based on sign and symptom) with 

(29.3, 22.4 46.6, 1.7)% respectively. For the study group about duration of treatment they came at 

these order (4–6 months ; 56.9, 6–8 months ; 19.0, and 8–10 months ; 3.4, 10–12 months ; 20.7) 

respectively. Followed by Prevention methods ,they recorded (cover mouth when coughing / 

sneezing, washing hands, avoiding handshakes, isolating TB patients, vaccination, sufficient 

ventilation, cover mouth when coughing / sneezing) with (10.3, 3.4, 5.2, 41.4, 29.3, 10.3, 10.3)% 

respectively. Finally risk of developing tuberculosis listed (elderly, family and person in close contact 

to patient, school children, smokers) with (12.1, 15.5, 39.7, 32.8)%. 

 

12.2  Building the logistic regression model for the dependent variable 

After that to test the significance of relationship between the dependent and independent variables 

included in the study using multiple logistic regression. The factor of (causes of tuberculosis) are 

chosen as a dependent variable divided into four categories, and the reference category that was 

established indicates that tuberculosis is the result of infection with TB bacteria, and compared with 

the independent variables to assess and analyze the knowledge of teachers ’responses to 

Tuberculosis. The (table 3) indicates the categories and values of dependent variable. 

Table 3. categories and values of dependent variable 

Categ. Dep. Var.  values 

Cold wind 1 

Bacteria 2 

Smoking and 

alcohol 
3 

12.3  Model estimation of sex variable 

A multinomial logit model is fit for the full factorial model by applying the (equation 2) and it is 

performed through an iterative maximum likelihood algorithm , Likelihood is often assumed to be the 

same as a probability or even as a P-value [Wikipedia demonstrates],[Kinear & Gray 2006 p.483]. (Table 4) indicates 

the number of Iteration cycles of the derivative of the maximum likelihood function within the 

categories of the sex variable. 
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Table 4. Iteration Maximum likelihood of sex variable 

Iteration History* 

Iteration 

-2 Log 

Likelihood 

Cause of TB 

Cold wind Smoking and alcohol Poor hygiene 

Intercept [Sex=1] Intercept [Sex=1] Intercept [Sex=1] 

0 23.633 -.882389 .000000 -2.674149 .000000 -.659246 .000000 

1 17.219 -1.382389 1.812500 -3.174149 1.812500 -.929087 978175 

2 17.082 -1.426332 1.833048 -3.218091 1.833048 -.916149 1.147943 

3 17.081 -1.427116 1.832578 -3.218876 1.832578 -.916291 1.139444 

4 17.081 -1.427116 1.832581 -3.218876 1.832581 -.916291 1.139434 

5 17.081 -1.427116 1.832581 -3.218876 1.832581 -.916291 1.139434 

* Source: the results are Preparing by the researcher based on of the data analysis.  

       From the (table 4) and to obtain the lowest value of the negative logarithm function to get an 

optimal estimate of the parameters, we stop in the fifth iteration of the negative derivative (-2 Log 

Likelihood), and we got the lowest value which is (1.139434) to the differences between the 

parameters, where these differences reached to less than (0.001). 

Table 5. Estimates of the logistic regression of cause of TB with sex model 

 Parameter Estimates  

Cause of T Ba B 

Std. 

Error Wald df Sig. Exp(B) 

95% Confidence 

Interval for Exp(B) 

Lower 

Bound 

Upper 

Bound 

 

Cold wind 

Intercept -1.427 .455 9.855 1 .002    

[Sex=1] 1.833 .790 5.388 1 .020 1.330 29.371  

[Sex=2] 0b . . 0 . . .  

 

Smoking and 

alcohol 

Intercept -3.219 1.020 9.963 1 .002    

[Sex=1] 1.833 1.513 1.467 1 .226 .322 121.334  

[Sex=2] 0b . . 0 . . .  

 

Poor hygiene 

Intercept -.916 .374 5.997 1 .014    

[Sex=1] 1.139 .768 2.201 1 .138 .693 14.082  

[Sex=2] 0b . . 0 . . .  
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a. The reference category is: Bacteria. 

b.   This parameter is set to zero because female is reference category. 

(Table 5) depict the regression coefficients, standard error, Wald statistic with degrees of 

freedom and significance for the indp. var. (sex) and confidence interval for Exp(B) and the constant 

term would have been the log odds ratio for bacteria. For the dependent variable (the Cause of TB) 

had been a multinomial categories, and had specified bacteria as the reference group. The constant 

term (B) is the estimated coefficient and equal to log-odds ratios, and the equation of estimated log. 

regression 

log(cold wind) = -1.427 + 1.833*(sex=1)                                                     (3) 

log(Smoking and alcohol) = -3.219 + 1.833*(sex=1)                                   (4) 

log(Poor hygiene) = -.916 + 1.139*(sex=1)                                                  (5) 

       These estimates tell about the relationship between (sex) variable and the (cause of TB), where 

the dependent variable is on the logit scale, and from the table it turned out significance the effect of 

sex when the teacher is male and his choice was cold wind. The fact that the teacher is male means 

that it increases the probability of choosing (exposure to cold air) versus infection by bacteria (1.833) 

compared to the female, which represents as a reference category, that means if the sex of teacher is 

men, then the logarithm of the possibility [Exp(B); this is the odd ratio for the predictors, this is the 

exponentiation of the coefficients] of choosing cold wind versus bacteria increases by an amount 

(1.33), whereas the teacher’s choice of smoking and alcohol and Poor hygiene reasons did not show 

any significant. 

       The Wald columns provide the Wald chi-square value and 2-tailed p-value used in testing the 

null hypothesis  and it is equal to (5.388). 

Table 6. Classification table of TB with sex variables 

classification  

Observed 

Predicted 

Cold wind Bacteria 

Smoking and 

alcohol 

Poor 

hygiene 

Percent  

Correct 

Cold wind 6 6 0 0 50.0% 

Bacteria 4 25 0 0 86.2% 

Smoking and alcohol 1 1 0 0 0.0% 

Poor hygiene 5 10 0 0 0.0% 

Overall Percentage 27.6% 72.4% 0.0% 0.0% 53.4% 

 we notice that from the classification table (table 6) the overall accuracy of this model to predict 

cause of TB by using the independent variable (sex) is (53.4%) which is somewhat considered 

acceptable. We notes that the number of classified and selected the correct answer of teachers (25 

teachers) to bacteria at percentage (86.2%) and that they were wrongly chosen by (4 teachers). 
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12.4  Model estimation of Tuberculosis variable 

       Now we test the significant between the dependent (cause of Tb) and the independent 

(Tuberculosis). 

Table 7. Iteration maximum likelihood of Tuberculosis variable 
Iteration History* 

Iterati

on 

-2 Log 

Likeliho

od 

Cause of TB 

Cold wind Smoking and alcohol Poor hygiene 

Interce

pt 

[Tuberculo

sis is=1] 

[Tuberculo

sis is=2] 

Interce

pt 

[Tuberculo

sis is=1] 

[Tuberculo

sis is=2] 

Interce

pt 

[Tuberculo

sis is=1] 

[Tuberculo

sis is=2] 

0 27.336 -.882 .000 .000 -2.674 .000 .000 -.659 .000 27.336 

1 16.838 -2.882 1.580 4.463 -4.674 1.479 5.000 -2.659 1.922 16.838 

2 15.867 -4.018 2.669 5.625 -5.809 2.518 5.881 -3.795 3.064 15.867 

3 15.722 -5.061 3.711 6.671 -6.853 3.557 6.851 -4.838 4.107 15.722 

4 15.702 -6.077 4.727 7.686 -7.868 4.572 7.868 -5.853 5.122 15.702 

5 15.695 -7.082 5.732 8.692 -8.874 5.578 8.874 -6.859 6.128 15.695 

6 15.693 -8.084 6.734 9.694 -9.876 6.580 9.876 -7.861 7.130 15.693 

7 15.692 -9.085 7.735 10.694 -10.877 7.581 10.877 -8.862 8.131 15.692 

8 15.691 -10.085 8.735 11.695 -11.877 8.581 11.877 -9.862 9.131 15.691 

9 15.691 -11.085 9.735 12.695 -12.877 9.581 12.877 -10.862 10.131 15.691 

10 15.691 -12.085 10.735 13.695 -13.877 10.581 13.877 -11.862 11.131 15.691 

11 15.691 -13.085 11.735 14.695 -14.877 11.581 14.877 -12.862 12.131 15.691 

12 15.691 -14.085 12.735 15.695 -15.877 12.581 15.877 -13.862 13.131 15.691 

13 15.691 -15.085 13.735 16.695 -16.877 13.581 16.877 -14.862 14.131 15.691 

14 15.691 -16.085 14.735 17.695 -17.877 14.581 17.877 -15.862 15.131 15.691 

15 27.336 -.882 .000 .000 -2.674 .000 .000 -.659 .000 27.336 

*Source: the results are Preparing by the researcher based on of the data analysis.  

        

     For the (table 7) and to obtain the lowest value of the negative logarithm function to get an 

optimal estimate of the parameters, we stop in the fifteen iteration of the negative derivative (-2 Log 

Likelihood), and we got last absolute change in -2 Log Likelihood is .000, and last maximum 

absolute change in parameters is 1.000000. 

Table 8. Estimates of the logistic regression cause of TB with tuberculosis model 

Parameter Estimates  

Cause of TB B Std. Error Wald df Sig. Exp(B) 
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Cold wind 

Intercept -17.085 5128.877 .000 1 .997  

[Tuberculosis is=1] 15.735 5128.877 .000 1 .998 6819911.866 

[Tuberculosis is=2] 18.695 5128.877 .000 1 .997 131526871.70 

[Tuberculosis is=3] 0 . . 0 . . 

 

 

Smoking and 

alcohol 

Intercept -18.877 1.414 178.171 1 .000  

[Tuberculosis is=1] 15.581 1.743 79.938 1 .000 5845638.598 

[Tuberculosis is=2] 18.877 .000 . 1 . 157832242.10 

[Tuberculosis is=3] 0 . . 0 . . 

 

 

Poor hygiene 

Intercept -16.862 4587.407 .000 1 .997  

[Tuberculosis is=1] 16.131 4587.407 .000 1 .997 10132440.360 

[Tuberculosis is=2] 17.555 4587.407 .000 1 .997 42088598.410 

[Tuberculosis is=3] 0 . . 0 . . 

      (Table 8) presents the regression coefficients, standard error, Wald statistic with degrees of 

freedom and significance for the indp. Var., significance .The teacher’s choices is the effect of  

infectious bacterial diseases are transmitted, which corresponds to the fact that the cause of 

tuberculosis is the bacterial agent. The fact that when the teacher choices communicable bacterial 

disease means that it increases the probability of choosing (smoking and alcohol) versus infection by 

bacteria for the cause of tuberculosis by register a number equal to (b=15.581) with sig = 0.00,  

compared to the rest of tuberculosis (hereditary disease), whilst there is no significant between cause 

of TB represented by (Cold wind and Poor hygiene)  and the tuberculosis, and the equation of 

estimated log. regression are 

log(cold wind) = -17.09 + 15.74*( Tuberculosis is=1) + 15.74*( Tuberculosis is=2)                     (6)            

log(Smoking and alcohol)= -18.87 +15.58*( Tuberculosis is=1) + 18.88*( Tuberculosis is=2)     (7) 

log(Poor hygiene) = -16.86+16.13*( Tuberculosis is=1) + 17.56*( Tuberculosis is=2)                  (8) 

 

Table 9. Classification table of  TB with tuberculosis variables 

Classification - TUBERCULOSIS 

observed 

Predicted 

cold wind bacteria smoking and alcohol poor hygiene Percent correct 

Cold wind 5 7 0 0 41.7% 

Bacteria 1 28 0 0 96.6% 

Smoking and alcohol 1 1 0 0 0.0% 

Poor hygiene 2 13 0 0 0.0% 

Overall Percentage 15.5% 84.5% 0.0% 0.0% 56.9% 

       From the (table 9) we find that the ratio of the correct classification percentage to the bacteria is 

(96.6%), or for those who are chosen bacteria are (28 teachers) and the rest chose cold wind, smoking 
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and alcohol, Poor hygiene with percentage equal to zero. The overall classification rate has reached 

(56.9%). 

Table 10. Iteration Maximum likelihood of Mode of transmission variable 

Iteration History 

Iteration 

-2 Log 

Likelihood 

Cause of  TB 

Cold  wind Smoking and alcohol Poor  hygiene 

Intercept 

[Mode of 

transmission=1] 

[Mode of 

transmission=2] Intercept 

[Mode of 

transmission=1] 

[Mode of 

transmission=2] Intercept 

[Mode of 

transmission=1] 

[Mode of 

transmission=2] 

0 22.299 -.882389 .000 .000 -2.674 .000 .000 -.659 .000 .000 

1 18.922 .534277 -1.706 -.750 -3.674 .595 2.357 -1.659 .917 1.390 

2 18.475 -.070414 -1.119 -.153 -5.135 2.001 3.561 -3.120 2.383 2.899 

3 18.406 .001883 -1.191 -.225 -6.126 2.991 4.517 -4.111 3.374 3.888 

4 18.383 -

1.747419E-

5 

-1.190 -.223 -7.136 4.001 5.527 -5.121 4.384 4.898 

5 18.374 5.909074E-

8 

-1.190 -.223 -8.140 5.004 6.530 -6.125 5.387 5.902 

6 18.371 -

7.326481E-

11 

-1.190 -.223 -9.141 6.005 7.532 -7.126 6.388 6.903 

7 18.370 3.275862E-

14 

-1.190 -.223 -10.141 7.006 8.532 -8.126 7.389 7.903 

8 18.369 -

1.740438E-

15 

-1.190 -.223 -11.142 8.006 9.532 -9.127 8.389 8.904 

9 18.369 -

1.087408E-

15 

-1.190 -.223 -12.142 9.006 10.532 -10.127 9.389 9.904 

10 18.369 1.260736E-

15 

-1.190 -.223 -13.142 10.006 11.532 -11.127 10.389 10.904 

11 18.369 -

1.006894E-

15 

-1.190 -.223 -14.142 11.006 12.532 -12.127 11.389 11.904 

12 18.369 -

1.240451E-

15 

-1.190 -.223 -15.142 12.006 13.532 -13.127 12.389 12.904 

13 18.369 -

1.941337E-

15 

-1.190 -.223 -16.142 13.006 14.532 -14.127 13.389 13.904 

14 18.369 -

1.383785E-

16 

-1.190 -.223 -17.142 14.006 15.532 -15.127 14.389 14.904 

15 18.369 -

1.085473E-

15 

-1.190 -.223 -18.142 15.006 16.532 -16.127 15.389 15.904 

16 18.369 1.433960E-

15 

.000 .000 -2.674 .000 .000 -.659 .000 .000 
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12.5  Model estimation of Mode of transmission variable 

Now we test the significant between the dependent (cause of Tb) and the independent (Mode of 

transmission).  

       For the (table 10) and to obtain the lowest value of the negative logarithm function to get an 

optimal estimate of the parameters, we stop in the sixteen iteration of the negative derivative, Last 

absolute change in -2 log likelihood is (0.000), and last maximum absolute change in parameters is 

(1.000000). 

 

Table 11. Estimates of the logistic regression cause of TB with mode of transmission model 

Parameter Estimates 

Cause of TBa B Std. Error Wald df Sig. Exp(B) 

95 % confidence interval for 

exp (B.) 

Lower Bound Upper Bound 

 

 

Cold wind 

Intercept .000 1.414 .000 1 1.000    

[Mode of 

transmission=1] 

-1.190 1.479 .647 1 .421 .304 .017 
 

[Mode of 

transmission=2] 

-.223 1.565 .020 1 .887 .800 .037 5.521 

[Mode of 

transmission=3] 

0b . . 0 . . . 17.196 

 

 

Smoking and 

alcohol 

Intercept -19.142 1.095 305.336 1 .000   . 

[Mode of 

transmission=1] 

16.006 1.498 114.197 1 .000 8941132.727 474724.898 
 

[Mode of 

transmission=2] 

17.532 .000 . 1 . 41129210.540 41129210.540 168400382.500 

[Mode of 

transmission=3] 

0b . . 0 . . . 41129210.540 

 

 

Poor hygiene 

Intercept -17.127 5236.361 .000 1 .997   . 

[Mode of 

transmission=1] 

16.389 5236.361 .000 1 .998 13113660.540 .000 
 

[Mode of 

transmission=2] 

16.904 5236.361 .000 1 .997 21935577.630 .000 

[Mode of 

transmission=3] 

0b . . 0 . . . 

a. The reference category is: Bacteria.  

b. This parameter is set to zero because it is redundant 

       (Table 11) presents the regression coeff., standard error, Wald statistic and significance for the 

indp. var.,(mode of transmission), the value of exp(B), it turned out significance the effect of mode of 

transmission. when the teacher choices (through coughing droplet) instead of bacterial agent to mode 

of transmission means that it increases the probability of choosing (smoking and alcohol) versus 

infection by bacteria for the cause of tuberculosis by register a number equal to (16.006) compared to 
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the rest of tuberculosis (through shaking hands), whilst there is no significant between cause of TB 

represented by (Cold wind and Poor hygiene) and the tuberculosis, and the estimated equations   

log(cold wind) = 0.000-1.190*(Mode of transmission =1) - 0.223*(Mode of transmission) =2      (9)         

log(Smoking and alcohol)=-19.142+16.006*(Mode of transmission=1)+17.532*(Mode of 

transmission=2)                                                                                                                                 (10) 

log(Poor hygiene)=-17.127+16.389*(Mode of transmission=1)+16.904*(Mode of transmission=2)                                                                                                                                                                  

(11) 

Table 12. Classification table of TB with mode of transmission variables 
Classif. - MODE 

Obser. 

Predicted 

Cold  wind bacteria smoking and alcohol poor  hygiene Perc. correct 

Cold   wind 1 11 0 0 8.3% 

Bacteria 1 28 0 0 96.6% 

Smoking and  alcohol 0 2 0 0 0.0% 

Poor   hygiene 0 15 0 0 0.0% 

overall Percentage 3.4% 96.6% 0.0% 0.0% 50.0% 

       Table (12) exhibit the ratio of the correct classification percentage to the bacteria is (96.6%), or 

for those who are chosen bacteria are (28 teachers) and the rest chose cold wind (8.3%), smoking and 

alcohol, Poor hygiene with percentage equal to zero. The overall classification rate has reached a 

halve percentage (50.0%). 

 

12.6  Model estimation of Signs and Symptom variable 

Table 13.  Iteration Maximum likelihood of Signs and Symptom variable 

Iteration History 

Iteratio

n 

-2 Log 

Likeliho

od 

Cause of TB 

Cold wind Smoking and alcohol Poor hygiene 

Interce

pt 

[Sig. 

and 

Sym

p. 

=1] 

[Sig and 

Symp.=

2] 

[Sig. 

and 

Sym

p. 

=3] 

Interce

pt 

[Sig. 

and 

Symp.=

1] 

[Sig. 

andSym

p. m=2] 

[Sig. and 

Sympt.=

3] 

Interce

pt 

[Sig. 

and 

Symp.=

1] 

[Sig. 

and 

Symp.=

2] 

[Sig. 

and 

Symp.=

3] 

0 39.276 -.882 .000 .000 .000 -2.674 .000 .000 .000 -.659 .000 .000 .000 

1 26.937 -1.028 -.011 1.183 -.250 -2.216 -1.752 -1.569 2.167 .363 -1.861 -2.133 -1.056 

2 23.135 -1.102 .092 .844 -.316 -2.195 -2.806 -2.901 1.139 .200 -1.891 -3.281 -.893 

3 22.600 -1.099 .087 .877 -.286 -2.197 -3.810 -3.913 .847 .201 -1.905 -4.296 -.894 

4 22.445 -1.099 .087 .875 -.288 -2.197 -4.812 -4.924 .811 .201 -1.905 -5.307 -.894 
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5 22.390 -1.099 .087 .875 -.288 -2.197 -5.812 -5.928 .811 .201 -1.905 -6.311 -.894 

6 22.369 -1.099 .087 .875 -.288 -2.197 -6.812 -6.929 .811 .201 -1.905 -7.312 -.894 

7 22.361 -1.099 .087 .875 -.288 -2.197 -7.813 -7.930 .811 .201 -1.905 -8.313 -.894 

8 22.359 -1.099 .087 .875 -.288 -2.197 -8.813 -8.930 .811 .201 -1.905 -9.313 -.894 

9 22.358 -1.099 .087 .875 -.288 -2.197 -9.813 -9.930 .811 .201 -1.905 -10.313 -.894 

10 22.357 -1.099 .087 .875 -.288 -2.197 -10.813 -10.930 .811 .201 -1.905 -11.313 -.894 

11 22.357 -1.099 .087 .875 -.288 -2.197 -11.813 -11.930 .811 .201 -1.905 -12.313 -.894 

12 22.357 -1.099 .087 .875 -.288 -2.197 -12.813 -12.930 .811 .201 -1.905 -13.313 -.894 

13 22.357 -1.099 .087 .875 -.288 -2.197 -13.813 -13.930 .811 .201 -1.905 -14.313 -.894 

14 22.357 -1.099 .087 .875 -.288 -2.197 -14.813 -14.930 .811 .201 -1.905 -15.313 -.894 

15 22.357 -1.099 .087 .875 -.288 -2.197 -15.813 -15.930 .811 .201 -1.905 -16.313 -.894 

16 22.357 -.882 .000 .000 .000 -2.674 .000 .000 .000 -.659 .000 .000 .000 

17 22.357 -1.028 -.011 1.183 -.250 -2.216 -1.752 -1.569 2.167 .363 -1.861 -2.133 -1.056 

       For the (table 13) we stop in the seventeen iteration of the negative derivative and the last 

absolute change in -2 log likelihood equal to zero, and last maximum absolute change in parameters 

equal to one. 

Table 14. Estimates of the logistic regression cause of TB with signs and symptom model 

Parameter Estimates 

cause of T B* b std. error wald df sig. Ep(B) 

 

 

 

 

Cold wind 

Intercept -1.099 .667 2.716 1 .099  

[Signs and 

Symptom=1] 

.087 .886 .010 1 .922  

[Signs and 

Symptom=2] 

.875 .946 .857 1 .355 
 

[Signs and 

Symptom=3] 

-.288 1.302 .049 1 .825 1.091 

[Signs and 

Symptom=4] 

0 . . 0 . 2.400 

 

 

 

 

 

Smoking and 

alcohol 

Intercept -2.197 1.054 4.345 1 .037 .750 

[Signs and 

Symptom=1] 

-17.813 6674.009 .000 1 .998 . 

[Signs and 

Symptom=2] 

-17.930 .000 . 1 . 
 

[Signs and 

Symptom=3] 

.811 1.537 .279 1 .598 1.837E-8 

[Signs and 

Symptom=4] 

0 . . 0 . 1.633E-8 



895 
 

 

 

 

 

Poor hygiene 

Intercept .201 .449 .199 1 .655 2.250 

[Signs and 

Symptom=1] 

-1.905 .890 4.579 1 .032 . 

[Signs and 

Symptom=2] 

-18.313 3833.090 .000 1 .996 
 

[Signs and 

Symptom=3] 

-.894 .976 .839 1 .360 .149 

[Signs and 

Symptom=4] 

0 . . 0 . 1.114E-8 

* The reference category is: Bacteria. 

        

    (Table 14) presents the regression coeff., standard error, Wald statistic with and significance for 

the indp. var.,(Signs and symptom), the value of exp(B), it turned out significance the effect of Signs 

and symptom, when the teacher choices (cough for 2 weeks or above) instead of bacterial agent to 

signs and symptom means that it decreases the probability of choosing (Poor hygiene) versus 

infection by bacteria for the signs and symptom by register a number equal to (-1.905) compared to 

the rest of Signs and symptom (persistent fever), whilst there is no significant between cause of TB 

represented by (Cold wind and Smoking and alcohol) and the signs and symptom, and the estimated 

equations are: 

 

log(cold wind)= -1.099+0.087*( Signs and Symptom =1)+0.875*( Signs and Symptom =2) 

-0.288*( Signs and Symptom =3)                                                                                                        (12)                                                                                                                           

                           

log(Smoking and alcohol)= -2.197-17.813*( Signs and Symptom =1) -17.930*( Signs and Symptom 

=2)+0.811*( Signs and Symptom =3)                                                                                                 (13) 

 

log(Poor hygiene) = 0.201-1.905*( Signs and Symptom=1)-18.313*( Signs and Symptom=2) 

 -0.894*( Signs and Symptom =3)                                                                                                      (14) 

 

Table 15. Classification table of  TB with signs and symptom variables 
Classification - SIGN 

Observed   

Predicted 

Cold wind Bact. 

Smoking and 

alcohol Poor hyg. Perc. Corr. 

Cold  wind 0 9 0 3 0.0% 

Bacteria 0 20 0 9 69.0% 

Smoking and alcohol 0 1 0 1 0.0% 

Poor  hygiene 0 4 0 11 73.3% 

Overall  Percentage 0.0% 58.6% 0.0% 41.4% 53.4% 

 

       (Table 15) exhibits the ratio of the correct classification percentage to the bacteria is about  

(69.0%), or for those who are chosen bacteria are (20 teachers) and the rest chose Poor hygiene 
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(73.3%), cold wind and smoking and alcohol with percentage equal to zero. The overall classification 

rate has reached (53.4%).  

12.7  Model estimation of Duration of treatment variable 

 

Table 16. Iteration Maximum likelihood of Mode of transmission variable 
Iteration History 

Iterati

on 

-2 Log 

Likeliho

od 

Cause of TB 

Cold wind Smoking and alcohol Poor hygiene 

Intercept 

[Durati

on of 

treatme

nt=1] 

[Duratio

n of 

treatme

nt=2] 

[Durati

on of 

treatme

nt=3] 

Intercep

t 

[Durati

on of 

treatme

nt=1] 

[Dura

tion 

of 

treat

ment

=2] 

[Dura

tion 

of 

treat

ment

=3] 

Inter

cept 

[Dura

tion 

of 

treat

ment

=1] 

[Dura

tion 

of 

treat

ment

=2] 

[Dura

tion 

of 

treat

ment

=3] 

0 38.995 -.882389 .000 .000 .000 -2.674 .000 .000 .000 -.659 .000 .000 .000 

1 19.018 -.174056 -.360 -2.527 -.708 -3.174 1.288 -1.318 .500 .774 -1.700 -2.900 2.433 

2 17.512 .018476 -.594 -3.808 -.901 -4.187 2.119 -1.394 1.513 .695 -1.677 -2.998 3.572 

3 17.068 -5.441963E-6 -.575 -4.813 -.882 -5.196 3.117 -1.409 2.522 .693 -1.674 -2.996 4.595 

4 16.909 7.489158E-9 -.575 -5.822 -.882 -6.198 4.118 -1.416 3.524 .693 -1.674 -2.996 5.603 

5 16.851 -3.808443E-

12 

-.575 -6.825 -.882 -7.198 5.119 -1.419 4.524 .693 -1.674 -2.996 6.605 

6 16.829 7.321564E-16 -.575 -7.826 -.882 -8.198 6.119 -1.420 5.524 .693 -1.674 -2.996 7.606 

7 16.821 3.633731E-16 -.575 -8.827 -.882 -9.199 7.119 -1.420 6.524 .693 -1.674 -2.996 8.607 

8 16.818 1.160435E-16 -.575 -9.827 -.882 -10.199 8.119 -1.420 7.524 .693 -1.674 -2.996 9.607 

9 16.817 -8.587968E-

16 

-.575 -10.827 -.882 -11.199 9.119 -1.420 8.524 .693 -1.674 -2.996 10.607 

10 16.817 -5.322556E-

17 

-.575 -11.827 -.882 -12.199 10.119 -1.420 9.524 .693 -1.674 -2.996 11.607 

11 16.817 -3.526540E-

16 

-.575 -12.827 -.882 -13.199 11.119 -1.420 10.524 .693 -1.674 -2.996 12.607 

12 16.817 -8.146650E-

16 

-.575 -13.827 -.882 -14.199 12.119 -1.420 11.524 .693 -1.674 -2.996 13.607 

13 16.817 -3.640179E-

16 

-.575 -14.827 -.882 -15.199 13.119 -1.420 12.524 .693 -1.674 -2.996 14.607 

14 16.817 4.314974E-16 -.575 -15.827 -.882 -16.199 14.119 -1.420 13.524 .693 -1.674 -2.996 15.607 

15 16.817 -3.174123E-

16 

.000 .000 .000 -2.674 .000 .000 .000 -.659 .000 .000 .000 
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For the (table 16) and to obtain the lowest value of the negative logarithm function to get an optimal 

estimate of the parameters, we stop in the sixteen iteration of the negative derivative, Last absolute 

change in -2 log likelihood is (0.000), and last maximum absolute change in parameters is 

(1.000000). 

Table 17. Estimates of the logistic regression cause of TB with duration of treatment model 

 

       The results of (table 17) turned out two significance the effect of duration of treatment, firstly 

when the teacher choices the period of treatment (4-6 months) means that it decreases the probability 

of choosing (Poor hygiene) versus infection by bacteria by registering a number equal to (-1.674) 

compared to the period of treatment (10-12 months), secondly when the teacher choices the period of 

treatment (6-8 months) means that it decreases the probability of choosing (Poor hygiene) versus 

infection by bacteria for the duration of treatment by register a number equal to (-2.996) compared to 

Parameter Estimates 

Cause of TB  B Std. Error Wald df Sig. Exp.(B) 

 

 

 

 

Cold wind 

Intercept .000 .816 .000 1 1.000  

[Duration of 

treatment=1] 

-.575 .917 .394 1 .530 .563 

[Duration of 

treatment=2] 

-16.827 1425.373 .000 1 .991 4.922E-8 

[Duration of 

treatment=3] 

-.882 7395.244 .000 1 1.000 .414 

[Duration of 

treatment=4] 

0 . . 0 . . 

 

 

 

 

Smoking and 

alcohol 

Intercept -17.199 3074.547 .000 1 .996  

[Duration of 

treatment=1] 

15.119 3074.547 .000 1 .996 3682570.164 

[Duration of 

treatment=2] 

-1.420 4652.199 .000 1 1.000 .242 

[Duration of 

treatment=3] 

14.524 .000 . 1 . 2031762.849 

[Duration of 

treatment=4] 

0 . . 0 . . 

 

 

 

 

Poor hygiene 

Intercept .693 .707 .961 1 .327  

[Duration of 

treatment=1] 

-1.674 .854 3.843 1 .050 .188 

[Duration of 

treatment=2] 

-2.996 1.265 5.609 1 .018 .050 

[Duration of 

treatment=3] 

16.607 3910.318 .000 1 .997 16303051.70 

[Duration of 

treatment=4] 

0 . . 0 . . 
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the period of treatment (10-12 months), whilst there is no significant between cause of TB 

represented by (Cold wind and Smoking and alcohol) and the duration of treatment, and the 

equations are: 

log(cold wind)= 0.000-0.575*(Duration of treatment =1) -16.827*(Duration of treatment =2) + 

0.882*(Duration of treatment =3)                                                                                                        (15)     

        log(Smoking and alcohol)= -17.199 + 15.119*(Duration of treatment =1) -1.420*(Duration of 

treatment =2) + 14.524*(Duration of treatment =3)                                                                            (16) 

 

log(Poor hygiene)= 0.693-1.674*(Duration of treatment =1) -2.996*(Duration of treatment =2) + 

16.607*(Duration of treatment =3)                                                                                                      (17) 

 

Table 18. Classification table of TB with Duration of treatment variables 
Classification - DURATION 

observed 

Predicted 

Cold wind Bacteria 

Smoking and 

alcohol Poor hygiene Percent Correct 

cold wind 0 9 0 3 0.0% 

bacteria 0 26 0 3 89.7% 

smoking and alcohol 0 2 0 0 0.0% 

poor hygiene 0 7 0 8 53.3% 

overall Percentage 0.0% 75.9% 0.0% 24.1% 58.6% 

       The results of (table 18) exhibits the ratio of the correct classification percentage to the bacteria 

is (89.7%), or for those who are chosen bacteria are (26 teachers) and the rest chose Poor hygiene 

(53.3%), and cold wind, smoking and alcohol with percentage equal to zero. The overall 

classification rate has reached (58.6%). 

13. Discussion and Conclusion 

1. The sex variable showed its significant effect on teachers' knowledge of the causes of 

tuberculosis (bacteria), where the correct classification rate was (86.2%). 

2. The variable of teacher diagnosis of the disease showed a significant effect on his knowledge 

of the causes of tuberculosis (bacteria), where the correct classification rate was (96.6%). 

3. The variable to know the methods of transmission of infection showed a significant effect on 

his knowledge of the causes of tuberculosis (bacteria), where the correct classification rate 

(96.6%). 

4. The variable to know the signs that appear on the patient with tuberculosis showed a 

significant effect on his knowledge of the causes of tuberculosis (bacteria), where the correct 

classification rate was (69.0%). 

5. The variable of knowledge of the period of treatment required to recover from tuberculosis 

showed a significant effect on his knowledge of the causes of tuberculosis (bacteria), where 

the correct classification rate was (89.7%). 

6. The results showed that there were no significant effect for variables (age, marital status, 

academic achievement) on knowledge of TB disease. Further that  the teachers' knowledge of 
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Prevention methods, Risk of Developing Tuberculosis  lacked sufficient information, which 

caused a lack of significant effect. 

  14. Recommendations 

1. Through reviewing the medical studies that confirmed the seriousness of this disease, we 

recommend the need to work hard to spread a culture of knowledge of tuberculosis through 

the media and to organize training courses and workshops for members of society in general 

and for teachers in particular because most teachers lack knowledge of the developments of 

this disease.  

2. Recommendation to use the logistic regression model in other future studies, especially 

medical and educational. 
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Abstract. Nowadays, High dimensional data are quickly increasing in many areas because of the 

development of new technology which helping to collect data with a large number of variables in 

order to  better understanding for a given phenomenon of interest. Multiple Linear Regression  is a 

famous technique used to investigate the relationship between one dependent variable and one or 

more of independent variables and analyzing the effects of them. Fitting this model requests 

assumptions, one of them is large sample size. High dimensional data does not satisfy this 

assumption because the sample size is small compared to the number of explanatory variables (k). 

Consequently, the results of traditional methods to estimate the model can be misleading. 

Regularization or shrinkage techniques (e.g., LASSO) have been proposed to estimate this model in 

this case. Nonparametric method was proposed to estimate this model. Average mean square error 

and root mean square error criteria are used to assess the performance of nonparametric; LASSO and 

OLS methods in the case of simulation study and analyzing the real dataset. The results of simulation 

study and the analysis of real data set show that nonparametric regression method is  outperformance 

of  LASSO  and OLS methods to fit this model with high dimensional data. 

Key Words:, Average Mean square error; Data reduction techniques; Nonparametric regression, 

Regularization methods, Variable selection method. 

 

1. Introduction 

 In the last decades, high dimensional data becoming increasingly common in different areas. The 

cases when the number of covariates  is larger than the number of observations ( ) is named  

high dimensional. Consequently, traditional methods of analyzing statistical models (e.g., regression 

models) produce poor results and are unreliable for inference because of overfitting in such cases. On 

the other hand, Multiple Linear Regression (MLR) is one of the important procedure for modeling 

and analyzing data in many disciplines. Numerous assumptions are requested in fitting this model, 

the important one is large size of sample. Accordingly, the method of estimation are differing 

depending on the validity of the assumptions in the data set. If the requested assumptions are hold, 

then the  traditional fitting methods (e.g., ordinary least square (OLS) or maximum likelihood (ML)) 

are used to fit the MLR. Meanwhile, when some of these assumptions do not satisfied, specifically if 

the size of the sample is small and the number of the covariates ( ) may equal or greater than the size 

of the sample ( ). This case is named as high dimensional data, with this case the results of 

traditional method when fitting MLR model produce poor and unreliable results for inference 

because of overfitting property. Also, the multicollinearity problem tends to occur when n becomes 

small or p becomes large. Therefore, the estimators of β's become unstable [1].   

     Consequently, when analyzing the MLR with high dimensional data several alternatives methods 

are used including the variable selection methods, data Reduction Techniques [2,3] and The 

shrinkage techniques These methods give biased estimators with a smaller variance than OLS 

estimators [4, 5].  

      Several studies to explore and to explain the effect of covariates on dependent variable and other 

topics in regression analysis are conducted. [6] investigated the estimation of MLR parameters 

models when the original assumptions of OLS estimation are weak. Also, they introduced some MLR 

models with outliers and get conclusions. [7] stated that the common question is how to relate the 

response variable (Y) and the explanatory variables (Xi) by employing the analysis of regression. [8] 

mailto:jasim.nasir@uokerbala.edu.iq
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was developed statistical methods that are capable to detect outliers. He suggested a robust regression 

to analysis data with outliers. He also, defined performance of outliers in LR and compared some of 

robust methods using simulation studies. [9] used a genetic algorithm to determine a set of 

parameters that minimizes the prediction error for MLR model. [10] extended the econometric 

methods to GLMs to analysis the binary, count and duration response involved in social sciences and 

business. He found that these methods perform well in the applications for prediction and inference 

with high dimensional data. [11] used simulation studies to compared the performance of Lasso, 

Elastic net, Ridge Regression, and Bayesian models with high dimensional data in multivariate 

regression. They found that the Ridge Regression model was effective in estimating parameter 

accurately and control over the Type I error rate. [12] investigated the performance of regularization 

methods to analysis the high dimensional data with different sparse and non-sparse conditions. they 

studied the prediction, parameter estimation and variable selection properties.  

Finally, [13] stated that there are two purposes of analyzing high-dimensional data are firstly to 

define the relationship between the covariates and response variable for scientific objectives. 

Secondly to develop effective techniques that can be predict the future observations accurately.  

      The goal of this paper is to propose nonparametric method (kernel regression (KR)) to estimate 

the MLR model with high dimensional data as an alternative method and compare its performance 

with OLS and LASSO methods.  

The rest of the paper consists of Section 2 devoted to specify the model and to describe two methods 

of estimation. Section 3devoted to present the results of simulation study and analyzing real dataset. 

Section 4 devoted to discuss the results of the study. Finally some conclusion are placed in section 5.    

 

2. Methodology  

MLR model is defined as  “a form of predictive modeling technique which investigates the 

relationship between a dependent (response) variable (Y) and independent variables (covariates) 

( ). This technique is used for forecasting, time series modeling and finding the fundamental effect 

relationship between the variables” [14]. Three fundamental components determined MLR model; 

the first component is the number of explanatory variables, the second component is the type of 

response variable and the third component is the shape of regression line. Meanwhile, the main goal 

from any data analysis is to get the correct estimation from raw data. Consequently, the important 

question is “if there is a statistical relationship between a response variable (Y) and explanatory 

variables ( )”. Therefore, answering this question means that MLR modeling is conducted in order 

to present this relationship. MLR is also used to make inferences about the response variable (Y) 

based on values of a set of explanatory variables ( ) [7]. 

Here, we use the MLR model where the response variable (Y) is a linear function of  

explanatory variables (  and a random error (U), this model with an intercept. MLR model of ith 

row of these variables is given by the following equation [15] [16]: 

                                       (1)  

MLR model can be written as matrices notation by: 

                                                                (2) 

where  is a vector of  observed response values,  is the matrix of the explanatory variables 

with  rank,  is the vector of unknown parameters with , and  is the vector of 

random error terms with rank as follow: 

;  ;   

The goal of regression analysis is to estimate the unknown parameters  and make inference 

about the future values of response variable.  
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If the assumptions of MLR model are holding the ordinary least squares (OLS) method is used to 

estimate the regression parameters ( ) using the formula [16]: 

                                                             (3) 

Consequently, the estimated MLR model is:  

,                        (4) 

The residuals calculated from a sample size n may be defined the OLS criterion from Eq. (4) as 

follow: 

                                                  (5) 

where (  ) are the observed  and the estimated response variable for subject i respectively, as in 

Eq. (4). The minimization is performed with respect to the  parameters  with a 

constrain that  this means the sample size is larger than the number of parameters to be 

estimated from that sample [4]. 

There are other important assumptions to obtain a valid estimation of MLR model as in Eq.(4). These 

assumptions are the error term follows a normal distribution and the error process  independent of 

all explanatory variables where [14]: 

( ), and    ;              (6) 

The other important assumption is  which is our concern here because the size of the 

sample must be large to offer enough power for the test. Meanwhile, if the number of observations , 

gets closer to or less than , the number of covariates then there is more variability in the OLS fit 

[17]. Also, the matrix ( ) is not invertible in this case therefore there is no unique solution for OLS 

regression [18]. Consequently, there may be some irrelevant variables included in the MLR model. 

Hence, in the case of high dimensional data, when the sample size (n) becomes closer to or less 

then the number of explanatory variables (p). One of four groups of estimation methods can be used 

based on the validity of the assumptions of the MLR as mentioned above. the important question is 

which estimation method is appropriate to estimate the unknown parameters  of this model in 

this case?. Consequently, the goal of this paper is to compare the performance of two estimation 

methods OLS and LASSO with KR method as a proposed method to estimate the parameters of MLR 

model in this case. The following subsections are consisting of a brief concepts for these methods. 

 

2.1 Regularization method (LASSO) 

 When the sample size (n) in the model may be less than or equal to the number of explanatory 

variables (p), Least Absolute Shrinkage and Selection Operator (LASSO) is the appropriate method 

for estimating the parameters of MLR models [19]. Also, there are two important considerations 

when fitting high-dimensional data: model sparsity and prediction ability. Therefore, LASSO is 

defined as “a regularization methods for simultaneous estimation and variable selection” [20]. 

LASSO deals with many predictors may be  , and with an ill-conditioned model matrix X (i.e. 

 is not invertible or near singular). However, LASSO is differing from other methods, because it 

is making the interpretation of the statistical model more plausible by sets many coefficient estimates 

exactly to zero. Regularization techniques work by introducing a penalty to the OLS estimator as in 

Eq. (5). Then, LASSO method of estimation is introduced by [21] and is defined as follows:  

 
 

 

                             (7)       
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 The notations in Eq. (7) are defined as in Eq. (1) where the estimated OLS model of MLR 

contains the cofficients of interest [20]. Eq.(7) can be solved by using quadratic programming 

techniques such as a coordinate gradient descent algorithm [22], where it becomes as: 

                                      (8) 

Subject to  

the parameter  represents the degree of the coefficients of the model which have small weighted 

or removed from the model. Therefore, larger values means greater shrinkage, and LASSO is 

converted to the OLS estimator when . The optimal value of  is estimated by using Jackknife 

cross-validation, which is described in [21]. LASSO method gives optimal values of the  

depending on the importance of the variable; where the greatest importance explanatory variables 

receive higher values, and the smallest importance are allocated coefficients at or near 0 [11]. [19] 

stated that LASSO method has good experimental and theoretical characteristics for estimation and 

variable selection. In spite of the LASSO has shown success in many situations, it has some 

limitations [21] [23]. Therefore we propose KR method to overcome this limitations.  

