Radon-Nikodym Theorem with Banach Algebra Valued Measure

1. Introduction

Here mathematics, Radon-Nikodym theorem is a result in the theory of measure which expresses the relation between two defined measures on the same measurable space [1,5,13]. The derivative of Radon-Nikodym theorem has an important application in the theory of probability so that it leads to the function of probability density of a random variable [7,8]. This theorem has been named after Johnn Radon, who proved the theorem of a special case when the fundamental space is ℝ in 1913, and Otto Nikodym, who proved the general case in 1930 [14]. In 1936, Hans Freudenthal has further generalized the Radon-Nikodym theorem by proving the Freudenthal spectral theorem as a result in the theory of Riesz space, which contains Radon-Nikodym theorem as a special case [6,9,10]. In this research, we have generalized Radon-Nikodym theorem in Banach algebra space with taking in consideration some of necessary changes.

2. General Set Functions

We remember that Banach algebra measure is a set function $M : \Gamma \longrightarrow W$ that satisfies $M(\Lambda) \geq$ 0 for all Λ in Γ and $\mathcal{M}(\bigcup_{n=1}^{\infty} \Lambda_n) = \sum_{n=1}^{\infty} \mathcal{M}(\Lambda_n)$ so that $\{\Lambda_n\}$ is a sequence of disjoint sets in Γ.

Definition 2.1

Let (\mathcal{R}, Γ) be a measurable space. A set function $\mathcal{M}: \Gamma \longrightarrow \mathcal{W}$ is called a signed Banach algebra measure on Γ , if $\mathcal{M}(\bigcup_{n=1}^{\infty} \Lambda_n) = \sum_{n=1}^{\infty} \mathcal{M}(\Lambda_n)$ Whenever $\{\Lambda_n\}$ is a sequence of disjoint sets in $\overline{\Gamma}$.

Every Banach algebra measure is signed Banach algebra measure and the opposite is not true.

^aMathematics Department, Education College, Al-Hamdaniya University, Erbil, Postcode: 44001, Iraq, E-Mail: *rwafa1993@uohamdaniya.edu.iq*

^bMathematics Department, Science College, Al-Qadisiyah University, Al Qadisiya, Postcode: 54004, Iraq, E-Mail: *nfam60@yahoo.com*

Definition 2.2

Let λ be a signed Banach algebra measure on the measurable space (\aleph, Γ) . A set $\Lambda \in \Gamma$ is said to be a positive set (with respect to λ) if $\lambda(B) \ge 0$ for each measurable subset B of Λ. Similarly, a set Λ is called a negative set (with respect to λ) if $\lambda(B) \le 0$ for each measurable subset B of Λ . A set that is both positive and negative (with respect to λ) is called null set, i.e. a measurable set is called a null set iff each measurable subset of it has λ measure zero.

Remark 2.3

The distinction between a null set and a set whose measure is zero, is that every null set's measure must be zero and a set whose measure is zero could be a union of two sets whose measure are not zero but are negative of each ether.

Theorem 2.4

Let λ be a signed Banach algebra measure on the measurable space (X, Γ) , and Λ be a measurable set.

- Λ is positive iff for every measurable set B, $\Lambda \cap B$ is measurable and λ ($\Lambda \cap B$) ≥ 0
- Λ is negative iff for every measurable set B, $\Lambda \cap B$ is measurable and λ ($\Lambda \cap B$) ≤ 0

Proof:

Assume Λ is positive and let B is a measurable set is measurable set. Since Λ is measurable set \implies $\Lambda \cap B$ is measurable set. Since Λ is positive set, $\Lambda \cap B \subseteq \Lambda$ and $\Lambda \cap B$ measurable $\Rightarrow \lambda(\Lambda \cap B) \ge$ 0.

Conversely, let $\Lambda \cap B$ is measurable and $\lambda(\Lambda \cap B) \ge 0$ for every measurable set B.

Let C be a measurable and $C \subseteq \Lambda \implies C = \Lambda \cap C \implies \lambda(C) = \lambda(\Lambda \cap C) \ge 0$

Theorem 2.5

Let λ be a signed Banach algebra measure on the measurable space (\aleph, Γ)

- Each measurable subset of a positive (rsp. negative) set is positive (rsp. negative).
- The union of countable positive (rsp. negative) sets is positive (rsp. negative).

Proof:

- Let Λ be a measurable subset of a positive set B, and C be a measurable subset of $\Lambda \implies C \subseteq B$, since B is positive $\Rightarrow \lambda(C) \ge 0 \Rightarrow \Lambda$ is positive.
- Let $\{\Lambda_n\}$ be a sequence of positive sets, $\Lambda = \bigcup_{n=1}^{\infty} \Lambda_n$ and B be a measurable subset of Λ .

Put $B_n = B \cap \Lambda_{n} \cap \Lambda_{n-1}^c \cap ... \Lambda_1^c \implies B_n$ is measurable subset of Λ_n and so $\lambda(B_n) \ge 0$. Since the B_n are disjoint and $B = \bigcup_{n=1}^{\infty} \hat{B}_n$, we have $\lambda(B) = \sum_{n=1}^{\infty} \lambda(B_n) \geq 0 \Rightarrow \hat{\Lambda}$ is positive

Theorem (Hahn-Decomposition) 2.6

Let λ be a B signed Banach algebra measure on the measurable space (\aleph, Γ) . There is a positive set Λ and a negative set B with

 $Λ ∩ B = φ$, $Λ ∪ B = X$.

Proof:

Let $\nu = \sup \{\lambda(\Lambda): \Lambda \text{ is positive set with respect } \lambda\}.$ Since ϕ is positive, then $\nu \ge 0$.

Let $\{\Lambda_n\}$ be a sequence of positive sets such that $\nu = \lim_{n \to \infty} \lambda(\Lambda_n)$, Set $\Lambda = \bigcup_{n=1}^{\infty} \Lambda_n$, by using part (2) of theorem (2.4) we have Λ is nositive also $\lambda(\Lambda) \leq \theta \to \infty$ of theorem (2.4), we have Λ is positive , also $\lambda(\Lambda) \le \ell$.

Since $\Lambda | \Lambda_n \subset \Lambda \implies \lambda(\Lambda | \Lambda_n) \ge 0$ and $\lambda(\Lambda) = \lambda(\Lambda_n) + \lambda(\Lambda | \Lambda_n) \ge \lambda(\Lambda_n)$, so $\lambda(\Lambda) \ge \nu \implies 0 \le \Lambda_n$ $\lambda(\Lambda) = \nu \implies \lambda(\Lambda) \geq 0$.

Let $B = \Lambda^c$, to prove B is negative, let C be a positive set and $C \subseteq B$, then $\Lambda \cap C = \varphi$ and $\Lambda \cup C$ positive set

 \Rightarrow $\nu \ge \lambda(\Lambda \cup C) = \lambda(\Lambda) + \lambda(C) = \nu + \lambda(C) \Rightarrow \lambda(C) = 0$, Since $0 \le \nu$, then B does not contain positive subset with a positive measurement, and therefore, does not positively measurements subsets, so B is negative set ■

Remarks 2.7

- The Hahn decomposition is not unique.
- The Hahn decomposition Λ , B give two measures λ^+ and λ^- defined by $\lambda^+(C)$ = $\lambda(\Lambda \cap C)$, $\lambda^{-}(C) = -\lambda(B \cap C)$, Notice that $\lambda^+(B) = 0$ and $\lambda^-(\Lambda) = 0$. Clearly $\lambda = \lambda^+ - \lambda^-$

3. Radon-Nikodym theorem

Radon-Nikodym theorem is among the most important results in real analysis. Regarding its applications, it includes the dual space of L^p , conditional expectation and the change of measure in stochastic analysis. In the beginning of proving Radon-Nikodym theorem in Banach algebra space, we will mention couple of basic definitions regarding this topic.

Definition 3.1

Let M and λ be two measures on a measurable space (λ, Γ) . We say that M is singular with respect to λ (written $M \perp \lambda$) if there are Λ , $B \in \Gamma$ with $\Lambda \cap B = \emptyset$, $\Lambda \cup B = \aleph$ and $M(\Lambda) = 0$, $\lambda(B) = 0$

Remarks 3.2

If M and λ are two Banach algebra measures on a measurable space (\aleph, Γ) , then $\mathcal{M} \perp \lambda$ if there is a set $\Lambda \in \Gamma$ such that $\mathcal{M}(\Lambda) = 0$, $\lambda(\Lambda^c) = 0$.