 

2.2 Kernel Regression (KR) Model 

 Kernel regression (KR) model has been considered as one of the efficient nonparametric regression 

models, it is proposed by Nadaraya and Watson at 1964. KR method is particularly powerful in high-

dimensional and nonlinear settings [24]. In practice, KR method regresses the dependent variables  

onto the similarity of independent variables measured through the kernel function. KR model is 

weighted average estimators that use kernel functions as weights. Suppose we have the sample of 

observations , then, the Kernel estimation of  based on the sample is [25]:  

                                     (9) 

where  is one of Kernel function given  observation. Two choices must be made  (the 

kernel function (  and the smoothing parameter ( )) when working with a kernel estimator. On 

the other hand, given a choice of kernel K(.) , and a smoothing parameter , Kernel regression model 

for one dimension is [26]: 

                                                        (10) 

 
where  is the weight of Kernel. Because these weights are smoothly varying with , the 

kernel regression estimator  itself is also smoothly varying with . The selection of  can 

be easily changed to support of the density to be estimated. Also, the selection of appropriate 

smoothing parameter  is very important, because of the effect of the  on the shape of the 

corresponding estimator. When  value is small, we will obtain an undersmoothed estimator, with 

high variability. Whereas, if the value of  is large, the resulting estimator will be oversmoothed. In 

practice, we tend to select  by one of two methods; guessing it or using cross-validation method.  

The multiple nonparametric regression (MNR) model is written as [27]: 

 
                                            (11) 

where the function is left unspecified. Moreover, the object of nonparametric regression is to 

estimate the regression function  directly, rather than to estimate parameters. it is difficult to fit 

the MNR model when there are many predictors, several models have been developed one of them is 

the additive nonparametric regression (ANR) model as: 
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                                 (12) 

where  is representing the partial-regression functions which are assumed smooth, and to be 

estimated from the data. These partial-regression functions  are fitted using one of the simple-

regression smoother, such as local polynomial regression.  

Therefore, the first step to fit this model is to define a multiple neighborhood around the original 

point  and the second step is to calculate the weight of these points by 

using the  scaled Euclidean distances as a default in LOESS function, where, 

, 

where , and  are the mean and the standard deviation of the  

predictor. Then, the scaled distances is:  

 
where  is an appropriate weight function, such as the tricube and Epanechnikov and others. The 

third step is constructing a weighted polynomial regression of  on the ; such as, a local linear fit 

takes the following form: 

            (13) 

Then the estimated value at  is then simply by  . Performance of kernel is measured by many 

criteria among them MSE and RMSE as presented in the next subsection. 

 

2.3 Assessing Criteria of the Estimation Methods.   

  There are some useful measures (criteria) to assess the adequacy of the model to the data when we 

have several alternative methods to estimate the coefficients of the model. The average of mean 

square error (AMSE)is the first criterion of goodness of fit which is used to select the most 

appropriate model [28]: 

,                          (14) 

Since we repeat the dataset for M times in the simulation study then we will use the average mean 

square error as:   

                                      (15) 

 where M is the number of replications. Almost, the number of observations ( ) is less than or equal 

the number of explanatory variables in the case of high dimensional data. Therefore, the value of 

AMSE is larger than its value in the other case of fitting MLR model. meanwhile, MSE for the KR 

model is [29]: 

                     (16) 

We will use these criteria to assess the goodness of fit the estimation method as in the following 

section. 

 

3. Applying Estimation Methods  

The proposed method and other estimation methods are applied using simulation study and analyzing 

the real dataset to compare the performance of them. The results are as in the following subsections. 

 

3.1 Simulation Study   

The first variable generated is the dependent variable by using the following model:  

                                                  (17) 

The regression coefficients are assumed the first five parameters of the first ten equal to one and 

the rest five equal to zero and the first five of the second ten parameters are equal to one and the rest 
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five equal to zero. Three levels of  are used (1, 5, and 9). The first ten explanatory variables ( ) 

are sampled independently from uniform distribution U(0,1) and the second ten explanatory variables 

from standard normal distribution N(0,1). The data sets are generated under the sample sizes (15, 20 

and 25) and the experiment was repeated 1000 times. The program code for the data simulation was 

adapted in SAS and XLSTAT software. Consequently, the values of the Root average of mean square 

error (RAMSE) for different methods, different sample sizes and different values of variance of the 

error are as in Table (1): 

 

Table (1): RAMSE for different methods of estimation, different sample sizes and different  

values of variance of error 

 

criteria Metho

d 

n=15 n=20 n=30 

          
RAMS

E 

OLS *** *** *** *** *** *** 1.885 2.038 2.227 

LASS

O 

*** *** *** *** *** *** 1.240 2.116 2.281 

KR 4.24

7 

5.321 6.119 5.903 6.743 7.033 6.598 6.769 7.297 

(***)The models when  are not fitted because model is not full rank. 

Meanwhile,  the results of AMSE for different methods, different sample sizes and different values of 

variance of error are as in Table (2). 

 

Table (2): AMSE for different methods of estimation and different sample sizes and  

different values of variance of error 

 

criteria Method n=15 n=20 n=30 

 

 

AMSE 

          
OLS *** *** *** *** *** *** 1.4126 4.1538 4.9602 

LASSO *** *** *** *** *** *** 1.5363 4.4778 5.2005 

KR 20.26 28.316 37.441 34.841 45.473 49.461 43.527 45.82 53.244 

(***)The models when  are not fitted because model is not full rank. 

3.2 Analyzing of Real Data  

Almost newborns come with healthy weight. Most of them born after 37 or 40 weeks weigh between 

2.5 Kg and 4.0 Kg. Newborns who are lighter or heavier than the average baby are usually fine. 

Therefore, a simple random samples with sizes (15, 20,30) consists of all mothers who visit the 

primary health care center in Babylon province in year 2018, are drawn to compare the performance 

of the estimation methods presented above. The weight (Kg) of newborn children is a response 

variable Y which is considered as an indicator of healthy generation, while the risk factors are as 

following:   

mother age (year);  Age at marriage (year); Educational attainment of mother; Educational attainment 

of Husband; Weight of mother (Kg), Contraception Using; Mother's smoking ( yes; No); Age of 

Husband (year); Job of Husband (yes, No); Period of Marriage (year); Number of born children (#); 

Period of exercise per week (hour); Thyroid disease (yes, no); Mother's sleeping per day (hour); 

Taking medications (yes, No), Breastfeeding Duration (Month), Mother's job (yes, No); number of 

dead children (#). The weight of newborns (Kg) as the dependent variable. When we apply OLS, 

LASSO and KR methods to fit the MLR model for this dataset then the results of assessing criteria 

are as in Table (3): 

https://context.reverso.net/%D8%A7%D9%84%D8%AA%D8%B1%D8%AC%D9%85%D8%A9/%D8%A7%D9%84%D8%A5%D9%86%D8%AC%D9%84%D9%8A%D8%B2%D9%8A%D8%A9-%D8%A7%D9%84%D8%B9%D8%B1%D8%A8%D9%8A%D8%A9/educational+attainment
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Table (3) values of assessing criteria for different samples and different methods  

 

Method n=15 n=20 n=30 

criteria MSE RMSE  MSE RMSE  MSE RMSE  
OLS *** *** *** *** *** *** 0.262 0.512 0.92 

LASSO *** *** *** 0.129 0.3595 0.93 0.3025 0.550 0.48 

KR 4.554 2.134 0.67 5.252 2.292 0.50 7.028 2.651 0.33 

(***)The models when  are not fitted because model is not full rank.. 

4. Discussing the Results  

computational and statistical challenges have been introduced by high dimensional data especially in 

estimating MLR models. High dimensionality brings noise accretion, false correlations and related 

heterogeneity. These problems of high dimensional data make traditional statistical methods invalid. 

The results in tables 1 and 2 show that the OLS regression and LASSO cannot fit the MLR model 

when the sample size  is small than or equal to the number of explanatory variables 

 (  because the models are not full rank, OLS solutions for the parameters are not 

unique and some statistics will be misleading. Meanwhile the KR method gives an accepted criteria 

of RAMSE and AMSE in these cases. But when the sample size become  with the same 

number of explanatory variables the results show an improvement of the results of traditional method 

OLS to give a less values of the criteria. These results show that KR is outperformance of OLS and 

LASSO methods to fit the MLR with high dimensional data. Also, analyzing real dataset confirms 

that KR gives better results than other methods with high dimensional data when ( ) and 

the number of covariates equal to . Finally all the results of simulation study and analyzing 

real data show that KR is powerful than other method in estimating MLR with high dimensional data.    

 

5. Conclusions 

The above results show that KR method is better than traditional method (OLS) and the Least 

LASSO to estimate the predicted values of response variable of MLR model with high dimensional 

data because it has smallest values of RAMSE and AMSE and gives a predicted  values of response 

variable; mean while the other method cannot fit the MLR model when the sample size less than or 

equal to the number of explanatory variables. Also, the results from analyzing the real dataset are 

confirming the results of simulation study that KR is the preferred method than others.  For the future 

works may be compare the performance of KR method with the Principal Component and Ridge 

regression methods to estimate the coefficients of MLR with high dimensional data. Also, may be 

compare the performance of KR method with other nonparametric methods (e.g. spline method).  
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Abstract: In the real life applications, large amounts of variables have been accumulated quickly.   

Selection of variables is a very useful tool for improving the prediction accuracy by identifying the 

most relative variables that related to the study. Gamma regression model is one of the most models 

that applied in several science fields. Gray Wolf optimization algorithm (GWO) is one of the 

proposed nature-inspired algorithms that can efficiently be employed for variable selection. In this 

paper, chaotic GWO is proposed to perform variable selection for gamma regression model. The 

simulation studies and a real data application are used to evaluate the performance of our proposed 

procedure in terms of prediction accuracy and variable selection criteria. The obtained results 

demonstrated the efficiency of our proposed methods comparing with other popular methods. 

Keyword: Variable selection; gamma regression model; gray Wolf optimization algorithm. 

1. Introduction 

Gamma regression model is widely applied method for studying automobile insurance claims 

and medical science (De Jong & Heller, 2008; Dunder, Gumustekin, & Cengiz, 2016a; Malehi, 

Pourmotahari, & Angali, 2015). Specifically, when the response variable under the study is 

distributed as gamma distribution (Al-Abood & Young, 1986; Hattab, 2016).  

In many real applications, recent developments in technologies have made the possibility to 

measure a large number of variables. In the regression modeling, the existence of huge number has a 

negative effect by overfitting the regression model. Therefore, identification of a small subset of 

important variables from a large number of variables set for accurate prediction is an important role 

for building predictive regression models (Zakariya Yahya Algamal & Muhammad Hisyam Lee, 

2015). 

When the number of variables increases, the traditional variable selection methods, such as 

stepwise selection, forward selection, and backward elimination computationally become an 

exhaustive search and require a long time for computing. Penalization methods, (lasso) (Tibshirani, 

1996), (scad) (Fan & Li, 2001), elastic net (Zou & Hastie, 2005), and adaptive lasso (Zou, 2006), are 

become an attractive methods for simultaneously performing variable selection and model 

estimation. 

Recently, the naturally inspired algorithms, such as genetic algorithm, particle swarm 

optimization algorithm, firefly algorithm, and Gray Wolf optimization algorithm, have a great 

attraction and proved their efficiency as variable selection methods (Sayed, Hassanien, & Azar, 

2017). This is because that the main target in variable selection is to minimize the number of selected 

variables while maintaining the maximum accuracy of prediction, and, therefore, they can be 

considered as optimization problems (Sindhu, Ngadiran, Yacob, Zahri, & Hariharan, 2017).  
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Several researchers have employed the naturally inspired algorithms for variable selection in 

regression models. Broadhurst, Goodacre, Jones, Rowland, and Kell (1997) employed the genetic 

algorithm for variable selection in linear regression models, with application in chemometrics. 

Drezner, Marcoulides, and Salhi (1999) proposed to use tabu search algorithm in model selection in 

the linear regression model. On the other hand, a hybrid algorithm of genetic algorithm and simulated 

annealing was proposed as a subset selection method in linear regression model by Örkcü (2013). 

Brusco (2014) performed a comparison of simulated annealing algorithms for variable selection in 

principal component analysis and discriminant analysis. Besides, the differential evolution algorithm 

was used as a variable selection in linear regression model by Dünder, Gümüştekin, Murat, and 

Cengiz (2017). In generalized linear models, the natural inspired algorithms for variable selection are 

also used, such as, logistic regression model (Pacheco, Casado, & Núñez, 2009; Unler & Murat, 

2010), Poisson regression model (Koç, Dünder, Gümüştekin, Koç, & Cengiz, 2017; Massaro & 

Bozdogan, 2015), and gamma regression model (Dunder, Gumustekin, & Cengiz, 2016b).  

The purpose of this paper is to propose chaotic GWO, which is a swarm intelligence technique, as 

an alternative variable selection method for use in gamma regression model. The proposed algorithm 

will efficiently help in identifying the most relevant variables in the count data regression model with 

a high prediction. The superiority of the proposed algorithm is proved though different simulation 

settings and a real data application. 

 

2. Gamma regression model  

In epidemiology, social, and economic studies, positively skewed data are often arisen. Gamma 

distribution is a well-known distribution that fits such type of data. Gamma regression model (GRM) 

is used to model the relationship between the non-negative skewed response variable and potentially 

variables (Uusipaikka, 2009). 

Assume iy  is the response variable which is following a gamma distribution with shape 

parameter   and scale parameter  , i.e. ( , )iy Gamma   , then the probability density function is 

defined as 

 ( ) 1( ) , 0,iy

i i if y y e y





−−= 


  (1) 

with ( ) /E y   = =  and 
2 2var( ) / /y    = = . Given that /  = , Eq. (3) can re-parameterized 

as a function of the mean ( ) and the shape ( ) parameters and written depending on the exponential 

function as  

 ( )
( 1/ ) log( 1/ )

( , ) ,
1/

i
i i

y
f y EXP c y

 




− − − 
= + 

 
  (2) 

where the canonical link function is 1/− , the dispersion parameter is  1/ =  and  

( , ) log( ) log( ) log( ) log( ( ))i i ic y y y    = + − −  . 

GRM is usually modeled using the canonical link function (reciprocal), 1/ T
i i = − x β  which is 

expressed as a linear combination of covariates 1( ,..., )Ti i ipx x=x . The log link function, 

exp( )T
i i = x β , is alternatively used rather than the reciprocal link function because it ensures that 

0i  . 

The maximum likelihood method of Eq. (4) is the most common method of estimating the 

coefficients of GRM. Assuming that the observations are independent and 1/ T
i i = − x β , the log-

likelihood function is given by 
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1

log( )
( ) ( , ) ,

1/

T Tn
i i i

i

i

y
c y 

=

 −
= + 

 


x β x β
β   (3) 

the ML estimator is then obtained by computing the first derivative of the Eq. (3) and setting it equal 

to zero, as  

1

( ) 1 1
0.

n

i iT
i i

y
 =

 
= − = 

  


β
x

β x β
  (4) 

Depending on the iteratively weighted least squares (IWLS) algorithm, in each iteration, the 

parameters are updated by 

 
( 1) ( ) 1 ( ) ( )( ) ( ),r r r rI S+ −= +β β β β   (5) 

where ( ) ( ) /S =  β β β  and ( )( )
1

1 2( ) ( ) / TI E
−

− = −   β β β β . The final step of the estimated 

coefficients is defined as  

 
1ˆ ˆ ˆ ˆ( ) ,T T

GR
−=β X WX X Wu   (6) 

where 
2ˆˆ diag( )i=W  and û  is a vector where ith element equals” to 

2ˆ ˆ ˆˆ (( ) / )i i i i iu y  = + − .  

 

 

3. Chaotic grey wolf optimization algorithm 

Mirjalili, Mirjalili, and Lewis (2014) presented a new  metaheuristics algorithms as a swarm 

intelligence, “which is known as the grey wolf optimizer (GWO) algorithm. The GWO simulate the 

behavior of leadership and hunting in organisms of grey wolf. The GWO simulates the driving 

hierarchy in the environment and this distinguishes it from the rest of the swarm algorithms. The 

simulation of hunting in the GWO algorithm is done through the hierarchy of leadership, where the 

crowd is divided into different groups and levels such as alpha, beta, and omega (Mirjalili et al., 

2014). 

Gray wolves belong to the Canidae family and are classified as top predators because they belong 

to the top of the food chain. The first level of the leadership hierarchy is the alpha ( ) type and they 

represent the leaders, they may be female or male, and they are responsible for making all the 

decisions related to hunting, sleep, time to wake and so on . The second level in the hierarchy of 

leadership is the beta (  ), where these wolves are helping wolves in the first level of the alpha in 

making decisions. Wolves in the second level (  ) respect wolves in the first level ( ) and reinforce 

decision-making and act as their consultant. In the third level, there is a type of omega (  ) and plays 

the role of scapegoat for the flock. All wolves from other levels are submitted to wolves of the omega 

type. It may seem that wolves in the third level are not an important person, but it is observed that the 

group without them face fighting and internal problems. This is due to the venting of vehemence and 

frustration of all wolves by the omega (  ). This helps in fulfilling the whole pack and preserve the 

dominance structure (Singh & Hachimi, 2018). Wolves, which are not alpha ( ), beta (  ), or 

omega (  ), are called the subordinate or delta ( ), and wolves in this species must be subjugated to 

alpha ( ) and beta (  ), but they dominate the omega ( ) wolves.  

Mathematical models for each level of the leadership pyramid of the GWO are calculated through 

the following: 

 ( ). ( ) ,p tD c x x t= −   (7) 
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 ( )( 1) . ,p tx t x ad+ = −   (8) 

where t shows the current iteration,  px   indicates the position vector of the prey, x  represent the 

position vector of a grey wolf. The vectors a  and c  are defined mathematically as follows: 

 
1

2

2 . ,

2. ,

a L r L

c r

= −

=
  (9) 

where the components of L  are linearly reduced from 2 to 0 over the course of iterations and 1 2,r r   

are random vectors in  0,1 (Li et al., 2017). 

3.1.1 Hunting 

There are three main steps that are applied during hunting prey. There are: (1) the search for prey, 

(2) encircling, and, (3) attacking. The mathematical behavior of the gray wolf algorithm is simulated 

by assuming that alpha (  ), beta (  ), and delta ( ) have potential knowledge of the prey 

location. Mathematical equations in this regard are developed by 

 1 2 3. , . , . ,D c x x D c x x D c x x     = − = − = −   (10) 

 1 2 31 2 3.( ), .( ), .( ),x x a D x x a D x x a D     = − = − = −   (11) 

 
1 2 3

,
3

x x x+ +
  (12) 

 
1(.)

2(.)

2 . ,

2. ,

a L r L

c r

= −

=
  (13) 

where a  is a random value in the interval [ , ]L L− .  The gray wolves are compelled to attack the 

prey when random value 1a  . The prey is searched through exploration ability and attack prey the 

ability to exploit. The arbitrary values of L  are utilized to force the search to move away from the 

prey (E Emary, Zawbaa, & Grosan, 2018). The arbitrary values of L  are applied to force the search 

to move away from the prey.  

The positions of gray wolves are continuously changing in space to whatever point. In some 

problems such as feature selection, solutions are limited to binary 0 or 1 values. In such case, BGWO 

is proposed by Eid Emary, Zawbaa, and Hassanien (2016). The wolves update equation is a function 

of three position vectors namely , ,x x x    which can attract each wolf of the flock towards the 

first three best solutions. In any given time, the aggregation of solutions is in binary form and all the 

solutions are on the corner of a hypercube. To update the positions of the given wolf based on the 

basic GWO algorithm, while keeping the binary restriction according to the Eq. (14). 

The main updating equation in the bGWO algorithm can be formulated, in this approach as 

follows (Eid Emary et al., 2016): 
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1

1 2 3( , , ),t

ix crossover x x x+ =   (14) 

where ( , , )crossover x y z  is a suitable crossover between solutions , ,x y z and 1 2 3, ,x x x  are binary 

vectors representing the effect of a wolf in bGWO, which move towards the alpha; beta; delta gray 

wolves in order. 1 2 3, ,x x x  are calculated using Eqs. (15), (18), and (21),respectively, as 

 
1

1 ( ) 1
,

0 .

d d

d if x bstep
x

OW

 
 + 

= 


  (15) 

 

where 
dx    represents the position vector of the alpha (   ) wolf in the dimension d ,  and 

dbstep   is a 

binary step in the dimension d  which is calculated by the following equation: 

 
1

,
0 .

d

d if cstep rand
bstep

OW




 
= 


  (16) 

where rand  is a random number derived from the uniform distribution in the closed period  0,1 , and 

dcstep  is the continuous-valued step size for dimension d  and can be calculated using the 

sigmoidal function through Eq. (17). 

 
110 ( 0.5)

1
,

1
d d

d

a D
cstep

e 
 − −
=

+
  (17) 

where 1

d d
a and D

   are calculated using Eqs. (9) and (10) in the dimension d . 

 2

1 ( ) 1
,

0 .

d d

d
if x bstep

x
OW

 
 + 

= 


  (18) 

where 
dx    represents the position vector of the beta (   ) wolf in the dimension d ,  and 

dbstep   is a 

binary step in the dimension d  which is calculated by the following equation: 

 
1

,
0 .

d

d
if cstep rand

bstep
OW





 
= 


  (19) 

where rand  is a random number derived from the uniform distribution in the closed period  0,1  , 

and 
dcstep  is the continuous-valued step size for dimension d  and can be calculated using the 

sigmoidal function through Eq. (20) 

 
110 ( 0.5)

1
,

1
d d

d

a D
cstep

e 
 − −
=

+
  (20) 
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where 1

d d
a and D

   are calculated using equations (9), and (10) in the dimension d . 

 
3

1 ( ) 1
,

0 .

d d

d if x bstep
x

OW

 
 + 

= 


  (21) 

where 
dx    represents the position vector of the delta (  ) wolf in the dimension d , and 

dbstep   is a 

binary step in the dimension d  which is calculated by the following equation: 

 
1

,
0 O.W

d

d if cstep rand
bstep 



 
= 


  (22) 

where rand  is a random number derived from the uniform distribution in the closed period  0,1  , 

and 
dcstep  is the continuous-valued step size for dimension d  and can be calculated using the 

sigmoidal function through Eq. (23) 

 
110 ( 0.5)

1
,

1
d d

d

a D
cstep

e 
 − −
=

+
  (23) 

where 
1

d
a and 

d
D

  are calculated using Eqs. (9) and (10) in the dimension d . The crossover process is 

then applied to each of the solutions ; ;a b c  as shown in the following equation: 

 

1/ 3

1/ 3 2 / 3,

.

d

d d

d

a if rand

x b if rand

c OW




=  



  (24) 

where ,d d da b and c  represent the binary values for the first, second and third parameter in 

dimension d , dx  is the crossover process output at dimension d , and rand  is a random number 

derived from the uniform distribution in the closed period [0, 1]. The fitness function is defined” as  

 
2

1

1
ˆfitness min ( ) .

n

i i

i

y y
n =

 
= − 

 
   (25) 

4. Computational results 

In this section, the performance of our proposed variable selection method, CGWO is tested. 

Further, the performance of CGWO is compared with the GWO, Bayesian information criteria (BIC), 

and Akaike information criteria (AIC) that are defined as, respectively, 

 ˆAIC 2 ( ) 2 ,q= − + β   (26) 

 ˆBIC 2 ( ) log( ) ,n q= + β   (27) 

where ˆ( )β  is the log-likelihood for PRM and q  is the number of selected variables. 

5. Simulation results 

In this section, the same simulation settings of Zakariya Y Algamal and Muhammad H Lee 

(2015) and Wang et al. (2014) are used. The sample size is considered with {50,100,200}n  . 
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Simulation 1: In this simulation, 20 explanatory variables are generated from multivariate normal 

distributions with mean vector 0  and covariance matrix Σ  which elements ( , )
i j

i jx x 
−

=  with 

0.5 = . The true vector of parameters is given by 

55

(1.5, 1.5,1.5, 1.6,1.5,0,...,0,1.5, 1.5,1.5, 1.6,1.5,0,...,0)T= − − − −β  with 10 true explanatory variables 

and the rest in non-true variables. 

 

Simulation 2: Here, The true vector of parameters is given by 

15

(1.6, 0.88,0.95, 1.10,0.70,0,...,0)T= − −β  with 5 true explanatory variables and 15 non-true variables. 

The explanatory variables are generated as same as simulation 1 with ( , ) 0.5i jx x = .  

Simulation 3: In this simulation, 8 explanatory variables are generated as same as simulation 1 with 

( , ) 0.5
i j

i jx x
−

= . The true parameter vector is given by

8

(0.25,...,0.25)T=β .  

For all the simulation examples 1 – 3, the response variable is generated according to PRM as 

(exp( ),0.5)T

i iy Gamma x β . For performance evaluation of the CGWO, the mean squared error 

(MSE) is used as a prediction accuracy criteria, which is defined as 
2

1

ˆ( ) /
n

i i

i

y y n
=

− . In terms of 

variable selection performance, the number of the truly nonzero coefficients which are incorrectly set 

to zero (I), and the number of the true zero coefficients which are correctly set to zero (C). The higher 

the values of C, and the lower the values of I, the better the variable selection performance is. All 

computations of this paper were conducted using R. Based on 300 times of repeating simulation, the 

averaged MSE, I, and C are listed in Tables 1 – 3, respectively.  

It shows from these tables that the CGWO method there has a significant improvement where it 

has a much better average of MSE than those GWO, AIC, and BIC methods. For instance, in Table 1 

when 50n = , the MSE reduction by CGWO was about 42.35%, 34.90%, and 30.79% comparing 

with AIC, BIC, and GWO respectively. Further, regardless of the value of n , the CGWO often 

shows the smallest MSE among the competitor methods.  

In terms of variable selection performance, our proposed method obviously selects a very few 

irrelevant variables comparing with GWO, AIC, and BIC, where the number of the true zero 

coefficients which are correctly set to zero is high comparing with others. For example, in Table 3 

when 200n = , CGWO does not select, on average, about 8 irrelevant variables out of 10 irrelevant 

variables. While PSO, AIC, and BIC select more than 4 irrelevant variables. On the other hand, 

CGWO performs very well with the smallest I (the number of the truly nonzero coefficients which 

are incorrectly set to zero) among all the used methods. This indicates that CGWO misses a very few 

important variables.  

From the results of simulation 3 (Table 3), the model is dense, and, therefore, all the methods 

have zero values for the criterion C. On the other hand, CGWO is the best because the number of 

nonzero variables that have been identified as irrelevant variables is smaller compared with GWO, 

AIC, and BIC. It is worth noting that AIC has inferior performance in all simulation examples 

comparing with GWO, BIC, and CGWO methods. 
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Table 1: Simulation 1 results, on average. 

Methods MSE C I 

    

 50n =    

CGWO 5.933 8.462 0.711 

AIC 10.293 5.373 4.188 

BIC 9.114 5.112 3.919 

GWO 8.573 6.915 3.143 

 100n =    

CGWO 5.746 8.586 0.767 

AIC 10.006 5.497 4.244 

BIC 8.917 5.236 3.975 

GWO 8.389 7.039 3.199 

 200n =    

CGWO 5.697 8.623 1.342 

AIC 10.057 5.534 4.219 

BIC 8.878 5.273 4.55 

GWO 8.337 7.076 2.959 

 

Table 2: Simulation 2 results, on average. 

Methods MSE C I 

    

 50n =    

CGWO 7.405 13.237 1.214 

AIC 11.765 7.927 3.52 

BIC 10.586 7.142 3.131 

GWO 10.045 9.513 2.762 

 100n =    

CGWO 7.218 13.301 1.246 

AIC 11.478 7.991 3.552 

BIC 10.389 7.206 3.163 

GWO 9.861 9.577 2.794 

 200n =    

CGWO 7.169 13.312 1.254 

AIC 11.529 8.002 3.56 

BIC 10.35 7.217 3.171 

GWO 9.809 9.588 2.802 

 

Table 3: Simulation 3 results, on average. 

Methods MSE C I 

    

 50n =    

CGWO 7.079 0 1.254 

AIC 11.439 0 3.56 

BIC 10.26 0 3.171 

GWO 9.719 0 2.802 

 100n =    

CGWO 6.892 0 0.356 

AIC 11.152 0 2.579 

BIC 10.063 0 2.371 
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GWO 9.535 0 0.99 

 200n =    

CGWO 6.843 0 0.33 

AIC 11.203 0 2.551 

BIC 10.024 0 2.222 

GWO 9.483 0 0.914  

 

6. Real application result 

To make the benefit of the our proposed method in the real application, a chemistry dataset with 

( ) ( ),    65,15n p = , of imidazo[4,5-b]pyridine derivatives (Algamal, Lee, Al-Fakih, & Aziz, 2015). 

The response of interest is the biological activities (IC50) (Algamal & Lee, 2017). A Chi-square test 

as a goodness of fit is used to check whether the biological activities variables has the gamma 

distribution. The result of the test equals to 9.3657 with p-value equals to 0.9534. This indicating that 

the gamma distribution fits very well to this response variable. The estimation of the dispersion 

parameter is 0.0066”. 

Table 4 summarizes the MSE and the selected variables for each used method for the real data 

application. 

As seen from the result of Table 4, CGWO can remarkably reduce the MSE comparing with 

GWO, AIC, and BIC. In terms of selected variables, on the other hand, it clearly seen from Table 4 

that CGWO only select 6 variables out of 15 variables when the gamma model is assumed. CGWO 

selected the explanatory variables 1x , 2x , 7x ,     8x , 11x , and 15x . These selected variables are 

identified as relevant variables to the study. Comparing with GWO and BIC, CGWO includes few 

variables with the MSE is less than them.  

 

Table 4: MSE and the selected variables for the real application 

Methods Selected variables MSE 

CGWO 
1x , 7 8 11 15, , ,x x x x 2x   1592.21 

AIC 
1x , 2x , 3 6 8 10 11 14, , , , ,x x x x x x  1862.86 

BIC 
1x , 2x , 3 6 7 10 11 14 15, , , , , ,x x x x x x x  1831.81 

GWO 
1x , 2x , 5 7 8 11 15, , , ,x x x x x  1625.05 

 

7. Conclusion 

In this paper, the problem of selecting variables in gamma regression model is considered. A 

chaotic grey wolf optimization algorithm was proposed as a variable selection method. The results 

obtained from simulation examples and real data applications demonstrated the superiority of the 

CGWO in terms of MSE, I, and C comparing with GWO, AIC, and BIC methods. 
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Abstract: This study deals with (s – out of – k) Multicomponent Stress(Y) and Strength(X) System 

Reliability Estimation. Both stress and strength assumed to have Generalized Exponential-Poisson 

Distribution with common and known scale parameters (θ and λ). The aim here is to estimate the 

unknown shape parameters (α and β) for X and Y respectively using two methods of estimation ML 

and Bayes analysis by one prior with five loss functions. Then estimate Reliability using the same 

methods and compared the results by Mean square error criteria from simulation study  to find the 

best performance of the estimators .the results show that the best estimator for is Bayes 

estimator under Quadratic loss function using Gamma prior function , followed by  GD, GW, GP, 

MLE and GS estimators, respectively. 

 

1. Introduction .A distribution obtained by compounding an exponential distribution with geometric 

distribution, with decreasing failure rate, known as exponential-geometric distribution is introduced 

by Adamidis and Loukas (1998) [1]. In the same fashion, Kus (2007) [9] introduced a two-parameter 

distribution known as exponential-Poisson (EP) distribution, which has decreasing failure rate, by 

compounding an exponential distribution with a Poisson distribution. The generalization of this 

distribution is come from Barreto-Souza and Cribari-Neto [3], with failure rate can be decreasing or 

increasing.The two-parameter exponential-Poisson (EP) with cumulative distribution function (cdf) 

given as:[2] 

                   x>0; θ, λ>0 

  The random variables X & Y have Generalized Exponential-Poisson distribution with parameters 

(α, λ, θ) and (β, λ, θ) respectively if cdf’s define as:                                                                                              

                                                                           (1) 

                                                                           (2) 

where   Ax=  ,      Ay =  for α, β > 0 the shape parameters, where X, Y are 

called Generalized Exponential-Poisson distribution(GEPD) random variable with scale parameters 

(θ, λ). The corresponding probability density functions (pdf 's) are define as: 

                                               (3) 

                                                                                                (3-a) 
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                                                         (4) 

                                                                                                   (4-a) 

  If X is the strength of a component subjected to a stress Y, then R is a measure of system 

performance, the system fails if and only if the applied stress is greater than its strength, which 

referred as the stress- strength parameter. It arises in the context of mechanical reliability of a system. 

Another example of R discussed by Surles and Padgett [11] and Kotz et al. [8] involves the comparison 

of carbon strengths at different gauge lengths. 

  The rest of the paper is organized as follows.  Section 2, introduce the obtained mathematical 

expression for the Multicomponent model reliability. In Section 3, considering two methods for 

estimating R, [ ML and Bayes analysis] estimation methods. In Section 4, comparing the estimators 

of R by Monte Carlo simulations. Finally, the results conclusions are given in Section 5.                      

2. Multicomponent S-out of-K Stress-Strength System Reliability: 

  The estimation of the stress- strength parameter R is very common in the statistical literature. 

Several authors have considered estimation of R with different assumption of distributions (Huang et 

al. [6], Baklizi [2], Ghitany et al. [5],Bagheri[10]) 

   The system when consisting k component and we need the work s of k is called multicomponent 

stress-strength system (s-out of-k). This system is studied by Bhattacharyya and Johnson [4]. Let the 

strength of the components  imposed to a common stress , then the reliability of 

multicomponent stress-strength system is: 

 

                                                              (5) 

 Let Xi ~ GEP(αi ,θ ,λ) ; i = 1,..,k be the kth components strength variable which exposed to common 

stress random variable Y~GEP( β,θ ,λ) independently, the reliability of (s-out of-k) multicomponent 

stress-strength of GEP distribution can be obtained by substitution eq.(1),(4-a) in(5) as:  

    

 

using    , that    , then : 

 

   

    =    
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                                                                                 (6) 

Where s, k, i, j are integers. 

   Multicomponent S-out of- K models; R Since the concept of stress-strength in engineering has been 

one of the deciding factors of the failure of devices, this study can be applied to engineering 

situations. 

The following figures of reliability function  in (6) are presented below for different values of 

shape parameters ( α,β ).  

 

Figure (1): Multicomponent Reliability against parameter α. 
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Figure (2): Multicomponent reliability against parameter β. 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

In figure (1) and for the strength r.v. X, show that reliability value increasing by increasing 

value of strength shape parameter α, where in figure (2) and for the stress r.v. Y, show that 

reliability value decreasing by increasing value of stress shape parameter β, knowing these 

cases with: (s, k) = (2, 3) and (3, 4). 

3.Estimation procedures: 

   The estimation of the unknown parameters α, β and the reliability is done using two estimation 

methods [MLE, Bayes]. 

3.1 Maximum Likelihood estimation 

   Let the two independent   X1, …., Xn and Y1, …., Ym are random sample from GEP, then the 

likelihood function for eq. (3) is: 

 

                                 Let    , then: 
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                                                                                (7) 

If  wx =          , then :  

 

 

So the ML's estimator for the unknown shape parameters α, β will be as: 

                                                                                                 (8) 

Substation the formulas of eq. 8 in the eq.6 , the ML estimator for  say  can obtained  as: 

                                                                         (9)                                               

 3.2 Bayes analysis 

   In this section, consider the Bayes estimation of the unknown parameters α, β and reliability with 

assumed that these parameters as r.v.'s under gamma prior as: 

                                                        α>0; b, a >0                                       (10) 

The posterior function is:   

                                                                                                              (11) 

where: L(x|α) is the likelihood for the density function, g(α) is the prior function for the shape 

parameter. Now using eq.'s (7), (10) in (11), we get: 

                       (12)  

                                   

3.2.1. Squared error loss function: 

                                 

Then                                                                                         (13) 

and the reliability estimation function in eq.6 given by: 

                                                                                     (14)  

3.2.2 Precautionary loss function 
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                                                                      (15)                        

 and the reliability estimation function in eq.6 given by: 

                                                                                    (16) 

3.2.3. De-Groot loss function  

                                                            

                                                      (17)                                                                                    

and the reliability estimation function in eq.8 given by:           

                                                                                 (18)   

 

 

3.2.4. Quadratic loss function 

                                                  

                             =                             

                                                   

                                                       

                                                              (19)      

and the reliability estimation function in eq.8 given by: 

                  

                                                        (20)                                              

3.2.5. Weighted loss function 

                                                       

               ,                                                       (21) 

 and the reliability estimation function in eq.8 given by: 

                                                                           (22)  
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4. Simulation study. 

    Here, we present results of some numerical three experiments ,results based on Monte Carlo 

simulation to compare the performance of different estimators proposed in the previous sections and 

different sample sizes (n,m)=( 15,25),(25,15),(25,50),(50,25),(25,70),(70,25),(50,70),(70,50) and the 

parameters values: (a= 0.4, b=1.2) for Gamma prior, [(α= 0.2,0.9) ,(β=0.5,0.7) ,(θ=0.5,0.7) ,(λ=0.7,1) 

, ( s1,k1,s2,k2 )=( 2, 3, 3, 4 ) for R(s,k) . MSE of reliability estimates over the 1000 replications are 

given in six tables from 1 to 6 as below:  

Table -1-: The best estimation method of MSE for  when ( =( 0.2, 0.5, 0.5, 0.7) and      

S=2, K=3, R = 0.2424.      

n,m  RML RGS RGP RGD RGQ RGW BEST 

15,25 
Mean 0.2738 0.2775 0.2806 0.2837 0.2633 0.2708 

RGQ 
MSE 0.0073 0.0074 0.0077 0.0080 0.0063 0.0068 

25,15 
Mean 0.2619 0.2656 0.2626 0.2596 0.2799 0.2723 

RGD 
MSE 0.0064 0.0064 0.0062 0.0060 0.0076 0.0069 

25,50 
Mean 0.2656 0.2678 0.2702 0.2725 0.2575 0.2628 

RGW 
MSE 0.0055 0.0056 0.0058 0.0060 0.0049 0.0053 

50,25 
Mean 0.2604 0.2624 0.2600 0.2577 0.2727 0.2674 

RGD 
MSE 0.0049 0.0049 0.0048 0.0046 0.0057 0.0052 

25,70 
Mean 0.2663 0.2684 0.2715 0.2746 0.2551 0.2619 

RGQ 
MSE 0.0041 0.0042 0.0044 0.0046 0.0035 0.0038 

70,25 
Mean 0.2546 0.2564 0.2534 0.2505 0.2695 0.2628 

RGD 
MSE 0.0049 0.0049 0.0048 0.0046 0.0058 0.0053 

50,70 
Mean 0.2641 0.2654 0.2661 0.2668 0.2625 0.2639 

RGQ 
MSE 0.0036 0.0036 0.0037 0.0037 0.0035 0.0036 

70,50 
Mean 0.2621 0.2633 0.2626 0.2619 0.2662 0.2647 

RGD 
MSE 0.0043 0.0043 0.0043 0.0042 0.0045 0.0044 

 

Table -2-: The best estimation method of MSE for  when ( =( 0.2, 0.5, 0.5, 0.7) and 

S=3, K=4, R = 0.1492. 

n,m  RML RGS RGP RGD RGQ RGW BEST 

15,25 

Mean 0.1721 0.1754 0.1780 0.1808 0.1630 0.1695 

RGQ 

MSE 0.0047 0.0048 0.0051 0.0053 0.0040 0.0044 
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25,15 

Mean 0.1732 0.1763 0.1736 0.1710 0.1891 0.1823 

RGD 

MSE 0.0053 0.0053 0.0051 0.0049 0.0066 0.0059 

25,50 

Mean 0.1743 0.1762 0.1783 0.1804 0.1671 0.1717 

RGQ 

MSE 0.0038 0.0039 0.0041 0.0043 0.0033 0.0036 

50,25 

Mean 0.1615 0.1633 0.1613 0.1593 0.1722 0.1676 

RGD 

MSE 0.0035 0.0035 0.0034 0.0033 0.0041 0.0038 

25,70 

Mean 0.1749 0.1767 0.1794 0.1822  .1650 0.1709 

RGQ 

MSE 0.0035 0.0035 0.0038 0.0040 0.0028 0.0032 

70,25 

Mean 0.1644 0.1660 0.1633 0.1608 0.1776 0.1716 

RGD 

MSE 0.0033 0.0033 0.0031 0.0030 0.0041 0.0037 

50,70 

Mean 0.1661 0.1672 0.1678 0.1684 0.1647 0.1660 

RGQ 

MSE 0.0026 0.0027 0.0027 0.0027 0.0025 0.0026 

70,50 

Mean 0.1656 0.1666 0.1660 0.1654 0.1692 0.1679 

RGD 
MSE 0.0025 0.0028 0.0027 0.0026 0.0028 0.0027 

 

Table -3-: The best estimation method of MSE for  when( = 0.9, 1.2, 0.7, 1 and S=2, 

K=3, R = 0.4154. 

n,m  RML RGS RGP RGD RGQ RGW BEST 

15,25 

Mean 0.4192 0.4176 0.4210 0.4245 0.4013 0.4099 

RGW 
MSE 0.0087 0.0077 0.0077 0.0078 0.0078 0.0076 

25,15 

Mean 0.4121 0.4243 0.4208 0.4173 0.4407 0.4320 

RGP 

MSE 0.0076 0.0067 0.0066 0.0067 0.0073 0.0069 

25,50 

Mean 0.4201 0.4179 0.4207 0.4234 0.4059 0.4121 

RGQ 

MSE 0.0052 0.0050 0.0049 0.0049 0.0048 0.0049 

50,25 

Mean 0.4141 0.4222 0.4195 0.4168 0.4342 0.4280 

RGD 

MSE 0.0054 0.0052 0.0051 0.0050 0.0053 0.0051 

25,70 

Mean 0.4257 0.4216 0.4252 0.4287 0.4063 0.4142 
RGW 

RGS 
MSE 0.0048 0.0043 0.0044 0.0045 0.0044 0.0043 

70,25 

Mean 0.4078 0.4173 0.4137 0.4102 0.4327 0.4248 

RGD 

MSE 0.0043 0.0039 0.0039 0.0038   0.0042 0.0040 

50,70 

Mean 0.4210 0.4213 0.4221 0.4229 0.4179 0.4196 

RGQ 

MSE 0.0029 0.0028 0.0028 0.0028 0.0027 0.0028 

70,50 Mean 0.4143 0.4176 0.4168 0.4160 0.4210 0.4218 RGD 
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MSE 0.0031 0.0030 0.0029 0.0028 0.0030 0.0030 

Table -4-: The best estimation method of MSE for  when( =( 0.9, 1.2, 0.7, 1) and 

S=3, K=4, R = 0.3115. 

n,m  RML RGS RGP RGD RGQ RGW BEST 

15,25 
Mean 0.3253 0.3229 0.3264 0.3299 0.3064 0.3151 

RGQ 

MSE 0.0098 0.0085 0.0086 0.0088 0.0081 0.0083 

25,15 
Mean 0.3152 0.3268   0.3233 0.3197 0.3436 0.3347 

RGD 
MSE 0.0081 0.0074 0.0072 0.0071 0.0083 0.0078 

25,50 
Mean 0.3158 0.3137 0.3165 0.3192 0.3016 0.3078 

RGQ 
MSE 0.0049 0.0046 0.0046 0.0047 0.0045 0.0047 

50,25 
Mean 0.3094 0.3176 0.3148 0.3121 0.3299 0.3235 

RGD 
MSE 0.0048 0.0045 0.0045 0.0044 0.0049 0.0047 

25,70 
Mean 0.3212 0.3170 0.3206 0.3243 0.3016 0.3095 

RGQ 
MSE 0.0052 0.0048 0.0048 0.0050 0.0047 0.0049 

70,25 
Mean 0.3082 0.3176 0.3141 0.3105 0.3334 0.3253 

RGD 
MSE 0.0045 0.0043 0.0043 0.0042 0.0048 0.0045 

50,70 
Mean 0.3127 0.3130 0.3138 0.3146 0.3095 0.3113 

RGQ 
MSE 0.0029 0.0028 0.0028 0.0028 0.0027 0.0028 

70,50 
Mean 0.3173 0.3204 0.3196 0.3188 0.3239 0.3221 

RGD 
MSE 0.0026 0.0025 0.0025 0.0024 0.0026 0.0026 

 

Table -5-: The best estimation method of MSE for  when( = 1.2, 0.8, 1.5, 0.9 and 

S=2, K=3, R = 0.6136. 

n,m  RML RGS RGP RGD RGQ RGW BEST 

15,25 
Mean 0.6092 0.5987 0.6019 0.6051 0.5835 0.5915 

RGD 
MSE 0.0063 0.0059 0.0058 0.0057 0.0068 0.0062 

25,15 
Mean 0.6019 0.6017 0.5984 0.5952 0.6166 0.6087 

RGQ 
MSE 0.0060 0.0054 0.0055 0.0056 0.0051 0.0052 

25,50 
Mean 0.6099 0.6029 0.6054 0.6079 0.5918 0.5976 

RGP 
MSE 0.0036 0.0035 0.0034 0.0035 0.0040 0.0037 
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50,25 
Mean 0.6036 0.6043 0.6017 0.5992 0.6152 0.6096 

RGW 
MSE 0.0038 0.0036 0.0036 0.0037 0.0035 0.0034 

25,70 
Mean 0.6086 0.6009 0.6041 0.6074 0.5866 0.5939 

RGD 
MSE 0.0030 0.0030 0.0029 0.0028 0.0036 0.0032 

70,25 
Mean 0.5999 0.6020 0.5988 0.5955 0.6160 0.6089 

RGQ 
MSE 0.0036 0.0033 0.0035 0.0036 0.0031 0.0032 

50,70 
Mean 0.6013 0.5985 0.5992 0.6000 0.5953 0.5969 

RML 
MSE 0.0020 0.0021 0.0021 0.0021 0.0023 0.0022 

70,50 
Mean 0.6079 0.6071 0.6064 0.6057 0.6102 0.6087 

RGQ 
MSE 0.0020 0.0020 0.0020 0.0020 0.0019 0.0021 

 

Table -6-: The best estimation method of MSE for  when( = (1.2, 0.8, 1.5, 0.9) and 

S=3, K=4, R = 0.5260. 

n,m  RML RGS RGP RGD RGQ RGW BEST 

15,25 
Mean 0.5134 0.5019 0.5055 0.5091 0.4847 0.4938 

RGD 
MSE 0.0082 0.0078 0.0076 0.0074 0.0090 0.0083 

25,15 
Mean 0.5151 0.5146 0.5110 0.5074 0.5315 0.5226 

RGW 
MSE 0.0080 0.0072 0.0073 0.0075 0.0071 0.0070 

25,50 
Mean 0.5212 0.5132 0.5161 0.5189 0.5007 0.5072 

RGD 
MSE 0.0046 0.0044 0.0043 0.0042 0.0049 0.0046 

50,25 
Mean 0.5135 0.5143 0.5114 0.5086 0.5267 0.5203 

RGQ 
MSE 0.0045 0.0042 0.0043 0.0044 0.0040 0.0041 

25,70 
Mean 0.5189 0.5102 0.5139 0.5175 0.4940 0.5023 

RGD 
MSE 0.0038 0.0038 0.0037 0.0036 0.0046 0.0041 

70,25 
Mean 0.5129 0.5153 0.5116 0.5079 0.5312 0.5230 

RGQ 
MSE 0.0047 0.0043 0.0044 0.0046 0.0042 0.0043 

50,70 
Mean 0.5157 0.5124 0.5132 0.5141 0.5089 0.5107 

RGD 
MSE 0.0030 0.0029 0.0029 0.0028 0.0031 0.0030 

70,50 
Mean 0.5199 0.5190 0.5182 0.5173 0.5225 0.5207 

RGQ 
MSE 0.0028 0.0027 0.0027 0.0027 0.0025 0.0026 
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5.Conclusion: 

From the tables (1 to 6), we have observed that: 

1- MSE value decreasing by increasing sample size (n,m) for MLE and Bayes estimators. 

2- The value of   decreases as (k) value decreases.  

3- In general the best performance was is in Bayes method under Quadratic loss function estimator, 

followed by GD, GW, GP, MLE and GS estimators, respectively. 
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Abstract:  A new model-free variable selection method was proposed in this article, which is called 

SMAVE-AdEN. We combined the effective sufficient dimension reduction method MAVE with the 

variable selection method which is called adaptive Elastic Net (AdEN) to introduce SMAVE-AdEN. 

The SMAVE-AdEN produces a sparse and accurate estimate when the predictors are highly 

correlated. The advantage of SMAVE-AdEN is that SMAVE-AdEN extended Adaptive Elastic net 

(AdEN) to nonlinear and multi-dimensional regression. Also, the SMAVE-AdEN enables MAVE to 

work with problems were the predictors are highly correlated. In addition, SMAVE-AdEN can 

exhaustively estimate dimensions, while selecting informative covariates simultaneously. The 

performance of SMAVE-AdEN is evaluated by both simulation and real data analysis. 

Keywords: Dimension reduction, Variable selection, Minimum average variance estimation, Adaptive 

Elastic Net. 

1. Introduction 

      When  the amount of predictors  is large, the regression analysis might be highly challenging. A 

beneficial mechanism to deal with this obstacle is decreasing -dimensional predictors vector  with 

no loss regarding regression information. 

      The sufficient dimension reduction (SDR) theory has been presented by Cook (1998) to perform 

the above aim. Assuming  is response variable, also  is a  has been predictor 

vector. SDR explores   matrix , in a way that , in which  indicates independence. 

Also, dimension reduction subspace (DRS) is the column space spanned by . The intersection of all 

DRS has been referred to as the central subspace ( ). The  has contained all regression 

information regarding  (Yu and Zhu, 2013). Several methods has been submitted for obtaining 

. For instance, SIR (Li, 1991), SAVE (Cook and Weisberg, 1991) as well as PHD (Li, 1992). 

     When the mean function is of interest, (Cook and Li, 2002) has presented the notion that is related 

to central mean subspace ( ). For the purpose of estimate , a number of DR methods 

were presented, as the iterative Hessian transformation (Cook and Li, 2002) as well as MAVE (Xia et 

al., 2002).  

      SDR approaches supplying the researchers with useful tools for gaining adequate DR; 

nevertheless, these methods suffer from that each DR direction has been linear combination 

regarding original predictors. This makes the resulting measures not ease. 

      The process of electing the predictors is a very important in constructing the model of multiple 

regression. Besides, the selection of the significant predictors for being in the model improves the 

prediction accuracy related to the model. Furthermore, the small subset of predictors performs the 

interpretation of the results easy. The regularisation methods were applied for variable selection with 

regard to regression models from various researchers. See, for instance the Lasso (Tibshirani, 1996), 
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SCAD (Fan and Li, 2001), Elastic Net (EN) (Zou and Hastie, 2005), adaptive Lasso (Zou, 2006) and 

MCP (Zhang, 2010). 

      Under SDR perspectives, the views of regularisation methods joined with several SDR methods 

from many researchers. For instance, Li et al. (2005), Ni et al. (2005), Li and Nachtsheim (2006), Li 

(2007), Li and Yin (2008). Wang and Yin (2008) combined Lasso with MAVE to produce sparse 

MAVE (SMAVE) estimate. Wang et al. (2013) proposed penalised MAVE (P-MAVE) through 

combining bridge penalty with -norms of the rows of a basis matrix. Alkenani and Yu (2013) 

incorporate MAVE with SCAD, adaptive Lasso and the MCP to produce SCAD-MAVE, ALMAVE 

and MCP-MAVE, respectively.  Wang et al. (2015) combined Lasso with the group-wise MAVE 

which suggested by Li et al. (2010). Alkenani and Rahman (2020) proposed SMAVE-EN method by 

combining MAVE with EN penalty to produce sparse and accurate estimates. The Lasso does not 

have oracle properties and it is not stable. Furthermore, adaptive Lasso achieves the oracle property, 

yet it inherits the instability related to Lasso with regard to the high-dimensional data. Elastic net 

handles collinearity, yet lacking oracle property.  Zou and Zhan (2015) proposed Adaptive Elastic 

Net (AdEN) to tackle the limitations of EN. They proposed to employ adaptive Lasso instead of 

Lasso in EN penalty.  

      In this article, the SMAVE-AdEN has been presented. The SMAVE-AdEN is a shrinkage 

estimation method under SDR settings, where there is a set of predictors among which the predictors 

are highly pairwise correlated. SMAVE-AdEN is a nice combination of MAVE and AdEN. SMAVE- 

AdEN has advantages over the SMAVE (Wang and Yin, 2008), SPMAVE (Alkenani and Yu, 2013), 

P-MAVE (Wang et al., 2013) and SMAVE-EN (Alkenani and Rahman, 2020). It benefits from the 

strength of AdEN. In AdEN, the variable selection and parameters estimation have been implemented 

in one process and AdEN has the oracle property to select groups of highly correlated variables. The 

mentioned ability does not hold for Lasso, adaptive lasso, SCAD, MCP, bridge penalties and EN 

which are employed in the existing methods. 

     The rest of this article is as follows. In Section 2, a summary of MAVE and SMAVE-EN method 

is presented. We proposed the SMAVE-AdEN in Section 3. Simulation studies are implemented in 

Section 4. In Section 5, the methods under consideration are applied to graduate student rate data. 

The conclusions are given in Section 6. 

 

2. MAVE and SMAVE-EN 

      In this section, we propose a brief of MAVE and SMAVE-EN. Suppose the following model: 

                                                                   

where ,  and  are the response variable, a  predictor vector  and the error term, respectively. 

In addition,   and . For the mean function, the SDR aims to 

investigate a subspace  such that  

                                                    

where  is a projection operator. The mean DR subspaces achieve   (Cook and Li, 2002).  If 

 and  is a basis for ,  can be replaced with LC 

 without a loss of information on . Cook and Li, (2002) show 

that the central mean subspace  is the intersection of all subspaces satisfying (2). Many 

methods were proposed to estimate and one of the more efficient methods is MAVE. 

      Xia et al. (2002) proposed MAVE such that the matrix  is the solution of  

                                                                                         

where . The conditional variance given is  

                                                                      

Thus, 
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For any given ,  can be locally approximated as 

 
                                                  

where  are the kernel weights with . So,  can be found by solving  

 

             .                   

      Alkenani and Rahman (2020) incorporate EN penalty term in (6) to obtain a SMAVE.  The 

SMAVE minimises: 

             

for . 

where,  has been known and it can be estimated by BIC. where,  is norm related with ridge 

penalty and  is norm related with Lasso penalty. The minimisation in (7) consists of three 

parts. The first part is the loss function of MAVE based on the least-squares formulation of MAVE. 

The second part is the ridge penalty function stabilizes the solution paths, handles the collinearity 

and, thus, improving the prediction. The third part is the Lasso penalty function which performs 

parameters estimation and variable selection simultaneously. The EN penalty consists of the second 

and the third parts. The EN inherit the advantages and disadvantages of ridge and Lasso. Also, and 

 are the tuning parameters of  Elastic Net. Such good properties making SMAVE-EN extremely 

significant variable selection approach. In spite of  its significance, SMAVE-EN have two 

disadvantages:  which are, lacking  oracle property and bias for estimating. 

  

      In this article, for the reasons mentioned, SMAVE-AdEN is proposed to minimise  

 
1. Let and , any arbitrary  vector. 

2. For known , get  where , from  

                            

3. For a given , , solve  from  

                                                                                                    
4. Replace the column of  by  and repeat steps 2 and 3 until convergence.  

5. Update  by  and set  to be . 

6. If  continue steps 2 to 5 until . 

Where  are the kernel weights and they are computed as follows 

, 
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 is the refined multidimensional Gaussian kernel and  is the bandwidth, 

where , see (Xia et al., 2002). 

      SMAVE-AdEN combines AdEN into the “OLS formulation” of MAVE. Thus, under the same 

conditions as those for MAVE and EN, the algorithm well be converging to global minimum. 

According to the simulations of this study, the algorithm of SMAVE-EN usually converges within 

seven to twelve iterations. The LARS algorithm of Efron et al. (2004) can be manipulated to get the 

efficient solution of EN with the order of computational efforts has been majorly comparable to that 

related to single OLS fit (Zou and T. Hastie, 2005). Compared to MAVE, the penalty term in 

SMAVE-AdEN appears in the “OLS formulation” of MAVE, so the algorithm is as efficient as 

MAVE. At an early stage of LARS-EN algorithm, the optimal results have been achieved. After  

steps, if the algorithm of LARS-EN is settled, then it demands operations (Zou and T. 

Hastie, 2005). Due to (Xia et al, 2002),  the rate of consistency for the MAVE estimator is 

. Because of that the rate of consistency of MAVE is a lower than that of AdEN, the 

rate of consistency of SMAVE-AdEN estimator is controlled by that of MAVE. In summary, under 

the same conditions of Zou and T. Hastie (2005) and Xia et al. (2002), one may show that the 

SMAVE-AdEN estimator has the same consistency rate as the MAVE estimator and it is also as 

efficient as MAVE asymptotically.  

 

3. Simulation study 

      The goal in this section is to compare the performance of SMAVE-AdEN with the ALMAVE, 

SCAD-MAVE, MCP-MAVE, SMAVE, P-MAVE and SMAVE-EN methods in terms of prediction 

accuracy and variable selection. Also, to show the preference of SMAVE-AdEN when the grouped 

selection is required. 

      An amount of examples is reported to show the performance of the SMAVE-AdEN. The 

simulated data consist of a training set, an independent validation set and an independent test set 

within each example. The training data were employed to fit the models, and the tuning parameters 

were selected by using the validation data. The test data were employed to compute the mean-

squared error (MSE). The notation  refers to the number of observations in the mentioned three 

sets, respectively. 

     The ALMAVE, SCAD-MAVE and MCP-MAVE methods were computed using R codes made by 

Alkenani and Yu (2013). The SMAVE, P-MAVE and SMAVE-EN methods were computed using R 

codes made by Wang and Yin (2008), Wang et al. (2013) and Alkenani and Rahman (2020), 

respectively. The R code for SMAVE-AdEN is available from the authors. For each competitor, the 

tuning parameters was chosen via tenfold cross-validation (C.V).  

The examples as follow: 

 

Example1. We generated data from the linear regression model.     

     

where is  a dimensional vector and  and  is from multivariate normal 

distribution with zero mean and covariance ∑ whose ( ) entry is            

We considered  and . Let   for . Let  

denote a  vector of . The vector of true coefficients is  

and  and  . In this example  hence, we used  for computing the 
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adaptive weights in the adaptive elastic-net. Let   ,  

 

is the intrinsic dimension of the underlying model. 

 With regard to each estimator , the estimation accuracy well be evaluated via mean squared error 

(MSE) that is specified as . Also, variable selection performance has been 

gauged via (C, IC), in which C has been the number of zero coefficients which have been estimated 

correctly via zero, also IC representing the number of the nonzero coefficients which have been 

estimated incorrectly via zero. 

Example 2. We generated data from the linear regression model 

 

where  is  a dimensional vector and  and  is from multivariate normal 

distribution with zero mean and covariance ∑ whose ( ) entry is   We 

considered  and . Let   for  . Let  

denote a  vector of . The vector of true coefficients are 

 and  and   and 

 . In this example  hence, we used  for computing the adaptive weights in the 

adaptive elastic-net.                                                                                         

   ,     

 

Table 1: Model selection (ME) and fitting results based on 100 replications for ρ = 0.5 in example 1 

n pn |A| Model MSE C IC 

100 35 11 Truth  26 0 

   SMAVE 8.87 (0.65) 22.74 0.41 

   ALMAVE 5.22 (0.31) 24.25 0.13 

   SCADMAVE 9.05 (0.53) 22.00 0.52 

   
MCPMAVE 

7.53 (0.62) 22.70 0.34 

   
SMAVE- EN 

4.92 (0.24) 24.75 0.09 

   
SMAVE- AdEN 

4.02 (0.29) 24.90 0.08 

       

200 51 17 Truth  36 0 

   SMAVE 6.12 (0.57) 33.24 0.12 

   ALMAVE 4.01 (0.24) 34.25 0 

   SCADMAVE 3.88 (0.33) 33.94 0.08 

   
MCPMAVE 

5.50 (0.50) 33.83 0.09 

   
SMAVE- EN 

3.22 (0.17) 35.02 0 

   
SMAVE- AdEN 

2.94 (0.19) 35.32 0 

   
 

   

400 75 25 
Truth 

 51 0 

   SMAVE 4.11 (0.17) 48.34 0 

   ALMAVE 2.61 (0.18) 50.01 0 
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   SCADMAVE 3.02 (0.12) 49.44 0 

   
MCPMAVE 

3.78 (0.22) 48.73 0 

   
SMAVE- EN 

2.13 (0.13) 50.32 0 

   
SMAVE- AdEN 

1.99 (0.10) 50.46 0 

 

 

Table 2: ME and fitting results based on 100 replications for ρ = 0.75 in example 1 

n pn |A| Model MSE C IC 

100 35 11 Truth  26 0 

   SMAVE 6.77 (0.28) 22.95 0.49 

   ALMAVE 5.12 (0.17) 24.75 0.17 

   SCADMAVE 10.05 (0.22) 22.13 1.11 

   MCPMAVE 7.75 (0.24) 22.82 1.24 

   SMAVE- EN 4.95 (0.15) 24.79 0.14 

   
SMAVE- 

AdEN 
4.21 (0.18) 24.98 0.10 

       

200 51 17 Truth  36 0 

   SMAVE 6.44 (0.51) 34.11 0.13 

   ALMAVE 4.33 (0.23) 35.01 0.03 

   SCADMAVE 4.02 (0.31) 34.99 0.55 

   MCPMAVE 5.61 (0.42) 34.32 0.89 

   SMAVE- EN 3.35 (0.14) 35.41 0 

   
SMAVE- 

AdEN 
3.12 (0.15) 35.63 0 

       

400 75 25 Truth  51 0 

   SMAVE 4.33 (0.13) 49.34 0.11 

   ALMAVE 2.98 (0.18) 50.33 0 

   SCADMAVE 3.45 (0.12) 49.95 0.07 

   MCPMAVE 3.90 (0.12) 49.11 0.09 

   SMAVE- EN 2.67 (0.09) 50.51 0 

   
SMAVE- 

AdEN 
2.22 (0.11) 50.67 0 

 

 

 

      From Table 1 and 2 the prediction results can be summarized as follows. First, it is clear that the 

SMAVE has the worst performance. SMAVE-AdEN is considerably more accurate than all the 

considered methods. In general, the ALMAVE and SMAVE-EN was competitor for SMAVE-EN 

and its performance was better than the rest methods for all the examples. The results of simulation 

indicate that the SMAVE-AdEN dominates the SMAVE-EN, ALMAVE, SCAD-MAVE, P-MAVE, 

MCP-MAVE and SMAVE methods under collinearity. 

Example 1. 
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Figure 1: MSE for the considered methods based on example 1. 

 

Table 3: ME and fitting results based on 100 replications for ρ = 0.5 in example 2 
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Figure 2: MSE for the considered methods based on example 2. 

 

 

 

4. Graduate student rate (GSR) data  

      In this part, the GSR data has been analysed by SMAVE-AdEN, SMAVE-EN, ALMAVE, 

SCAD-MAVE, P-MAVE, MCP-MAVE and SMAVE methods.  

The performance of the studied methods was compared via computing their prediction MSE on the 

test data. We apply the most important factors that affect performance of postgraduate students in 

Iraq data. The data had been collected by the students from the Al-Qadisiyah University in Al-

Diwaniya to achieve this aim. 

The researcher prepared a questionnaire to obtain the data required to study the most important 

factors that affect performance of postgraduate students in Iraq (University of Al-Qadisiyah as an 

example). To approve its validity, the text of the questionnaire was given to a jury to evaluate its 

appropriateness to investigate the subject under study. The jury consists of tutors of high experience 

and direct contact with the postgraduate students. The form of the questionnaire was first distributed 

to a population of postgraduate students in the college of Economy and Administration to explore 

their opinion about it. After getting their views, the final version of the form became ready to 

distribute as a procedure to collect the data required. The questionnaire is made up of 57 variables 

that are viewed to affect performance of the postgraduate students in Iraq. Fifty forms of the 

questionnaire were distributed to the postgraduate students in University of Al-Qadisiyah. After 

responding to the questionnaire, the forms were collected. The data were analysed by R code which 

was written by the author. The suggested method was compared with the methods already available. 

After analysing the data, we obtained some results which are mentioned in the tables 1and 2. 

GSR data contains    observations. The response Y is GSR. The covariates are   (Sex),  

(age),  (marital state),  (number of children of the students who are married),   (number of 

brothers),  (number of sisters),  (students order in the family),  (education level of the older 
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brother whose level is higher than that of the student),  (mother's occupation),  (father's 

occupation),  (education level of the mother),  (education level of the father), (family income) 

,  (student income),  (how far the student is materially and morally responsible in his 

family),   (stable and positive family environment),  (family support to the student),   (the 

very ambitions fathers who practice pressure on their children to get higher average in their study) 

,   (death of one of the parents),  (preference of one of the two sexes on the other),  

(computer and internet proficiency of the student),   (English proficiency of the student),  

(teaching training and experience of  the student) ,  (psychology of the student),  (health of the 

student (chronic)),   (treatment of the student inside the classroom),  (student's participation 

inside the classroom),  (availability of appropriate environment in the surroundings of the 

student),  (number of hours assigned for reading  per a day),  (worry and confusion during 

tests),  (support of the society when the student spends some leisure time with the others),  

(full cooperation and spirit of team work among the students),  (difficulty of the study  material), 

 (relation of teachers and students and the way teachers treat students),  (availability of 

references and well-equipped labs and classrooms),  (scientific level of the teachers),  

(presenting lectures in modern and developed methods),  (student's average in the  

Baccalaureate),   (student's score in the  competition test),  (ability to concentrate and paying 

attention),  (modernity of the topic of student's thesis),  (ability of the student to defend his 

thesis),  (degree of agreement between the supervisor and the student),  (the specific 

specialization of members of the examining committee is like that of the student's thesis),  (how 

much objective the members of the examining committee when granting the student's score in his 

thesis debate),  (how far the house of the student from the place where he is studding),  (social 

class of the student),  (security in the environment surrounding the student),   (degree of 

availability of the electrical pout),  (the duration between the last degree the student got and his 

current study),  (emotional relation (stability) with the other sex),  (number of years of no-pass 

during the undergraduate study),  (how much the student likes his specialization),  (student's 

satisfaction of belonging to the university),  (number of student's in the graduation group),  

(future opportunities available after getting the high certificate),  (attitude of society towards  the 

postgraduate student). 

 

Table 5: the adjusted R-square values for the model fit based on the real data 

 SMAVE-EN SMAVE ALMAVE SCADMAVE MCPMAVE 
SMAVE-

AdEN 

M
o

d
el

 F
it

 

Linear 0.93 0.77 0.93 0.77 0.77 0.93 

Quadratic 0.94 0.91 0.94 0.91 0.91 0.94 

Cubic 0.94 0.92 0.94 0.92 0.92 0.94 

Quartic 0.94 0.92 0.94 0.92 0.92 0.94 

 

Table 5, reports the adjusted R-squared values for the model fit, based on the GSR data. The studied 

methods have discovered a nonlinear structure, which can be approximated by a cubic fit. Also, it can 

be observed that the adjusted R-squared values for the SMAVE-EN and SMAVE-AdEN methods are 

bigger than the values of adjusted R-squared for the SMAVE, SCADMAVE and MCPMAVE. The 

adjusted R-squared values for the SMAVE, SCADMAVE and MCPMAVE are similar. 
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Table6: the prediction error (P.E) of the cubic fit for the studied methods based on the real data 

Methods Prediction error 

SMAVE 
0.8212 

ALMAVE 
0.6737 

SCADMAVE 
0.8010 

MCPMAVE 0.8011 

SMAVE-EN 0.6481 

SMAVE- AdEN 0.6443 

 

      From Table 6, it is obvious that the SMAVE-AdEN method has a lower P.E than the SMAVE-

EN, SMAVE, ALMAVE, SCADMAVE and MCPMAVE methods. This means that SMAVE-AdEN 

has better performance than the SMAVE-EN, SMAVE, ALMAVE, SCADMAVE and MCPMAVE 

methods. 

  

6. Conclusion  

      In this article, SMAVE-AdEN has been proposed. SMAVE-AdEN combined the AdEN with 

MAVE method. MAVE can estimate  while AdEN performs a shrinkage estimation and 

variable selection simultaneously and it encourages groups selection of correlated predictor. The 

SMAVE-AdEN benefits from the advantages of MAVE and Adaptive Elastic Net. The SMAVE-

AdEN enable AdEN to work with nonlinear and multi-dimensional regression. Computationally, the 

SMAVE-AdEN is proved to be ease implemented with an effective algorithm. From the results of 

simulation and real data, it is clear that SMAVE-AdEN can have good predictive accuracy, as well as 

encourages groups variable selection for the strongly correlated predictors under SDR settings. 

      The proposed approach can be extended to SIR (Li, 1991), SAVE (Cook and Weisberg, 1991) 

and PHD (Li, 1992). Also, the SMAVE-AdEN can be extended to binary response models. 

Moreover, robust SMAVE-AdEN is another possible extension of the proposed method.  
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1.Introduction 

In practical and scientific life we need to invent or discover a new distribution or develop a new 

discovery, so the importance of lifelong distribution is used in many areas of existent life like 
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biostatistics,  survival function analysis or reliability, and in this field we will look at the amputated 

Rayleigh Pareto distribution the new. The aim of the research is to find the new (TRPD) distribution 

by amputating the period for the distribution (RPD). Using methods such as those used by Wen-liany 

Hung and ching- yichen (2004), Approximmate MLE of the scale parameter of the truncated 

Rayleigh distribution under the first – censored data[1], David R-clark, FCAS (2013), A note on the 

upper- truncated Pareto distribution[2]. Taylor and francis (2014), Parameter Estimation for the 

Truncated Pareto Distribution[3]. Mathias Reachke (2012), Inference for the truncated exponential 

distribution[4], and Ahmed Yassin Taqi M.CS. Thesis (2014), Estimation of Parameters and 

Reliability Function for truncated Logistic Distribution[5]. In the second section, we examined the 

description of the amputated Rayleigh Pareto distribution and the study of its mathematical and 

statistical properties, and the methods of estimating and comparing them. 

2. Truncated Rayleigh – Pareto distribution. 

This is the distribution in which the data is amputated and at the point x˳, where x˳ is a constant 

value. This means that the random drawn values are located between   the pdf for 

Rayleigh – Pareto distribution is.[6],[7],[8] 

                         (1) 

2.1 The PDF and CDF of TRPD 

The p.d.f of the (TRPD) can be given . 

                   (2)     

Such as     = 1 

The plot of p.d.f. and p.d.f. for the(TRPD) as follows. 
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Figure. 1: The plot  to p.d.f. for (TRPD), the parameter alpha=2.2 q=1.1,1.4,1.9,2.3 

w=0.5,0.9,1.3,1.6 

 

 

Figure 2 :The plot to p.d.f. for (TRPD), the parameter q=1.1  c=0.9,1.1,1.6,1.7 ; w=1.5,1.1,0.7,0.4 
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Figure 3: The plot to p.d.f. for (TRPD), the parameter w=0.8 c=2.9,2.6,1.7,1.1 ; q=2.3,1.7,1.3,0.8  

And the c.d.f of the ( TRPD)is given by  
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Figur 4:The plot to c.d.f. for (TRPD), the parameter alpha=2.7; q= 1.6,1.9,2.3,2.7; w= 0.7,1.1,1.6,2.2 

 

Figure 5:The plot to c.d.f. for (TRPD), the parameter q=3.4; c= 2.2,1.9,1.6,0.9; w= 1.4,0.9,0.8,0.6 

 

Figure 6: The plot to c.d.f. for (TRPD), the parameter w=3.6; c=1.1,0.9,0.6,0.2; q=1.2,1.1,0.8,0.5 
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2.2. Limit of p.d.f and c.d.f 

  The limit of this distribution is given by the form a: 

                                                                                                               (4) 

 

Also  

                         (5) 

Because  , and   

Also the c.d.f. of this distribution is 

 

Also,                                                            

                                                                  (6) 

i.e   

3. Some Reliability Functions. [9] 

   In this section, we introduce some reliability functions for the TRPD. 

3.1. Reliability Function      

  The function of survival  or reliability  to  TRPD are. 

                          (7) 

Such as 
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3.2. Hazard Function  

TRPD’s  hazard function : 

 

 

 

3.3. Reverse Hazard Function 

TRPD’s Reverse Hazard function : 

 

  Such as                                                                                                            (10) 

3.4. The Cumulative Hazard Function                                                      

TRPD’s  cumulative   hazard function  

 

Such as  
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3.5. Stress –Strength Reliability.[10]  

Let Y represent the pressure applied to a specific device and X represents the strength to maintain the 

pressure, since the reliability of the stress force is indicated by R = P (Y <X), if X and Y are assumed 

to be random.  

                                                                                   (12) 

 

 

 

 

By using series expansion of   then . 

 

 
Then 

  

the stress-strength reliability is 

  

                                                                                                                                               (13) 

 

4.Some properties of the TRPD : 

Proposition(1) 

4.1 mode: The mode of the TRPD is . 
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Proof:    

 

 

 

 

Proposition(2) 

4.2 Median and Quintile: 

  The quintile  and median of the TRPD is  

 

 

Proof: 

 

From equation (2) we obtain. 

 

  Take Ln to the two parties 

 

 

Then 
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To find the median of (TRPD) we set  in equation (20). 

 

                                                                     (21) 

4.3 Moment Generating Function: 

Proposition(3) 

 The moment generating function of  TRPD  as follows: 

                                                   (22) 

 

Proof: 

 

By using series expansion of   then. 

 

So  

 

 By using series expansion of  then. 

 

Then 
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4.4. Mean and variance: 

Proposition (4) 

The mean and variance of TRPD 

                                                         (24) 

 

                                                        (25) 

Proof: 

 

 

Then 

 

We can find  as the follows. 

 



951 
 

Then 

                                                                      (26) 

The variance of TRPD as follows. 

 

Then  

 

4.5 Moments 

Proposition (5)  

  The  moment about the origin and  mean of the TRPD.  

                        

r = 1,2,3                                                                                                                                 (28) 

 

 r = 1,2,3,….                                                                                                                           (29) 

Proof: The r-th about the origin is: 
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Then 

        

(30) 

 rth moment  about mean is given by: 

 

We have  

 

Thus  rth moment about mean is 

 

                                                                                                                                                (31) 

 5. Order Statistics  

Suppose that  x1, x2,….,xn denoted  a random sample of size n from a TRPD with  and 

 in the equation (2) and (3) . Let  express the corresponding order 

statistics ;then. 

The p.d.f  of Xk:n is given by : 

    

From the p.d.f of  TRPD we have the p.d.f of the r-th order statistics 
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 = 

                          (32) 

Then the p.d.f of the maximum,  minimum  and the median are explain as follows. 

When k=1, we have the p.d.f of minimum 

   

                                                                                                                                                (33) 

When k = n, we have the p.d.f of maximum  

                                                      (34) 

3 – When k= m+1 , we have the p.d.f of the median 

                                                                                                                             

                                                                                                                                                (35) 

 

6. The Coefficients of Variation, Kurtosis and  Skewedness.[11][12] 

Proposition (6) 

The coefficients of variation , skewedness and kurtosis of the TRPD are respectively as . 

                                                                                                                        (36) 

Let  

By equation ( 28) we put r=3 then 
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                                                                                                                       ( 37) 

Let  

Where 

   

By equation (28)  we put r=4 then 

 

 

Then 

 

 

Let  

 

 
Proposition (7) 
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The harmonic mean is given by: 

 
                                                                                                                                                (39) 

Proof: 

 

 

Thus 

 

We can find   as follows 

 

Thus  

 
                                                                                                                                                (40) 

Proposition (8) 

The geometric mean is by the form : 

 
                                                                                                                                                (41) 

Proof: 
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Thus 

 
Then 

 
                                                                                                                                                (42) 

 

 

7. Estimation Methods 

We shall discuss some methods to estimate the unknown parameters of  TRPD. 

7.1. Maximum Likelihood Estimation. 

 Estimating the parameters for TRPD using the maximum likelihood estimation method for p.d.f are: 

      

 

We take the log of both sides to the likelihood function. 

 

 

                                                                                                                (43) 
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                                                                                                                                                (46) 

Now equaling each these equations to zero. 

 

                                                                                                                                                (47) 

 

 

The solution of these equation are that the MLEś that can be found of the parameters p,b,α by 

numerical method. 

7.2. The Least Square Method(LS):[13]  

The method defined is. Let  is a random sample of  size n from a distribution function 

G(.) and  indicates the order statistics of the observed sample. It is well know 

that 

 

Obtain the estimators by minimizing 
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So      

The  can be found by derive the equation (50) with respect to q, it is given. 

 

×[  ] = 0 

Then 

 

   

 

×[                                                                                                                                                                                                           

                                                                                                              

The  can be found by derive the equation (50) with respect to w, it is given. 

 

]=0 

Then 

                                           
                                                                                                                                                  The  

can be found by derive the equation (50) with respect to α, it is given. 

 

]=

0 

Then 
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The solution to these equations from (51) – (53)  is by numerical method. 

7.3.Percentile Estimation Method (PEM): 

   This method was used effectively for generalized exponential distribution and Weibull distribution. 

Where it was first discovered  by Kao (1958,1959).[13]   

Since  therfor 

                                                                                     (54) 

Suppose X(j) is the j-th order statistic , i.e . If Pi indicates some estimate of  

, then the estimate of p, b and α can be obtained by minimizing . 

 

We have   

                                                      (55) 

We mainly consider      

The  can be found by derive the equation (55) with respect to q, it is given. 

 

Then 
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                                                                                                                                                           (56) 

The  can be found by derive the equation (55) with respect to w, it is given 

 

Then 

 

The  can be found by derive the equation (55) with respect to b, it is given. 

 

Then 
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(58) 

The solution to these equations from (56) – (58)  is by numerical method. 

7.4. Moments Method (W):[14] 

Let  be a random sample from  This method can be found 

through . 

                                                                                                                     (59) 

Where  is the r-th moment about origin .  

If r = 1 then the equation  ( 59) becomes as follows  

 

                                                                                                                                                (60) 

If r =2 then the equation ( 59) becomes as follows  

 

                                                                                                                                                (61) 

If r =3 then the equation ( 59) becomes as follows 

                                                    (62) 

To find the estimates of the parameters   we solve these equation from(60) – (62) by a 

numerical path such as Newton  Raphson  Method. 

 

Application 

 These are dataset agree to remissful (in months) of a random sample of (128) for sick bladder cancer [9]. 
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[0.08,2.09,3.48,4.87,6.94,8.66,13.11,23.63,0.20,2.23,3.52,4.98,6.97,9.02,13.29,0.40,2.26,3.57,5.06,7.

09,9.22,13.80,25.74,0.50,2.46,3.64,5.09,7.26,9.47,14.24,25.82,0.51,2.54,3.70,5.17,7.28,9.74,14.76,26

.31,0.81,2.62,3.82,5.32,7.32,10.06,14.77,32.15,2.64,3.88,5.32,7.39,10.34,14.83,34.26,0.90,2.69,4.18,

5.34,7.59,10.66,15.96,36.66,1.05,2.2.69,4.23,5.41,7.62,10.75,16.62,43.01,1.19,2.75,4.26,5.41,7.63,17

.12,46.12,1.26,2.83,4.33,5.49,7.66,11.25,17.14,79.05,1.35,2.87,5.62,7.87,11.64,17.36,1.40,3.02,4.34,

5.71,7.93,11.79,18.10,1.46,4.40,5.85,8.26,11.98,19.13,1.76,3.25,4.50,6.25,8.37,12.02,2.02,3.31,4.51,

6.54,8.53,12.03,20.28,2.02,3.36,6.76,12.07,21.73,2.07,3.36,6.93,8.65,12.63,22.69] 

We have installed the truncated Rayleigh Pareto distribution on the dataset using (MLE), and 

compare the  proposal with the Rayleigh Lomax distribution(ROD) and Lomax distribution. The 

model selection is carried out using the AIC, the BIC, The CAIC, and the HQIC . 

                                                                                                                 (63) 

                                                                                                        (64) 

                                                                                           (65) 

                                                                                                          (67) 

Whereas (  represent the log-likelihood function evaluate at the maximum likelihood estimates, (n) 

the sample size, and (q)are the number of parameters,  

The MLEs of the pattern parameters for the data are given in Table (1), and the numerical values of 

the model selection statistics , AIC,BIC,CAIC and HQIC are listed in Table (2). 

 From Table (2) we see that the (TRPD) model gives the smallest values for the criteria AIC , BIC , 

CAIC and HQIC so it represents the data set better than the other chosen models. 

 

 

Table 1. Parameters Estimates for the Data 

Model Parameters Estimates 

TRPD(x;α,p,b) 

 

=0.823 

 

=2.658 

 

=1.802 

 

R-LD(x;β,θ,b) 

 
=1.107 

 

=4.454 =5.798 

LD(x;α,λ) 

 

 

=2.889 

 

=19.614 

 

 

R-PD(x;p,b,α) 

 

 

=1.048 =1.262 =3.164 

Table 2. the values of Statistics  AIC, BIC, CAIC and HQIC for the Data set. 

Model  AIC BIC CAIC HQIC 

TRPD(x;α,q,w) -391.8296 789.6593 803.0674 789.8528 793.1357 

R-LD(x;β,θ,b) -474.3170 954.6339 968.0421 954.8275 958.1103 

LD(x;α,λ) 

 

-420.8238 847.6477 861.0558 847.8412 851.1240 
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R-PD(x;p,b,α) 

 

-414.0869 834.1738 847.5819 834.3673 837.6502 
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Abstract: We introduce  five parameters continuous distribution called generalized odd generalized 

exponential Weibull (GOGE-W-E) distribution for modeling life time data. We introduce an explicit 

expressions for the  studying. We present and study some of its properties, the cdf , pdf, functions of 

reliability like moment, quantile and median,  the moment generating function, R nyi entropy and 

order statistics. The five parameters of the suggested are estimated by the maximum likelihood 

estimation method . We illustrate its usefulness by means of an application to  a real data sets 

1 Introduction 

In a statistical analysis, lifetime distributions such as  the exponential distribution, Weibull 

distribution, normal distribution, and gamma distribution play an  important role in many fields of the 

real life  such as reliability, survival analysis, ecology, medicine, and social sciences. There are 

continuous motivations to develop  these lifetime distributions to become more flexible or more 

fitting for specific real data sets. Thus, in recent years many different families of distributions have 

been developed by generalizing the common families of continuous distributions such as Weibull 

distribution and exponential distribution by adding one or more than one additional parameter(s ) to 

the baseline model. Among these, the exponentiated Weibull family, Mudholkar,  and Srivaastav, 

(1993), generalized exponential (GE) distribution, (Gupta and kundu, 2007), modified Weibull 

distribution, Lai et al.(2009) ,  Sarhan and Zaindin (2003)25], Beta-Weibull distribution, Famoye  et 

al.(2005) , A flexible Weibull extension (Bebbington et al.(2007), Beta modified Weibull 

distribution, (Silva, et al.2010 , Nadarajah, et al.  2011), Beta generalized Weibull distribution  

(Singla, et al. 2012) and a new modified Weibull distribution, [Almalki and Yuan, 2013) among 

others. An important generalization (Gupta and Kundu, 2007),he has been suggested  of the 

exponential distribution known as generalized exponential (GE). The cumulative distribution 

function (cdf) of GE is given by  

   

     Recently, a new family of continuous distributions called the odd generalized exponential (OGE) 

family has been introduced  in (El-Damcese, et al. 2015, Tahir, et al.2015). This family is flexible 

because of hazard rate shapes could be decreasing, increasing, bathtub and upside down bathtub. 

Many special OGE distributions have been introduced such as the odd generalized exponential 

Weibull (OGE-W) distribution, odd generalized exponential normal (OGE-N) distribution by Tahir, 

et al. (2015) , odd generalized exponential generalized linear exponential (OGE-GLE) distribution by 

Luguterah and Nasiru (2017) and odd generalized exponential flexible Weibull extension (OGE-

FWE) distribution by Mustafa, et al. (2018).The pdf and cdf Tahir, et al. (2015)  of the odd 

generalized exponential (OGE) family are defined as follows: 

   If is cumulative distribution function (cdf) of a random variable X , then its  

probability density function (pdf) is and the survival function is  , then  we 

define the cdf of the OGE family by replacing  in equation (1) by     leading to : 

                                                 (2)  

The pdf corresponding to  equation (2) is given by  

                         (3)  

        

2 The cdf and the pdf of GOGE-W Distribution 
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        In this section, five parameters generalized odd generalized exponential Weibull GOGE-

W  distribution are introduced and studied. We define the cdf of this distribution as 

follows:  

Adding the shape parameter (k) to the (2) to get the generalized odd generalized exponential family 

(GOGE) as follows: 

                                         ( 4) 

        Taking  equal  to the cdf and survival  function  of  Weibull distribution, 

respectively which are   

  ,                 (5) 

                                  (6) 

Then the cdf  and pdf of the GOGE-W are defined by as follows respectively:  

 (7)                       

                                                                                    

(8) 

   Where  , b  are shape parameters and a ,  are scale parameters.          

2.1 The Limit of  the pdf and cdf of GOGE-W Distribution 

The limit of the pdf is given as follows:  

                                                       (9)    

                                                        (10)  

The limit of the cdf is given as follows: 

            (11) 

          (12) 

The plots of  cdf and pdf of the GOGE-W for different parameters are given by the following figures:    
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Figure(1):The cdf of GOGE-W distribution with the 

parameters

 

We can see from the Figure (1), that the cdf of the GOGE-W distribution is  non decreasing with 

increasing  . 