- M is singular with respect to λ iff λ is singular with respect to M, so we can say that M and λ are mutually singular.
- Let M , λ be two signed Banach algebra measures on the measurable space (\aleph, Γ) , we say that M and λ are mutually singular iff $\llbracket \mathcal{M} \rrbracket \perp \llbracket \lambda \rrbracket$.
- If λ is a signed Banach algebra measure on the measurable space (\aleph, Γ) , then $\lambda^+ \perp \lambda^-$.

Example 3.3

Let $\aleph = \mathbb{R}, \Gamma = \beta(\mathbb{R}), \mathcal{M}$ is Lebesgue measure, $\lambda = \sum_{j\geqslant 1} c_j \, \delta_{q_j}$, c_j is non-negitive real number if $\Lambda = Q \implies \lambda(\Lambda^c = Q^c) = 0 \implies \delta_{q_j}(Q^c) = 0$, $\forall j \geq 1 \implies \lambda(\Lambda) = 0 \implies \mathcal{M} \perp \lambda$.

Theorem (Jordan-Decomposition) 3.4

Let λ be a signed Banach algebra measure on the measurable space (\aleph, Γ) . There are two mutually singular measures λ^+ and λ^- so that $\lambda = \lambda^+ - \lambda^-$. This decomposition is unique.

Proof:

Since λ be a signed Banach algebra measure on the measurable space (\aleph, Γ) , by using Hahndecomposition, there is a positive set Λ and a negative set B with $\Lambda \cap B = \emptyset$, $\Lambda \cup B = \mathcal{R}$, defined λ^+ and λ^- by $\lambda^+(C) = \lambda(\Lambda \cap C)$, $\lambda^-(C) = -\lambda(B \cap C)$ for all $C \in \Gamma$.

$$
\lambda^+(B) = \lambda(\Lambda \cap B) = \lambda(\emptyset) = 0, \lambda^-(\Lambda) = -\lambda(B \cap \Lambda) = -\lambda(\emptyset) = 0 \implies \lambda^+ \perp \lambda^-, \text{ clearly } \lambda = \lambda^+ - \lambda^-
$$

Definition 3.5

Let M and λ be two Banach algebra measures on a measurable space (\aleph, Γ) . We say that M is absolute continuous with respect to λ (written $\mathcal{M} \ll \lambda$) if $\lambda(\Lambda) = 0$ implies $\mathcal{M}(\Lambda) = 0$ for every $\Lambda \in \Gamma$.

Example 3.6

- Let (\aleph , Γ, \mathcal{M}) be a measure space, and $\theta \ge 0$ be a measurable function. Define $\lambda(\Lambda) = \int_{\Lambda} \theta \, d\mathcal{M}$ for all $\Lambda \in \Gamma$. Then $\lambda \ll M$.
- Let $\aleph = \mathbb{N}, \Gamma = \mathbb{P}(\mathbb{N}), \mathcal{M} = \#, \theta(n) = n^{-\alpha}, \lambda(\Lambda) = \sum_{n \in \Lambda} n^{-\alpha}$. Then $\lambda \ll \mathcal{M}$, also $\mathcal{M} \ll \lambda$.

Example 3.7

In the following examples, we assume that $\aleph = [0,1], \Gamma = \beta(\aleph)$

• M represents the length measure on \aleph , λ is a Banach algebra measure that is set for every subset Λ from **N** that it is twice the length of Λ , then $\lambda \ll M$ and $M \ll \lambda$.

- M represents the length measure on \aleph , λ is a measure that is set for every subset Λ from \aleph that it is the number of points of the set $\{0.1, \dots, 0.9\}$ that's present in Λ , then $\lambda \ll M$, but M is not an absolute continuous with respect to λ .
- $\mathcal{M} = \lambda + \delta_0$ so that λ represents the length measure on \aleph , and δ_0 represents Dirac measurement on 0, that is $\delta_0(\Lambda) = \begin{cases} 1, & 0 \in A \\ 0, & 0 \notin A \end{cases}$ $\begin{array}{ll} 1, & 0 \in \Lambda \\ 0, & 0 \notin A \end{array}$, then $\lambda \ll \mathcal{M}$.