 

 

  

 

 

 

 

Figure (2) :The pdf of GOGE-W distribution with the 

parameters  

2.2  Reliability Analysis 

        In this section, we introduce the reliability(survival) function  , hazard rate function , 

reversed hazard function  and cumulative hazard rate function of OGE-W 

( . 

 

2.2.1  Reliability Function 

      The reliability (survivor) function of GOGE-W ( is defined as follows : 

               (13) 

The plots of   are given by the following figures: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3) : The of  GOGE-W distribution with the parameters  

 
Figure (3) indicates that the of GOGE-W is non increasing  function and we can see that : 
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2.2.2 Hazard Function 

The hazard function of GOGE-W ( is defined as follows : 

  

                                                  (14) 

The plots of  hazard function of GOGE-W are given by the following figures: 

 

 

 

 

 

 

 

Figure (4) : The of GOGE-W  distribution with the parameters       1.2 

 

 

2.2.3  The Reverse Hazard Function 

The  reverse hazard function of  OGE-W ( is  defined  as  follows: 

  

The plots of reverse hazard function of OGE-W-E  are given by the following figures: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (5)  : the reverse  hazard function  of GOGE-W distribution with the parameters  

 
 

2.2.4  The Cumulative Hazard Function 
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       The cumulative hazard function of GOGE-W ( is defined as: 

 

                                                                                  (16) The 

plots  of  cumulative hazard function of GOGE-W  are given by the following figures: 

 

 

 

 

 

 

 

 

Figure (6) : The cumulative hazard of GOGE-W distribution with the parameter  

 
 

2.3.Quantile and Median  

The quantile  of the GOGE-W distribution is given by:  

                                                                              (`7)  

From equation (7), we obtain the following equation: 

                                

 

We  can obtain by solving the following equation:  

 

                                                          (19) 

 

And we can obtain the median of GOGE-W  by setting q=0.5 in Eq. (19) and solve this equation. 

 

 2.4. The Moments and  Coefficient  of Skewness , Kurtosis and Variation 

        In this section we introduce the rth moment about the origin , rth moment about the mean and 

Coefficient  of Skewness , Kurtosis and Variation for the  GOGE-W distribution. 

Theorem 1 : The rth moment about the origin for GOGE-W is given  by:       

 

 

Proposition 2: The mean ( ) for a random variable OGE-W  is given by: 
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                     (20) 

 

2.4.1 Coefficient  of Skewness , Kurtosis and Variation 

         In this subsection we derive the skewness, kurtosis and variation of GOGE-W distribution  

based on the moment as in the following theorem: 

Theorem 3 The skewness, kurtosis and variation for a random variable OGE-W ( ) 

are given in 1 , 2 and 3, respectively  as follows:  

1.The coefficient of skewness ( ) of GOGE-W distribution  is given by  

                                                                          (21 ) 

where                                                     

 

                   and 

 

             

2.The coefficient of kurtosis ( ) of GOGE-W distribution  is given by:  

                                     (22) 

where                                          

 and 

 

3.The coefficient of variation ( ) of GOGE-W distribution  is given by: 

                                                                                                  (23 ) 

where               

 

and 
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2.4.2  The Moment Generating Function 

       The moment generating function of GOGE-W distribution is given by the following theorem: 

Theorem 3.6 The moment generating function  of GOGE-W  distribution is given by: 

   

2.5  Order Statistics  

        In this section, the  pdf of the jth order statistic and the pdf of the smallest and largest order 

statistics of GOGE-W distribution are derived. Let  be a random sample from an 

GOGE-W distribution and  denote the order statistics obtained from this 

sample, then the pdf of   is given by:  

 

Where  is the pdf of GOGE-W distribution given by equation (3.4),  is the cdf of 

GOGE-W distribution given by equation (7) ,  and B(., .) which is the Beta 

function. Then the  pdf for the jth order statistic is as follows: 

 

          (25) 

Then we can find the pdf of the smallest order statistics  and the largest order 

statistics   as follows: 

 

                                                                            (26) 

        

                       (27) 

2.6. R nyi Entropy [22] 

      The R nyi entropy of a random variable  with probability density function  is defined by:  

                                        (28) 
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Proposition 3.8.1. If   a random variable has a GOGE-W distribution ,then the R nyi entropy of  

is given by:   

 

              (29) 

2.7. Parameters Estimation of GOGE-W Distribution 

         In this section, the  considered estimation methods (the maximum likelihood estimation and the 

moment  method ) have been illustrated to estimate the five parameters of GOGE-W distribution . 

2.7.1. Maximum Likelihood Estimation 

       If   denotes a random sample from the GOGE-W distribution ,then the Likelihood 

function is given by:  

     (*) 

By substituting the Eq. (8) into Eq. (*), we obtain:  

 

the log-likelihood function is: 

 

 
 

By taking the partial derivatives of  with respect to the parameters and setting the 

results equal zeros, we get the following equations: 
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 (35)    

         

 

                                        

The MLEs estimators of the parameters  can be obtained by solving these equations 

numerically. 

2.7.2. Method of Moment Estimators 

      Let  be a random sample from GOGE-W ( ), the method of 

moments of GOGE-W distribution is defined by the following equation: 

 

Where  is the rth moment about the origin given in equation (37). 

For the case r=1, equation (37) becomes  as follows: 

                                            

 For the case r=2, equation (37) becomes  as follows: 

 
 

  For the case r=3, equation (37) becomes  as follows: 
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For the case r=4, equation (37) becomes  as follows: 

 

                              

 

 For the case r=5, equation (37) becomes  as follows: 

                            

 

By using the numerical methods such as Newton Raphson method, we can get the estimators for the 

parameters  by solving the equations (38) (42)  for    

2.8. Applications 

         In this section, we provide two applications to real data to demonstrate the importance of the 

GOGE-W distribution and we will compare GOGE-W distribution with the following distributions:  

Odd Generalized Exponential Weibull (OGE-W) with cdf is    

  . 

Modified Weibull distribution (MWD) with cdf  

Flexible Weibull (FW) with cdf  

In order to compare the GOGE-W distribution with the above distributions, the  measures of 

goodness-of-fit including the Akaike Information Criterion (AIC), Hannan-Quinn Information 

Criterion (HQIC), Consistent Akaike Information Criterion (CAIC), and Bayesian Information 

Criterion (BIC) are used . 

First Data Set  

         We have a real data set from Colorado Climate Center, Colorado State University 

(http://ulysses.atmos.colostate.edu). These data consist of 100 annual maximum precipitation (inches) 

for one rain gauge in Fort Collins, Colorado, from 1900 through 1999. The data  set are : 239, 232, 

434, 85, 302, 174, 170, 121, 193, 168, 148, 116, 132, 132, 144, 183, 223, 96, 298, 97, 116, 146, 84, 

230, 138, 170, 117, 115, 132, 125, 156, 124, 189, 193, 71, 176, 105, 93, 354, 60, 151, 160, 219, 142, 

117, 87, 223, 215, 108, 354, 213, 306, 169, 184, 71, 98, 96, 218, 176, 121, 161, 321, 102, 269, 98, 

271, 95, 212, 151, 136, 240, 162, 71, 110, 285, 215, 103, 443, 185, 199, 115, 134, 297, 187, 203, 146, 

94, 129, 162, 112, 348, 95, 249, 103, 181, 152, 135, 463, 183, 241. The MLEs of the model 

parameters for the first data  are given in Table (1) and the numerical values of the model selection 

statistics  BIC are listed in Table (2). We can see from Table  (2) that  the 

GOGE-W model  gives the smallest values for the criteria  BIC so it represents 

the first  data set better than the other selected models . 

 

Table 1. Parameters Estimates for the  First Data . 

Model Parameters estimates 

GOGE-W 

( ) 

 =7.231 

 

=0.004 

 

 =1.375 

      

=0.143 

      

 = 2.336 

 

http://ulysses.atmos.colostate.edu/
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OGE-W ( )   =3.395 

 

=0.104 

 

=0.418 

 

 

MWD  =0.006, 

     

=0.002 

  

=0.001 

 

  

(FW)   =0.514 

 

=0.065 

 

=0.223 

 

=0.043 

 

 

 

Table 2 The Values of the Statistics  BIC for the First Data Set. 

model     BIC 

GOGE-W ( ) -571.2944 1152.6 1157.9 1153.2 1165.6 

OGE-W ( ) -574.506 1157 1161.2 1157.4 1167.4 

MWD  -617.2024 1240.4 1243.6 1240.7 1248.2 

(FW)   -780.9602 1569.9 1574.1 1570.3 1580.3 

. 

 

 

 

 

 

 

 

Figure (7) :  Estimated densities of selection distributions for the first data set 

 

 

 

 

Figure (8) : Estimated cdfs of selection distributions for the first data set. 

Second Data Set [1]  

     The second  data set  represents the life time of 50 devices . The data  set are: 0.1, 0.2, 1, 1, 1, 1, 1, 

2, 3, 6, 7, 1, 1, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67, 67, 67, 72, 

75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86. The MLEs of the model parameters for the 

second data  are given in Table (3) and the numerical values of the model selection statistics 

 BIC are listed in Table (4). We can see from table  (4) that  the GOGE-W 

model  gives the smallest values for the criteria  BIC so it represents the second  

data set better than the other selected  

models . 

Table 3Parameters Estimates for the  Second Data 

 
Model     BIC 
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Table 4 The Values of Statistics  BIC for the Second Data Set. 
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Abstract: We introduce a continuous distribution called the Lomax-Rayleigh (L-R) distribution that 

extends the Lomax distribution. The generalization of the probability density function and cumulative 

distribution function of this distribution, the expression for the rth moment and moment generating 

function was established. 

We considered a traditional methods of estimation such as the maximum likelihood method and 

nonlinear least square estimation method to estimate the parameters and utilizing the Artificial 

Intelligence Algorithms such as Genetics Algorithm and pattern search method in estimation process. 

A comparison study among that methods is carried out through simulation experiments. 

We concluded that pattern search method is more efficient than other methods depending upon mean 

square error criteria.  

Keywords: Rayleigh distribution, Lomax distribution, hazard rate function, Genetics algorithm, 

pattern search method. 

1. Introduction: 

   Probability distribution has many applications in describing real world situations. There are lot of 

researches have shown that some real life data that cannot be modeled adequately by traditional 

statistical distributions, because the complexity found in it. Recently there is rapid grown direction 

toward  generalization , mixing, Transmuting and exponentiation of existing distributions, so some 

families and new general formulas of distributions is appeared in papers that dealing with skewed 

data  and data drawn from non-homogenous populations. Some of the earlier works include those 

Gupta and Kundu, 1999[12] , Eugene et al., 2004[9] , Famoye et al.,2005[10] ,  Akinsete et al., 2008[4],  

Miroslav and Balakrishnan., 2012[14] , Alzaatreh et al.,2013[3] , Adeleke et al., 2013[5]; Akarawak et 

al., 2013[6] and Akarawak et al., 2015[6],  Ghosh and Hamedani 2015[11] and Khaleel et al.,2016[13]. 

The main idea was that any parametric family of distributions can be incorporated into larger families 

through an application of the probability integral transform. Then the number of parameters and 

complexity of new families is increased, so almost in most cases numerical techniques to get 

estimates of parameters are used, since closed form of estimators of that parameters are difficult to 

derive it. 

Recently Venegas et al. 2019[17] introduced the two parameter Lomax-Rayleigh distribution as 

compound between Lomax and Rayleigh distribution. Özsoy, 2020[16] used the heuristic optimization 

approaches such as Genetic Algorithms , Differential Evolution, Particle Swarm Optimization, and 

Simulated Annealing to estimate the parameter of generalized gamma distribution: comparison 

among maximum likelihood method and heuristic optimization approaches are proved that later have 

nice properties in estimation of parameters.  

The rest of the paper is organized as follows. In Section 2 we present the probability density function 

and cumulative distribution function, reliability and hazard function of the Lomax-Rayleigh model 

with its general formula of moments. In Section 3 we discuss traditional methods such as: maximum 

likelihood estimation and non-linear least square estimation method and we introduce heuristic 
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optimization approaches such as Genetic Algorithms and pattern search method. In section 4 we 

present a comparison among different estimation methods via simulation experiments. Finally, in 

Section 5,6 we report the discussion and final conclusions 

 

2. Lomix-Rayleigh Distribution (L-R) 

                                                                          ……. (1) 

Let   

Where  is a cumulative distribution function of another distribution. 

                                                             …….. (2) 

 

By differentiate the equation(2) for the base distribution , we get: 

                                                     ………. (3) 

 Equation(3) represent a transformation for mixing two distributions through inserting the cumulative 

distribution function of any distribution for the base distribution so we called it Lomax-X family . 

 

2.2 Derivation of Lomax- Rayleigh Distribution (L-R) 

2.2.1 Derivation of the pdf and cdf of R-L 

The pdf and cdf of the Lomax - Rayleigh distribution is derived in this section as a class of Lomax-X 

family of generalized distributions. 

Theorem 2.1: 

Let the pdf of a Rayleigh distribution which is abase variable be: 

 ,                                                    …….. (4) 

 

And the pdf Lomax distributed random variable be:  

 

, y                                        ……. (5) 

Then the pdf of the Rayleigh-Lomax distribution is given by: 

                               ……. (6) 

 

Proof 

The pdf of the Lomax-X family of distribution is given by: 

 

                                                          ……. (7) 

Where g and G are the pdf and cdf of Rayleigh distribution. 

By substituting the pdf and cdf or Rayleigh distribution in equation (4) , we get: 

 ,                             …… (8) 

 

Let: , then the Lomax-Rayleigh distribution be: 

 ,  

Where is  shape parameter and  is scale parameter. The Lomax – Rayleigh distribution is right 

skewed as show in figure (1). 
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Figure (1):Plot of pdf for different values of parameters 

Corollary 2.1: The function of Lomax-Rayleigh is pdf function. 

Proof: 

The integral of function must equal one. That is: 

 

  

 

Then 

 

 
Let: 

 
 

Then: 

 

 
then 

 

 
Let: 
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Corollary 2.2: The cdf of Lomax-Rayleigh is: 

 
Proof: 

 
Then: 

 
 

Let: 

 
Then: 

 

 

 
Let: 

 

 

 

      …….. (9) 

 

The survival function and hazard function are as follow: 

                                                  …… (10) 

                                                                         …… (11) 

 

Moment generating function: 

  

 

Since:  
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Let: 

 
Then: 

 
 

 
 

Then: 

 

 
 

Let: 

 
Then: 

 

 

 

                                                ……… (12) 

 

3 Estimation Methods 

In this section we will derive the estimators of the unknown parameters by using traditional methods 

(Maximum likelihood and Nonlinear Least Square) and heuristic method (Genetic algorithm and 

pattern search) 

 

3.1 Maximum Likelihood Method MLE: 

The principle of this method is to find the values of the parameters that maximize the likelihood 

function, where the likelihood function is a function of data and unknown parameters only, so it 

represent the information of sample. 

Then: 

.(13)  

Equation (13) is monotonic, so the values of parameters that maximize it is same as that maximize 

log of it. 

Then: 

 ... (14) 

By taking partial derivatives of equation (14) and equating them to zero ,we get normal equation . 

then: 
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                      …….(15) 

                          …….(16) 

The solution of equation (15) and (16) , represent the estimate of parameters, by substitute 

equation(15) in equation(16) , we get 

                                                                  ……….. (17) 

 

The equation (17) is highly nonlinear, so we use newton Raphson method to get the solution of the 

parameters , Let the  be the maximum likelihood estimate of    then from equation (17) the 

estimator of parameters  will be: 

                                                ……(18) 

 

3.2 Non-Linear Least Square Method NLLSM: 

The principle of this method is to find the values of the parameters that minimize the square sum of 

errors, 

Let: 

 , be non-parametric estimator od cdf ,where 

:sample size. 

 
Then by equating the non-parametric estimator by cdf of distribution, we get: 

 
And 

 
If we let:  , then: 

                                                                      …….. (19) 

 

Is nonlinear model of parameters  and. We can use nonlinear least square method that minimize the 

squared sun square of errors to get estimate of parameters. Where sum of square of error is: 

                                                          ……. (20) 

 

3.3 Genetic Algorithm GA:[8] 

Genetic Algorithm is one of the most powerful stochastic optimization technique, its base idea from 

Charles Darwin’s theory of natural evolution “survival of the fittest”. It is very useful in estimation of 

nonlinear models, particularly in cases where the function cannot be solved in more traditional ways 

so it is more efficient of  obtaining global optimum solution which is represent of parameter 

estimates. This algorithm reflects the method of natural selection where the fittest individuals are 

selected for reproduction in order to select better offspring from the parent population. 

GA has its basic steps from genetics artificially to construct search algorithms that are robust and 

require minimal problem information with small overall computational time .It has three main 

operators which is selection, crossover and mutation, that making it an important tool for 

optimization. 

The process of natural selection starts with the selection of fittest individuals from a population. So it 

works with a population of solutions instead of a single solution. They produce offspring which 

inherit the characteristics of the parents and will be added to the next generation. If parents have 
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better fitness, their offspring will be better than parents and have a better chance at surviving. This 

process continually will find a generation with the best individuals. 

GA is a population-based algorithm, where an individual in the population, representing a solution, 

which is called a chromosome. It is basically a binary vector, where each item in the vector is called a 

gene. Since the individuals are represented in binary, it is important to choose a proper encoding of 

the solution. The fitness is assigned to each chromosome and new generation of chromosomes is 

created in the reproduction process. Parent chromosomes, from which new chromosomes are created, 

are chosen quasi-randomly, so the better the fitness will have higher probability for the chromosome 

to be chosen. Next, the genetic operators are used to create descendant of parents. These include:  

1. Initial population or start Generate random population of  chromosomes which is more 

suitable solutions for the problem. 

2. Fitness function Evaluate the fitness  of each chromosome  in the population 

3.  Selection of two parent chromosomes from a population according to their fitness so the best 

fitness will be with higher probability to be selected. 

4. Crossover: with a crossover probability cross over the parents to form a new offspring 

(children). If no crossover was performed, offspring is an exact copy of parents 

5. Mutation: with a mutation probability mutate new offspring at each local  which is position in 

chromosome. 

6. Place new offspring in a new population 

7. Replace: use new generated population for a further run of algorithm 

8. Testing: if the end condition is satisfied, stop, and return the best solution in current 

population 

9. Loop: Go to step 2 

 

GA works on a population consisting of some solutions where the population size is the number of 

solutions. Each solution is called individual. Each individual solution has a chromosome. The 

chromosome is represented as a set of parameters (features) that defines the individual. Each 

chromosome has a set of genes. Each gene is represented by somehow such as being represented as a 

string of  and  ,the string which represent parameter solution is evaluated in terms of its fitness or 

its objective 

Function which is often represent sum of square of residual. 

 

The important part in this Algorithm is formulation fitness or objective function to be minimized, 

which will take the form: 

 

                      ……………………………….. (21) 

Where: 

     

And by applying the GA Algorithm function in MatLab program, that required the  and  values, 

fitness function, population size, crossover probability, mutation 

Probability for minimization of equation (21) and number of generation, We will get the estimate of 

the parameters. 

 

3.4 Pattern Search Method (PSM):[2,7,15] 

Pattern search (PS) algorithm is one class of direct search evolutionary algorithms used to solve 

constrained optimization problems. While it was first formally proposed in early 1960, it has 
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popularity with users due to their simplicity and their practical success on a wide range of 

optimization problems. 

This method do not require any information about the gradient of the objective function at hand, 

while searching for an optimum solution , so it is directional method that make use of a finite number 

of directions with appropriate descent properties. It is suitable for situation where the first and second 

derivatives of fitness or objective function are not exist, so that do not make explicit use of 

derivatives. It need only some values of objective function for some values of variable to run, 

therefore for this reason it named derivative free algorithm. 

This algorithm calculates objective or fitness function values of the pattern and then try to find a 

minimizer. If it finds a new minimum, then it changes the center of pattern and iterates. This search 

continues until the search step gets sufficiently small, thus ensuring convergence to a local minimum.  

The algorithm required: 

1- Starting points or Initialization. 

2- Value of acceleration factor. 

3- Initial perturbation factor. 

4- Perturbation tolerance factor. 

The important part in this Algorithm is fitness function that take the form: 

                                                             …………… (22) 

Where: 

   ,  

And by applying the PSM algorithm in MatLab , that required the  and  values and fitness function 

,we will get the estimate of the parameters. 

 

4 Simulation Experiments: 

In order to compare among methods, a simulation experiments were carried. A range of sample sizes 

that represent small, moderate and high are used. A simulated data are generated according to invers 

cdf method as in formula (23): 

                                                                    …… (23) 

Where 

: is a uniform random variant. 

The GA parameters is set as: population size =600 , crossover probability=0.9 , mutation probability 

for minimization =0.01 and number of generations as 100. The terminated with accuracy level is 

equal to 0.001. 

For different values of parameters that represent small and large range of values of parameters the 

results of mean square  error of estimates are listed in tables (1) to table(6). 

 

Table (1): Mean Square Error Values for  

n Parameters MLE NLLSM GA PSM best 

10 

 0.667988 0.056365 0.195805 0.056506 NLLSM 

 18.544 8.020789 8.193958 5.096595 p 

15 

 

0.649208 0.048823 0.127806 0.088396 NLLSM 

 

16.39391 0.161808 0.49311 0.161498 NLLSM 

25 

 

0.595117 0.020371 0.125151 0.01738 p 

 

0.008116 0.169578 1.656273 0.156868 MLE 

50 

 

0.44214 0.012686 0.118044 0.012252 NLLSM 

 

12.22169 0.140998 1.434298 1.005031 NLLSM 
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100 

 

0.263562 0.012388 0.10213 0.011835 PSM 

 

11.71317 0.148881 0.250246 0.131913 PSM 

150 

 

0.165628 0.011762 0.064163 0.010663 PSM 

 

9.160459 0.126539 0.474766 0.244446 NLLSM 

200 

 

0.141976 0.011443 0.085911 0.011381 PSM 

  4.539029 0.118452 0.134299 0.109151 PSM 

Table (2): Mean Square Error Values for  

n parameters MLE NLLSM GA PSM best 

10 

 

0.157305 0.194045 0.189704 0.148948 PSM 

 

0.05785 14.27066 13.97386 7.980625 MLE 

15 

 

0.179088 0.094797 0.050026 0.071181 NLLSM 

 

0.045906 7.769966 3.461991 5.29719 MLE 

25 

 

0.119167 0.017216 0.030205 0.014241 PSM 

 

0.043018 3.082504 0.089634 2.797779 MLE 

50 

 

0.132248 0.014909 0.032651 0.011055 PSM 

 

0.023253 1.534542 0.062939 1.443489 MLE 

100 

 

0.115316 0.01349 0.01979 0.078092 NLLSM 

 

0.03802 0.761876 0.059276 0.675418 MLE 

150 

 

0.023624 0.012765 0.014229 0.012517 PSM 

 

0.019973 0.151739 0.047618 0.147541 MLE 

200 

 

0.01028 0.011309 0.009544 0.00272 PSM 

 

0.017866 0.168252 0.037297 0.145366 MLE 

Table (3): Mean Square Error Values for  

n parameters MLE NLLSM GA PSM best 

10 

 

0.377612 3.085701 13.22014 0.372275 PSM 

 

2.056876 19.66302 16.64826 12.73178 MLE 

15 

 

0.365532 3.228973 1.721176 0.168565 PSM 

 

2.363185 17.81436 12.375 11.27879 MLE 

25 

 

0.35708 2.052149 0.065441 0.034932 PSM 

 

1.3637 4.172735 8.307877 3.67963 MLE 

50 

 

0.334262 1.674159 0.634387 0.071647 PSM 

 

1.063835 3.691743 10.8264 3.452363 MLE 

100 

 

0.012047 0.104377 0.68987 0.094123 MLE 

 

0.060599 0.658005 5.123502 0.58999 MLE 

150 

 

0.01251 0.006508 0.01276 0.006175 PSM 

 

0.046318 0.044234 0.072274 0.040933 PSM 

200 

 

0.049992 0.003836 0.011342 0.003654 PSM 

 

0.032683 0.035722 0.029568 0.034731 GA 

Table (4): Mean Square Error Values for  

n parameters MLE NLLSM GA PSM best 

10 

 

3.914358 9.866198 1.505866 0.711264 PSM 

 

3.615759 0.618972 8.545414 1.248075 NLLSM 

15 

 

3.267255 0.192999 1.206978 0.093107 PSM 

 

2.165781 0.313614 0.510557 1.214682 NLLSM 
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25 

 

1.710191 0.778096 1.051513 0.054885 PSM 

 

1.241398 0.105136 0.029204 1.591178 GA 

50 

 

0.49134 0.333224 0.040609 0.091582 GA 

 

1.112081 0.938523 0.936618 2.354406 GA 

100 

 

0.536402 0.030253 0.017792 0.04454 GA 

 

0.907246 0.450256 0.492739 0.490337 NLLSM 

150 

 

0.536402 0.030253 0.017792 0.04454 GA 

 

0.907246 0.450256 0.492739 0.490337 NLLSM 

200 

 

0.002725 0.008118 0.005135 0.040473 MLE 

 

0.059195 0.545362 0.006545 0.167839 GA 

 

Table (5): Mean Square Error Values for  

n parameters MLE NLLSM GA PSM best 

10 

 

33.47505 6.299863 30.2549 2.668031 PSM 

 

10.42354 107.5047 73.35895 43.72544 MLE 

15 

 

5.224674 4.663007 29.33486 1.550078 PSM 

 

10.94425 2.892324 4.251695 1.337027 PSM 

25 

 

6.14677 3.44457 17.20558 0.913376 PSM 

 

6.248712 1.51389 9.35474 0.900419 PSM 

50 

 

2.320209 3.66052 4.682172 1.231651 PSM 

 

4.888494 1.043221 9.924652 0.731079 PSM 

100 

 

1.466885 0.150727 0.391447 0.077133 PSM 

 

0.012384 0.068221 0.079565 0.497864 MLE 

150 

 

1.944818 0.060009 0.209343 0.065627 NLLSM 

 

0.01148 0.052933 0.06477 0.604872 MLE 

200 

 

0.922491 0.01921 0.494312 0.06126 NLLSM 

 

0.011136 0.033581 0.010293 0.054012 GA 

 

Table (6): Mean Square Error Values for  

n Parameters MLE NLLSM GA PSM best 

10 

 

3.652754 73.15335 58.53988 1.74371 PSM 

 

41.21292 352.9747 4.26432 11.16823 GA 

15 

 

3.332197 23.20017 4.481787 0.242188 PSM 

 

24.97281 6.581023 2.744208 3.43716 GA 

25 

 

1.805887 1.223486 2.358017 0.252733 PSM 

 

21.41936 6.795088 2.962349 3.270942 GA 

50 

 

1.46855 1.381749 2.765233 0.073792 PSM 

 

16.02572 5.68269 1.060771 2.964387 GA 

100 

 

0.112281 1.296906 1.350315 0.087335 PSM 

 

0.045603 1.389105 1.21282 0.387443 MLE 

150 

 

0.117031 1.469199 1.104577 0.096361 PSM 

 

0.012876 1.446183 0.341098 0.081406 MLE 

200 

 

0.062984 1.454363 0.959521 0.029787 PSM 

 

0.011285 0.862902 0.108012 0.053908 MLE 
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5 Discussion 

The minimum mean square error of parameters for the four method are marked in last column for 

each case. It is shown that PSM method attained the first, since it reach minimum in 44% of cases. 

The MLE attained the second, since it get 25% of cases , NLLSM 17% and GA 14%.as illustrated in 

table(7). 
 

Table (7): Mean Square Error Values for  

method counts Percentage 

MLE 21 25% 

NLLSM 14 17% 

GA 12 14% 

PSM 37 44% 

total 84 100% 

 

6 Conclusion 

This paper introduce new probability distribution that is mixed between Lomax distribution and 

Rayleigh distribution, we get closed form for the pdf and cdf, the since the theoretical mean square 

error was difficult to find for estimation method, so we used simulation experiments. We concluded 

that pattern search method is more efficient than the rest methods.  
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Abstract: Breast cancer in females is the most common cancers diagnosed worldwide, and the 

leading cause of cancer death. This study explored the spatial distribution pattern of female BC in 

different districts in Iraq between 2000  and 2015. Data were obtained from the Iraqi Cancer Registry. 

The age standardized incidence rate (ASIR) were calculated according to provinces and geographical 

district for three periods (2000-2004, 2005-2009, 2010-2015). spatial statistical tools were applied to 

evaluate hotspots, coldspots, spatial clustering and outliers. Results showed a spatial correlation with 

hotspots, coldspots, and detecting spatial outlier. This study identified 10 districts as high-risk areas 

for BC,  including  AL-Kadhimiyah, Al-Karkh, Al-Adhamia, Al-Rissafa, Al-Sadir, and Abu-Graib in 

Baghdad province, Bakooba district in Diyala province, Al-Hindia district in Karbala province, and 

Shatt Al-Arab district in Basrah province, and we have evidenced an increase of breast cancer 

incidence rates during 2010-2015. More researches are needed to investigate the reasons for the 

geographic and temporal variations of breast cancer incidence in Iraq. 

10. Introduction 

Breast cancer in females is the most common cancers diagnosed worldwide, and the leading cause of 

cancer death. Globally, there were about 2.1 (11.6% of all sites) million newly diagnosed cases of 

breast cancer and about 0.6 (6.6% of all sites) million deaths in females in 2018 [1]. A 2018 

GLOBOCAN report highlighted the large geographical diversity of major cancers observed in 185 

countries [1]. The highest incidence rates were in Australia/New Zealand and Western Europe, and 

the lowest incidences were in middle Africa and south-central Asia, and the females in very high 

Human Development Index (HDI) countries have a higher breast cancer ASIR (75.2/100,000) than 

females in either low HDI countries (32.8/100,000) [1]. The substantial variations in breast cancer 

rates may reflect changes of risk factors associated with economic development and availability of 

early detection and timely treatment [2].  

According to Iraqi Cancer Registry, breast cancer ranked first for both incidence and mortality. 

While the incidence of breast cancer among females in Iraq was relatively less than that in developed 

countries, we witnessed a substantially increasing incidence during the period 2010-2015.    

The Iraqi Cancer Registry was established in 1974. It is located in the Institute of Radiology and 

Nuclear Medicine and supervised directly by the Iraqi Cancer Board. The information of every new 

cancer patient was collected from Baghdad province until 1989, then the registry services were 

extended to cover all provinces of Iraq. Cases registered were reported from inpatients and 

outpatients of government hospitals and cases attending the institute of Radiology and Nuclear 

Medicine. In addition, private hospitals, pathological and hematological laboratories requested to 

report to the registry all cases of cancer that come to their attention. The Iraqi Cancer Registry 

Annual Report provides information about cancer in Iraq including new cases of cancer and mortality 

[3].  

This study was conducted in Iraq, a country in the south-west of Asia, which consists of 18 provinces 

according to Iraqi classification of administrative regions, three of which are located in the Kurdish 

region. It covers an area of 437,072 [4] and the population according to the World Population 

Review was over 39 million. ‘Figure 1’ shows the location of Iraq. 

mailto:muzahim63@gmail.com
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Figure 1. The location of Iraq 

Spatial analysis has been commonly used in health studies, such as epidemiology [5].  Spatial 

epidemiology is “the description and analysis of the geographical distribution of disease” [6]. 

Understanding the geographical distribution of disease in a population can provide important insight 

about the causes and controls of disease. Disease maps provide visual representations and effective 

tool to show huge amount of geographical information, it can be used to display patterns  of diseases 

for defined geographical area [7].  

The aim of this paper is to explore the spatial distribution pattern of female breast cancer in different 

provinces in Iraq during (2000-2015). 

  

11. Materials and Methods  

The incidences of female breast cancer (code C50- based on the International Classification of 

Diseases (ICD-10)) between 2000 and 2015 were obtained from Iraqi Cancer Registry. Annual 

female population by 5-year age groups, gender and provinces were obtained from the Ministry of 

Planning/Central Organization for Statistics. This data covers all provinces with 83 districts in the 

country, with the exception of three provinces in the Kurdish region (Erbil, Duhok and Al-

Sulaymaniyah, for which the data is incomplete).  

To evaluate the incidence of female breast cancer during the study period 2000-2015, we split the 

data according to geographical district into three periods (2000-2004, 2005-2009, and 2010-2015). 

The ASIR were calculated using the world standard population. Having obtained estimates ASIR, 

two spatial statistical tools were applied to evaluate spatial clustering and outliers, the global spatial 

autocorrelation (i.e., Moran’s I) and local indicators of spatial association (i.e., Anselin local Moran’s 

I and Getis-Ord Gi*). The descriptive analysis was carried out using SAS statistical software, version 

9.4. As for visualizing the geographical district differences in the incidences, we constructed maps of 

the breast cancer using ArcMap 10.6.   

The Moran’s Global statistic (Moran’s I) was used to estimate the spatial autocorrelation. This 

statistic measures the similarity of the overall area with respect to ASIR. The values of Moran’s I 

ranged from −1 to 1, where large and positive values indicate presence significant spatial 

autocorrelation . Low values of Moran’s I indicate presence significant regularity, while 

negative values suggest the clustering of dissimilar values. 

The Global Moran's I do not suggest where clusters of low or high ASIR might appear. Thus, local 

tests for spatial autocorrelation such as Getis-Ord Gi* and Anselin Local Moran’s I are needed [8].  

We used two local measures of spatial association within ArcGIS 10.6.1 to examine the clusters of 

geographical districts with high or low ASIR’s or outliers are located and in addition, what type of 

spatial correlation is more important [9]. The local measure of Moran's I allowed us to identify 

spatial clusters of districts and spatial local outliers that are different from the neighboring districts. 
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based on the Moran's I statistic and corresponding . A high positive Moran's I value 

(hotspot) refer to high ASIR and surrounded by a high ASIR (high-high), low positive Moran's I 

value (coldpot) refer to low ASIR and surrounded by a low ASIR (low-low). A negative Moran's I 

value (high-low) refer to high ASIR and surrounded by a low ASIR, low negative Moran's I value 

(low-high) refer to low ASIR and surrounded by a high ASIR.  Additionally, local Getis-Ord statistic 

[10] was applied to examine spatial clustering. Getis-Ord statistic generates a z-value and associated 

 for each district, where high value  indicate a significant hotspot and low 

value  indicate a significant coldspot . 

  

12. Results    

Between 2000 and 2015, 44496 female breast cancer cases were reported in Iraq, which accounted 

for 34% of the cancer cases among females, and it ranked as the first most common type of female 

cancer in Iraq. The number of newly diagnosed Iraqi female breast cancer increased from 1653 in 

2000 to 4720 in 2015, which corresponds to a 2.86-fold increase. ASIR (all-age) for female breast 

cancer in Iraq for the period 2000 to 2015 was 32.807 per 100,000. The national ASIR increased 

from 22.0679 in 2000-2004 to 30.1152 in 2005-2009 and to 41.0729 per 100,000 female population 

in 2010-2015 ‘Figure 2’. The crude incidence rate (all-age) of breast cancer for the period 2000 to 

2015 was 22.21 per 100,000. Crude incidence rates increased from 17.34 in 2000-2004 to 19.84 in 

2005-2009 and to 26.92 per 100,000 female population in 2010-2015.  
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Age-standardized incidence rate of breast cancer in Iraq over time

 

Figure 2. Age-Standardized incidence rate of breast cancer in Iraq over 

time 

The geographical distribution of the breast cancer across provinces of Iraq is shown in ‘Figure 3’, 

‘Figure 4’, and ‘Figure 5’. The ASIR of breast cancer was 11.45-31.33 (31.33 per 100 000 females 

was derived in Baghdad) in 2000-2004, 12.82-48.42 (48.42 per 100 000 females was derived in Al-

Najaf) in 2005-2009, and 23.90-55.273 (55.273 per 100 000 females was derived in Kirkuk) during 

the period 2010-2015. Baghdad and Kirkuk provinces stands out with the highest ASIR of BC for the 

three study periods. The provinces Al-Najaf and Al-Basrah had the highest ASIR for the period 

2005-2009 along with Baghdad and Kirkuk provinces. However, the provinces Nineveh, Karbala, 

Babil, Al-Diwaniyah, Salah Al-Dean and Al-Muthana also considered high-risk areas. The provinces 

Al-Anbar and Thi-Qar had the lowest ASIR for the three study periods.  
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Figure 3. Age-standardized 

incidence (per 100,000 

females at risk) by provinces 

during, 2000 to 2004  

 Figure 4. Age-standardized 

incidence (per 100,000 females 

at risk) by provinces during, 

2005 to 2009 

 Figure 5. Age-standardized 

incidence (per 100,000 females 

at risk) by provinces during, 

2010 to 2015 

 

 

The geographical distribution of the breast cancer across districts of Iraq is shown in ‘Figure 6’, 

‘Figure 7’, and ‘Figure 8’. The ASIR of breast cancer was 0.00-56.452 (56.452 per 100 000 females 

was derived in Al-Karkh district in Baghdad province) in 2000-2004, 0.00-65.3638 (65.3638 per 100 

000 females was derived in Al-Najaf city in Al-Najaf province) in 2005-2009, and 1.50-99.3727 

(99.3727 per 100 000 females was derived in Al-Karkh district in Baghdad province) in 2010-2015.   

The global Moran’s I test statistics and the associated z-value of the ASIR in geographical districts 

were calculated for each of the three time periods. The results across the time periods were different, 

with insignificant positive spatial autocorrelation (Moran’s I index = 

) for the period 2000-2004, and significant positive spatial 

autocorrelation (Moran’s I index =  for the period 2005-2009, and 

(Moran’s I index = ) for the period 2010-2015. In other words, 

across Iraq, districts with similar ASIR of the breast cancer exhibits spatial clustering during the two 

periods 2005-2009 and 2010-2015.   

The results of Anselin's Local Moran's I (cluster and outlier analysis) for the period 2005-2009 

suggest the presence of a hotspots of breast cancer across districts, Shatt Al-Arab (Basrah province) 

in the south. Kuffa (Al-Najaf province), Al-Hindia  (Karbala province), and Al-Sadir, Al-Rissafa and 

Al-Adhamia (Baghdad province) in the middle of Iraq ‘Figure 9’. These patterns were changed 

during the period 2010-2015, Shatt Al-Arab, Kuffa, and Al-Hindia, which were no longer a hotspot. 

Additionally, hotspots districts appeared in Bakooba, AL-Kadhimiyah, and Al-Karkh ‘Figure 10’. In 

2005-2009, five districts were identified as a coldspots, Al-Mdainah (Basrah province), Al-Jabaish 

(Thi-Qar province) in the south, Balad (Salah-Al-Deen province) in the middle of Iraq, Rawa (Al-

Anbar province) and Al-Baaj (Nineveh province) in the west of Iraq. These patterns remained the 

same during (2010-2015) with the exception of Rawa and Balad which were no longer a coldspots, 

and Al-Hattra (Nineveh province) appeared as a coldspot. There were three districts categorized as 

(high-low), included Al-Ammarah (Maysan province), Al-Nassiryah (Thi-Qar province) and Al-

Samawa (Muthana province), where these districts showed high breast cancer incidence, but 

surrounded by low incidence districts ‘Figure 9’. This can be seen also over the period (2010-2015) 

with the exception of Al-Ammarah which no longer represent (high-low) type. In addition, (high-

low) appeared in Mosul (North of Iraq). In 2005-2009, (low-high) district was located in Dooz (Salah 

Al-Deen province). In 2010-2015, the (low-high) districts were appeared in Al-Hindia, Al-Maddain 

and Abu-Graib with the exception of Dooz, which no longer identified as (low-high) type ‘Figure 

10’.  
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Figure 6. Age-standardized 

incidence (per 100,000 females 

at risk) by districts during, 2000 

to 2004 

 Figure 7. Age-standardized 

incidence (per 100,000 

females at risk) by provinces 

during, 2005 to 2009 

 Figure 8. Age-standardized 

incidence (per 100,000 females 

at risk) by provinces during, 

2010 to 2015 

 

 

 

 

 

  

Figure 9. Hotspots and coldspots for female 

breast cancer incidence in Iraq, 2005–2009. 
 

Figure 10. Clusters and spatial outliers for 

female breast cancer incidence in Iraq, 2010–

2015. 

 

 

The results of Getis-Ord Gi* can be seen in ‘Figure 11’ and ‘Figure 12’. During the period (2005-

2009), 12 districts were identified as a hotspot, and 6 districts were identified a coldspot. During the 

period (2010-2015), 10 districts were identified as a hotspot, and 5 districts were identified as a 

coldspot. 
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Figure 11. Hotspots and coldspots for female 

breast cancer incidence in Iraq, 2005–2009. 

 Figure 12. Hotspots and coldspots for female 

breast cancer incidence in Iraq, 2010–2015. 

 

13. Discussion 

This paper is the first to describe province and district-level variation in breast cancer incidence rates 

over the entire Iraq (except Kurdistan region), using spatial statistical tools to determine statistically 

significant spatial clusters of hotspots, coldspots, and spatial outliers in breast cancer incidence rates.  

There is geographical variation in Iraq breast cancer incidences according to provinces and district-

level. This study showed that the breast cancer by province has increased from 2000-2004 to 2010- 

2015, there was a clear trend in cancer incidence. The highest ASIR of breast cancer were observed 

in Baghdad and Kirkuk provinces in (2000-2004). In (2005-2009), the highest ASIR of breast cancer 

were observed in the Al-Najaf, Al-Basrah, Baghdad and Kirkuk provinces, while in (2010-2015), the 

highest ASIR of breast cancer were observed in Baghdad and Kirkuk Provinces. Highest incidence 

was observed in the Al-Karkh district in Baghdad province during the period (2010-2015).    

A study in Kurdish region in Iraq (North of Iraq), reported that the (ASIR) of breast cancer in 

Kurdish women was (17.9/100000) during the period (2011-2013) [11], which is lower than the 

(ASIR) for all provinces bordering Kurdish area (Nineveh (32.2086/100000), Salah Al-Deen 

(27.7052/100000), Diyala (31.8138/100000), and Kirkuk (55.2729/100000) during the period (2010-

2015). The (ASIR) of breast cancer in Sulaimaniyah women in Kurdish region was (36/100000) in 

2012 [11]. This result higher than Salah Al-Deen and Diyala provinces, but lower than the (ASIR) in 

Kirkuk during the period (2010-2015).  

A study in Basrah, reported that the ASIR of female breast cancer was 34.86 per 100000 during the 

period (2009-2012) [12], which is lower than the ASIR (38.1516 per 100 000 during the period 

(2005-2009), and 49.916 per 100 000 females during the period (2010-2015)) in the present study. 

Our finding is not consistent with the previous result. This inconsistency may be due to the difference 

in the study periods, or the difference between the methods of calculating (ASIR). This paper adopted 

world standard population to adjust age effects on a geographical scale to calculate (ASIR), while the 

previous study was not referred to the method of calculation.  