Remark 3.8

• Let M and λ be two signed Banach algebra measures on the measurable space (\aleph, Γ) . We say that M is absolute continuous with respect to λ (written $\mathcal{M} \ll \lambda$) if for every $\Lambda \in \Gamma$ with $\lambda(\Lambda) = 0$, we have $\mathcal{M}(\Lambda) = 0.$

(Note that $M \ll \lambda \Leftrightarrow M^+ \ll \lambda$ and $M^- \leq \lambda \Leftrightarrow \llbracket M \rrbracket \leq \lambda$)

- Two Banach algebra measures M and λ on the measurable space (\aleph , Γ), for which $\mathcal{M} \ll \lambda$ and $\lambda \ll$ M are called equivalent, in symbols $\mathcal{M} \sim \lambda$, i.e. $\mathcal{M} \sim \lambda$ iff $(\mathcal{M}(\Lambda) = 0 \Leftrightarrow \lambda(\Lambda) = 0$ for all $\Lambda \in$ Γ)
- If M and λ are Banach algebra measures, then $M \ll M + \lambda$ and $\lambda \ll M + \lambda$.

Theorem 3.9

Let λ be a signed Banach algebra measure and M be a positive measure, if $\lambda \perp \mathcal{M}$ and $\lambda \ll \mathcal{M}$, then $\lambda = 0$.

Proof:

Since $\lambda \perp \mathcal{M} \implies \exists E \text{ s.t. } E \text{ is } \lambda \text{-null (i.e. } \lambda(E) = 0)$, and E^c is $\mathcal{M} \text{-null (i.e. } \mathcal{M}(E^c) = 0)$. Since $\lambda \ll M$, we know E^c is λ -null, so $\aleph = E \cup E^c$ is λ -null, then $\lambda = 0$

Theorem 3.10

Let (\aleph, Γ) be a measurable space and M and λ be two Banach algebra measures on Γ so that $\lambda \ll M$, then $\theta: \aleph \longrightarrow W$ is a non-negative measurable function so that $\lambda(\Lambda) = \int_{\Lambda} \theta \, d\mathcal{M}$ for each $\Lambda \in \Gamma$. The function θ is unique a. e. [M], in other words, if η is another function that satisfies the same condition, then $\theta = \eta a.e.$.

Proof:

Let G be a family of the non-negative integrable θ functions with respect to M so that $\int_A \theta \, d\mathcal{M} \le \lambda(\Lambda)$ for each $Λ ∈ Γ$.

It's clear that $G \neq \phi$ because it includes at least the zero-function. Then G is an ordered subset in the order $\theta \leq \eta$ iff $\theta \leq \eta$ a.e. $\lceil \mathcal{M} \rceil$.

We assume that $s = \sup\{\int_{\mathcal{R}} \theta \, d\mathcal{M} : \theta \in G\} \le \lambda(\mathcal{R})$, we will get the supremum element in G. Now, we assume that $\theta_1, \theta_2 \in G$, we have to prove that $\max{\{\theta_1, \theta_2\}} \in G$, which means that we have to prove that $\int_{\Lambda} \max\{\theta_1, \theta_2\} d\mathcal{M} \leq \lambda(\Lambda)$ for each $\Lambda \in \Gamma$.

Let $\Lambda \in \Gamma$, we define $\Lambda_1 = \{x \in \Lambda : \theta_1(x) \ge \theta_2(x)\}, \Lambda_2 = \{x \in A : \theta_1(x) < \theta_2(x)\}$, then

 $\int_{\Lambda} \max\{\theta_1, \theta_2\} d\mathcal{M} = \int_{\Lambda_1} \theta_1 d\mathcal{M} + \int_{\Lambda_2} \theta_2 d\mathcal{M} \le \lambda(\Lambda_1) + \lambda(\Lambda_2) = \lambda(\Lambda)$, therefore $\max\{\theta_1, \theta_2\} \in \mathbb{G}$.

Now, let $\{\eta_n\}$ be a sequence of functions in G so that $\eta_n \longrightarrow s$, and let $\eta_n = \max\{\theta_1, \theta_2, \dots, \theta_n\}$, then $\eta_n \in G$.

As long as $\theta_n \leq \eta_n$ for all *n* values, then η_n is converge a.e. to η , that is $\eta_n \uparrow \eta$ a.e.

By using the monotone convergence theorem, we get $\int_{\mathcal{R}} \eta \, d\mathcal{M} = s$

We have to prove that η is an upper bound for the set G; let $h \in G$, if $h \leq \eta_n a$. *e*. for some of *n* values, then $h \le \eta$ a.e., and if $h \ge \eta_n$ a.e. for all n values, then $h \ge \eta$ a.e.

Therefore, $\int_{\mathcal{R}} h d\mathcal{M} = \int_{\mathcal{R}} \eta d\mathcal{M} = s$, hence $h = \eta a$. *e.*, so η is an upper bound for the set G.

Let $\Lambda \in \Gamma$, then $0 \le \eta_n I_\Lambda \uparrow \eta I_\Lambda$, therefore $\int_{\Lambda} \eta_n d\mathcal{M} = \int_{\Lambda} \eta_n I_\Lambda d\mathcal{M} \uparrow \int_{\mathcal{R}} \eta I_\Lambda d\mathcal{M} = \int_{\Lambda} \eta d\mathcal{M}$

As long as $\eta_n \in G$, then $\int_{\Lambda} \eta_n d\mathcal{M} \leq \lambda(\Lambda)$ for all n values, so $\int_{\Lambda} \eta d\mathcal{M} \leq \lambda(\Lambda)$, therefore $\eta \in G$, hence G is bounded from above, then by using Zorn's lemma, it possesses a maximum element as θ , which means there is a maximum element $\theta \in G$.

Now, we have to prove that $\lambda(Λ) = \int_Λ θ dM$ for each $Λ ∈ Γ$, let $ν(Λ) = λ(Λ) - \int_Λ θ dM$ for each $Λ ∈$ Γ, then *v* is a measure on Γ and $v \ll \overline{M}$.

If $v(\aleph) \neq 0$, then $v(\aleph) > 0$, therefore $\mathcal{M}(\aleph) - ||k||v(\aleph) < 0$ for some $k > 0$, by using (corollary 2.1.3 in [1]), there is $D \in \Gamma$ so that $\mathcal{M}(\Lambda \cap D) - [k] \nu(\Lambda \cap D) \leq 0$ and $\mathcal{M}(\Lambda \cap D^c)$ - $[[k]]\nu(\Lambda \cap D^c) \geq 0$ for each $\Lambda \in \Gamma$.

If we assume that $\mathcal{M}(D) = 0$, then $\lambda(D) = 0$ because $\lambda \ll \mathcal{M}$, therefore $v(D) = 0$

As long as $\mathcal{M}(\Lambda \cap D) - [k] \nu(\Lambda \cap D) \leq 0$ and $\mathcal{M}(\Lambda \cap D^c) - [k] \nu(\Lambda \cap D^c) \geq 0$ for each $\Lambda \in \Gamma$, then $\mathcal{M}(\mathcal{X} \cap D) - \llbracket k \rrbracket v(\mathcal{X} \cap D) \leq 0$ and $\mathcal{M}(\mathcal{X} \cap D^c) - \llbracket k \rrbracket v(\mathcal{X} \cap D^c) \geq 0$, therefore $\mathcal{M}(D) - \llbracket k \rrbracket v(D) \leq 0$ 0 and $\mathcal{M}(D^c) - [k] \nu(D^c) \geq 0$.

As long as $\mathcal{M}(D) = 0$ and $v(D) = 0$, then $\mathcal{M}(\aleph) - [k]v(\aleph) = \mathcal{M}(D^c) - [k]v(D^c) \ge 0$, but $\mathcal{M}(\aleph) \llbracket k \rrbracket \nu(\aleph) < 0$ and this is contradiction, therefore, $\mathcal{M}(D) > 0$.