The (ASIR) in Iraq during the period (2010-2015) was higher than that in Saudi Arabia 

(22.1/100000) [13], Oman (22.1/100000) [14], Iran (29.83/100000) [15]. It less than that in Lebanon 

(96.5/100000) [16], Jordan (45.7/100000) [17], Bahrain (47.4/100000) [18], Qatar (48·2 /100000) 

[19] and Kuwait (46.7 /100000) [20], but not lower than the ASIR in Basrah Province (49.9160 / 100 
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000 during the period 2000-2015), which is located in southern Iraq, bordering Kuwait. The (ASIR) 

in Iraq was lower than the ASIR in Korea (49.5/100000) [21], Eastern Europe (54.5), UK 

(93.6/100000), USA (84.9/100000) and Worldwide (46.3/100000) [1].  

The results of global Moran’s I indicated a spatial dependence of female breast cancer across Iraq 

districts. In other words, districts with high ASIR tend to cluster together. The results of Getis Ord Gi 

* identified the hotspots and coldspots across Iraq that revealed the existence of high-risk areas for 

breast cancer in AL-Kadhimiyah, Al-Karkh, Al-Adhamia, Al-Rissafa, Al-Sadir, and Abu-Graib 

district in Baghdad province, Bakooba district in Diyala province, Al-Hindia district in Karbala 

province, and Shatt Al-Arab district in Basrah province during 2010-2015.  

However, it is beyond the aim of this paper to know the reasons of geographical variation of breast 

cancer incidence in Iraq. Recent studies indicate that exposure to environmental risk factors, such as 

certain chemicals during development stages of breast tissue prior to birth and until menopause, may 

increase risk of breast cancer later in life [22]. The substantial variations in breast cancer rates may 

reflect changes of risk factors associated with economic development and availability of early 

detection and timely treatment [2]. The variation in cancer incidence rates between the provinces in 

Iraq might be explained to environmental risk factors, such as chemicals exposures, and occupational 

exposures. Another reason of higher rates in some provinces might be that the oncology centers are 

located in these provinces and the cases occurring in the province were registered, while might be the 

other provinces do not register the cases completely.  However, the reasons for the higher incidence 

rates in some districts merits further investigation.  

14. Conclusion 

In summary, there is a geographic variation in the ASIR of breast cancer across Iraq. districts with 

low and high breast cancer ASIR tend to cluster together. This study identified 10 districts as high-

risk areas for BC,  including  AL-Kadhimiyah, Al-Karkh, Al-Adhamia, Al-Rissafa, Al-Sadir, and 

Abu-Graib in Baghdad province, Bakooba district in Diyala province, Al-Hindia district in Karbala 

province, and Shatt Al-Arab district in Basrah province, and we have evidenced an increase of breast 

cancer incidence rates during 2010-2015. More researches are needed to investigate the reasons for 

the geographic and temporal variations of breast cancer incidence in Iraq. 
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Abstract  :In this paper we shed light on the issue of scheduling a single machine for foggy delay 

time and foggy work time. For the purpose of reducing the value of maximizing blur-delay 

function. A comparison was made and tested between several local methods ((TA), (TS), (GA), 

(ACO) and (MA)). The results of the selection reached 1500 works. Through the results, it was 

found that ACO gives the best approximate solutions . 

1   Introduction 

The solutions to most of the problems that a person faces in life are inaccurate or uncertain, and that 

uncertainty results from a shortage of data collected from a specific problem and this data is vague, 

inaccurate or incomplete, which leads to a lack of information, as it was used in The beginning is 

mathematical laws to address uncertainty, and then statistical methods have been used, and then 

mathematical laws and statistical methods have been combined, and this combination has led to the 

birth of statistical theory, which is a real goal for addressing uncertainty, but the potential theory 

based on the usual set does not address every h No uncertainty, and therefore two methods were used 

(the first is the honesty function, and the second is fuzzy logic) in dealing with uncertainties that are 

based on the theory of fuzzy group. The purpose of this paper is to introduce the fuzziness of 

scheduling information into the classical single machine scheduling problem and to propose 

mathematical model using the modified S-curve affiliation function to solve the problem of single 

machine scheduling . In a real life situation, it can often be observed that some kinds of information, 

such as due dates, processing time, and technological constraints, are not necessarily deterministic (or 

crisp). Recently, some scheduling models with fuzzy due date and fuzzy processing time have been 

studied. In this paper we are interested in the direct generalization of the traditional objective 

function measure with the due date and completion time being fuzzy numbers with using the 

modified S-curve.   

2   Preliminaries 

In this section we specify the context of this study and recall basic definitions that will be used later. 

We also present the principles underlying the main approaches for defining fuzzy distances. 

i-Support Set 

It is a regular subset of a comprehensive set (X) whose elements have a degree of affiliation greater 

than zero. 

 XxxMAS
A

= ,0)()
~

( ~ 

 

mailto:aiiiii_f@yahoo.com


998 
 

ii-Normal Fuzzy Set                 

It is a subset of a comprehensive set (X) containing an element whose affiliation is equal to one.  

                                                              XxxMAS
A

== ,1)()
~

( ~  

   iii-Crossover Point  

   ), its affiliation score is 0.5  A
~

It is an element (xi) in the fuzzy set (     

  5.0)(~ =iA
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iv- Height of Fuzzy Set 

)A
~

of an affiliation function that element (x) has in the fuzzy set ( It is the highest value 
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Set  cut-   v- 

t is a regular set containing elements of the universal set (X) whose affiliation ranks in A 

is greater or equal to certain values of  

 XxxMA
A

= ,)(~ 
 

    cut  :-   There are special types of  pieces, including  

cut - strong   -a     

containing elements of the universal set (X) whose affiliation ranks ( )AIt is a regular set 

n values of are greater than certai   

( ) XxxMA
A

= ,~  

1 = Cut  -   -b 

are equal to one  ( )A
~

It is a regular group that contains elements whose ranks 

( ) XxxMA
A

== ,1~1
  

3-Curve function S    

It is a non-linear logistic function written as 

                                                                                          1,0: →XMS
 

                                        

Where 
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      b: - the point of the inversion 

      A: - Curved inclination 

 

Figure )1 ( 

S-curve function 

3-modified S -curve function                        

The modified S-curve affiliation function is a special case of the logistic function at 

specific values for whose value does not range and the reason for this is that in the production 

system the required work capacity is not always 100% and at the same time it is not 0% and 

can be expressed in the following formula: 

 

 

 

                 

Figure )2 ( 

Adjusted S-curve affiliation function 

And to find the values of the constants of the function 
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In the above equation, we substitute for w by the equivalent in the equation(1) 
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Taking the logarithm of the two sides, we simply get 

 

According to my properties of the logistic function 
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And by taking a logarithm of the two sides, we simply get 

 

And by substituting for (w) with its equal in equation (1) and with its equivalent in the 

equation(2)      we obtain  
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By solving the above equation we obtain: 

                                                         u =0.001001001      
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              And when we substitute it in an equation, we get                                                                                      

w =1     

                                                                          α=13.81350 

4   Problem Formulation 

Assume that there are n free employments to be handled on a solitary machine. Each activity 

 requires fuzzy handling time and fuzzy due date which are an Adjusted S-curve 

fuzzy number. The machine can process all things considered employment at once, . The membership 

functions  and  are characterized as far as two numbers  and as follows: 

 

 

 and 

 

 The possible range of the fuzzy processing time  and due date  are  and 

,Assuming the processing time  and due date  are crispy numbers then the cost function 

we are interested to study has the following form maxL . If the processing time and due date are a 

fuzzy numbers, then  is a hazy function, we denote the problem formulated in this sections as 

 

5   Model Development 

In this paper, the belonging functions for delay time and work time were formed and then the values 

of fuzzy coefficients were calculated, where one of the used logistic affiliation functions known as 

the modified S-curve affiliation function that depends on two important factors, the first factor is the 

level of acceptance (Mu) whose value ranges between (0.001 - 0.999), and the second factor is the 
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blur factor )( whose value has been determined between (41 - 1) Then calculate the delay and 

working time coefficients relative to Mu and the blurring factor 

To extract fuzzy due date                                                            

 

                                                                     

 

         

 

                                                            

 

To extrac    fuzzy processing time        

 

 

 

 

 

 

6   Methodology 

6.1   Local Search Techniques 

Right now study nearby inquiry procedures which are valuable instruments for taking care 

of single machine planning issue   

then onto  pursuit is an iterative calculation that moves starting with one solution Nearby

as per some local structurethe next  
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6.2   Tabu search 

The utilization of the tabu hunt was spearheaded by Glover  who from 1985 onwards has distributed 

numerous articles talking about its various applications. Others rushed to embrace the system which 

has been utilized for such purposes as sequencing, planning, oil investigation and steering. The 

properties of the tabu pursuit can be utilized to improve other system by forestalling them getting 

stuck in the areas of neighborhood minima. The tabu pursuit uses memory to keep the inquiry from 

coming back to a formerly investigated area of the arrangement space too rapidly. This is 

accomplished by holding a rundown of potential arrangements that have been recently experienced. 

These arrangements are viewed as tabu-henceforth the name of the method. The size of the tabu 

rundown is one of the parameters of the tabu inquiry. 

The tabu quest likewise contains instrument for controlling the inquiry. The tabu rundown guarantees 

that some arrangement will be unsuitable; notwithstanding, the limitation gave by the tabu rundown 

may turn out to be excessively constraining at times making the calculation become caught at a 

locally ideal arrangement. The tabu hunt presents the thought of desire criteria so as to defeat this 

issue. The goal criteria supersede the tabu limitations making it conceivable to widen the quest for 

the worldwide ideal.  

An underlying arrangement is created (generally haphazardly). The tabu rundown is introduced with 

the underlying arrangement. Various cycles are performed which endeavor to refresh the present 

arrangement with a superior one, subject to the limitation of the tabu rundown. A rundown of 

applicant arrangement is proposed in each emphasis. The most permissible arrangement is chosen 

from the up-and-comer list. The present arrangement is refreshed with the most permissible one and 

the new present arrangements added to the tabu rundown. The calculation stops after a fixed number 

of emphasess or when a superior arrangement has been found for various cycles. Figure 4 shows the 

nonexclusive usage of tabu hunt. 

 
 

6.3   Memetic algorithm 

The memetic calculations can be seen as a marriage between a populace based worldwide method 

and a neighborhood search made by every one of the people. They are a unique sort of hereditary 

calculation with a nearby slope climbing. Like hereditary calculation, memetic Algorithms are a 

populace based methodology. They have demonstrated that they are requests of extent quicker than 

conventional hereditary calculation for some issue areas. In a memetic calculation the populace is 

instated aimlessly or utilizing a heuristic. At that point, every individual makes nearby pursuit to 

improve its wellness. To shape another populace for the people to come, more excellent people are 

chosen. The choice stage is indistinguishable illuminate to that utilized in the traditional tabu inquiry 

choice stage. When two guardians have been chosen, their chromosomes are joined and the 

traditional administrators of hybrid are applied to produce new people. The last are improved 

utilizing a neighborhood search strategy. The job of nearby hunt in memetic calculations is to find the 
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neighborhood ideal all the more effectively then the tabu pursuit. Figure 5 clarifies the conventional 

execution of memetic calculation. 

 
6.4   Ant Colony Optimization 

Ant Colony Optimization (ACO) has been presented by Dorigo and associates as another 

streamlining worldview which is roused by the path following conduct of genuine subterranean insect 

settlements. Algorithmic usage of this metaheuristic have demonstrated exceptionally encouraging 

outcomes for the notable Traveling Salesman Problem [4] and are as of now among the best 

accessible calculations for other difficult issues like the Quadratic Assignment Problem, the 

Sequential Ordering Problem, Vehicle Routing Problems, Flowshop Scheduling Problem , and 

directing issues in profoundly powerful situations .  

 
In ACO calculations a province of (counterfeit) ants iteratively develops answers for the issue viable 

utilizing (fake) pheromone trails which are related with properly characterized arrangement parts and 

heuristic data. The ants just impart in a roundabout way by altering the pheromone trails during the 

calculation's execution. Since the developed arrangements need not be locally ideal regarding little 

changes, in a considerable lot of the best performing ACO calculations the ants moreover improve 

their answers by applying a nearby hunt calculation. Consequently, most ACO calculations for static 

combinatorial advancement issues follow the specific algorithmic plan given in Figure 6. 

 

6.5   Threshold acceptance method (TH) 

A variation of reproduced toughening is the limit acknowledgment strategy . It contrasts from 

mimicked toughening just by the acknowledgment rule for the arbitrarily produced arrangement 

. . is acknowledged whether the thing that matters  is littler than some non-
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negative limit t. t is a positive control parameter which is bit by bit decreased. Figure 7 shows the 

conventional execution of Threshold acknowledgment structure.  

 

The limit acknowledgment strategy has the bit of leeway that they can leave a neighborhood least. 

They have the drawback that it is conceivable to return to arrangements previously visited. Hence 

swaying around neighborhood minima is conceivable and this may prompt a circumstance where 

much computational time is spent on a little piece of the arrangement set. 

 

6.   Computational results 

Local search methods were tested by coding then in Matlab R2010b and runs on a Pentium IV at 

2.00GHz, 2.92GB computer. The tested problem instances are generated as follows: 

For n = 10, 20, 30, 50, 100, 200, 500 , 1000 & 1500 and integer jp  for },...,2,1{ nNj =  is 

generated by randomly selecting integers from interval [1,10] in our experiments, problem instances 

of 5-10 jobs were randomly. The fuzzy processing times were generated uniformly with the support 

in the range [10, 30].  

In the following table (1) show the efficiency local search heuristic methods (Threshold accepted 

(TA), Tabu search (TS), Ant colony optimization (ACO) and Memetic algorithm (MA)) have been 

approached in terms of comparable rate of value. ACO gives the best solution for all iterations but it 

cannot calculate the 1000 jobs because it took very long time, therefore for 1500 jobs MA took good 

solution. 

Table (1) Compares of local search methods 

  ACO MA TS TH 

10 219.562 219.9 219.577 219.575 

20 421.887 431.4 427.679 413.77 

30 727.45 775.15 747.2 756.336 

50 2533.17 2941.9 2900.15 2937.3 

100 20173.02 25582.2 25610.98 14845.43 

200 41553.9 50254.9 61361.30 60623.30 

500 270079.9 370048.9 385831.8 379110.0 

1000 *****  293879 2018637 2016663 

1500 ***** 303888 3118632 3038719 
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In the following table (2) show the efficiency local search heuristic methods ((TA), (TS), (ACO) 

and (MA))  have been approached in terms of comparable rate of times. TH gives the best times for 

all jobs. 

 

Table (2) Compares times of local search methods 

  ACO MA TS TH 

10 2.24120 1.224046 1.170383 1.128396 

20 3.043797 1.270907 1.194606 1.132170 

30 7.300873 1.332569 1.226729 1.128742 

50 12.40130 1.445514 1.329673 1.128829 

100 47.94082 1.746360 1.881342 1.120645 

200 243.9809 2.430228 3.125784 1.133338 

500 3227.284 3.663263 6.437874 1.146149 

1000  ***** 23.46840 21.99403 1.166653 

1500  ***** 24.57851 22.00514 2.255542 

 

7.   Concluding remarks 

We have built up another model to define the circumstance where occupations with fluffy due dates 

are to be planned on a solitary machine. The neighborhood search strategies used to take care of all 

the huge issues the outcome show the vigor and adaptability of nearby pursuit heuristics. 

The theoretical study showed the forms of affiliation functions (linear and non-linear) characterizing 

the modified S-curve affiliation function by using the blurring factor in constructing or forming 

affiliation functions for fuzzy coefficients when resolving scheduling problems due to the high 

flexibility of this function in describing uncertainty in transactions Fuzzyness of scheduling problem, 

as this function gives decision makers a number of decisions that can be taken equal to the number of 

fuzzy factor values multiplied by the number of levels of acceptance degree and on this basis there is 

an opportunity for decision makers to make their decisions based on the degree of blurring in the 

parameters of the studied model and 

 

8. Future work: 

      -1   In this research, a single target function was used, but scheduling can be applied 

      Blur instead of a modified S-curve belonging to problems with more than one goal . 

-2  Scheduling can be applied with other non-linear belonging functions as a function 

     Exponential affiliation to the same problem and a comparison of its results with the             results 

obtained      From using scheduling with a logistics affiliation 
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Abstract: In this paper, we have been used Bayes Technique depending on the normal conjugate 

function to estimate parameters of the multiple regression model, and we have been tested 

significance of this model. The test showed in the application that the mean square error (MSE) for 

the used model was decreasing, also it showed that the determinant coefficient is increasing highly. 

In the same time, value of the computed F-test was significant, according to the above, we can 

consider that the model is significant.   

Keywords: Bayes Approach, Conjugate Probability densty function, multiple regression, Parameters 

estimation prior and posterior distribution, Normal dist.  

1- Introduction: The regression analysis is considered one of the most important statistical techniqes 

which are used by the researchers to analyze the data in their fields such as the industry, biology, 

social, production, etc. for the sake of reaching to the best results, and this issue is done by forming a 

correct formula for the relationship between the different phenomena, which are represented by the 

variables, and these variables are subjected to the regression formula in the its different forms. The 

regression model formulas is very useful in case of knowing direction of the explanatory variables 

which are dealing with it by the researcher, also knowing the effect range which is showed by these 

variables on the response variables, besides the interpretation ratio of the regression model 

contribution in explaining the relationship between the response variable and the explanatory 

variables and all of that is done by process of estimation parameters of the model. 

Our goal in this paper is to estimate the multiple linear regression model by using Baysian approach 

based on the normal conjugate prior function, and then showing the model significance using F-test 

and we have been showed that by using an applicable real data. 

3- Concept of the regression analysis Bayes Approach: 

Regression analysis is dealing with studing and estimation a phenomenon by quantity way through 

collection and analysis the data and determination the relationship figure between these data, where 

the estimation and prediction for future for this phenomenon are achieved according to certain 

statistical methods after getting an equation or a curve explain the mathematical relationship between 

the response variables Y and an explanatory variable   and this so- called the simple linear 

regression. 

If the relationship between the response (dependent) variable Y with several explanatory variables 

, in this case we call it multiple linear regression, and we can express the relationship 

between the dependent variable and one variable or more than one variable mathematicaliy by the 

following regression equation:   

Note that eq.(1) shows that the dependent variable Y is explained by several independent 

(explanatory) variables, but if we want to explain this relationship correctly, it must be adding the 

mailto:adel.abood6969@gmail.com
mailto:ahmed.eabod@uokerbala.edu.iq
mailto:shorouq.a@uokerbala.edu.iq
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error term to eq.(1), where this term represents or denotes to the information which the model doesn't 

involve it:  

   

an easy way for representing the multiple regression model in (2) is to re-write it using the matrices 

form and as follows:    

Where Y: is a vector of  for the observations of response variable. 

              is the parameters vector of  (which must be estimeled). 

             X: a matrix of order  for observations of explanatory variables. 

             U: error term of  

To estimate the regression model, it must be and first of all, the model should have some 

characteristics depending on a certain assumptions to increase sobriety of the regression model, and if 

these assumptions is not available, then the model will suffer from the problems which are making 

the estimation process very weak and imprecise, hence the estimated parameters will be inefficient. 

 So, these assumptions are: 

1)   

2)    

3)    

4)  

I.Bayes Aproach: The idea of Baysian approach is dealing with the unknow parameters as a random 

variable having a distribution function and these parameters have a prior information differ 

quantively and qualitively depending on size of the available information which the researcher had 

through the experiences, the pervious experiments  or which to be identical or close to the work. The 

difficulty of this approach lies in collection the information about the unknown parameters and 

determine its prior probability distribution precisely because the difficulty of getting the prior or 

previous information or lack of accuracy for these information, however, these information are 

formulated in a prior probability distribution, which so- called prior probability density function  

or prior p.d.f where this function is the difference point between Bayes approach and the other 

classical approaches. 

The prior p.d.f is combined with the maximam likelihood  for the current observations of Y 

by using Bayes Inversion Formula to get a good information or close to the acotual information about 

the unknown parameter ,all of these information are putting in a probability distribution form which 

is called the posterior probability density function  or (posterior p.d.f) where this distribution 

is supposed to be a good description about the unknown parameter together with existence of the 

sample information  

  

Bayes estimation approach needs to use so- called the loss function where the Bayes estimator yields 

by minimzing the expected loss function for the posterior distribution of the unknown parameter  , 

given that the sample data Y is known, and the loss function must satisfying the following two 

conditions: 
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There are different kinds for the loss function and according to this difference and to the kinds of the 

prior distribution of the parameter  , Bayes estimators will be different too, but our goal is to get a 

Baysian estimator , which at it the posterior expected loss will be as small as possible, so we 

will adopt the weighted squared Error Loss Function. 

II. Prior Probability Density Functions: In Bayes Technique, we must have an information about 

the unknown parameters where these information is considered the main support point for this 

technique. We have two ways to get these information, the first one is the scientific way because 

these information are camed from the same used data attribute or quality and in this case we call it 

Data Based on prior p.d.f , the second one is achieved by collecting the information using the causal 

observations and the theoretical assumptions, in other words, not from the   used or real data, or these 

information is coming from sources have not any relationship with the data, here we call it Non data 

Based on prior p.d.f.  

Sometimes we get the information by using a mixture between the two ways. However, these 

information which we get it and whatever its source have a remarkable rule in choosing the prior pdf. 

There are four priors p.d.f, uninformative prior, information prior, prior p.d.f depending on previous 

sample,  and a normal conjugate prior p.d.f. In our paper, we depend on the last one. 

III. Normal Conjugate Prior p.d.f :This function has a good properities comparing with the other 

functions mentioned above which is making it more widely using because it considered a p.d.f of 

well – known parameters besides it is being explicit, determined and proper, note that the prior p.d.f 

is built on the likelihood function of the current sample observations by considering it as a function  

in the parameter  And it is worthly to mention that the prior p.d.f , likelihood function , 

and the posterior p.d.f  are characterized that it have the same functional formulas, but with 

new different parameters. This type of functions is preffered to use instead of the uninformative prior 

p.d.f because it is being improper function, also we preffer it because it treats the multicollinearity 

problem. One of the famous normal conjugate prior p.d.f is the prior joint p.d.f of Normal – Gamma. 

Here, we have two unknown parameters  and  each parameter has a certain distribution 

according to a certain conditions and rules, that is when we do not have information about these 

parameters, then we follow what Jeffery is said in determination the prior p.d.f.. He said if interval of 

the parameter which we want to estimate was in  , then  the prior p.d.f. will be a uniform 

distribution:  

  and if the 

parameter interval was in  then the prior p.d.f will be a log – uniform distribution:  

   

As a result, the vector  has a multivariate normal distribution given by the following p.d.f.  

  

Where  

 denotes to mean of the prior distribution. 

 : denotes to variance – covariance matrix and furthermore, Q is a positive definite matrix. To 

get the joint p.d.f. of , we use the following equation: 

  

   

Where P= number of parameters. 
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The likelihood function for the observations is given by: 

   

combining Equation (9) which represents the prior p.d.f for the two parameters with eq(10) yields: 

      

  

Now, by letting:  

  

then, the posterior distribution formula becomes: 

  

and by letting:    

where:  Bayes estimator based on a normal conjugate prior function then, 

the posterior p.d.f. becomes: 

 

Now, integrate eq.(14) with respect to , then we'll get the marginal p.d.f for the parameters vector 

.  

  

The fovmula (15) represents a p.d.f of m- variate t distribution with mean equals to  given by 

the formula (16) which represents Bayes estimator for the parameters vector  based on a normal 

conjugate prior function, that is, Bayes estimator is given by: 

 

4.The Practical side: In this section we present an actual experiment about one of electrical energy 

production stations in Iraq – karbala station – here, we use eight variable one of them is the response 

(dependent) variable Y and the remaining variables represent the explanatory (independent) variables 

for (30) months in accordance with the following multiple linear regression model: 

  

Where:    

  

  

  

  

  

  

  

The statistical program (MATLAb 2105a) has been used to estimate parameters of the previous 

model. 
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Table(1) shows estimation of multiple model parameters based on Bayes approach 

parameters Bases NC 

 

 

 

 

 

 

 

 

0.0060 

0.2259 

0.0983 

-0.1821 

0.1745 

0.3117 

-0.4789 

0.0032 

MSE 0.0011 

 0.9769 

From table (1), we find that mean square error (MSE) is decreasing value and very low, while value 

of the adjusted coefficient of determination  seems to be very high. 

 

Table(2) represent ANOVA for regression model 

source Sum of squares d.f. MS Fc Ftable 

Regression 43143.0581 7 6163.2940 3.4923 2.4638 

Residuals 39485.2401 22 1764.7836   

Total 82628.2982 29    

 

By comparing the computed Fc  with value of the tabulated F(7,22,0.05)=2.46, we see that Fc >Ft , 

and that means there is at least one explanatory variable affects on the response variable Y. 

 

6. Conclusions: 

1-The results have been showed that mean square error (MSE) was very low with high value of 

coefficient of determination R2 , and this is a good indicator. 

2- The concluded results showed that the model is significance according to F- test ,and that means 

there is a strong relationship between the dependent variable Y and the other independent variables. 
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Abstract: The logistic regression model is one of the modern statistical methods developed to predict 

the set of quantitative variables (nominal or monotonous), and it is considered as an alternative test 

for the simple and multiple linear regression equation as well as it is subject to the model concepts in 

terms of the possibility of testing the effect of the overall pattern of the group of independent 

variables on the dependent variable and in terms of its use For concepts of standard matching criteria, 

and in some cases there is a correlation between the explanatory variables which leads to contrast 

variation and this problem is called the problem of Multicollinearity. In this study a generalized Liu 

estimator was introduced to combat the multicollinearity in the logistic regression model. The 

generalized liu parameter (shrinkage coefficient) was estimated by different methods and a 

comparison was made between these methods and the ML method using the mean square error 

standard. Simulation results showed that the proposed generalized liu estimator possesses less (MSE) 

compared to the ML method in the case of a multicollinearity. Selecting the shrinkage coefficient 

based on work done by Akdeniz et el (1999) i.e (D4) is more efficient than other methods. 

Key words logistic regression, multicollinearity, mean square error, ridge estimator, liu estimator 

1. Introduction 

       The logistic regression model is an important statistical model in analyzing binary data (0 or 1) 

as the primary goal of most studies is to analyze and evaluate relationships between a set of variables 

to obtain a formula by which we describe the model and uses the logistic regression model to 

describe the relationship between the response variable of the discontinuous type and the explanatory 

variables, prediction, estimation and control of the values of the dependent variable according to the 

changes in the values of the variable with interpretation (Farhood, 2014) 

    One of the characteristics of the binary response logistic regression is that the dependent variable 

(Y) of the response variable follows the Bernoulli distribution taking the value (1) with a probability 

of (π) probability of success, and a value (0) with a probability (1- π) of failure probability 

(Qasim,2011). As we work in linear regression whose independent and dependent variables take 

continuous values, the model that correlation the variables is as follows: 

0 1Y β β X e (1)= + +  

 Whereas (Y): represents a continuous observational variable and assuming that the average values of 

(Y) observation or actual at a given value of the variable x which is E(Y) and that the variable (e) 

represents a random error, then the model can be written (1) as follows: 

( ) 0 1E Y X β β X (2)= +  

It is known in regression that the right side of these models takes values (-∞,+ ∞), but when the 

variable (y) is binary, the above model is not appropriate because: 

mailto:najlaa.s.a@uomosul.edu.iq
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( ) ( )rE Y|X P Y 1 π (3)= = =  

   Thus, the value of the right side is confined between the two numbers (0.1), and thus the model is 

not applicable from the regression point of view, and one of the methods of solving this problem is to 

enter an appropriate mathematical transformation on the dependent variable (Y). Since (0 ≤ π ≤ 1), 

then the ratio (π / (1-π)) is a positive amount confined between (0, ∞) i.e. (0 ≤ π / (1-π) ≤ ∞) and 

taking the natural logarithm for the base (e) of the amount (π / (1-π)) the value domain becomes 

between (-∞, + ∞) and is ((-∞≤ loge (π / (1-π)) ≤ ∞). Therefore, the regression model can be written 

in the case of one explanatory variable as follows: 

e 0 1

π
log   β β X (4)

1 π

 
= + 

− 
 

But if we have more than one explanatory variable, then the model is formulated as follows: 

p

e 0 j  ij

j 1

π
)log   β β (5X

1 π =

 
= + 

− 
  

 

As: i = 1,2,3, ..........., n .  : Vector parameters required estimatexplanatory are e  .

variables . 

As for (π / (1-π)) odds of success rate or preference ratio for the desired event and its mathematical 

formula are as follows: 

( )

( )

0  

1 (6)
1

1 1

p

j ij

j

xP Y
e

P Y

 

=

+=
=

− =
 

The probability formula for the logistic regression model is written as follows: 

Xβ

Xβ

e
π (7)

1 e
=

+
 

And the amount Loge(π / (1-π)) is called the logs odds of success logarithm. 

      Logistic regression does not require many assumptions. It only requires that there is no 

correlation between the explanatory variables and that the volume of observations is large in each 

group that is assumed to be greater than five times the number of parameters used in the final model 

(Demosthenes, 2006). 

     The estimation of the parameters of the logistic regression model is carried out using the 

Maximum Likelihood Method (ML), which is one of the most famous estimation methods in 

statistics. Assuming that the observations are independent, the logarithmic likelihood function is 

defined by the following formula: (Hosmer and Lemeshow, 2000) 

( ) ( )
n

i i i i

i 1

L Ylog π (1 Y )log 1 π (8)
=

= + − −  
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By maximizing the likelihood function (L) and taking the derivative with respect to the parameters 

(β) and equating the result of the equation with zero, the possibility function is given as: 

( ) ( )
n

i i i

i 1

0 X Y π 9
=

= −  

Since equation (9) is a nonlinear parameter, some special methods should be used to obtain the 

appropriate solutions. Therefore, Iteratively Re-Weighted Lest Squares (IRLS) can be applied to 

obtain appropriate solutions. The maximum likelihood estimator (MLE) of the parameters (β) can be 

found using the IRLS algorithm as follows: 

1

MLE )β̂ S W 0ˆ ˆ 1X Z (− =  

As      , ,      

One disadvantage of using MLE is that MSE becomes bulky when explanatory variables are Linear 

dependent, which is called the problem of multicollinearity. A condition number (CN) has been 

developed to test the existence of the problem of multicollinearity between the variables known as 

the following formula: 

)11(

2/1

min

max









=




CN

 

As:  max
  , min  They represent the largest and smallest eigenvalue  roots of the matrix (S), if the 

value of CN <10 this means there is no problem of multicollinearity between the explanatory 

variables and if it is 10< CN <30 then there is a problem of moderate multicollinearity between the 

explanatory variables and if the value CN> 30 This means that there is a strong multicollinearity 

problem between the explanatory variables (Inan and Erdogan, 2013;Algamal, 2018) Also when the 

eigenvalue  root values of the matrix (S) are close to zero, this indicates that there is a problem of 

multicollinearity between the variables and this will lead to an increase in the value of (MSE) . 

   The value of the mean square error of equation (10) is found according to the following formula: 

[Siray et al. 2015] 

)12(
1

)ˆ(
1


=

=
p

j j

MLMSE




 

As:  i  represent the eigenvalue  roots of the matrix (S). 

   When there is multicollinearity, the maximum likelihood estimator method (ML) suffer from 

inflation in the variations of the estimated parameters and the occurrence of instability, and this 

inflation is represented by the diagonal elements of the matrix (S). To solve this problem, (Schaefer 

et al., 1984) suggested a logistic ridge estimator (LRE) that was first introduced by 1970 (Horal & 

Kennard), and used it to estimate the parameters for the Multiple Linear Regression Model. This 

method is summarized by adding a small positive constant quantity (k) whose value falls between 

zero and one (0≤ k ≤1) to the diagonal elements of the information matrix (S) to obtain more accurate 

estimator, and this method works to decouple the links between the explanatory variables and the 
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logistic character estimator is defined according to the formula next: (Månsson and Shukur, 2011; 

Alanaza and Algamal, 2018)  

 

The estimator (ML) can be considered a special case of equation (13) when the value of (k = 0).The 

value of k in logistic regression models is found according to the formulas 
1

ˆ ˆ
ML ML

k
 

=


 (Schaefer et 

al., 1984). 

 

2. Generalized Liu Estimator (GL)  

         The researcher Liu proposed in  1993 a new estimator to address the problem of  

multicollinearity. It combined the features Stein estimator in 1956 and Ordinary Ridge Regression  

estimator (ORR). where it is estimated: 

( )
1

* * * )ˆ (14RR X WX K X WZ
−

 = +   

    Where *X XP=  and P is represents a "perpendicular matrix, whose columns represent distinctive 

vectors corresponding to the characteristic roots of the matrix of information ( )X WX  

and ' 'P P PP I= = . This model called the Canonical Linear Model or Uncorrelated components 

model, and the estimation MLE of the ( ) is given: 

( )
1

* * *    (15)ˆ
MLE W WZ   

−

=    

    It has advantages and an advantage. It is advantageous in the  practical application but it is a 

complex function of (K).( Algamala,2018)   

Akdeniz & Kaciranlar proposed in 1995  a new estimator named (GL). It is the general state of 

estimator (LE) there is a special advantage to estimating (LE) overcomes the estimator (ORR) where 

(LE) is a linear function with a bias parameter ( )d . So it is easier to calculate then the character 

parameter k for estimator (ORR). The character is also estimated as a decreasing function in k while 

Liu is estimating an increasing function in ( )d . The general Liu is indicated by: 

 

( ) ( )
( ) ( )

( ) ( )

1 *

1

1

ˆ

ˆ

  ˆ

ˆ ˆ

ˆ ˆ

 

   

   

L

GL

GL

MLE

MLE M E

MLEGL

WZI X D

I D

I D

 

  

 

−

−

−

=  + +

=  +  +

=



 +  +

 

Which can be written as follows: 

( ) ( )( )1
      (16)ˆ

GL I I D
−

= −  + −  
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( ) ,0 1i iD diag d d=     represents a diagonal matrix with bias parameters ( )id and 
*' *X WX =  ( 

Algamala and Asar, 2018). 

        The forecast for the  estimate ˆ
GL as follows: 

( ) ( )( )
( ) ( )( )

1

1

ˆ ˆ

ˆ ˆ (17)

   I

   I

MG L

LE

L

L

E

G M

E I I D E

E I I D

 

 

−

−

= − + −

= − + −

 

The estimator of (GL) is biased for parameter ( )  and the biased estimated is: 

1

ˆ ˆ( ) ( )

( ) ( ) (18)

Bias E
GL GL

I I D

  

−

= −

= −  + −
 

The variance matrix of the (GL) is estimated as follows: 

 1 1
ˆ ˆ( ) ( ( ) ( )) ( )( ( ) ( ))MLEVar I I I D Var I I I D
GL

 
− −

= −  + − −  + −                  

 

where : 

 

 

The matrix of  average error squares to (GL) estimator are as follows: 

 

 

3. Estimating the shrinkage parameter 

        In order to estimate the optimal value of ( )D in Eq.(16), several methods will be proposed. The 

idea behind these proposed estimators are obtained from the work of Hoerl and Kennard (1970), 

Kibria (2003) and Khalaf and Shukur (2005).Where several different methods of estimating the 

shrinkage parameter for linear ridge regression have been proposed. The first estimator which is 

based on the work by Hoerl and Kennard (1970) is the following: 

2

1
2

1
  (21)

1

ˆ

ˆ
ˆ j

j

j
D




 −
=

+

 

x

2

2
2

ma

ˆ

ˆ

)
1

0,  

ˆ

(22
1

max

max

D Max





 
 

−
 =
 +
 
 

 

)(
1

)( DIIM −
−

+=

2 1
ˆ ( ) ( ) (19)I M I M

−
= −  −

2
ˆ ˆ ˆ( ) ( ) ( ( ))MSE Var Bias
GL GL GL

  = +

2 1
ˆ ( ) ( ) (20)I M I M M M 

−
  = −  − +
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Where we define 2

max̂ and max̂  to be the maximum element of 
2ˆ
j and ĵ respectively. Furthermore, 

the following estimators, which are based on the ideas in Akdeniz and Kacıranlar (1995),are 

proposed: 

( )

( )

2 2

3 2 2

 

ˆ
  (23)

ˆ

ˆ ˆ

ˆ ˆ

j j

j j

D
  

  

−
=

+
 

Akdeniz et el proposed method  in 1999 (Alheety  and Kibria, 2009) as following: 

( )
2

2

4 2 2

 

ˆ 1
  1   )

ˆ

ˆ ˆ
(24

ˆ

j

j j

D
 

  

 
+ 

= − 
+ 

 

 

The following estimators, which are based on the ideas in Kibria (2003),are proposed: 

2

5
2

1
)

ˆ

ˆ

(

ˆ

0,   25
1

j

j

j

D Max Median
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Using the average value and median is very common when estimating the shrinkage parameter  for 

the ridge regression . Finally, the following estimators are proposed: 

2
6

2ˆ

ˆ
ˆ

1
0,   (26)

1

j

j

j

D Max Max





  
  

−  =
  

+   
  

 

For these estimators other quintiles than the median is used which was successfully applied by Khalaf 

and Shukur (2005). 

4. Monte Carlo simulation study 

       In this section, a comprehensive simulation study was conducted to evaluate the performance of 

the Estimating the shrinkage parameter (D) of Liu estimator. The explanatory 

variables
1 2( , ,...., )T

i i i inx x x x=  have been generated from the following formula:  

2 1/2
(1 ) 1, 2, ..., & 1, 2, ..., (27)x w w i n j pij ij ip = − + = =  

where  represents the correlation between the explanatory variables, p represents the number of 

explanatory variables, and ijw  are independent standard normal pseudo-random numbers and ipw : 

represents the values of the last column of the variables generated. The response variable for (n) of 

observations was found according to the formula of the logistic regression model: 
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exp( )
( ) (28)
1 exp( )

X
Y B

X






+
 

and
1 2 3 p    = + + ++ with

=

=
p

j

j

1

1 and 
1 2 3 p   = = == (Kibria, 2003; Månsson and 

Shukur, 2011). Because the sample size has direct impact on the prediction accuracy three 

representative values of the sample size are considered: 50, 75 and 150. In addition, the number of 

the explanatory variables are considered as 5p = and 8p = Further, because we are interested in the 

effect of multicollinearity, in which the degrees of correlation considered more important, three 

values of the pairwise correlation are considered with ( ) 0.90,  0.95,  0.99 = . The experiment was 

repeated (1000) times. And the mean square error (MSE) is calculated according to the following 

formula: 

1000

1

1ˆ ˆ ˆ( ) ( ) ( ) (29)
1000

T

r r r

r

MSE     
=

= − −  

where 
ˆ

r  is the obtained liu estimator with different shrinkage parameter 1 2 3 4 5 6, , , ,D D D D andD D
. 

We conclude from the results of Table (1) The lowest value for MSE 

when  150,   5    0.90n p and = = = , the MSE of the 5D was about 0.7747. As the correlation 

coefficient value increases, the MSE value increases when taking all the probabilities of the number 
of explanatory variables (p) and the sample size (n). In addition, the estimated performance (D5) is 

better than the rest of the estimators. The more the number of explanatory variables (p) increases, the 

value of (MSE) increases, and this increase affects the quantity of estimators. However, the estimated 

performance (D5) is better than the rest of the estimators. As the sample size increases, the value of 

MSE decreases when taking different values for each correlation coefficient and the number of 

explanatory variables. The best performance is performance shrinkage parameter D5 for liu estimator. 

The performance of the parameter ( )3D of Liu estimation was the worst for having the highest values 

of the MSE. 

.,  n and ρ pvalues for different values ofTable 1: Average MSE  

6D 5D 4D 3D 2D 1D ρ n 

 

1.6581 1.2587 3.2373 3.6189 1.7449 2.8794 0.90 

50 

p=5 

2.8787 1.5086 5.7579 5.5453 3.3228 5.3993 0.95 

11.8269 3.3218 26.5289 39.7088 17.5280 31.6187 0.99 

1.2277 1.0973 2.7669 1.8853 1.2486 2.3207 0.90 

75 1.9051 1.3191 5.1903 3.5611 2.0539 4.2766 0.95 

7.9190 2.4319 20.3833 24.1213 11.0621 21.3497 0.99 

0.7808 7747*0. 1.9021 1.1045 0.7814 1.4638 0.90 

150 1.1257 1.0342 3.9486 2.0094 1.1400 2.8528 0.95 

3.8633 1.7055 18.2836 11.4733 4.8206 14.4391 0.99 
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2.7295 1.8113 6.6659 5.3456 2.9551 5.9541 0.90 

50 

p=8 

5.0327 2.1132 11.7802 13.1731 5.9670 12.1249 0.95 

23.0994 4.7248 78.6804 130.7653** 33.3329 98.7982 0.99 

1.7887 1.5262 5.2627 3.3859 1.8381 4.3456 0.90 

75 3.2305 1.9428 9.7505 7.3510 3.5607 8.4137 0.95 

14.8509 3.6323 45.7253 65.5540 20.4732 53.4659 0.99 

1.0334 1.0185 3.4226 1.7324 1.0351 2.5463 0.90 

150 1.7172 1.5340 6.9885 3.4946 1.7471 5.1152 0.95 

6.8949 2.3168 34.1068 26.6366 8.5429 29.5347 0.99 

* The lowest value for MSE. 

**The largest value for MAE. 

5- Conclusion 

In this paper, a compare of different shrinkage parameter selection of the liu regression model. 

Simulation results demonstrate that shrinkage parameter selection based on the work by Kibria 

(2003) ie ( 2D ) is more efficient than 1 3 4 5 6,  ,  ,D D D andD D methods when    0.90  ." As the 

sample size increases, the value of (MSE) decreases when taking different values for each correlation 

coefficient and number of explanatory variables. 
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Abstract: Transportation Problem (TP) is a very important problem which has been vastly studied in 

Operations Research domain. There are some classical methods to find the initial basic feasible 

solution (IBFS) which minimize the total shipping cost of (TP) such as north-west corner method 

(NWCM), minimum cost method (MCM) and Vogel's approximation method (VAM) which the best 

one of them. In this paper, we suggest a new amendment to (VAM) to find (IBFS) of (TP), which is 

an iterative method and the results will be near the optimal solution and in some cases equal to the 

optimal solution. In the numerical experiences we compare the results of the new approach with other 

classical methods to verify the efficiency of the new method. The proposed method is very effective 

and well-suited for use in solving these problems of various sizes. 

Keywords: Liner Programming, Transportation Problems, Vogel's approximation method, Initial 

Basic Feasible Solution. 
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Introduction 

The transportation problem (TP) have been extensively discussed and studied in Operations 

Research. They are usually concerned with how to reduce the transportation cost of homogeneous 

commodities (or get the optimal time for transportation) that has a number of sources (such as 

factories) and a number of destinations (such as warehouses) whereas meeting supply and request 

constraints [3, 5]. Transportation modules act as a paramount tool of supply chains and logistics 

administration to obtain the optimum cost and improve services. We can find the initial basic feasible 

solution (IBFS) of the (TP) using single of known classic approaches, such as the north-west corner 

method (NWCM), minimum cost method (MCM), Vogel’s approximation method (VAM) [9]. In 

addition to the classical methods, many researchers have presented other methods to get (IBFS) to the 

TP. 