We define $h(x) = \{$ 1 $\frac{1}{\llbracket k \rrbracket}$ $x \in D$ 0 $x \notin D$, so $\int_A h d\mathcal{M} = \frac{1}{\|\kappa\|} \mathcal{M}(\Lambda \cap D) \leq v(\Lambda \cap D) \leq v(\Lambda) = \lambda(\Lambda)$ $\int_{\Lambda} \theta \, d\mathcal{M}$, therefore $\int_{\Lambda} h \, d\mathcal{M} + \int_{\Lambda} \theta \, d\mathcal{M} \leq \lambda(A) \Rightarrow \int_{\Lambda} (h + \theta) \, d\mathcal{M} \leq \lambda(\Lambda)$, but $h + \eta > \eta$ on the set D with $M(D) > 0$, and this is a contradiction with θ being the maximum, so $\nu = 0$, and the proof is done ∎

We remember that σ –Banach algebra measure is a set function $\mathcal{M}: \Gamma \longrightarrow \mathcal{W}$ so that for each Λ in Γ ; there is a sequence $\{\Lambda_n\}$ of sets in Γ so that $\Lambda \subset \bigcup_{n=1}^{\infty} \Lambda_n$.

Corollary 3.11

Let (X, Γ) be a measurable space, M be a Banach algebra measure and λ be a σ – Banach algebra measure on Γ, so that $\lambda \ll M$. Then $\theta: \aleph \longrightarrow W$ is a non-negative measurable function so that $\lambda(\Lambda) =$ $\int_{\Lambda} \theta \, d\mathcal{M}$ for each $\Lambda \in \Gamma$. The function θ is unique a . e . [M], in other words, if η is another function that satisfies the same condition, then $\theta = \eta a.e.$.

Proof:

As long as λ is a σ – Banach algebra measure on Γ and $\aleph \in \Gamma$, then $\{A_n\}$ is a partition for the set \aleph .

We define $\lambda_n(A) = \lambda(\Lambda \cap \Lambda_n)$ for each $\Lambda \in \Gamma$, then λ_n is a Banach algebra measure on Γ for each n .

By using the proof (3.10), there is a non-negative measurable function which is $\theta_n : \mathbb{R} \longrightarrow \mathbb{W}$ so that $\lambda(\Lambda) = \int_{\Lambda} \theta_n d\mathcal{M}$ for each $A \in \Gamma$.

Therefore, $\lambda(\Lambda) = \int_{\Lambda} \theta \, d\mathcal{M}$ for each $\Lambda \in \Gamma$ so that $\theta = \sum_{n=1}^{\infty} \theta_n$

Corollary 3.12

Let (X, Γ) be a measurable space, M be a σ – Banach algebra measure and λ be a Banach algebra measure on Γ so that $\lambda \ll M$, then $\theta: \aleph \longrightarrow W$ is a non-negative measurable function so that $\lambda(\Lambda) =$ $\int_{\Lambda} \theta \, d\mathcal{M}$ for each $\Lambda \in \Gamma$. The function θ is unique a . e . $[\mathcal{M}]$, in other words, if η is another function that satisfies the same condition, then $\theta = \eta$ a.e..

Proof:

As long as M is a σ – Banach algebra measure on Γ and $\aleph \in \Gamma$, then $\{\Lambda_n\}$ is a partition for the set \aleph . Through the using of the corollary (3.11), $\theta_n: \Lambda_n \longrightarrow W$ is a non-negative measurable function with respect to Γ_{Λ_n} so that $\lambda(\Lambda \cap \Lambda_n) = \int_{\Lambda \cap \Lambda_n} \theta_n d\mathcal{M}$ for each $\Lambda \in \Gamma$

This could be written as $\lambda(\Lambda \cap \Lambda_n) = \int_{\Lambda} \theta_n d\mathcal{M}$ so that $\theta_n(\ell)$ is considered as 0 for $\ell \notin \Lambda_n$. Therefore, $\lambda(\Lambda) = \sum_{n=1}^{\infty} \lambda(\Lambda \cap \Lambda_n) = \sum_{n=1}^{\infty} \int_{\Lambda} \theta_n d\mathcal{M} = \int_{\Lambda} \theta d\mathcal{M}$ for each $\Lambda \in \Gamma$, where $\theta = \sum_{n=1}^{\infty} \theta_n$

Corollary (Radon-Nikodym theorem) 3.13

Let (X, Γ) be a measurable space, M be a σ – Banach algebra measure, and λ be a signed Banach algebra measure on Γ so that $\lambda \ll M$, then $\theta: \aleph \longrightarrow W$ is a non-negative measurable function so that $\lambda(\Lambda) = \int_{\Lambda} \theta \, d\mathcal{M}$ for each $\Lambda \in \Gamma$. The function θ is unique a. e. [M], in other words, if η is another function that satisfies the same condition, then $\theta = \eta$ a.e..