In 1781, French mathematician Gaspard Monge, in cooperation with the army of Napoleon 

Bonaparte, published a mathematical model dealing with transporting soil at the lowest possible cost 

between different construction sites for the purpose of building forts and military ways. Although 

Monge laid a theoretical basis for solving (TP), no algorithm was advanced till 1941 when American 

mathematician Frank L. Hitchcock disseminated his solution of Monge’s problem [4]. Since that 

time, especially in last years, many methods have been presented to find (IBFS), for example, in 

(2015) Abdul S. Soomro et.al. suggested a modified Vogel’s approximate method for solving (TP) 

[2]. In (2016) Mollah M. A. et.al. presented a new approach to solve (TP) [7]. Also in (2016) Neetu 

M. Sharma and Ashok P. Bhadane developed  an alternative method to north-west corner method for 

solving (TP) [8]. In (2017) Abul Kalam S. and Bellel H. discussed a new method for solving (TP) 

considering average penalty [1]. In (2018) Palanivel M. and Suganya M. provided a new method to 

solve (TP)- harmonic mean approach [10]. In (2019) Sourav P. clarified a new proposition to 

compute an (IBFS) of (TP) [11]. Also in (2019) Kenan K. and Yusuf S. gave an approximation 

method to obtain (IBFS) of (TP) [6].  

The cost of (TP) has a major impact on the cost and prices of goods, so researchers in this field are 

seeking to provide the best method to minimize the cost of (TP). In this work we present a new 

mailto:hussainalseaidi@gmail.com
mailto:mmttmmhh@yahoo.com
mailto:mohammedsh.mahdi@uokufa.edu.iq
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approach to find (IBFS) of (TP) which minimizes its cost by making an amendment to the (VAM). 

The numerical results showed the efficiency of the new method by comparing its solution results with 

the solution of the three classical methods (NWCM, MCM and VAM). The (IBFS) of the new 

approach is better than the results of the three classic methods and near the optimal solution. 

Moreover, it is in some cases give us the optimal solution.  

 

Transportation Model 

In (TP) there exist m origins of supply  and n destinations of demand , each 

one of them is specially represented. The brackets symbolize the tracks connecting the origins and 

the destinations. Bracket (i, j) connection from origin i (i = 1,2, … , m) into destination j (j = 1,2, … , 

n), where  represents the transportation cost for each unit of products, while  is the charged 

quantity. The available units at supply in origin i represented by , while the available units at 

request in destination j represented by   .  

 
Subject   

 

 
Where                                                                 for every 𝑖 and 𝑗                         (4) 

 

Table ➊: Creek of Transportation Problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Types of Transportation Problems: 

❶ Balanced (TP):  

The (TP) is called balanced when the quantum of products in the apportionment pivot is equivalent to 

the quantum of products desired by the request pivot i.e. . 

Supply  
Destination (j) 

Origin (i) 
 

⋯   

 
 

 ⋯  
 

 
     

 
 

 ⋯  
 

 
     

⋮ ⋮  
 

⋮ ⋮ ⋮ 
 

 

 
 ⋯  

 
 

     

  ⋯   Demand  
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❷ Unbalanced (TP):  

The (TP) is called unbalanced when the quantum of products ready in the apportionment pivot is not 

equivalent to the quantum of products desired by the request pivot i.e. .  

 

The New Algorithm (Al-Saeedi's Approach)  

We depict the proceedings for getting (IBFS) for (TP) by the new approach in the following steps: 

Step 1: Building the TP cost matrix. Examination whether aggregate supply equals the aggregate 

demand, if not, the transportation problem must be balanced. 

Step 2: For each row of the transportation cost matrix, we specify the two lower costs ready. We 

subtract these two costs (called penalty) and position it to the oath of that row in a novel column 

made from the extension of the table on the right. For each column of the transportation cost matrix, 

we specify the highest cell cost and lowest cell cost. We subtract these two costs (called penalty) and 

position it beneath that column in a novel row was formed for this purpose by extending the table 

below. 

Step 3: Among these distinct penalty exhibit, in Step 2و we select the great value (the largest 

difference). 

Step 4: We, allocate the maximum possible units to the smaller cost cell in the chosen row (or 

column). when an equality happens among the largest differences, the choice may be taken for that 

row (or column), which has the smaller cost. when an equality happens in such lowest cost as well, 

option may be taking than that row or column by which extreme possible needs are fill up. If an 

equality happens in such allocating extreme possible needs then chosen cell in the row (or column) 

through extreme supply (demand). The chosen cell is allotment to that quantity and the congruous 

consume row (or column) is deleted than moreover study. 

Step 5: Cancel out the row (or column) that is satisfied. 

Step 6: Repeat Steps (2 – 5) until all columns and rows are satisfied. 

Step 7: In the end, calculate the aggregate (TP) cost by applying the next equation: 

 
Numerical Examples 

Example①: Consider the following transportation cost problem in Table ➋. 

Table ➋ 

 

 

 

 

 

 

 

 

 

 

 

 

The presented transportation problem is balanced because gross supply = gross request = 34. 

According to algorithm of (Al-Saeedi's Approach), the above table acquired as follows: 

 

 

Supply 
Destination 

Origin 

    

7 
10 

 
50 

 
30 

 
19 

  
    

9 
60 

 
40 

 
30 

 
70 

  
    

18 
20 

 
70 

 
8 

 
40 

  
    

34 14 7 8 5 Demand 
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Table ➌ 

 

The transportation cost total is  

 
Example②: Consider the following transportation problem matrix in Table ➍. 

Table ➍ 

 

 

 

 

 

 

 

 

 

 

 

 

The presented transportation problem is unbalanced because the gross supply is not equal to the gross 

request. 

Table ➎ 

 

 

 

 

 

 

 

 

 

 

 

 

Penalty Supply 
Destination 

Origin 

    

- - 20 9 7 
10 

2 
50 

0 
30 

0 
19 

5  
    

10 10 10 10 9 
60 

0 
40 

7 
30 

2 
70 

0  
    

62 12 12 12 18 
20 

12 
70 

0 
8 

6 
40 

0  
    

 34 14 7 8 5 Demand 

 

50 30 22 51 

Penalty 
50 30 22 - 

40 30 22 - 

- 30 22 - 

Supply 
Destination 

Origin 
   

17 
5 

 
12 

 
10 

     

30 
11 

 
9 

 
6 

     

53 
4 

 
8 

 
3 

     

Unbalanced 16 30 22 Demand 

Supply 
Destination 

Origin 
    

17 
0 

 
5 

 
12 

 
10 

      

30 
0 

 
11 

 
9 

 
6 

      

53 
0 

 
4 

 
8 

 
3 

      

100 32 16 30 22 Demand 
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Now transportation problem matrix is balanced because gross supply = gross request = 100. 

According to the new Algorithm, we get the next table: 

 

Table ➏ 

 

 

The transportation cost total is  

 
 

Comparison 

Table ➐ 

Name NWCM MCM VAM (Al-Saeedi's Approach) 

Example① 1015 814 779 743 

Example② 529 422 385 385 

 

As shown in Table ➐, the new approach gives a relatively better initial basic feasible solution (IBFS) 

than the results obtained by the other algorithms. 

 

Conclusion 

In the current highly competitive market, pressure is growing rapidly for institutions to specify the 

best methods to shipping commodity to customers. This is the reason why different institutions want 

to provide products to customers in the best method in terms of cost or time, so this transportation 

model provides a strong framework to meet this problem. In this paper, we have proposed a new 

amendment to the Vogel's Approximation Method to solve (TP). Through numerical examples, we 

saw that the transportation cost total using the new algorithm ( Al-Saeedi's Approach) is best by 

comparing with the classic solution methods and sometimes we can get the optimal solution when 

using this method. Therefore, we can conclude that the new algorithm can be used efficiently to find 

the initial basic feasible solution (IBFS). We have to remarkable that our suggested approach is easy, 

clear and allows desirable results as required by the decision makers which could be an attractive 

alternative method for solving the transportation problems.  Furthermore, it can be used for balanced 

and unbalanced transportation problems. 

Penalty Supply 
Destination 

Origin 
    

7 5 5 5 17 
0 

2 
5 

15 
12 

0 
10 

0      

- - 9 6 30 
0 

30 
11 

0 
9 

0 
6 

0      

4 4 4 3 53 
0 

0 
4 

1 
8 

30 
3 

22      

 

100 32 16 30 22 Demand 

 

0 7 4 7 

Penalty 
0 7 4 - 

0 1 4 - 

- 1 4 - 
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Abstract: The projection technique is a very important method and efficient for solving unconstraint 

optimization and nonlinear equations. In this study, we developed a Liu-Story (LS) algorithm for 

solving a monotone equations of nonlinear systems. The new algorithm satisfies the sufficient descent 

condition and it's a suitable method of large scale equations for its limited memory. We established a 

global convergence of suggest method under the mild conditions. Numerical results proved that the new 

algorithm works well and promising. 

Keyword: Projection Algorithm, Monotone Equations, Nonlinear Systems, Conjugate Gradient Method 

and Line Search Method.      
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1. Introduction 

As we know, the projection approach is a very simple iterative methods to find a solution vector   of 

nonlinear systems: 

 

s.t.   is continuous mapping and monotonicity condition hold, i.e.                       

   . The problem arise in various application in applied 

mathematics, power engineering, economics and chemical systems. For example, the variational 

inequality [16], the problems in proximal algorithm with Bregman distances [7], the problems of 

economic equilibrium [2] can be reformulated as (1.1). For solving systems of equation, there exist a 

many of numerical method include the Newton method [3], trust region method [14], quasi-Newton 

method [4], the Levenberg-Marquardt method [8], derivative-free method [10,9,13], projection 

technique based gradient direction [1,11,15]. Many from that approaches are iterative process begin in 

, the next iterate is       where  is called search direction while  

denote step length. We mixed the conjugate gradient method [3,7] with projection algorithm [2,12,15] to 

be a suitable to deal with a large-scale equations. In 1964 Goldstein [5] introduced the first projection 

technique for convex programming in Hilbert spaces. It was then Solodov and Svaiters[15] extended 

Goldstein method and constructed a hyperplane  that strictly separates  from the solution set of 

(1.1) i.e. 

 
s.t.  is created by employing a line search condition with the direction  s.t. 

 
With the monotonicity of  we own that for each  s.t.  

 
Yet, by Solodov and Svaiters [15] the following approximation  is constructed by projecting  

onto  i.e. 
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Where  be a closed convex  

Recently, the Liu-Storey(LS) conjugate gradient formula [12] is 

 
Where  Dependent on the last method, we will suggest the developed (LS) form for 

solving nonlinear systems (1.1) such that 

 

                           (1.3) 

Where   is a fixed. It is simply to offer that 

the our formula can be reduced to a criterion Liu-Story technique if applied exact line search. The new 

line search of the proposed algorithm: 

 
Where . We win adopt the projection based technique to present a developed (LS) 

gradient method with projection approach to solve monotone equations of nonlinear systems . 

In our work, we discuss a developed (LS) projection algorithm for nonlinear systems (1.1). in the next 

section, we introduce the new algorithm with some assumptions and analysis it's the global 

convergence. Finally, Some numerical experiments and conclusion are presented in the last section.  

2. Projection Based Method 

        Know, projection gradient technique is another efficient algorithm to solve large scale 

unconstrained minimization problem: 

 

where  is smooth nonlinear function, because of its simplicity and low storage requirements 

[5]. The steps of a new algorithm are stated as follows: 

(2.1) New Projection Algorithm (MOH2): 

1.  Given initial point  and  

Let  

2.  If         break. Otherwise find   by (2.5). 

3. determine , such that 

 

4. Let      . 

5. If         break and set  . Otherwise compute   by (6) 

6.  Let    , and return to stage (2).         

         

3.  Global Convergence Test 

       In this part, we investigate  the global convergence of the offer  approach and we need some 

necessary assumptions: 
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(B1) The solution set of nonlinear equations (1.1) is nonempty. 

(B2) The mapping  is monotone and Lipschitz continuous of , i.e.,  s.t. 

                               (3.1) 

 

In the next lemma we display that  the new algorithm (MOH2) has a sufficient descent condition. 

 

 

Lemma 3.1: For each  we have 

 

And   

                                       

Proof:- When , then (3.2) and (3,3) holds, since from the definition of  in (1.3), 

we have 

 

Thus (3.2) hold for all  and  

 

 

 

And the inequality follows form 

 

Then (3.3) is hold. 

Now, we derive some properties of algorithm(2.1) and show that the line search is well defined.  

Lemma 3.2: Let assumptions(B1,B2) satisfies, impels  algorithm (2.1) will produce an approximation  

 in a limited  number of backtracking procedure. 

Proof:- Assume   not satisfy, or algorithm (2.1) breaks. Then  satisfing 

 

We used a contradiction to establish this lemma, assume that the property (1.4)  not satisfy for several 

iteration indexes . 

Set  It can be concluded 
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By assumption B1,B2 and (3.2) in lemma (3.1), we have  

 

 

 

L  

 

by assumption B2, we conclude that  

 

Thus, we have 

 

This impels contradicts with definition of . So the line search (1.4) can hold a nonnegative step 

length  in a limited number of backtracking steps its well defined. 

Know, the next lemma like to lemma (3.1) in Solodov and Svaiter [14], so we omit the proof. 

Lemma(3.3): Suppose that (B1, B2) satisfies and the sequence {  is produced by algorithm (2.1), 

for all  is a solution of (1.1) then   

 
And, the sequences{   are bounded, and  

 

 
 

Theorem 2.4: Suppose that (B1,B2) satisfies and the sequence { } be produced by algorithm (2.1), 

then  

 

Proof:- Assume that (3.8) is not hold. Set a fixed   s.t.  this with (3.2) implies that   

 

By the relation of (3.5), (3.6) and (3.7), we obtain 

 

This mean a sequence  is bounded. Then   infinite index and an a limit point  holds   
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Via the boundedness of  in lemma (3.3), we conclude that there exists a limit point  and there is set 

 be infinite index holds 

 

From  lemma (3.2) and lemma (3.3), we have  

, 

this together with (3.10), we get  . 

By (1.4) we have  

 

Where   

Therefore, taking the lim as  in both sides of (3.11) for all  generates   

In the other term, by making the lim as  in both terms of (3.2) for all , such that 

 Which generates a contradiction. 

4. Numerical Experiments 

In the present section, we shown the our results of numerical experiments to analyze the performance of 

(MOH2) and compare it with the three  famous methods, a scaled derivative-free projection method 

(SDA)[9], a modified Liu-Story conjugate projection method (MLS)[6] and a projection based 

technique (DFBP)[13].  

In the suggested algorithm, we used the parameters:  

and . The parameters in the LS, PDFB and UU come from [6], [13] and [9] 

respectively. We take on  the similar finish condition for each the forth algorithms i.e. we break its when 

the upper number of approximation override 500000 or the inequality  is satisfied. All 

algorithms written in MATLAB program R2014a and turn on a PC(win8) , CPU 2.30 GHz and 4 GB 

RAM where all these method applied in the same computer. 

We solved 7 constraint test problem see Awwal et.al. [2] and using 8 initial different starting point 

similar to the problems in [3,12], such that 

 

,  

,  

 

The preliminary numerical experiments are reported in tables(1-2),(1-3) for number of iteration (Ni), 

number of function evaluations(Nf), CPU time(CPU),probability (Prob) and dimension(Dim). 

Fig (1-3),(1-4) and (1-5) presented the performance profile referring to Ni, Nf and CPU time respective 

.It can be observed from the fig (1-3) that our proposed MOH2 method wins higher percentage of the 

numerical experiments. Numerical results listed in tables(2-7) show that the new method is efficient for 

solving problem (1.1). 

The present performance profile of number of iteration in fig(1), performance number of evolutions in 

fig(2) and performance of CPU time in fig(3). The performance  of suggested method (MOH2) it is 

obvious from these figures much best than  LS, DFBP and UU methods. whenever, the introduced 

methods are efficiently and there for promising. 
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Table 4.1: Numerical Results 

 

 

 

P. Dim. S.P New LS DFBP UU 

        

 

20000 

20000 

20000 

20000 

20000 

20000 

20000 

20000 

 

 

 

 

 

 

 

 

74 

74 

62 

62 

40 

52 

60 

60 

150 

150 

126 

126 

82 

106 

122 

122 

30 

30 

5 

5 

43 

3 

70 

70 

322 

322 

22 

22 

175 

12 

283 

283 

56 

56 

33 

33 

10 

7 

31 

31 

171 

171 

94 

94 

22 

16 

85 

85 

261 

261 

269 

269 

170 

228 

260 

260 

523 

523 

539 

539 

341 

457 

521 

521 

 50000 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

 

 

 

 

 

 

 

 

74 

72 

62 

63 

40 

52 

60 

60 

150 

146 

126 

128 

82 

106 

122 

122 

30 

33 

5 

13 

58 

3 

92 

92 

322 

368 

22 

101 

239 

12 

374 

374 

29 

135 

28 

123 

18 

24 

27 

27 

60 

412 

58 

372 

38 

50 

56 

56 

304 

89 

268 

92 

169 

227 

259 

259 

611 

180 

538 

187 

340 

456 

520 

520 

 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

 

 

 

 

 

 

 

 

122083 

135515 

99605 

117988 

101372 

98007 

41822 

42438 

964783 

1073878 

789574 

493598 

806584 

780850 

326437 

334940 

140299 

152995 

118372 

136851 

120253 

116540 

50627 

50630 

1199292 

1309110 

1009956 

1168990 

1025846 

993990 

432073 

432073 

50582 

55873 

41605 

49004 

42163 

40850 

17769 

17702 

140852 

156143 

115103 

135936 

116584 

112790 

49279 

49121 

80563 

89469 

65675 

77670 

66492 

64229 

28215 

28210 

161129 

178941 

131353 

155343 

132987 

128461 

56433 

56423 

 10000 

10000 

10000 

10000 

10000 

10000 

10000 

10000 

 

 

 

 

 

 

 

 

62 

113 

73 

84 

61 

74 

79 

82 

220 

546 

315 

365 

236 

332 

362 

381 

88 

351 

50 

200 

157 

200 

154 

154 

665 

2583 

386 

1454 

1148 

1457 

1128 

1128 

114 

165 

103 

137 

120 

128 

118 

119 

322 

457 

289 

379 

333 

354 

329 

331 

140 

188 

95 

148 

129 

133 

126 

126 

283 

379 

193 

299 

261 

269 

255 

255 
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  Table 4.1:  Numerical Results - continued 

 

 

 

 

 

 

P. 

 

Dim. 

 

S.P 

New LS DFBP UU 

        

 

10000 

10000 

10000 

10000 

10000 

10000 

10000 

10000 

 

 

 

 

 

 

 

 

161 

151 

150 

146 

156 

147 

160 

158 

641 

561 

558 

533 

599 

534 

636 

617 

1218 

1255 

1220 

1218 

1218 

1218 

1218 

1218 

21600 

21712 

21610 

21598 

21600 

21599 

21599 

21599 

386 

385 

387 

385 

387 

385 

388 

390 

1057 

1055 

1059 

1055 

1059 

1055 

1061 

1065 

753 

754 

753 

753 

753 

753 

753 

753 

1509 

1511 

1509 

1509 

1509 

1509 

1509 

1509 

 

 

5000 

5000 

5000 

5000 

5000 

5000 

5000 

5000 

 

 

 

 

 

 

 

 

70 

72 

64 

67 

66 

66 

65 

65 

142 

146 

130 

136 

134 

134 

132 

132 

21 

36 

6 

12 

9 

9 

8 

8 

178 

359 

30 

80 

55 

53 

45 

45 

58 

64 

40 

50 

46 

45 

43 

43 

169 

187 

115 

145 

133 

130 

124 

124 

311 

322 

283 

298 

292 

291 

288 

288 

624 

646 

568 

598 

586 

584 

578 

578 

 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

 

 

 

 

 

 

 

 

493 

64 

487 

63 

49 

453 

475 

475 

3130 

132 

3120 

128 

130 

3045 

3052 

3052 

11113 

30 

11089 

6 

636 

10880 

10938 

10938 

22417 

289 

22180 

38 

1274 

21762 

21878 

21878 

19422 

408 

19411 

224 

1119 

19042 

19147 

19147 

38854 

1685 

38824 

825 

2240 

38086 

38296 

38296 

310748 

174 

310670 

122 

17977 

304721 

306459 

306457 

621498 

350 

621342 

246 

35956 

609444 

612920 

612916 
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Table 4.2:  Numerical results (CPU time) - continued 

 

 

P. 

 

Dim. 

 

S.P 

CPU time 

New LS DFBP UU 

 10000 

10000 

10000 

10000 

10000 

10000 

10000 

10000 

 

 

 

 

 

 

 

 

0.28120 

0.21875 

0.21875 

0.18750 

0.2187 

0.18750 

0.25000 

0.21875 

11.25000 

9.04687 

8.46870 

5.84370 

5.76562 

5.84370 

5.71870 

5.73437 

1.45312 

1.06250 

0.85937 

0.79687 

0.78125 

0.73437 

0.76562 

0.73437 

2.45312 

1.50000 

1.37500 

1.20312 

1.00010 

0.85937 

0.78125 

0.78125 

 

 

5000 

5000 

5000 

5000 

5000 

5000 

5000 

5000 

 

 

 

 

 

 

 

 

1.07812 

1.07812 

0.92187 

1.03125 

0.79687 

0.93750 

0.98437 

0.87500 

3.35937 

4.82812 

0.32812 

0.82812 

0.50000 

0.53125 

0.43750 

0.34375 

3.18750 

2.35937 

1.48437 

1.64062 

1.60937 

1.59375 

1.39062 

1.32812 

8.87500 

5.07812 

4.18750 

4.18750 

4.09375 

4.09375 

4.09375 

4.03125 

 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

 

 

 

 

 

 

 

 

8.15625 

0.54687 

8.03125 

0.50000 

0.43750 

7.64062 

7.73437 

7.53125 

92.17187 

1.51562 

84.0468 

0.09375 

4.98437 

82.20312 

82.43750 

82.26560 

142.21875 

6.45312 

136.01562 

2.53125 

7.48437 

131.87500 

133.81250 

134.34375 

1802.67180 

1.12500 

1627.96870 

0.67187 

93.81250 

1588.15620 

1661.25000 

1887.56250 
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Fig1: Performance of iteration number 

 

 

Fig2: Performance of the function evaluations    
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Fig3: Performance of the CPU time 

5.   Conclusions 

In the present paper, we introduce a developed Liu-Story (LS) projection type based gradient 

algorithm to solve the nonlinear systems of monotone equations. The new algorithm is a suitable 

method of large scale equations due to its low memory requirements. The proposed method were 

shown to satisfying the sufficient descent condition and the global convergence was investigated with 

some suitable assumptions. The numerical experiments indicate that the proposed technique is 

efficient and very competitive. 
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7. Introduction 

We consider a derivative-free projection techniques are the most effective line search methods to solve 

the following nonlinear system of equations: 

 

s.t.  be continuous and nonlinear monotone function,  closed convex, the 

monotonicity means  

 for all . 

The gradient projection techniques are efficient to find the solution of large scale unconstraint 

optimization due to their simplicity and limited memory. A lot of computation methods have been 

proposed to solve unconstraint nonlinear problems. For example, Newton method, quasi newton method 

and Levenberg-Marquardt type method [3, 7]. A good property of the derivative-free for solving the 

monotone equation is that competitive with conjugate gradient descent [1, 6, 8, 11]. In this work, we 

developed a derivative-free projection to three terms of a derivative-free with a monotone line search 

technique. Also, motivated by the idea of Yuan [14], we construct a new projection method of three 

terms derivative-free for solving large scale systems of equations. The proposed approach used to solve 

a large scale systems of equations because it inherit nice properties of conjugate gradient descent such 

as the limited memory require and high efficient. The organized of this paper as: in section one we 

showed the conjugate gradient projection algorithm, in section two, we presented our algorithm with a 

new line search, in section three  some lemma and global convergence are established and in section 

four we introduced the numerical experiments. 

The conjugate gradient descent (CGD) is one of the important methods for solving unconstraint 

optimization problems and nonlinear equations. It is search direction as follows: 
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with  is a cost function  at ,  , here 

 

 
Liu and Li [9] considered a conjugate gradient technique of Hager-Zhang [5] and suggested that the 

conjugate gradient descent method with  is high competitive than with  Also, Dai and Kou 

[4] applied the spectral technique to analyses the conjugate gradient descent method and showed that the 

CGD method with  is best than with  In our method, we choose the parameter  in the 

proposed algorithm. 

The projection operator is a mapping   for all  it holds that [10] 

 
where  

2. Algorithm: 

Given an initial point  an iterative scheme for (1.1) generates a sequence { } by                 

,  which a line search procedure employs alone the direction  to calculate 

step size . Let  by monotonicity of F, the hyperplane  

 
strictly separates  from the solution of the problem (1.1). Based on Solodov and Svaiters [12] advised 

that the other iteration point  is constructed by projecting  onto  that is  is determined by: 

 
We assume that  holds some assumption as follows: 

(B1) The solution set of (1.1) is nonempty. 

(B2) The mapping  is monotone and Lipschitz continuous i.e.,  such that 

 
 

We propose the following new direction formula for nonlinear monotone equations (1.1) 

 ,                          (2.3) 

where   

 ,     ,     

Algorithm (2.1): New Projection Algorithm (MOH3): 

1.  The initial point  is given, and parameters  and  

Set  

 2.  Let   , generated by a new line search  

 

3. Compute      . 

4. If   break. Otherwise calculate  by (2.3) 

5. If   break. Otherwise calculate   by  



1042 
 

 
6. Put    , and return to (2).                 

3. Global Convergence of the New Method 

Remark (i): We conclude that by definitions of  and  that 

 
This inequality based on the monotonicity of a mapping F, and always the divisors of   and   are 

greater than zero before the algorithm breaks. 

The sufficiently descent property of Algorithm (2.1) showed in the next lemma. 

Lemma(3.1): Suppose { } is the sequence of the search direction, { } be generated by algorithm 

(2.1). Then such that 

 

Proof:   By the definition of  and (2.2) we have  

 

                                                                            

                                                                            

so, we have  

 

By taking inner product (3.1) with  and from (3.2) we get 

 

 

 

Let  ,      (  

And from , we get  

 
For  k=0,    

Thus (3.1) holds.                                                                                                                      □   

Now, the next lemma shows that the line search of the proposed algorithms is well-defined.  

Lemma(3.2): Let assumptions (B1,B2) satisfied, then there exists a step size  holds the line search 

(2.4)    

Proof: Suppose that  scalar for which (2.4) is not true for all positive integer  such that:  

 

by the Lipschitz continuity of F, set   then 
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And from (3.1) we have 

 

This mean a contradiction between (3.3) and (3.4), this impels that (2.4) is well- defined.     □   

Lemma(3.3): Let assumptions (B1, B2) hold. The sequence {  be generated by algorithm (2.1), 

then for any  is a solution of (1.1) the following relation is satisfied  

 
Proof: By the monotonicity of F, we get 

 

Then 

 

from the definition of  and (2.4) 

 

 

From (2.1) we have 

 

                                                                

                                                                

                                                       

 

                                                       

where the last three inequalities are followed from (1.2), (3.6) and (2.4) respectively.  □   

Remark(ii): By (3.5) we have  

 

It's not difficult to show that 

 

Which means that  

 

Theorem(2.4): Let assumptions (B1,B2) satisfied and the sequence { } be determined by algorithm 

(2.1), then  
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Proof:  Assume that (3.8) is not hold. Let a constant   satisfies  

  

It follows from the definition of and (2.2) that  

 

From remark (i) and the definition of  , we get 

 

 

 

 

 

By remark (i), we have 

 

 

 

 

where     

It follows from (2.4) that 

, 

where  . 

From (3.1) and (3.2) we have 
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i.e. 

 

From (3.9) and (3.10) we have 

 

So, by (3.5) and the definition of  , we get 

 

This implies a contradiction with (3.11), so, the assumption does not satisfied, and (3.8) holds.   □  

4.  Numerical Experiments 

      Numerical results are used to assess the efficiency of the new approach (MOH3). We compare it 

with three famous algorithms:  

(GC) which is introduced by Yan et al. [13]. 

(HS) which is introduced by Liu and Li [9]. 

(SP) which is introduced by Awwal et al. [2].  

The parameter of suggested algorithm set as follows: 

 The parameter of the other methods comes from 

[13, 9, 2]. All Algorithms are terminated whenever . The total number of iteration exceeds 

500000. Our computations were carried using MATLAB R2014a and run PC with 4GH, CPU2.30- 

Windows8 operation system. We test the performance of the algorithm (2.1) with different initial 

starting points and various dimensions. Similar in [9], we check the test problem when the variables 

number n=5000, 10000, … with the following starting points  

,  

,  

We compare the suggested method with the other method for number of iteration (NI), number of 

function evaluations (NF) and CPU time (CPU). From the fig (1, 2, 3) it's clear to show that the MOH3 

is better than the other methods. 
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Table 4.1:  Numerical results 

 

 

 

 

 

 

 

P. Dim. S.P MOH3 GC HS SP 

        

 

20000 

20000 

20000 

20000 

20000 

20000 

20000 

20000 

 

 

 

 

 

 

 

 

27 

27 

25 

26 

14 

19 

25 

25 

93 

93 

84 

87 

44 

59 

83 

83 

419 

419 

63 

63 

21 

28 

47 

47 

2546 

2546 

193 

193 

44 

58 

126 

126 

121 

121 

112 

112 

118 

95 

86 

78 

244 

244 

226 

226 

303 

192 

200 

189 

56 

56 

52 

52 

33 

44 

50 

50 

114 

114 

106 

106 

68 

90 

102 

102 

 50000 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

 

 

 

 

 

 

 

 

36 

31 

34 

28 

22 

32 

35 

35 

150 

121 

133 

112 

90 

122 

132 

132 

419 

392 

63 

61 

21 

28 

47 

47 

2546 

2430 

193 

242 

44 

58 

126 

126 

121 

41 

112 

33 

120 

95 

91 

91 

244 

84 

226 

68 

321 

192 

209 

209 

56 

21 

52 

18 

33 

44 

50 

50 

114 

44 

106 

38 

68 

90 

102 

102 

 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

 

 

 

 

 

 

 

 

94564 

103235 

82718 

91101 

83186 

81715 

34923 

34925 

495544 

541469 

431787 

477482 

434412 

426319 

182490 

182500 

47063 

51588 

39343 

46037 

40130 

38760 

16855 

16826 

126245 

138866 

104873 

123041 

106799 

103132 

44971 

44911 

32933 

36768 

26378 

32357 

27718 

26736 

11456 

11567 

66433 

74001 

53108 

64741 

55520 

53501 

23043 

23243 

48536 

53822 

39699 

46814 

40221 

38837 

17045 

17043 

121399 

134614 

99306 

117094 

100618 

97151 

42671 

42666 

 10000 

10000 

10000 

10000 

10000 

10000 

10000 

10000 

 

 

 

 

 

 

 

 

50 

81 

51 

63 

59 

65 

58 

58 

244 

388 

248 

303 

284 

312 

280 

280 

108 

261 

65 

90 

66 

70 

67 

67 

418 

1340 

194 

273 

175 

183 

182 

182 

62 

90 

55 

76 

68 

72 

66 

65 

127 

183 

113 

155 

139 

147 

157 

156 

99 

124 

90 

104 

91 

92 

95 

95 

273 

333 

250 

282 

247 

248 

259 

259 
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Table 4.1:  Numerical results - continued 

 

 

 

 

 

 

 

 

 

P. 

 

Dim. 

 

S.P 

MOH3 GC HS SP 

        

 

10000 

10000 

10000 

10000 

10000 

10000 

10000 

10000 

 

 

 

 

 

 

 

 

61 

68 

66 

67 

67 

67 

67 

66 

247 

276 

268 

272 

272 

272 

272 

268 

21094 

20987 

21084 

21067 

21075 

21076 

21082 

21077 

209916 

208704 

209805 

209609 

209709 

209719 

209786 

209728 

2344 

2386 

2498 

2377 

2534 

2529 

2509 

2444 

11705 

11804 

12442 

11912 

12640 

12634 

12550 

12208 

133 

133 

133 

133 

133 

133 

133 

133 

268 

268 

268 

268 

268 

268 

268 

268 

 

 

5000 

5000 

5000 

5000 

5000 

5000 

5000 

5000 

 

 

 

 

 

 

 

 

25 

26 

24 

24 

25 

25 

27 

24 

97 

99 

87 

79 

96 

89 

102 

93 

301 

550 

95 

174 

125 

122 

112 

112 

1550 

3263 

350 

788 

500 

486 

435 

435 

128 

133 

117 

123 

121 

120 

119 

119 

258 

268 

236 

248 

244 

242 

240 

240 

59 

61 

54 

57 

56 

55 

55 

55 

120 

124 

110 

116 

114 

112 

112 

112 

 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

 

 

 

 

 

 

 

 

15550 

789 

15528 

647 

896 

15234 

15330 

15330 

31145 

1960 

31058 

1553 

1794 

30470 

30662 

30662 

44711 

471 

44380 

48 

2565 

43530 

43775 

43775 

90690 

2844 

88766 

192 

5132 

87062 

87552 

87552 

129477 

71 

129445 

54 

7490 

126968 

128794 

128634 

258956 

144 

258892 

110 

14982 

253938 

257609 

257289 

118747 

36 

118732 

29 

3190 

117676 

117633 

117632 

237496 

74 

237466 

60 

6382 

235354 

235268 

235266 
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Table 4.2:  Numerical results (CPU time) 

 

 

P. 

 

Dim. 

 

S. P 

CPU time 

MOH3 GC HS SP 

 

20000 

20000 

20000 

20000 

20000 

20000 

20000 

20000 

 

 

 

 

 

 

 

 

1.54687 

1.10937 

1.09375 

0.96875 

0.54687 

0.59375 

1.00001 

1.10937 

16.59375 

16.46875 

0.84375 

0.92187 

0.21875 

0.25000 

0.65625 

0.59375 

2.89062 

2.35937 

1.60937 

1.43750 

1.81250 

1.42187 

1.14062 

0.98437 

0.50000 

0.39062 

0.32812 

0.35937 

0.23437 

0.29687 

0.37500 

0.28125 

 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

 

 

 

 

 

 

 

 

0.57812 

0.40625 

0.48437 

0.31250 

0.34375 

0.48437 

0.51562 

0.48437 

16.37500 

15.32812 

0.95312 

1.07812 

0.23437 

0.26562 

0.60937 

0.60937 

2.79687 

0.82812 

2.39062 

0.64062 

2.35937 

2.06250 

2.20312 

2.15625 

0.48437 

0.14062 

0.35937 

0.12500 

0.23437 

0.29687 

0.20312 

0.32812 

 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

 

 

 

 

 

 

 

 

2118.89062 

2352.82812 

1863.10937 

2064.51562 

1871.04687 

1835.53125 

783.84375 

781.85937 

494.59375 

452.89062 

336.79687 

396.03125 

341.31250 

331.34375 

144.21875 

144.04687 

286.39062 

345.68750 

242.79687 

297.95312 

255.04687 

246.32812 

103.96875 

109.07812 

394.71875 

439.18750 

319.79687 

376.59375 

327.46875 

313.59375 

137.81250 

181.32812 

 

10000 

10000 

10000 

10000 

10000 

10000 

10000 

10000 

 

 

 

 

 

 

 

 

0.14062 

0.25000 

0.15625 

0.18750 

0.15625 

0.18750 

0.17187 

0.10937 

0.34375 

1.43750 

0.20312 

0.32812 

0.17187 

0.23437 

0.18750 

0.25000 

0.65620 

0.93750 

0.57812 

0.20312 

0.34375 

0.26562 

0.20312 

0.31250 

0.20312 

0.25000 

0.15625 

0.17187 

0.15625 

0.17187 

0.18750 

0.20312 
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Table 4.2:  Numerical results (CPU time) - continued 

 

 

P. 

 

Dim. 

 

S.P 

CPU time 

MOH3 GC HS SP 

 10000 

10000 

10000 

10000 

10000 

10000 

10000 

10000 

 

 

 

 

 

 

 

 

0.17187 

0.10937 

0.14062 

0.10937 

0.09375 

0.10937 

0.10937 

0.07812 

80.87500 

79.59375 

80.92187 

79.78125 

80.65625 

79.14062 

81.15625 

80.25000 

12.76562 

12.84375 

20.25000 

23.26562 

24.42187 

12.0312 

12.23437 

11.59375 

0.62500 

0.35937 

0.37500 

0.43750 

0.35937 

0.35937 

0.35937 

0.32812 

 

 

5000 

5000 

5000 

5000 

5000 

5000 

5000 

5000 

 

 

 

 

 

 

 

 

0.76562 

0.62500 

0.57812 

0.53125 

0.67187 

0.56250 

0.73437 

0.68750 

12.10937 

24.17187 

2.54687 

6.29687 

3.96875 

3.62500 

3.39062 

3.57812 

3.53125 

3.53125 

3.04687 

3.28125 

3.01562 

3.43750 

3.62500 

3.07812 

2.85937 

2.03125 

1.57812 

1.53125 

1.23437 

1.04687 

1.01562 

0.90625 

 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

50000 

 

 

 

 

 

 

 

 

151.26562 

8.32812 

148.37500 

6.62500 

8.39062 

147.18750 

148.45312 

150.73437 

392.12500 

16.64062 

367.04687 

0.70312 

20.78125 

362.89062 

357.81250 

359.92187 

1651.37500 

1.07812 

1682.43750 

0.70312 

97.00001 

1624.60937 

1672.00001 

1676.07812 

15330.68750 

4.82812 

15549.17187 

3.82812 

418.82812 

15456.39062 

15450.40625 

15431.67187 
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5. Conclusions 

We have suggested a new class of three terms of derivative-free projection technique for solving 

unconstraint optimization. The suggested approach is appropriate for large scale equations, because it 

has a nice property which is the low memory requirement. The global convergence of our method is 

established. The numerical results showed that our method is efficient and working better than the three 

other algorithms that the new algorithm is compared with. 
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Abstract:Transportation Problem (TP) is one of the paradigms in the Linear Programming Problem 

(LPP). The TP in Operations Research represent vastly applied optimization. (TP) has some goals, 

like reducing transportation costs or reducing transportation time, etc. Whereas meeting both supply 

level and request level requirements. Transportation problem plays a major role in industry, trade, 

logistics, etc. To get the most possible profit, organizations are always looking for better ways to 

reduce cost and improve revenue. To solve the transportation problem, it is always required to find an 

initial basic feasible solution (IBFS) for get the optimal solution. The Vogel’s Approximation 

Method (VAM) is the important known traditional methods for obtaining an IBFS of TP. In this 

work, we introduce a new modification to the VAM to obtain an IBFS for the transportation 

problems almost nearer to the optimal solution. Proposed modification is illustrated with solved 

numerical examples. A comparison study was also conducted with the results of classic methods. 

This modified approach most of times give better solution and very close to the optimal solution, 

furthermore, sometimes gives the optimal solution. This method is clear, easy to comprehend. 

Keywords: Operation Research, Liner Programming, Initial Basic Feasible Solution, Vogel’s 

Approximation Method. 

* Corresponding Author  

1. Introduction 

Transportation Problems (TP) are single of oldest and ultimate remarkable implementations of the 

linear programming problems (LPP). TP is a special category of linear programming, whose relates 

of daily effectiveness in our lives [1, 3, 6]. In the nature of public life, a nominated quantities of 

homogeneous goods is obtainable in a numeral of provenance, and a stationary quantities is desired 

to satisfy the request in every of consumption venues. Transportation models focus fundamentally on 

the optimal method that is the product from several plants or factories (it is supply assets) be 

transferred into a several of storehouse or clients (it is demand destinations) [2, 8, 11]. In this 

problem, the main goal is to find an optimal schedule for shipping the commodity while satisfying 

the demands in every destination. The TP was first introduced in 1941by Frank L. Hitchcock [4]. In 

1947, Tjalling C. Koopmans, offered his paper to solve (TP) [14]. The two mentioned studies are the 

main achievements in the advancement of the different techniques for solving the transportation 

model. The transportation problems can also be solved by expressing it as an LP model via simplex 

technique provided by Dantzig G.B. in 1951 however it includes a considerable volume of variables 

and restrictions, and solve them by simplex technique requires lot of effort and a protracted time. 

Many investigators have expanded substitutional methods to find an IBFS that holds transportation 

costs at consideration. An IBFS for the TP be acquired using one of three classic techniques, north-

mailto:hussainalseaidi@gmail.com
mailto:mmttmmhh@yahoo.com
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west corner method (NWCM), minimum cost method (MCM), vogel approximation method (VAM). 

At those three approaches, Vogel’s Approximation Method (VAM) method is preferable deem to the 

studies. We can improve results of initial solution to get the optimal solution to the transportation 

problem in one of two ways, namely the Modified Distribution Method (MODI) or Stepping Stone 

Method. Essentially, these methods differ mainly in terms of the best solutions in the beginning, and 

a good solution that has a beginning will produce a smaller objective value. The transportation 

problem is divided into two kinds, the balanced transportation problem and the unbalanced 

transportation problem. If the numeral of sources is equivalent to the numeral of requests, we say that 

is a balanced transportation problem. If not, we say the problem of unbalanced transportation. In 

recent years, several methods have been proposed to find IBFS for the transportation model. Of 

Implied Cost Method (ICM), Md. Ashraful Babu and others (2014) have shown that their method is 

better or similar to VAM. Abdul Sattar Soomro and others (2015) in their paper, modified (VAM). In 

(2017), Mollah Mesbahuddin Ahmed and others gave an innovative approach to obtain an (IBFS) for 

the (TP) [9]. In (2018) , Ravi Kumar and others proposed a new approach to find (IBFS) for the (TP) 

[11].  Also in (2018), Lakhveer kaur and others discussed an improvement in maximum difference 

method to find (IBFS) for the (TP). In (2019), S. C. Zelibe and C. P. Ugwuanyi developed a new 

solution of the transportation problem. In this work, we introduce a new modification for (VAM) in 

which the resulting of objective function is almost ideal and better or equal to the results of the 

solution according to the (VAM), but in any case the results of our proposed method are much better 

than the results of the North-West Corner Method and Minimum Cost Method. 

 

2. Preliminaries 

2.1 Formula of (TP) 

Notations: 

We will present the mathematical model. After clarifying the meaning of the following symbols: 

m: Sources. 

: Supply. 

: Available quantities of each m capacity. 

n: Destinations. 

: Demand. 

: Available quantities for each n requirements. 

: The cost of transshipme one quantity of goods than origin 𝑖 to destination 𝑗 at every path. 

: The numeral of quantities shipped in every path than origin 𝑖 to destination 𝑗. 

 

Model: 

We can express the mathematical model as follows:  

 

 
Subject: 
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Where                                                                  ,  ∀ 𝑖 and 𝑗            (4) 

2.2 Representation of Transportation Problems (TP) 

Transportation problems (TP) represent a particular model of linear programming problems (LPP). 

Transportation problem is shipping different quantities of homogeneous goods than various sources 

(e.g. factories) to various destinations (e.g. warehouse) so that the total transportation cost (or time) is 

minimized. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: The graph structure of TP 

 

Table ①: Schedule of TP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supply  
Destinations (j) 

Sources (i) 

 

⋯   

 
 

 ⋯  
 

 
  

   

 
 

 ⋯  
 

 
  

   

⋮ ⋮  
 

⋮ ⋮ ⋮ 
 

 

 
 ⋯  

 
 

  
   

  ⋯   Demand  

Source Destination 

 

 

 

 

 

 

⋮ 

 

 

⋮ ⋮ ⋮ 
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2.3 Some Definitions 

① Feasible solution (F.S.) 

A feasible solution to transportation problem is a collection of non negative assigned quantities 

 that cater for restrictions (supply constraints and demand restrictions in transportation 

problem). 

② Basic Feasible Solution (B.F.S.) 

We say that a feasible solution of transportation problems is basic feasible solution (BFS) when it 

includes no most from (m+n-1) positive assigned quantities, such that m represent the numeral of 

rows while n represent the numeral of columns of TP. 

3. General Procedure to Solve a Transportation Problem 

Phase1: Mathematical formulation and table of TP. 

Phase2: Find an IBFS. 

Phase3: Modified the initial basic feasible solution (IBFS) obtained in Phase2 to find the optimal 

solution. 

4. Methods for Finding IBFS of TP 

The initial solve that we obtain from the traditional solution approaches or the new solution 

approaches should be distinguished by the following: 

1  ) The solve should be feasible. 

2) It must satisfy the non-passivity restriction. 

3) The solution should be basic. 

The classic method that used to find the initial solution of TP is: 

🅰 North-West Corner Method (NWCM). 

🅱 Minimum Cost Method (MCM). 

🅲 Vogel’s Approximation Method (VAM). 

5. The new Algorithm to find (IBFS): 

We can find the initial basic feasible solution (IBFS) to the transportation problem (TP), using the 

new suggestion method (Al-Saeedi's Method) according to the following solution steps: 

 

Step 1: Build the transportation tableau depending on the given TP. Checking whether the overall 

supply equivalent the overall request, if not, introduce an unreal row (or column) (dummy supplier or 

add dummy demander) and every transportation cost  of that row / column is equal to zero, i.e. 

balance the transportation problem. 

Step 2: For every row of the transportation table, we determine the two lowest costs available. We 

find the difference between these two (called penalty) and put it to the right of that row in a new 

column. For every column of the transportation table, we determine the two highest costs available. 

We find the difference between these two (called penalty) and put it below that column in a new row. 
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Step 3: Of all the difference values shown in the two penalties, in step 2, we choose the largest value 

(the biggest difference).  

Step 4: We assign the extreme possible quantities for the lower cost cell of the specified row (or 

column). In event of an equalize between the biggest differences, this row (or column), whose 

include the lowest cost, may be chosen. If there is an equalize at lowest cost also, a choice can be 

made from that row (or column) where maximum requirements are exhausted. when an equalize at 

allocating maximum requirements we take cell of row (or column) has maximum supply (or 

demand). The selected cell is assigned to that unit and the corresponding depleted row (or column) is 

removed from further study. 

Step 5: We exclude the row (or column) that satisfied supply or request. 

Step 6: Iterate steps 2 - 5 till every columns and rows are contented. 

Step 7: Compute the overall cost of the TP. The overall cost of the TP can be calculated by applying 

the following equation . 

6. Numerical Examples 

Ex①  

Depending to the data of the following table: 

Table ② 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The given transportation table is balanced since total supply = total demand = 90. 

According to the new Algorithm we get: 

Supply  
Destinations  

Sources 

 

   

30 
11 

 
9 

 
5 

 
7 

      

25 
6 

 
8 

 
3 

 
4 

      

20 
5 

 
10 

 
8 

 
3 

 
     

15 
3 

 
7 

 
6 

 
2 

      

90 10 20 30 30 Demand 
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Table ③ 

The total cost of transportation is  

 
 

Ex② 

For another example, depending to the data of the following table: 

 

Table ④ 

 

 

 

 

 

 

 

 

 

 

 

 

 

The given transportation table is balanced since total supply = total demand = 160. 

According to algorithm of H. Al-Saeedi's First Method we get: 

 

 

 

 

Penalty Supply 
Destinations 

Sources 

 

   

4 2 2 2 2 30 
11 

0 
9 

20 
5 

10 
7 

0  
    

5 1 1 1 1 25 
6 

0 
8 

0 
3 

20 
4 

5  
    

- - - 5 2 20 
5 

0 
10 

0 
8 

0 
3 

20 
 

    

- - 4 4 1 15 
3 

10 
7 

0 
6 

0 
2 

5  
    

 90 10 20 30 30 Demand 

 

5 1 2 3 

Penalty 

- 1 2 3 

- 1 1 3 

- 1 2 3 

- 1 2 - 

Supply  
Destinations 

Sources 

 

  

30 
2 

 
6 

 
3 

     

50 
10 

 
8 

 
7 

     

20 
4 

 
1 

 
12 

 
    

60 
9 

 
5 

 
2 

     

160 55 40 65 Demand 
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Table ⑤ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The total cost of transportation is  

 
7. Results Analysis 

Table ⑥ 

Name NWCM LCM VAM Al-Saeedi's Method 

Ex① 540 435 415 410 

Ex② 995 645 645 645 

 

It is clear from Table ⑥ that the new method (Al-Saeedi's Method) gives the best IBFS comparing 

with the classical three methods. 

 

8. Conclusion 

It is extremely important to have an initial basic feasible solution (IBFS) for a balanced transportation 

problem. It is known that the Vogel’s Approximation Method is the best. We have modified an 

efficient heuristic procedure over VAM for solving TP. The proposed algorithm gives comparatively 

a better initial basic feasible solution to the transportation problem compared to solutions obtained by 

classical algorithms that are either the optimal solve or almost the optimal solve. The method 

proposed in this paper can achieve a great deal of success in solving transport problems, and it is 

effective for both large and small sizes. This method is very profitable for decision makers whose 

deal with supply chain and logistics matters. The proposed method (Al-Saeedi's Method) is very easy 

to understand, involves simple calculation and thus saves time. Hence, this method may be preferred 

over the other existing methods. 

 

Penalty 
Suppl

y 

Destinations 
Sources 

 

  

- 1 1 30 
2 

30 
6 

0 
3 

0     

1 1 1 50 
10 

25 
8 

20 
7 

5     

3 3 3 20 
4 

0 
1 

20 
12 

0 
    

- - 3 60 
9 

0 
5 

0 
2 

60     

 

160 55 40 65 Demand 

 

1 2 5 

Penalty 6 2 5 

6 7 5 
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Employ the Principle Components in the Detection of Feedback 
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Abstract:In linear dynamic feedback models ,the relationship between two input series input and 

output shows that the approach is a propose to discover a feedback in linear dynamic system through 

examining  autocorrelation function and partial autocorrelation function for principle components by 

using few tests of time series identification and exact using   Ljung-Box test depending on Simulation 

approach to show the efficiency of the suggested approach and application on linear and nonlinear 

models within and without feedback, The obtained result is good and encourage.  

Keyword: principle Component, State Space, Feedback 

1.Introcuction 

      A model is defined as a hypothetical description, an easy representation, or a description designed 

for a particular process entity. Scientifically, the model is a mathematical or logical representation of 

a system of entities, phenomena, or processes. The system is influenced by external influences 

processed by the user and called inputs or triggers, including non-controlled signals known as 

disturbances or disturbances and the relationship between them is determined by the conversion 

function that reflects the change in the Acetate to turn into outputs (Khayat 2010). 

     The control system is described as open-loop. If the control work is independent of the output, 

otherwise it is closed-loop. In the case of closed-circuit control systems, the inputs to the system are 

based on a synchronous basis with output observations such as autopilot and aircraft control in the 

air. 

Modeling is the process of building models that summarize the conceptual or graphical phenomena 

of a particular entity or system. Useful, reliable and insightful and able to distinguish whether the 

model reflects the truth and deals with deviations between theory and data (Al-Khayat, 2011). 

Examining the data to ensure the presence of feedback between more than one time series, ie the 

input chain and the output chain, is necessary to know the appropriate kinetic model that should be 

used to obtain the best estimates of the parameters of the model. This measure is then used to identify 

the inputs that subsequently reduce the error and then improve the performance. Undoubtedly, 

feedback is a way of describing and understanding the indirect interference found in specific physical 

systems. The idea of reverse feeding can be illustrated in Figures (1) and (2) as follows: 

 

 

 

 

 

 

 

 

Figure (1): A feedback system in a motor system 
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In this research, the main components method and the partial and subjective self-correlation analysis 

were used for the output data series as well as the data of the first main component to detect the 

presence of the feedback or not by adopting the simulation method with linear and non-linear models. 

1.  AutoCorrelation Function(ACF)  

The self-correlation coefficient is the statistical key in the analysis of the time series because it 

represents a measure of the correlation strength between the observations of the same random 

variable at k time periods and is calculated as shown in equation (1) as follows:(Makridakis,et 

al.,1998): 
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2. Partial AutoCorrelation Function (PACF) 

     It is used to measure the correlation between Yt and Yt-k string values with the Yt value 

constant for the rest of the periods, ie to measure the degree of correlation between Yt and Yt-k 

by determining the effect of other values at other displacements and is calculated as given in 

equation (2) as follows:(Makridakis,et al.,1998) : 
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3  . Principal Components Analysis 

      The method of analyzing the main components is an exploratory method and is preferred to 

simplify the description of a group of related variables that are treated equally. Be the number of 

original variables So that each major component is a linear structure of the original variables, and 

these components are eligible to explain most of the total variance, so they are arranged in 

descending order according to their variability, that is, what the first major component explains more 

than the second main component and the information that the second main component explains is 

greater than the main component. Third and so on to the rest of the other major components.  (Afifi 

,1984),(Al-Rawi,1987) 

Figure (2): Lack of a feedback system in a motor system 
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Key Component Analysis is a tool for coordinate Axis Transformation and Dimensionality 

Reduction, in which a new set of coordinates is calculated by maximizing the contrast of the sample 

data points with those coordinates.(Nelles ,2001) 

In order to clarify and simplify the concept of the main components, two variables are taken and let 

X1 and X2 be present with N of observations, as the data of the two variables are converted to 

standard data by subtracting the sample mean from each view to convert to data with zero mean and 

variance respectively: - (Afifi, 1984) 
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The basic idea of creating the main components is to obtain two new variables, C1 and C2, and each 

of them are linear functions of the two variables respectively, that is:-  
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As: 

The coefficients for the main components, i.e. the eigenvalues, represent Egien Values, and the mean 

of the two main components C1 and C2 is: - 
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The main component parameters are chosen to fulfill three requirements: - 

1- Variation of the first component, C1, is as large as possible. 

2-  The values of observations in the major components C1 and C2 are not related. 

3- 12
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4. Methods of detection of feedback 

There are many methods for detecting feedback, including: 

1. Cross Correlation Function: The cross correlation function is an important analytical tool that 

shows the strength of the link between two observations, each of which belongs to a separate 

time series from the other, the first is called the input chain and the second is called the output 

chain, and the cross-link measures the relationship between the current values For the output 

chain and between the past and current values of the input chain, when modeling kinematic 

systems the input and output chains are refined and then the cross-link between the two 

purified series is observed and the values of the cross-link function are observed, so if the 

order function appears The cross-over between the two purified series is at least one 

significant value at a given displacement, indicating a reverse between the two series (Wei, 

1990). 

2.  ARMA Vector Operations 

       ARMA model vector operations are an extension of single variable ARIMA models because 

they contain feedback between two or more series. To illustrate these models, we assume we 

have two series and that each series is a linear equation for its previous values at displacement 

1 and previous values for another series at displacement 1 also as well as errors Randomness 

is written as shown in equation (8) as follows (Pankratz, 1991): 
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Since:    The coefficients of the current values of tY ,1 andof the two and with the previous values  
tY ,2
  

series ),( 1 ta and ),( 2 ta  are represented, and independent random errors with a mean of zero and the 

variance ( )t,1 -, respectively, and equation (8) represents the operations of the self ( )t,2   و  

regression vector (AR). Any multiple AR model is used to detect Feedback. 

5. Diagnostic tests 

      One of the most important diagnostic tests is the portmanteau test, where it is known that the test 

statistic is used to determine whether the residual series of the model is white noise (WN) or not, and 

is called the portmanteau statistic (portmanteau statistic) and it tests the following hypothesis: (Tsay, 

2002) 

 

)9...( 

 

 

In general, model adequacy tests based mainly on this statistic are called portmanteau tests (Davies & 

Davies, 1979). Initial tests of this nature, such as the B-P and the L-B, have been shown to be 

ineffective (Arranz, 2005). It was mentioned (Makridakis, et al., 1998) that these two tests sometimes 

fail to reject poorly-matched models of data, and care must be taken to accept a model based on 

portmanteau tests only. Because the portmanteau test statistic is affected by the number of self-

correlation coefficients (m) used in its calculation, an increase in the number of self-correlation 

coefficients can lead to the acceptance of the null hypothesis (Vandel, 1992) (Al-Hamoushi, 2011). 
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Ljung-Box Test (L-B) 

     In 1978, researchers Ljung & Box made a simple modification to the B-P test, based on what was 

observed by Box & Pierce that rk is distributed according to the normal distribution with a mean of 

zero and the variance of its amount ( ) ( ) 2+− nnkn , i.e .: (Ljung & Box, 1978). 
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By squaring equation (11), we get: 
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Taking the sum of m from the self-correlations after estimating the parameters q, p of the model, 

then: 
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This is known as the L-B or QL-B statistic: 
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Researchers Ljung & Box found that this modification of BP test gave them a statistic closer to the  2χ

 distribution of BP stats because their mean levels were close to theoretical values (Davies & 

Newbold, 1979), and it was observed to give better results at small sample sizes ( Yaffee & McGee, 

2000). Where the calculated values BLQ −  are compared with the values of the tabular   2χ with a 

degree of freedom (m-p-q) in the case of studying the rest of the model. If the calculated value is less 

than the tabular value, this leads to the conclusion that the remaining series are white noise, and vice 

versa. 

6. Simulation experiences 

      The simulation method has wide uses in all fields, and its importance has emerged after the rapid 

development in providing applications (ready software). Simulation can be defined as a process of 

simulating the actual reality of real models, whether this simulation was done manually or by 

computer and it is a mirror of some aspects of the real world and appears dependent on random 

processes (Stochastic) (Al-Khayat, 2011). 

In this research, simulation experiments were conducted on two models, one Linear and the other 

nonlinear, as observations were generated with four different volumes of observations for both 

models (n=50,100,250,50) view and the Ut model inputs were random signals generated from the 

standard random Gaussian signals distribution " rgs ". As for jamming, random signals were 
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generated that follow the normal distribution. The following linear model was used without back-up: 

- 

(15) ...                                                                     )()1(*7.0 tetu
t

y +−=
 

And the following linear model is feedback: 

 

(16) ...                                       )()1(*3.0)1(*7.0 tetytu
t

y +−+−= While using 

the non-linear model and without feedback as follows: - 

 

(17) ...                                  ))2)^2(*6.0exp(*5.01( tetuty +−−+=
 

The following non-linear model is feedback by: 

 

(18) ...                                  )1(*8.0*)2)^2(*6.0exp(*5.01( tetytuty +−−−+=     

  The experiment was repeated 1000 times and using the ready program MINITAB and using the 

macros (MACROS). The self-link and partial self-function of the original series of outputs were 

examined and then found the main components of the two series as well as examining the two 

functions above for the first main component using the LB test at a level of significance of 0.05 and 

the number of ACF and PACF equal For a quarter of the sample size and since it is expected that as 

long as the first major component explains most of the variance and reflects the strength of the link 

between the original variables, then in the case of a reverse feed between the original variables (the 

input and output chains), it is expected that the self-linkages and sequences S partial self In this case, 

whether for the output chain data or the first main component data, these associations are significant, 

leading to rejection 0H  in equation (9) and acceptance 1H  which reveals the existence of the 

feedback and in return is accepted 0H  in the absence of a feedback.  

7. Simulation results 

       Applied to the output chain of the linear model and with the presence of the feedback in the 

model and when (n = 50) it was found that the Ljung-Box test statistic revealed the significance of 

the self-correlations by 99.8%, i.e. rejecting the null hypothesis which states that the values of the 

self-correlations are not significant as well as revealed the LB statistic The significance of the self-

correlations of the first major component is 95%, which indicates that it is possible to detect the 

feedback of the original data series, which is better than it is when finding the main components of 

the data However, when the sample size increases, i.e. (n = 100,250,500 views), it turns out that the 

LB statistic revealed the significance of the self-correlations of the first component by 100%, while 

the ratio with the original output chain at the above sizes was (93.7%, 95%, 95). Respectively, these 

results provide a probability for the first major component when employed to detect the presence of 

feedback. This indicates that revealing the feedback using the first main component of the main 

components is better than the original data series. 
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Tables (1) and (2) show the percentages of the significance of the correlation functions of the linear 

model and the non-linear model and with the presence of the opposite or not as follows: 

Table (1): Self-correlation significance percentages * 

N=500 N=250 N=100 N=50 Sample Size 

The first 

major 

component 

Output 

series 

The first 

major 

component 

Output 

series 

The first 

major 

component 

Output 

series 

The first 

major 

component 

Output 

series 

The nature of 

data 

22.2% 23.0% 22.2% 22.9% 14.1% 13.9% 7.1% 6.9% 
Linear model 

without feedback 

100% 95.0% 100% 95.0% 100% 93.7% 95.0% 99.8% 
Linear model 

with feedback 

22.5% 22.0% 22.0% 22.5% 14.5% 15.1% 8.1% 7.6% 

Non-Linear 

model without 

feedback 

72.5 98.5% 72.5% 98.5% 97.7% 100% 72.0% 98.5% 

Non-Linear 

model with 

feedback 

By examining the results in table (1) above, it is clear that: 

1.  Relying on the L-B test in examining the significance of the self-correlation function, 

whether for the original output chain data or for the data of the first major component, gave 

very encouraging results in its ability to distinguish between the models used in terms of the 

presence of the feedback in its movement or not. 

2. On the other hand, it is also noted that there is a strong indication that the use of the first 

major component with the linear model in the presence of the feedback gave very strong 

results in the detection of the presence of the feedback as the size of the sample increased 

using the proposed method than with the non-linear model with the feedback. 

 

 

Table (2): The percentages of the significance of the partial self-correlation function 

 

From the results of the above table, it is noted: 

N=500 N=250 N=100 N=50 Sample size 

The first 

major 

componen

t 

Output 

series 

The first 

major 

component 

Output 

series 

The first 

major 

component 

Output 

series 

The first 

major 

componen

t 

Output 

series 
The nature of data 

24.2% 22.0% 22.7% 22.5% 13.2% 12.5% 9.2% 7.5% 
Linear model 

without feedback 

93% 92.0% 95% 93.0% 95% 89.7% 93.0% 95.8% 
Linear model with 

feedback 

27.5% 21.0% 28.0% 25.5% 18.5% 17.1% 10.1% 8.6% 
Non-Linear model 

without feedbac 

70.5 93.5% 75.5% 95.5% 97.7% 95% 70.0% 95.5% 
Non-Linear model 

with feedback 
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1.  The employment of the L-B test in examining the significance of the partial self-correlation 

function gave encouraging results in its ability to distinguish between the models used in 

terms of whether or not the feedback was in its movement and whether the application was 

with the data of the original output chain or the main component. 

2.  The proposed method gave very encouraging and close results despite the difference in the 

sample sizes in detecting the feedback in the linear model, whether by using it for the output 

chain data or data for the first major component. 

3.  Although the proposed method is presented for good results in revealing the feedback 

using the data of the first major component of the non-linear model of different sample sizes, 

the use of the output chain data for the non-linear model with the reverse feeding gave strong 

results in revealing the presence of the feedback. 

The behavior of the linear model and the non-linear model can be observed through the self-linking 

and partially self-correlating functions of one of the iterations through Figures (3) and (4) as follows: 
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Figure (3): Behavior of the partial and self-linking functions of the linear model of one  

of the occurrences of the presence of the feedback when the sample size is n = 50. 
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8. Conclusions 

The research reached some conclusions, including: 

1.  The proposed method based on the L-B test gave very encouraging results in distinguishing 

between the models used in terms of the presence of the feedback in its mobility or not, 

whether it was adopted in applying the proposed method to the self-correlation coefficients or 

partial self-correlation coefficients. 

2.  The process of applying the proposed method based on the self-correlation coefficients of the 

first major component led to very strong results, especially with the linear model with the 

opposite feedback in addition to obtaining encouraging results when using the non-linear 

model. 

3.  When applying the proposed method relying on the self-correlation coefficients for the first 

major component, the results were very encouraging and converging with those obtained 

when using the original output chain data for the linear model while the results obtained with 

the non-linear model were more robust with string data The original outputs with the main 

main component data. 

4.  The increase in the sample size in general played a positive role in raising the percentage of 

the ability to detect the presence of adverse reactions in the kinetic models used. 
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Self-correlation function for the non-linear model's 

 original output string data 
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Figure  (4): Behavior of the self and partial self-linking functions of one of the 

 iterations when there is no reverse feed when the sample size is n = 50. 
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استعمال التحليل التمييزي في تصنيف الاطفال حديثي الولادة الى طبيعيين وخدج ) دراسة 

 تطبيقية( 
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واسط                                          جامعة /                                                  

كلية الادارة والاقتصاد             /قسم الاحصاء     
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يعتبر أسلوب التحليل التمييزز ا احززد الاسززاليا الاحصززاتية فززل  اصزز يل البياعززاب الززل مغمواززاب  حسززا المت يززراب   المستخلص :

ير الاستغا ة ال وال ) او التص يفل( ,  ويشمل مرحلة التص يل و مرحلة التميي . وان الهدف الأساسززل المستقلة المؤثرة الل مت 

من أسلوب  التحليل التميي ا هو ايغاد دالة اعرف  الدالة التميي ية ) او التص يفية( , اذ يتم  موجبهززا اصزز يل المشززاهداب  حسززا 

ين أو أكثر  حيث عستطيع الحكم  استعمال هزز ا الدالززة الززل ااتديززة )او امييزز ( الصفاب التل احملها لكل مت ير مستقل الل مغموات

اية مشاهدة  جديدة الل احدى ه ا المغمواززاب . واوصززل البحززث الززل أن المت يززراب المسززتقلة كززومن الطفززل  ززالك م  ومززدة الحمززل 

عسبة كفاءة التص يل الصززحيل لفافززال الطبيعيززين  الاسبوع  ذاب اأثير مع وا .اما امر الام  الس ة فليس له اأثير مع وا, وكاعت 

مززن الحززالاب المغمعززة الأصززلية المصزز فة  %98.3, وان عسبة%  96.7% وعسبة كفاءة التص يل الصحيل لفافال الخدج   100

 وه ا ال سا ادام أسلوب التحليل التميي  فل الت بؤ. شكل صحيل  

 التميي ية الخطية , اختباراب مع وية الدالة التميي ية الخطية ,احتمال خطأ التص يلالكلماب المفتاحية: التحليل التميي ا , الدالة 

 

The use of discriminant analysis in classifying new borns into normal and 

preterm infants (applied study) 

Assist.Prof. Dr. Saad Sabir Mohameed 

University / Wasit 

Statistics Department / College of Administration and Economics 

Saadsabir455@Gmail.com 

 

Abstract: The discriminant analysis method is one of the statistical methods in classifying data into groups 

according to the independent variables affecting the specific response variable (or classification), and it 

includes the classification stage and the discrimination stage . The primary goal of the discriminant analysis 

method is to find a function known as the discriminant (or classification) function, whereby observations are 

classified according to the characteristics they carry for each independent variable into two or more groups so 

that we can judge using this function on the return of any new view to one These groups. The research found 

that the independent variables, such as the weight of a child in kg and the duration of pregnancy per week, had 

a significant effect. As for the mother’s age in the year, it had no significant effect. The correct classification 

efficiency ratio for normal children was 100%, and the correct classification efficiency ratio for premature 

infants was 96.7%, and 98.3% of the original grouped cases were correctly categorized, and these percentages 

support the differential analysis method in prediction.    
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                                                         Introductionالمقدمة1.1

من اساليب متعدد المتغيرات التي تهتم بفصل مجموعات مختلفةةة مةةن المفةةردات   Discriminant Analysisيعتبر التحليل التمييزي

سةةتخداا الدالةةة التمييزيةةة  , والتةةي  ةةي عبةةارة عةةن والتي تكون متشابهة في كثير من الصفات على أساس عةةدة متغيةةرات مةةن  ةة   ا

عنةةدما  1921عةةاا   Karl Pearsonتركيب  طي للمتغيرات المستقلة . وان او  من استعمل التحليل التمييةةزي  ةةو كةةار  بيرسةةون 

ة  طيةةة لتصةةني  دالةة  Fisherأوجد فيشةةر   1931اقترح اسلوب احصائي أطلق  علية معام ت التشابه للأشياء المتماثلة . وفي عاا  

 Linear Discriminant Function  . المفردة الى احدى المجموعتين مع تساوي التباينات واطلق عليها اسم الدالة المميزة الخطية

ومن  نا جاءت فكرة استخداا الدالة المميزة الخطية للمجتمعات متعددة المتغيرات ، فةةالفكرة ااساسةةية مةةن التمييةةز  ةةي التفرقةةة بةةين  

عات  متدا لة أو متشابكة لها نفس الخصائص أو الصفات ، حيث أن وظيفة التحليل التمييزي  ةةو  ايجةةاد دالةةة يمكةةن  بواسةةطتها مجتم

ا تصني  أو تمييز المشا دات الجديدة  الى مجتمعاتها ااصلية . وتعد الدالة التمييزية والتي تسمى بدالة فيشر طريقة فعالة ومناسبة فيم

لخاصة و ي التوزيع الطبيعي للمتغيرات التوضيحية وتساوي مصةةفوفات التبةةاين والتبةةاين المشةةترخ ، ويسةةتخدا لو تحققت شروطها ا

التحليل التمييزي في عملية التوقع  , إذ يأتي الباحث بعدة متغيرات توضيحية مؤثرة في المتغير النوعي ( او الوصفي) التةةابع   بحيةةث 

المستقبل ، ولكي نحصل على دالة تمييزية تستخدا في تصني  المشا دات بةةين مجتمعةةين   يتوقع أن  يميز ( يصن ) بين مجتمعين في

في المستقبل، وأيضا للحصو  على أعلى تمييز بين المجموعات على أن تكون نسةةبة التبةةاين بالنسةةبة إلةةى التبةةاين دا ةةل المجموعةةات 

 كبيرا.

يجاد  مجموعةةة مةةن المعةةادلات المتوقعةةة المبنيةةة علةةى متغيةةرات لا Discriminant Analysis )عليه يستعمل التحليل التمييزي ( 

مستقلة تستخدا لتصني  اافراد إلى مجموعات. ففي مجالات كثيرة ، يتشابه التحليل التمييزي بتحليل الانحدار المتعدد ,  الا ان الفرق 

ب فهو يساعد على  تخمين الحالة الحرجةةة للمةةري   و ان المتغير التابع  منفصل .  ويأتي التطبيق الرئيسي للتحليل التمييزي في الط

والإنذار بنتيجة المرض. فعلى سبيل المثا  ، دراسة نتائج التحاليل المعملية والسريرية لغرض اكتشاف المتغيرات المختلفةةة إحصةةائيا 

اامراض بشكل فعةةا  للمرضةةى  في المجموعات قيد الدراسة. وباستخداا تلك المتغيرات يتم بناء دوا  التمييز التي تساعد في تصني 

 المستقبليين إلى بسيط ومتوسط و طير .

 The Aim of Researchالهدف من البحث           2.1

يهدف البحث الى ايجاد معادلة تنبؤية لتصني  الاطفا  الجدد  حديثي الولادة من الاطفةةا  الخةةدلا والاطفةةا  الطبيعيةةين وكةةذلك تفسةةير 

 قات التي قد توجد بين المتغيرات كوزن الطفل ومدة الحمل وعمر الاا...الخ بشكل أفضل .المعادلة التنبؤية لفهم الع 

  of Research The Problemمشكلة البحث               3.1

يواجه احيانا في المستشفيات والرد ات الطبية صعوبة التمييز بين الاطفا  الخدلا والاطفا  الطبيعيين مما قد يؤدي سةةوء العةةز  الةةى 

مشاكل  بسبب الخطأ في التصني  قد تؤدي  احيانا الى حرمان الطفل من الرعاية التي يكون  الطفل بحاجةةة ماسةةة اليهةةا ,  لةةذلك فةةان 

الاساليب الاحصائية باستعما  الدالة التمييزية في تصني  الاطفا  قد تسا م بشكل كبير في تصني  المواليةةد وتةةوفير الرعايةةة الطبيةةة 

 لهم .

  Assumptions of Researchالبحث                 فرضياب  4.1

 يعتمد البحث على الفرضيات الاتية :

 من أجل القياا بالتحليل التمييزي يجب توافر  الفروض الاتية :

وقابلةةة للتحديةةد  وان   كانةةت  ةةذع المجتمعةةات تتةةدا ل فيمةةا بينهةةا بةةدرجات   Discrete. أن المجتمعات موضوع الدراسة منفصةةلة   1

 ا لة معينة.متد

. أن كل مفردة في كل مجتمع يمكن وصفها وتحديد ا بمجموعة  من المقةةاييس أو المتغيةةرات المسةةتقلة، وأن تكةةون جميةةع متغيةةرات 2

 دالة التمييز مقاسة بقيم محددة.

عةةات تكةةون  يةةر . أن المجتمعات موضوع البحث او الدراسة تختل  بالنظر إلى أوساطها، أي أن متجهات أوساط المتغيرات للمجتم3

 متساوية.

. أن البيانات المستخدمة في التحليل التمييزي تحتوي على عينة عشوائية مةةن أعضةةاء كةةل مجتمةةع  مةةن المجتمعةةات  قيةةد البحةةث او 4

 الدراسة، بحيث تعد  ذع العينات ممثلة للمجتمعات موضوع البحث او الدراسة.
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في تكوين دالة التمييز حتى تفسير النتائج ، وتحديد المسا مة النسبية لكل متغيةةر . عدا وجود ارتباط بين المتغيرات المستقلة الدا لة  5

 في القوة التمييزية الكلية .

 of  Research  A sampleاي ة البحث               5.1

ت بخصةةو  لقد تم جمع البيانات الخاصة بالبحث من  ةة   الزيةةارات الميدانيةةة لمستشةةفى الصةةويرة العةةاا والاطةة ع علةةى السةةج 

طفل حةةديثي الةةولادة ضةةمن الاطفةةا  الطبيعيةةين وجمعةةت البيانةةات عةةن وزن   30الاطفا  حديثي الولادة  , فقد تم جمع البيانات بواقع  

الطفل ومدة الحمل فيه بااسبوع وعمر الاا  بالسنة فكانت تلك المجموعة الاولى . ثم تم ا تيار عينة من الاطفا  حديثي الولادة ضمن 

)طفل ايضا وكانت المجموعة الثانية , وتم جمع البيانات لنفس المتغيرات اع ع  , وقد تم العمل  اجةةل ذلةةك 30الخدلا بواقع (الاطفا   

 . 1/7/2019ولغاية 1/6/2019للفترة من 

 

 الفصل الثاعل

 Discriminant Analysisالتحليل التميي ا 

                                     Introductionالمقدمة  1.2

يعد التحليل التمييزي أسلوب إحصائي لتحليل البيانات متعددة المتغيرات ، حيث يهتم بمسألة التمييةةز بةةين مجمةةوعتين أو اكثةةر والتةةي  

تكون متشابهة في كثير من الصفات على أساس عدة متغيرات من     استخداا الدالة المميزة والتي  ةةي عبةةارة عةةن تركيةةب  طةةي 

لة ، ويختل  التحليل التمييزي عن التحليل العنقودي في أن فكرة التحليل العنقودي تبدأ دون توافر معرفة مسبقة بعدد للمتغيرات المستق

المجاميع أو أي من المفردات  التي تنتمي لهذع المجموعة أو تلك ، كما ان التحليل التمييزي يختل  عن تحليل الانحدار في أن المتغير 

يزي  و متغير إسمي و و من المتغيرات النوعية  بينما المتغير التابع في تحليل الانحدار  و فةةي الغالةةب متغيةةر التابع في التحليل التمي

) فهي العملية ال حقة بعد تكةةوين الدالةةة المميةةزة حيةةث   Classificationمستمر و و من المتغيرات  الكمية  , أما عملية التصني   (

ؤ وتصني  المفردة الجديدة لإحدى المجموعات قيةةد الدراسةةة بأقةةل  طةةأ تصةةني  ممكةةن ، ويشةةترط يتم الاعتماد على  ذع الدالة بالتنب

تساوي التباينات للمجموعات قيد البحث او الدراسة ,  و ناخ تمييز  طي فةةي حالةةة مجمةةوعتين ، وتمييةةز  طةةي فةةي حالةةة أكثةةر مةةن 

  )(10,9,8,7,6,5تباينات.مجموعتين ، أما التمييز  ير الخطي فيستخدا في حالة عدا تساوي  ال

 ((4,3,2,1الدالة الممي ة الخطية فل حالة مغمواتين 2. 2

        Function Two Groups–Linear Discriminant 

إن دالة التمييز  ي انموذلا يمكن صيا ته اعتمادا على مؤشرات العينة التي تم ا تيار مفرداتها ووضعت فةةي مجمةةوعتين مختلفتةةين ، 

سوف يقسةةم إلةةى  Wدالة نستطيع أن نختبر المفردة ونحدد عائديتها إلى أي مجموعة .  فلو فرضنا أن مجا  العينة  و وبواسطة  ذع ال

) يعود إلى المجموعة  الثانية  , أما الحد الفاصل بةةين المجمةةوعتين فةةيمكن أن يعةةود W-R) يعود إلى المجموعة ااولى و (Rقسمين (

 .إلى أية مجموعة من  اتين المجموعتين

. فعنةةد ا ةةذ 2Uو  1Uولكن بمتوسطي المتجهين التمييةةزين   وبافتراض أن المجتمعين المراد مقارنتهما لهما نفس مصفوفة التغاير  

  pالقياسةةات   من  ijX ) من المجتمعين. كالعادة  كل متجه  يتكون من 21x  ,22x  ، . . .,2n2x) و (  11x  ,12x  , . . .,1n1xالعينات( 

التي تعظم المسافة بةةين متوسةةطي متجهةةي المجمةةوعتين.  pمن المتغيرات. عليه  فان الدالة التمييزية  ي توفيق  طي لهذع المتغيرات  

Yوالتوفيق الخطي يساوي B X=   : ويكتب بالصيغة الاتية , 

1, i = 1, 2, . . . , n1 1 1 2 1 2 1....i i i p ipY B X B x B X= + + +=  
1iB x=  1iY 

2,       i = 1, 2, . . . , n1 2 1 2 2 2 2....i i p iPB X B x B X+ + +=  
2iB x=  2iY. 

اذ ان                                  
1

1

1

iy
Y

n
=


و      
2

2

2

iy
Y

n
=


 

 وحيث  ان:

P لة في الدالة .: عدد المتغيرات الدا  
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β .معام ت الدالة المميزة المعيارية : 

r=2  .عدد الدوا  المميزة : 

ولتحديد الا ت فات بين المجموعتين فإنه من المناسب استخرالا ااوساط الحسابية لهاتين المجموعتين .  إن عمليةةة التقةةدير للمعلمةةات 

)β,Sلابد أن يتم من     جعل مربع الفرق بين متوسطي المجمةةوعتين إلةةى  ) والتي تجعل الدالة تعطي أفضل تمييز بين المجموعتين

 التباين المشترخ للمجموعتين أكبر ما يمكن , أي ان:

( )

( )

( )
22

1 21 2

2
2

1 1

ni

i j ij i

B X XY Y
Q

B SBY Y= =

  −−  
= =

  −
 

                        2.2                               ...
( )( )1 2 1 2B X X X X B

B SB

 − −
=


     

 

 

 :)(15,14,13,12,11باشتقاقها جزئيا ومساواتها بالصفر وكما يلي  Qلمميزة من     تعظيم النسبة حيث نقدر معلمات الدالة ا

( ) ( )
( )

0
ˆˆ

ˆ2
ˆ

2

1

ˆˆ
2/321

21 =−−
−

=




BSB

BS
XXB

BSB

XX

B

Q

pooled

pooled

pooled

t

t

t  

ومزيدا من التبسيط يعطي : 

 ( )
BS

BSB

XXB
XX pooled

pooled

t

t

ˆ
ˆˆ

ˆ
21

21













 −
=−

 

 

pooledS              وبالضرب بمعكوس المصفوفة      لطرفي المعادلة نحصل : 

 

( ) ( )
B

BSB

XXB
XXS

pooled

pooled t

t

ˆ
ˆˆ

ˆ
21

21

1













 −
=−−

,  

 

اي :     C  وبما ان المقدار ادناع عدد حقيقي ثابت وليكن  

BSB

XXB

pooled

t

t

ˆˆ

)(ˆ
21 −

 =C  

  3.2                                               ...( )1

1 2B CS X X− = − 

 حيث ان
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 وكذلك فان
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 علية فان 
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وفي حالة وجود مجموعتين يكون لدينا دالة تمييز واحدة فقط ، وفي حالة وجةةود ثةة ا مجةةاميع يكةةون لةةدينا دالتةةين تمييةةزيتين . وبعةةد 

) التةةي تجعةةل احتمةةا    (L  المفردة إلى إحدى المجموعتين بالاعتماد على نقطة متوسةةط المجمةةوعتين  تصن  βاستخرالا المعام ت ^

 التصني  الخاطئ أقل ما يمكن  :

4.2                         ......
1 2

2

Y Y
L

+
=                 

 موعة ااولى تصن  المشا دة إلى المج              Ŷ˃Lفإذا كانت              

 تصن  المشا دة إلى المجموعة الثانية              Ŷ<Lفإذا كانت             

 تصن  المشا دة عشوائي إلى المجموعة ااولى أو الثانية             L =Ŷوإذا كانت            

 حيث  ان : 

   5.2  ....                                 ( ) 1

1 2Y X X S X−= − 

  TESTS OF SIGNIFICANCEاختباراب مع وية الدالة التميي ية الخطية 3.2

    :)(18,17,16,15عندما يراد التمييز بين مجموعتين ، فإنه يمكننا أن نختبر الفرضية التي تنص على تساوي متوسطات المجموعتين 

0 1 2

1 1 2

:

:

H u u

H u u

=


 

 (  2T -Hotellingاولا: مقياس  )

 ) وصيغته كما يلي:  2T -Hotelling تبار المستخدمة في حالة التمييز بين مجموعتين  ي (إحصاءة الا
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              …6.3                                          
2 21 2

1 2

n n
T D

n n
=

+
 

 وصيغتها كما يلي: ) Distance)  Mahalanobisتمثل  مسافة مهالنوبيس   2Dحيث : 

7.2       ...      ( ) ( )2 1

1 2 1 2D X X S X X−= − − 

 ) وصيغته كما يلي :Fويستخدا ا تبار (

                8.2                              ...
21 2

1 2

1

( 2)

n n p
F T

n n p

+ − −
=

+ −
 

اذا  α بمسةةتوى معنويةةة 0H،  فاننا نةةرف  αومستوى المعنوية   P,n1+n2-p) -1الجدولية بدرجة حرية (  Fوبمقارنتها مع  قيمة   

 كانت:

1)-p-α,(P,n1+n2˃F calF 

, و ذا يد  على أن متوسطات المجموعات  ير متساوية وأنه توجد فروق معنوية بين المجموعتين و ةةذا معنةةاع أن الدالةةة    1Hونقبل  

 المميزة الخطية قابلة للتمييز بدرجة عالية ، ايضا يمكن 

 (  Wilks-Criteriaثاعيا : مقياس ولكس ) 

 :)(13,12,11,10ق الصيغة الاتية ويكون على وف

                    9.2                                                       .....
W

T
 =  

    : مصفوفة التباين والتغاير الكلي للمجموعات. T حيث  ان :

W           .مصفوفة التباين والتغاير دا ل المجموعات : 

بين الصفر والواحد ، فإذا كانت قريبة أو مساوية للواحد فان ذلك يشير إلى أن متوسطات المجموعةةات متسةةاوية     تراوح  قيمة   وت

 وبذلك لا يوجد تمييز بين المجموعات ، اما اذا كانت قيمتها قريبة من الصفر فان ذلك يد  على قوة التمييز.

 

   2Xر ع كااثالثا: مقياس م

 وصيغته كما يلي : Ʌ, ويعد  ذا المقياس أكثر دقة من مقياس   2Xو يمكن ايضا استخداا مقياس  ا ر الا و و مقياس مربع كاي

                 10.2....                                  
2 ( )X Log= −  

عدد المجموعات. وعنةةد   Kعدد المتغيرات ،    P،حيث    P(K-1)حرية بدرجة حرية    وبمقارنتها مع القيمة الجدولية لمربع كاي بدرجة

 . 0Hاذا كانت القيمة المحسوبة اكبر من القيمة الجدولية وبخ فة نقبل    αبمستوى معنوية   0H،  فاننا نرف  αمستوى المعنوية  

  Probability of Misclassification(16,15,14) احتمال خطأ التص يل 3.2

 ناخ نوعان من احتما   طأ التصني   ما : 

 و و احتما  تصني  المفردة إلى المجموعة الثانية و ي أص  تعود إلى المجموعة ااولى. 12Pاحتما   طأ التصني   -1

 و و احتما  تصني  المفردة الى المجموعة ااولى و ي أص  تعود إلى المجموعة الثانية. 21Pاحتما    طأ التصني   2

 ك سوف يكون تقدير احتما  التصني  كما يلي: وبذل
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1.21.                                          ...
12 21 ( )

2

D
P P = = − 

 : دالة التوزيع الطبيعي القياسي.ɸتمثل 

D  مهالنوبيس مقياس جذر :  و  ( Mahalanobis Distance)                           :وتساوي 

( ) ( )2 1

1 2 1 2D X X S X X−= − − 

وان  
12 21,P P  المعياري .  الطبيعي التوزيع جداو  من ايجاد ا يتم 

 التي المميزة الدالة أن حيث ,المميزة الدالة كفاءة لإثبات مهم عامل بانه التصني   طأ ويعد

 .التمييز دوا  بين من اافضل وتكون كفاءة ااكثر الدالة  ي تصني   طأ أقل تعطي

 

 الفصل الثالث 

 الغاعا التطبيقل 

 المقدمة  1.3

لقد تم جمع البيانات الاحصائية عن حالات الاطفا  حديثي الولادة بنوعيه الطبيعيين والخدلا من     مراجعة مستشفى الصويرة 

طفل طبيعي   30عن وبالاستعانة بالسج ت الخاصة بالمستشفى تم جمع البيانات  2019/ 1/7ولغاية  2019//1/6العاا للفترة من 

, تم  SPSS V(19)طف   . وباستعما  الحزمة الاحصائية  60طفل من الخدلا , فكان حجم العينة من المجموعتين   30بالولادة  و

 .  تحليل واستخرالا النتائج

 وصل البياعاب  2.3

 : لقد تم تسجيل البيانات عن المتغيرات لكل حالة و ي بحسب الجدو  الاتي

 ت يراب ( وصل الم1جدول ) 

 وصل المت ير رم  المت ير

Y  )1) او  دلا (0حالة الطفل اما طبيعي ويرمز له( 

X1 وزن الطفل بالكغم 

X2  مدة الحمل بااسبوع 

X3 عمر الاا بالسنة 

 

 

)حجم العينة والقيم المفقودة 2جدو  رقم (  

 

)حجم العينة2جدو  رقم (  

 
 حالة الطفل 

وزن الطفل  

 بالكغم 

مدة الحمل 

ع بالاسبو   

عمر الاا 

 بالسنة

N Valid 60 60 60 60 

Missing 0 0 0 0 

 

) حالة الطفلفيما اذا كان طبيعي او  دلا 4جدو  رقم(  
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)4جدو  رقم ( حالة الطفل  

 
Frequenc

y Percent 

Valid 

Percent 

Cumulative 

Percent 

Valid  50.0 50.0 50.0 30 طبيعي 

 100.0 50.0 50.0 30  دلا

Total 60 100.0 100.0  

 

)الاحصاءات الوصفية عن متغيرات الوزن والعمر ومدة الحمل لكل  طفل5جدو  رقم (  

 

( الاحصاءاب الوصفية للومن والعمر ومدة الحمل لكل افل 5جدول رقم )  

 
N 

Minimu

m 

Maximu

m Mean 

Std. 