Proof:

We write $\lambda = \lambda^+ - \lambda^-$, by using the result (5.11); θ_1, θ_2 : $\aleph \rightarrow W$ are non-negative measurable functions so that $\lambda^+(\Lambda) = \int_{\Lambda} \theta_1 d\mathcal{M}$, $\lambda^-(\Lambda) = \int_{\Lambda} \theta_2 d\mathcal{M}$ for each $\Lambda \in \Gamma$, then $\lambda(\Lambda) = \int_{\Lambda} \theta d\mathcal{M}$ for each $\Lambda \in \Gamma$ where $\theta = \theta_1 - \theta_2$

Note:

It's necessary for M to be a σ – Banach algebra in Radon-Nikodym theorem otherwise the fulfillment of the theorem will not be achieved. Below, is an example that explains the un-achievement of Radon-Nikodym theorem when M is not a σ – Banach algebraLet $W = [0,1]$, $\Gamma = \beta([0,1])$ and M is a counting measure, then M is not a σ – *finite* measure (because M is a counting measure and N is an uncountable set).

If we assume that λ is a Lebesgue measure on $\Gamma = \beta([0,1])$, then $\lambda \ll M$ because if $\mathcal{M}(\Lambda) = 0$, then $\Lambda = \emptyset$ and therefore $\lambda(\Lambda) = 0$.

Assume that Radon-Nikodym theorem is achieved, in other words, θ is a measurable function so that $\lambda(\Lambda) = \int_{\Lambda} \theta \, d\mathcal{M}$ for each $\Lambda \in \Gamma$. Use $\Lambda = \{\ell\}$ and by using the equality mentioned above, we get $\theta(\ell) =$ 0 for each $\ell \in \mathcal{W}$, therefore it results in $\lambda = 0$, which means that Lebesgue measure is zero, and this is a contradiction.

Conclusion

The generalization of Jordan Hahn decomposition theorem to use it to prove the generalization of Radon-Nikodym theorem with Banach algebra valued measure.

References

- [1] A. Dold and B. Eckmann S. M. Khaleelulla, Lecture notes in mathematics edited.
- [2] Anthony L. Peressini, Ordered topological vector spaces, University of Illinois, department of mathematics, Harper & Row, publishers, New York, Evanston, and London.
- [3] Ash, R. B.: "Real analysis and Probability", University of Illinois, Academic Press (1972).
- [4] Ash, R.B. , Probability and measure theory, 2000.
- [5] D. Holland "Banach Algebra Notes", OregonState University. American, February 2015.
- [6] E.M. Stein and R. Shakarchi, Real analysis: Measure theory, integration, and hilbert spaces, Princeton lectures in analysis, Princeton University Press, 2005.
- [7] H. Raubenheimer and S. Rode "Cone in Banach Algebra", M.Sc.thesis, University of the Orange Free State, Indag.Mathem.N.S 7(4).489.502, 1996.
- [8] H. Raubenheimer and S. Rode, Con≼es in banach algebras, Indagationes Mathematicae 7 (1996), no. 4, 489– 502.
- [9] J. Diestel and J. J. Uhl, Vector measures, JR. 1977.
- [10] M.A. Naimark and L.F. Boron, Normed algebras, Monographs and textbooks on pure and applied mathematics, Springer Netherlands, 197
- [11] Mouton S. A spectral problem in ordered Banach algebras. Bulletin of the Australian Mathematical Society. Cambridge University Press; 2003;67(1):131–44.
- [12] P.D. Lax, Functional analysis, Pure and Applied Mathematics: A Wiley Series of Texts, Mono- graphs and Tracts, Wiley, 2002.
- [13] P.R. Halmos, Measure theory, Graduate Texts in Mathematics, Springer New York, 1976.
- [14] R. de Jong," Ordered Banach Algebras" Ms. Thesis, Leiden University, 2010.
- [15] Yahya W. Y., Integral of ordered Banach algebra valued measurable functions, Al-Hamdaniya University, has been accepted for publication in Volume (65) Issue (2) and will be published on February 2024 in Iraqi Journal of Science (IJS).