Deviation 

Statisti

c Statistic Statistic Statistic 

Std. 

Error Statistic 

ن الطفل بالكغموز  60 1.20 4.50 2.7762 .13672 1.05899 

مدة الحمل 

 بالاسبوع 

60 31.00 40.00 36.2000 .30606 2.37073 

 3.78534 48869. 26.1000 39.00 19.00 60 عمر الاا بالسنة

Valid N 

(listwise) 

60 
     

 

 التحليل الاحصاتل للبياعاب  3.3

 حصائي ) ملخص حالة التحليل الا6جدو  رقم (

 

( ملخص حالة التحليل الاحصاتل 6جدول رقم )  

Unweighted Cases N Percent 

Valid 60 100.0 

Exclude

d 

Missing or out-of-

range group codes 

0 .0 

At least one missing 

discriminating variable 

0 .0 

Both missing or out-of-

range group codes and 

at least one missing 

discriminating variable 

0 .0 

Total 0 .0 

Total 60 100.0 

 

 ) احصاءات كل مجموعة7جدو  رقم ( 

 

 ) احصاءات كل مجموعة7جدو  رقم ( 

 Mean حالة الطفل 

Std. 

Deviation 

Valid N (listwise) 

Unweighte

d 

Weighte

d 
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وزن الطفل   طبيعي 

 بالكغم 

3.7500 .40210 30 30.000 

مدة الحمل 

 بالاسبوع 

38.1000 1.24152 30 30.000 

 30.000 30 4.17505 26.5000 عمر الاا بالسنة

وزن الطفل    دلا

 بالكغم 

1.8023 .39725 30 30.000 

مدة الحمل 

 بالاسبوع 

34.3000 1.55696 30 30.000 

 30.000 30 3.37486 25.7000 عمر الاا بالسنة

Total   وزن الطفل

 بالكغم 

2.7762 1.05899 60 60.000 

مدة الحمل 

 بالاسبوع 

36.2000 2.37073 60 60.000 

 60.000 60 3.78534 26.1000 عمر الاا بالسنة

 ) ا تبارات تساوي متوسطات المجموعة8جدو  رقم (

 ( اختباراب اساوا متوسطاب المغمواة8جدول رقم )

 
Wilks' 

Lambda F df1 df2 Sig. 

وزن الطفل  

 بالكغم 

.140 356.202 1 58 .000 

مدة الحمل 

 بالاسبوع 

.347 109.242 1 58 .000 

 418. 58 1 666. 989. عمر الاا بالسنة

ويتبين من الجدو  وجود فروق معنوية في وزن الطفل ومدة الحمل ( أي عدا تساوي متوسطات المجموعات) بمعنى رفةة  فرضةةية 

وي متوسطات المجموعةةات) بمعنةةى قبةةو  فرضةةية العةةدا . فكلمةةا كانةةت قيمةةة العدا وعدا وجود فروق معنوية في عمر الاا ( أي تسا

 المقياس صغيرة جدا د  على ا مية المتغير المستقل في الدالة التمييزية .

 ) Pooled Within-Groups Matrices )مصفوفات التغاير والارتباط دا ل المجموعات(9جدو  رقم (

 ا ل المجموعات)مصفوفات التغاير والارتباط د9جدو  رقم (

مدة الحمل  وزن الطفل بالكغم

 بالاسبوع 

  عمر الاا بالسنة

.031 

.538 

14.410 

.230 

1.983 

.538 

.160 

.230 

.031 

 Covarianceوزن الطفل بالكغم   

 مدة الحمل بالاسبوع 

 عمر الاا بالسنة

.020 

.101 

1.000 

.409 

1.000 

.101 

1.000 

.409 

.020 

 Correlationوزن الطفل بالكغم 

 مدة الحمل بالاسبوع 

 عمر الاا بالسنة

. a. The covariance matrix has 58 degrees of freed 

 )مصفوفات التغاير للأطفا  الطبيعيين والخدلا 10جدو  رقم (

(مصفوفاب الت اير لفافال الطبيعيين والخدج 10جدول رقم )  

 حالة الطفل 

  وزن الطفل

 بالكغم 

مدة الحمل 

 بالاسبوع 

عمر الاا 

 بالسنة

وزن الطفل   طبيعي 

 بالكغم 

.162 .093 .057 
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مدة الحمل 

 بالاسبوع 

.093 1.541 .776 

 17.431 776. 057. عمر الاا بالسنة

وزن الطفل    دلا

 بالكغم 

.158 .367 .004 

مدة الحمل 

 بالاسبوع 

.367 2.424 .300 

 11.390 300. 004. عمر الاا بالسنة

Total   وزن الطفل

 بالكغم 

1.121 2.108 .426 

مدة الحمل 

 بالاسبوع 

2.108 5.620 1.302 

 14.329 1.302 426. عمر الاا بالسنة

a. The total covariance matrix has 59 degrees of freedom. 

 

  للتساوي لمصفوفات التغاير  Box's) ا تبار بوكس   11جدو  رقم (

Log Determinants ) ا تبار بوكس  11جدو  رقم (  Box's للتساوي   

  لمصفوفات التغاير

 Rank Log Determinant حالة الطفل 

 1.411 3 طبيعي 

 1.032 3  دلا

Pooled within-groups 3 1.325 

الرتب واللو اريتمات الطبيعية للمحددات المطبوعة  ي تلك الخاصة  

 بمصفوفات مجموعة التباين المشترخ

. 

نسبة لجدو  قيم لو اريتم المحددات لمستويات المتغير المعتمد حيث كلما كانت قيمته كبيرع  د  ذلك على ان مصفوفة التباين بال

 والتباين المشترخ لتلك المجموعة تختل  عن الباقي. وبما ان  لو اريتم المحددات صغيرة  ومتساوية نسبيا فأنها تد  على التجانس .

 النتائج ) ا تبار 12جدو  رقم (

( اختبار ال تاتج12جدول رقم )  

Box's M 5.972 

F Approx

. 

.939 

df1 6 

df2 24373.132 

Sig. .465 

. 

 ويشير الجدو  الى عدا معنوية الا تبار وقبو  فرضية العدا بمعنى ان مصفوفة التباين والتباين المشتركة متجانسة .

 الت اير لتساوا المغتمع.اختباراب فرضية العدم لمصفوفاب التباين و •

 ) القيم الخاصة لدالة التمييز . 13جدو  رقم (

( القيم الخاصة 13جدول رقم )  

Functio

n 

Eigen 

value 

% of 

Variance 

Cumulative 

% 

Canonical 

Correlation 

1 6.296a 100.0 100.0 .929 
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 للدالة التمييزيةWilks' Lambda بار لمدا ووخ)ا ت14جدو  رقم (

Wilks' Lambda (اختبار لمدا ووك14جدول رقم )    

Test of 

Function(s) 

Wilks' 

Lambda Chi-square df Sig. 

1 .137 112.287 3 .000 

 

) بان الدالة 14) و(13حظ من الجدولين () معنوية الا تبار وا مية المتغيرات المستقلة في الدالة التمييزية , اذ ي 14ويؤكد الجدو  (

) لكل المتغيرات التمييزية , وقد فسرت الدالة التمييزية   0.929) بنسبة ارتباط قانوني (    6.296التمييزية التي تقابلها القيمة الذاتية (  

في التحليةةل , قة بين المتغيرات الدا لة ) العالية جدا تعكس قوة الع 0.929قيمة الارتباط القانوني وتساوي (من التباين , وان    100%

)  و ي قريبةةة مةةن الصةةفر   0.137وتساوي (  Wilks Lambdaولغرض معرفة جودة التمييز للدالة ن حظ نتائج كل من احصاءة 

التمييةةز ى جودة ) , و ذا يشير الsig=0.00, ومعنوية الا تبار(    0.05) وبمستوى دلالة    Chi-square     )112.287وا تبار كاي  

) معةةام ت دالةةة 15بين المجموعتين , وبذلك فان الا ت ف بين المجموعتين جو ري لا يعود الى الصدفة . وفي ادناع  جدو  رقةةم ( 

 التمييز المعيارية

 ( معاملاب دالة التميي  المعيارية 15جدول رقم ) 

 
Function 

1 

 918. وزن الطفل بالكغم

 171. مدة الحمل بالاسبوع 

 007. عمر الاا بالسنة

 

) المصفوفة الهيكلية للدالة التمييزية 17والجدو  رقم (  

 

) المصفوفة الهيكلية17جدو  رقم (  

 
Function 

1 

 988. وزن الطفل بالكغم

 547. مدة الحمل بالاسبوع 

 043. عمر الاا بالسنة

 

تمييزية والدوا  التمييزية المعياريةةة متغيةةرات مرتبةةة تنازليةةا بحسةةب بحسب الارتباطات المجمعة دا ل المجموعات بين المتغيرات ال

) بالدالةةة التمييزيةةة ثةةم بعةةد ا 0.988الحجم المطلق ل رتباط دا ل الدالة . اذ يأتي وزن الطفل بالدرجة الاولى من حيث قوة الع قةةة (

 .  ) 0.043) وا ير واقل ارتباط عمر الاا السنه (0.547مدة الحمل بااسبوع  ( 

) يبين معام ت الدالة التمييزية القانونية 18والجدو  رقم (  

 

) معام ت  الدالة التمييزية القانونية18جدو  رقم (  

 
Function 

1 

 2.296 وزن الطفل بالكغم

 121. مدة الحمل بالاسبوع 

 002. عمر الاا بالسنة

(Constant) -10.818- 

 

 و ي معام ت  ير معيارية  . 

 استعملت الدوال التميي ية الاولل فل التحليل 
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 )  يبين دوا  في النقاط الوسطى للمجموعة 19رقم ( والجدو 

( دوال  فل ال قاا الوسطل للمغمواة19جدول رقم )  

 حالة الطفل 

Function 

1 

 2.467 طبيعي 

 -2.467-  دلا

 

 اذ يتم تقييم الدوا  التمييزية القانونية  ير القياسية في اوساط  المجموعة 

 احصاءاب التص يل وكالاال :     •

 )  يبين الاحتمالات المسبقة للمجاميع 20رقم (الجدو  

 

( الاحتمالاب المسبقة للمغاميع20جدول رقم )  

حالة  

 Prior الطفل 

Cases Used in Analysis 

Unweighte

d Weighted 

 30.000 30 500. طبيعي 

 30.000 30 500.  دلا

Total 1.000 60 60.000 

 

 صني ) يبين معام ت دالة الت21والجدو  رقم (

(معاملاب دالة التص يل21جدول رقم )   

 
 حالة الطفل 

  دلا طبيعي 

وزن الطفل  

 بالكغم 

-4.787- -16.114- 

مدة الحمل 

 بالاسبوع 

19.467 18.868 

 1.113 1.122 عمر الاا بالسنة

(Constant) -377.432- -324.056- 

 دوا    فيشر الخطية التمييزية

Y1=-4.787X1+19.467X2+1.122X3-377.432       دالة التص يل للمولود الطبيعل 

Y2=-16.114X1+18.868X2+1.113X3-324.056         دالة التص يل للمولود الخدج  

) يبين نتائج التصني 22والجدو  رقم (  

 

(عتاتج التص يل22جدول رقم )  

  

حالة  

 الطفل 

Predicted Group 

Membership 

Total    دلا طبيعي  

Origina

l 

Count  30 0 30 طبيعي 

 30 29 1  دلا

 100.0 0. 100.0 طبيعي  %

 100.0 96.7 3.3  دلا

 98.3.% من الحالات المجمعة ااصلية المصنفة بشكل صحيح
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 الفصل الرا ع 

 الاست تاجاب والتوصياب 

 اولا : الاست تاجاب 

 ل بالاسبوع في المعادلة التمييزية .مدة الحم X2وزن الطفل بالكغم و X1اظهرت نتائج البحث معنوية المتغيرات .1

, وان %  96.7% ونسبة كفاءة التصني  الصحيح للأطفا  الخدلا    100. كانت نسبة كفاءة التصني  الصحيح للأطفا  الطبيعيين 2

 و ذع النسب تدعم أسلوب التحليل التمييز في التنبؤ. من الحالات المجمعة ااصلية المصنفة بشكل صحيح  %98.3نسبة

 تبين من     التطبيق ان  ناخ امكانية في تطبيق اسلوب التحليل التمييزي على حالات  .3

 ومجاميع مشابهة والتي لها كفاءة عالية في التنبوء. 

 ثاعيا: التوصياب 

بيعيين واطفا  . باستعما  الدالة  التمييزية ( او التصنيفية) وتطبيقها في المستشفيات في تصني  الاطفا  حديثي الولادة الى اطفا  ط1

  دلا لغرض تقديم الرعاية والاسعاف لهم.

 . استعما   ذا ااسلوب في الدراسات الا رى للتنبؤ بانماذلا تساعد في تصني  المشا دات الى مجاميعها.  2

 .استعما  اساليب ا رى في التصني  ومقارنتها بالدالة التمييزية وتحديد كفاءتها. 3
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Abstract: Due to the importance of exponential distribution, especially in the modeling and analysis 

of various data in several fields in mathematics and statistics, including the applied field 

(experiments) and the pure field (theories). Some tests do not provide sufficient information on the 

trial data, so they are called “censored data”. The aim of this paper is to compare some Bayesian 

estimation methods for the exponential distribution of parameters using data type II censoring. We 

provided an estimate of the scale parameter (ESP) for the exponential distribution under data the 

control of type II by using the proposed Bayesian method and maximum probability. We also 

compared these methods using Mean square error (MSE). This study was conducted using simulation 

with different parameter values (θ) and different sample sizes (n = 10, 20, 50, 100). The calculation 

results showed that the best method of estimation is the proposed Bayesian method (BAY2), which 

uses the distribution of Chi-Square (n) in the previous information. 

 

 

 

Keywords: Bayes Estimation, exponential distribution, Jeffery prior information, Maximum 

likelihood estimates.                                                                     

I. Introduction: 

The exponential distribution is the most important mathematical models, which has very many 

applications in several life’s areas in general and in mathematics in particular for both pure and 

applied where used in the modelling and analysis of data, in previous years, many researchers have 

reached to several results using this distribution see  [1],[2] and [3].Usually, when the researcher 

performs some tests, the researcher may lack the ability to monitor and identify all the elements that 

have been selected on the basis of which the success of the experiment depends on its failure, the 

most important reasons: Some of them are related to the temporal factor of the experiment and some 

of them are related to constraints (such as financial cost and others) which negatively effect on the 

results. Therefore, when these effects are directly low with the number of failure observed states, the 

controlled experience of failure is better, more effective, and achieves less time and effort than the 

file:///C:/Users/Windows%207/Downloads/nabeelali0086@gmail.com
file:///C:/Users/Windows%207/Downloads/sameer.annon@bab.epedu.gov.iq
file:///F:/مؤتمر%20كربلاء/بحوث%20متفرقة%202019/بحث%20نبيل%20مؤتمر%20بابل%202020/met.ahmed.hadi@uobabylon.edu.iq
file:///F:/مؤتمر%20كربلاء/بحوث%20متفرقة%202019/بحث%20نبيل%20مؤتمر%20بابل%202020/abbas.mmmm2019@gmail.com
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time-controlled experiment. After that, the researchers identified the experiment, which was 

controlled by failure, as surveillance type II. In this type of experiment, the test is terminated as soon 

as the number failures that pre-determined (r) is the number of units (n) that is tested. The researchers 

[4], [5], [6], [7],[8] and [9]presented the definition of predictive distribution in the life’s areas and 

reached several results in this area. The methods of estimating Bayesian are studied in the classical 

exponential distribution (see [11]) and reached to the best methods of estimating through this 

distribution. In 2007, the researcher [12] also studied the Bayes estimation of the exponential 

distribution under double control of type II.Then the researchers used a set of previous distributions 

to estimate the parameter by exponential distribution. See [10]. The aim of this research is to 

compare some of the theoretical estimation methods for the exponential distribution of the parameters 

by using data type control II. We provided an estimate of the measurement parameter (ESP) of the 

exponential distribution under the data, and control of the second type that is using the proposed 

Bayes method and maximum probability. We also compared these methods using MSE (Mean 

Square Error). This study was conducted using simulation with different parameter values (θ) and 

different sample sizes (n= 10, 20, 50, 100).The calculated results showed that the best method of 

estimation is the proposed Bayesian method (BAY2), which uses the chi-Squared distribution (n) in 

the previous information. 

  

II. Theoretical side  

2.1 Exponential Distribution (E.D)  

This distribution is commonly used to model waiting times between occurrences of rare events, 

lifetimes of electrical or mechanical devices. A continuous random variable  is said to have an 

Exponential distribution (E.D) with parameter  if it has probability density function (p.d.f) and the 

cumulative distribution function (c.d.f) of (E.D) are given as follows respectively 

                                                             (1)                                           

                                                                                    (2)                                   

 

2.2 Reliability function 

Let  be a continuous random variable of distribution has parameter set  and let 

 be its probability density function, where the survival time has parameter . The cdf of  is 

then  

                                                  

The survivor function or reliability function is defined as 

                                                      (3) 

In other words, the survivor function is the probability of survival beyond time. 

 

 

2.3 Type II Censoring Data 
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Using this type of data mainly for clinical situations and the idea here is to select (m) the units so that 

m < n, n represents the size of the sample being studied. And the possible function of this data 

category is defined by the following formula in ascending order [3]: 

                          (4) 

Such that 

  represents the reliability function at time   

 

 

For exponential distribution  and by using (1) and (2) then equation (4) becomes as follows 

                                

               (5) 

When we take Log the two parties and from derivative second we get maximum likelihood estimator      

                                                          (6) 

III. Bayesian Estimation Methods 

3.1 Standard Bayes Method (BAY1) 

  In this method the Bayes standard estimator is obtained in the case of the data under the control of 

type II. Then joint distribution function (pdf) as follows. 

                                              (7) 

By using Jeffery Prior information then density function of the posterior distribution as follows. 

                                 (8) 

 I (θ) represent Fisher information, k constant  

                                                (9) 

Then joint density function of  T and  described in equation (7) will be as follows 

                                          (10) 

 Hence from (10) we find marginal density function of T is given by  
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                                                   (11) 

By using transformation       

 

Hence  

                                        (12) 

Hence, density function of the posterior distribution of θ is given by 

       (13) 

Let     , then  

                       (14) 

By using the quadratic loss function  , Then Bayes' estimator will be the estimator that 

minimizes the posterior risk given by 

  

 

Then       

 By using transformation          

                                                (15) 

 

3.2 Bayes method proposed (BAY2)     

In this method, a Bayes estimator for the measurement parameter will be found using Natural 

Conjugate Prior and let this distribution is Gamma distribution( 1 , μ ) as Prior information where pdf 

of the gamma distribution as follows [ 6 , 14 ] .  

                                         (16)             

 Then joint density function of T and  and by use equation (4) and (7) will be as follows 
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                            (17) 

Let , then  

                               (18) 

Hence from (18) we find marginal density function of T is given by  

              

 By using transformation       

                

                                (19) 

Hence, density function of the posterior distribution of θ is given by 

                                 (20) 

By using the quadratic loss function  , Then Bayes' estimator will be the estimator that 

minimizes the posterior risk given by 

    

 

                 (21) 

 

3.3 Bayes method proposed (BAY3)     

Using Chi – square (n)  distribution in Prior information at degree freedom  (n) where the density 

function of Chi – square distribution as follows :  

                                                (22) 

Thus the joint density function of T and   will be as follows 

                        (23) 

Let , then 
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                        (24) 

Hence from (24) we find marginal density function of T is given by  

                   

   By using transformation    

                           

                                    (25) 

Hence, density function of the posterior distribution of θ is given by 

 

                          (26) 

By using the quadratic loss function  . Then Bayes' estimator will be the estimator that 

minimizes the posterior risk given by 

 

And by using the same transformation the previous  

                            (27) 

 

IV. Practical Aspect (Simulation):  

Formulation of a model simulation includes the following essential and important steps for 

estimation of the scale parameter of exponential distribution that are respectively: 

(P1) The initial values for the parameter θ  

This step is important upon which later steps depend. Then we assume the initial values                      

(θ =5.5, 6 , 6.5 ) for scale parameter θ of the of the exponential distribution.  

(P2) Selected sample size (n) 

 We chose different sizes of the sample proportionally to the effect of sample size on the accuracy 

and efficiency of the results obtained from the estimation methods used, so we take the sizes (10, 30, 

50, and 100). 

(P3) The initial values for the time estimation of reliability function (t0) 
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We take three values of the time  t0 = 1 , 2 , 3 

(P4) Select values for the constants in the estimators 

We take the value parameter μ = 1.  

(P5) Step of Data Generation: 

In this step, the generation of weighted exponential distribution data using the inverse method is as 

follows 

                                                 (28) 

                            And the                                     (29) 

 Where = The distribution function given in ( 2 ) 

Uniformly distributed random variable on (0,1) 

(P6) Measure comparison : 

We adopt the mean square error      

Where R=1000 is the number of replications .The tables below show the results of the estimation 

using the simulation. Program the simulation written by using                             (Matlab – 2011a) 

V. Explanation Results (Conclusions)  

The results of tables (1) to (4) show the following: 

• Bayes method proposed estimation (BAY3) is the best, in all the size samples because it has the 

lowest (MSE).  

• The second estimator (BAY2) is the best in the small size samples because it has the second 

lowest mean square error (MSE). 

• We noted decreasing values of (MES) with increasing sample size of all cases , which 

corresponds with the statistical theory. 

• (MLE) is in the last place by comparing with the other methods because it has achieved the 

highest level of (MSE) in all the sample sizes.  

VI. Recommendations 

• Applying this study by using other convenient continuous distributions as (Gamma, Beta, 

Weibull, ...). 

• We recommend developing Bayes formulas that have been studied to other formats and under 

different loss functions. 

• Testing the hypotheses theories for this study in the industrial fields and modeling machines 

failure times. 
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Table (1): Mean squared error for   where n=10 

Table (2): Mean squared error for   where n=30 

BEST BAY3 BAY2 BAY1 MLE  θ 

BAY3 0.0281941948 0.02834999730 0.02852509742 
0.02899825787 

1  

 

5.5 

BAY3 88222440.0277  0.02789703936 0.02826247087 0.02829045664 
2 

BAY3 0.02661577431 0.02701127422 0.02817915176 0.02838586520 
3 

BAY3 0.03240564477 0.03279950530 0.03408518576 0.03427782795 
1  

 

  6    

 

 

 

BAY3 0.03166696429 0.03213847877 0.03341126295 0.03366927449 
2 

BAY3 0.03238321112 0.03277944305 0.03406473404 0.03425936917 
3 

BAY3 0.03784504312 0.03832698478 0.03971578213 0.03996978958 
1  

 

6.5 

 
BAY3 0.03831154716 0.03874413784 0.04014040555 0.04035306594 

2 

BAY3 0.03988531573 0.03996714107 0.04040454652 466777030.040  
3 

 

Table (2): Mean squared error for   where n=30 

BEST BAY3 BAY2 BAY1 MLE  θ 

BAY3 0.02832272952 0.02838914244 55974390.0287  0.02880808569 1  

 

5.5 BAY3 0.02747786154 0.02786235549 0.02802776103 0.02828501791 2 

BAY3 0.02741677139 0.02751314583 0.02787626175 0.02795479397 3 

BAY3 0.03251511903 0.03263351754 0.03302887564 0.03312700381 1  

 

BEST BAY3 BAY2 BAY1 MLE  θ 

BAY3 0.02793033339 0.02797734283 0.02819376006 0.02823476059 1  

 

5.5 BAY3 0.02811120546 0.02815466660 0.02837176728 0.02820932877 2 

BAY3 0.02738796392 0.02744553985 0.02765989433 0.02771114007 3 

BAY3 422760.034008  0.03404921580 0.03428792211 0.03432245847 1  

 

  6 

  

 

 

 

BAY3 

 

0.03372826311 0.03377459722 0.03401234065 0.03405224148 2 
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BAY3 0.03370886110 .033787815510  0.03419008420 0.03425083404 2   6    

 

 

 
BAY3 0.03378924377 0.03383437383 0.03407232718 0.03411106222 3 

BAY3 0.03972756650 0.03981466995 0.04025124255 0.04031846430 1  

 

6.5 

 

BAY3 0.03974900517 0.03983539193 0.04027207781 0.04033862178 2 

BAY3 764468910.039  0.03981527856 0.04007337271 0.04011716517 3 

 

Table (3): Mean squared error for   where n=50 
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Abstract: This paper intends to estimate the unlabeled three parameters for Dagum distribution 

modle depend on censored samples type two ; employing the maximum likelihood estimator method  

to obtain the derivation of the point estimators for all unlabeled parameters depending on iterative 

techniques , as Newton – Raphson method ; then to derive ordinary least squares estimator method. 

Applying all these methods to estimate related probability functions; death density function, 

cumulative distribution function, survival function and hazard function (rate function).  

When examining the numerical results for probability survival function by employing ‘mean squares 

error measure and mean absolute percentage measure’ , this may lead to work on the best method in 

modeling a set of real data; and this method is “Maximum likelihood estimator method for real 

censored type II sample”. 

Keywords:- 

Censored type two sample, Maximum Likelihood Estimator Method, Ordinary least squares 

estimator method, Survival Function, . 

 1- Introduction:-  

The Dagum distribution was proposed in a series of papers in the seventies by Camilo Dagum. It is 

applied to the analysis of income distributions which are greatly related to personal income; for 

example, in 2015 in Poland, researchers constructed a confidence interval to measure the economic 

inequality through empirical analysis.(1) 

Another study of modeling air quality and estimate potential air pollution over Pekanbaru city, 

Indonesia for seven years data, from 2009 to 2015; this study showed the factors that spoil the urban 

air quality by the use of the three-parameters Dagum distribution. The maximum likelihood method 

and the L moment estimator were compared. Probability density function (PDF) , (CDF) and (AIC) 

were applied to check the best criteria of the distribution. (2) 

Frequently, a study of five years data, from 2011-2015 over Durban in south Africa was made to 

analize the significant parameters of rain attenuation for telecommunication links at heigher 

frequencies. This study deals with the tree-parameters Dagum distribution of the rain height 

variations each month, each season and each year; and again by using (ML) method of the 

distribution which showed a decent modeling of rain height over Durban city with the Root Mean 

Square Error of 0.26. (3)   

Some other paper presented a lifetime model under the name the Weibull-Dagum distribution. The 

suggested modle determined an ordinary conversion of the Weibull random variable. The density 

function of this modle is very pliable, left-skewed and right-skewed. Maximum likelihood is 

mailto:hind.kadhum@qu.edu.iq
mailto:hind_satia@yahoo.com
http://orcid.org/0000-0003-1525


1095 
 

employed to estimate the model parameters and show the ability of the new model by means of 

simulation. Almost the suggested model works better than beta-Dagum and McDonald-Dagum. (4) 

This paper is divided as follows:- The objective of this paper, theoretical section, practical section, 

results and conclusions. 

2- The objective of this paper:-  

This paper aims to  examine censored sample type two blood cancer by using MLEM and OLSEM ; 

and by comparing the two methods . 

3- Definition and properties:- 

 The p.d.f for Dagum distribution is:   

0)1.......(..........)1(),,;( 11 += −−−−− ttttf p

                                               

( ) 0,0,;,,; = t  

Where   : is scale ( real ) parameter 

             : is shape ( real ) parameter 

             : is shape ( real ) parameter 

The cumulative distribution function for this distribution is:      )2.....(..........)1(),,;(  −−+= ttF  

Its survival function is given by:            )3......(..........)1(1),,;(  −−+−= ttS       

Its hazard rate function is given by:        )4......(..........
)1(1

)1(
),,;(
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4- Maximum likelihood estimator method(MLEM) for censored type II sample:- 

 The MLM is the most  common procedure to estimate the parameter   which specifies a p.f. 

):( tf  , based on the observations nttt ,.....,, 21  which were independently. sample from the 

distribution. . 
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Applying the logarithm for the likelihood function: 
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 There is no chance to find the estimators for the parameters ),,(   , and it is kind of 

difficulty to process the nonlinear equations thus, it is better to make use of iterative methods in 

numerical analysis as Newton–Raphson method which is the best way to get the estimate values and 

number of iteration.  

 The Newton–Raphson method requires an initial value of each unknown parameters ),,(   

.  
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5- Ordinary Least Squares Estimator Method (OLSEM):-   

The OLSEM is the most used way to estimate parameters in linear or nonlinear model. 

Researchers make use of this method to lessen the sum squares differences concerning observed 

sample values and expected estimated values by linear approximation. (5,6) 
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 There is no chance to find the estimators for the parameters ),,(   , and it is kind of 

difficulty to process the nonlinear equations thus, it is better to make use of iterative methods in 

numerical analysis as Newton–Raphson method which is the best way to get the estimate values and 

number of iteration.  

 The Newton–Raphson method requires an initial value of each unknown parameters ),,(   

.  
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6- Results and Discussion 

The Educational Hospital in Diwaniya province was the place from which the data was gathered. 

Keeping in mind that this work relies on data taken from real life, it is reached to select this kind of 

cancer (blood cancer) because it is remarkable widespread and deadly in Iraq; this disease has failure 

time (death time) which is phenomenon in this paper. 

The study of this paper covers a period of six months; it begins from 30/6/2019 untill 31/12/2019; it 

is an experiment that includes(12) patients. (10) patients were dead and (2) patients remain alive . 

When applying the test statistic (Kolmogorov-Smirnov) depending upon statistical programming 

(EasyFit 5.5 Professional) in order to fit Dagum distribution data , it is discovered that the calculated 

value is (0.12294) , this means data is distributed according to Dagum distribution .  

The null and alternative hypotheses are as follows :  

0H  : The survival time data is distributed as Dagum.   

1H  : The survival time data is not distributed as Dagum.  

 ‘Figure(1)’ 

Fit the datafor blood cancer from ‘Educational Hospital Diwanyia’ 
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When applying  MATAB(R014a) , the estimated parameters results are as follows : 

92.00 =          ;    2.00 =
     

 ;    
 

5.00 =  

The assumed initial values for two-parameters are as follows:  
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Table (1) : Estimated values for the parameters by MLEM for censored data type II 

Estimate values No. of iteration Errors for all parameters 

2537.28
^

=  

33 

  8229.0  

8369.0
^

=  2631.0  

5000.1
^

=  
0001.0  

 

Table (2) : Estimated values for the parameters by OLSEM 

Estimate values No. of iteration Errors for all parameters 

0212.0
^

=  

3  

0004.0  

2031.0
^

=  0010.0  

4262.1
^

=  
3091.0  

 

 After that , using ths estimated values for tree-parameters in Dagum dis. to find the numerical 

values for )(tf  , )(tF  , )(ts  and )(th  . 
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Table (3) : Estimated values for functions )(tf  , )(tF  , )(ts  , )(th  by MLEM  

Failure 

Time/day )(
^

tf
 

)(
^

tF
 

)(
^

ts
 

)(
^

th
 

17 0.021034074 0.715089254 0.995650654 0.004368346 

19 0.016796441 0.752710014 0.995348166 0.004673575 

23 0.011207044 0.807705732 0.993798547 0.006240151 

26 0.008559691 0.83711328 0.993302026 0.00674314 

28 0.007250765 0.852874195 0.992749235 0.007303722 

28 0.007250765 0.852874195 0.992749235 0.007303722 

29 0.006697974 0.859843552 0.991440309 0.008633592 

30 0.006201453 0.866288886 0.988792956 0.011334066 

34 0.004651834 0.887791134 0.983203559 0.017083381 

35 0.004349346 0.892289384 0.978965926 0.021486012 

90.27931317)]()([
1

)]([
1

2
^^

=−= 
=

n

i

iii tsts
n

tsMSE  

51.91350617
)(

)()(1
)]([

1

^
^

=
−

= 
=

n

i i

ii
i

ts

tsts

n
tsMAPE

  

Table (4) : Estimated values for functions )(tf  , )(tF  , )(ts  , )(th  by OLSEM 

Failure 

Time/day )(
^

tf
 

)(
^

tF
 

)(
^

ts
 

)(
^

th
 

17 6.32892E-06 0.999924423 0.9999989 1.10013E-06 

19 4.83465E-06 0.999935492 0.99999882 1.18022E-06 

23 3.04351E-06 0.99995086 0.999998401 1.59857E-06 

26 2.26128E-06 0.999958735 0.999998265 1.73547E-06 

28 1.88953E-06 0.99996287 0.99999811 1.88954E-06 

28 1.88953E-06 0.99996287 0.99999811 1.88954E-06 

29 1.73547E-06 0.999964681 0.999997739 2.26129E-06 

30 1.59857E-06 0.999966347 0.999996956 3.04351E-06 

34 1.18022E-06 0.999971845 0.999995165 4.83467E-06 

35 1.10013E-06 0.999972984 0.999993671 6.32896E-06 
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70.28499848)]()([
1

)]([
1

2
^^

=−= 
=

n

i

iii tsts
n

tsMSE

 

61.92896429
)(

)()(1
)]([

1

^
^

=
−

= 
=

n

i i

ii
i

ts

tsts

n
tsMAPE

 

 

 

 

7- Conclusions: 

1- We notice in both methods that the estimated values of the probability survival function decrease 

with increasing failure times (an inverse relationship between them). 

2- We notice in both methods that the estimated values of the potential risk function increase with 

increasing times of failure (a direct relationship between them). 

3- It is recommended to use (MLEM) of Dagum distribution of blood cancer by employing MSE 

criterion. 
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Abstract: The main aim of the presented study is estimating the parameters of Weibull distribution 

by utilizing simulation to generated the samples size when n=10, 50,100. Considering in the current 

study the parameters estimator of Weibull membership function, then using the nonlinear 

membership function for Gaussian function to find the fuzzy number for these parameters estimator. 

After that utilizing the ranking function to transform the fuzzy number to crisp number 

Keywords: Weibull distribution, simulation technique, nonlinear membership function, the ranking 

function. 

 

Introduction 

In 1951, Waloddi Weibull (Swedish mathematician) was the first to describe Weibull distribution. 

With regard to the probability theory and statistics, Weibull distribution is specified as the continuous 

probability distribution. 

Weibull distribution has been a useful density function in reliability and survival analysis, which is a 

famous distribution in medical and industry. 

In the case when certitudes happen, individuals will usually look back to the acquired data and 

attempt to evaluate future events. Usually, a major methodology; that is commonly applied as the 

probability theory has fulfilled such necessities to handle im-precision and un-certainty. Yet, with 

regard to the fulluncertainty conditions, the probability theory could not be adequate, also there must 

be integration between fuzzy logic and probability theory for enhancing the robustness. Full-

uncertainty could be defined as nobody has the data on the incidence of likely conditions 

furthermore, in certain conditions cases no one knows anything regarding such becoming true 

possible events. 

Zadeh in 1968 was first structure probability measures in fuzzy sets. Kwakernaak defined fuzzy 

random variables (FRVs), also the authors indicated many concepts related to the independent fuzzy 

variables for the first time in his paper [3]. After one year, he added algorithms related to the fuzzy 

random variable, also the author provided examples related to discrete case [4]. 

Pak et al. in (2013) [5] developed inferential procedures according to the fuzzy environment with 

Weibull distribution. 

. Pak et al. in (2014) [6] developed inferential procedures according to the exponential distribution 

according to fuzzy data. Shafiq and Viertl in (2014) [9] calculated characterizing function related to 

fuzzy parameter estimate for Weibull parameters based on censored fuzzy data. Pak et al. in (2016) 

[7] applied the algorithm of Newton-Raphson for determining the maximum probability estimate of 

shape parameter of lognormal distribution when the observations are fuzzy. Al-Sultany in 

;(2016)[10]; evaluated the performance of moment maximum likelihood and Bayes estimation 

method for estimating the unknown parameters and reliability function of inverse Weibull 

distribution according to the fuzzy data. In this paper, generating the data of Weibull distributions by 

utilizing the Monte carol technique through using simulation method, with different sample size 

when n=10, 50, 100 respectively. After that finding the unknown parameters of Weibull distribution 

by using the nonlinear membership function for Gaussian function to get the lower and the upper 

mailto:Iden_ALkanani@yahoo.com
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fuzzy parameters number for inconsistent sample size utilizer, this method enables the construction 

of normal fuzzy number which con be adapted to have Gaussian shape. 

Finally, using the ranking function to transform the fuzzy parameters number to crisp for various 

sample size. 

 

Fuzzy set 

Fuzzy sets have been a main field of focus in many ways starting from its initiation in the year 1965. 

Some applications related to Fuzzy sets can be seen in robotics, operation research, logic, decision 

theory, medicine, AI, computer science, control engineering, expert systems management science, 

and pattern recognition. 

The development in mathematics increased largely in the past as well as huge advances recently. In 

the presented study, an elementary mathematical system related to the Fuzzy set is going to be 

discussed, in addition to the major applications of Fuzzy sets to the other methods and concepts. Soft 

computing or computational intelligence was the nme used to describe Fuzzy sets, neural nets theory, 

and evolutionary programming since the year 1992. 

The associated between such extents has become mainly close. In the presented study, the Fuzzy sets 

will be the main focus. The applications related to the fuzzy sets to real problems abound. Certain 

references are going to be provided. To describe even a part of them will definitely exceed the extent 

of the presented study; John Wiley & Sons [2]. 
 

I. GAUSSIAN FUNCTION 

The membership definition for a Gaussian function G: → [0, 1] is given by two parameters as: Where 

α is the midpoint and Κ reflects the slop value. Note that Κ must be positive and that the function 

never reaches zero. The Gaussian function can also be extended to have different left and right slops. 

We then have three parameters in Where and are, respectively, left and right slopes. 

I.1- G-membership function 

Theorem 1: 

Let by fuzzy number with Gaussian membership function as 

Let and x=u(x) then 

by taken root 

If then 

If then 

These are a fuzzy number in a parametric form where . 

If we inspection that the membership function is Gaussian function substituting then the fuzzy 

number of Gaussian membership function becomes as follow: 

Let and x=u(x) then 

By taken root 

If then 

If then 

These are a fuzzy number in a parametric form where . 

 

I.2 membership function e^[-(x-1)]^2 

IV. Ranking function 

Ranking fuzzy numbers are of high importance in data analysis, they are applied in forecasting in 

addition to the decision-making optimization. The approach of ranking has been initially suggested 

via Jain (1976). Yager (1981) suggested 4 indices which could be used to order the fuzzy quantities 

in [0,1]. 

Ghen and Ghen (2007)[1] suggested an approach for ranking the generalized fuzzy trapezoidal fuzzy 

number generalized fuzzy numbers. Compos and Gonzales (1989) suggested a subjective method for 
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ranking fuzzy numbers. Ramil and Mohamad [8] suggested a complete survey related to various 

approaches for ranking of fuzzy numbers. 

Ranking of fuzzy is of high importance in forecasting, making optimizations, and risk analysis 

decision. 

Fuzzy sets have been developed via Zadeh, that is a tool of high power to handle real-life cases. From 

the time when Yager suggested centroid system in the ranging method. 

The advantage of Ranking function which applies in operation research, statistics and mathematics is 

to transform the fuzzy number to crisp number. 

Where Then the Ranking function becomes as follow: 

Where is left shape function of Is left shape function of Then = and = is weight function then and 

GMF equal to Gaussian membership function Theorem: if is a GMF in a parametric form then 

Proof: the parametric form in Gaussian membership function is as follow: 

 

Recall that 

V. PARAMETER ESTIMATION BY MLE 

The method of Maximum Likelihood Estimation as this technique gives a simpler Estimation as 

compared to the Method of Moments and the Local frequency ratio method of estimation. Now we 

are estimating the parameter of the Weibull distribution from which the sample comes. Let be a 

random sample of n observations from the Weibull population with pdf Let 

 

I. PRACTICAL SIDE: 

In this section, we will create a simulated environment to find the fuzzy parameters of Weibull 

distribution as described in the following steps. 

1- Based on we can write the Matlab program where then 

, And the Initial value =0.9 , =0.1 we got, 

❖ n=10 then 

❖ n=50 then 

❖ n=100 then 
 

2- to calculate the lower and upper fuzzy parameters using the eq(1),eq(2) Where n=10 , then 

Then 

K=34.602, in the same way 

Where n= 50→ K=0.149, and Where n=100→ K=0.427 

Table I-1The lower and upper fuzzy parameters 

n=10 

 

3- To determine The Ranking value by using the eq(3) 

Where n=10 , 50,100, and let k=1 and α ≥ 0.5 we get : 

Table I-2 Ranking value for parameters 

n=10 n=50 n=100 

0.5 0.217 32.684 3.367 0.0331 1.954 0.1422 

0.6 0.394 32.86 3.544 0.21 2.131 0.16 

0.7 0.571 33.04 3.721 0.387 2.308 0.496 

0.8 0.748 433.26 3.898 0.564 2.485 0.673 

0.9 0.925 33.39 4.075 0.741 2.662 0.85 

 

CONCLUSION: 

We propose a nonlinear membership function for Gaussian function in statistic for first time in Iraq. 

In table (1) the lower fuzzy parameters number are increasing and the upper fuzzy parameters 
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number are decreasing. In table (2) the ranking function of parameters number are increasing we take 

α ≥ 0.5 because the value of α greater than and equal to (0.5) it is normal concave. 
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