Soft Banach Algebra: Theory and Applications

1 . Introduction

 In topology, compact spaces and KC-spaces are of great importance in mathematics and applied sciences. Understanding the properties of these spaces provides a strong foundation for developing theories and solving problems in a wide range of fields, from pure mathematical analysis to practical applications in engineering and sciences .The definition of $\mathcal{K}c$ – space (which every compact subset is closed)was presented by $[1]$ and new concepts were introduced through the definition of the following topological spaces $\mathcal{K}(\alpha c)$ – spaces (which every compact subset is α – closed), $\alpha \mathcal{K}(\alpha c)$ – spaces (which every $q -$ compact subset is $q -$ closed) by S. K. Jassim and H. G. Ali^[2]. In this research work, the aim was to introduce new concepts of spaces, which is named $g(Kc)$ –spaces . New definitions were also introduced, which are On Weaker Forms of $g(\mathcal{K}c)$ –spaces and Co–g – compact topologies.

 A soft Banach algebra is a mathematical structure that combines elements of both Banach algebras and fuzzy sets. In a traditional Banach algebra, operations like addition and multiplication are defined in a precise, deterministic manner. Soft Banach algebras, on the other hand, introduce a degree of fuzziness or uncertainty in these operations.

In a soft Banach algebra, elements are associated with fuzzy sets, which assign degrees of membership to points in a given set. The operations of addition and multiplication are then extended to operate on these fuzzy sets in a way that respects the underlying algebraic structure.

 This concept finds applications in areas where uncertainty or imprecision play a significant role, such as in fuzzy mathematics, decision making, and optimization problems. Soft Banach algebras provide a framework to model and analyze situations where exact values are not always available or applicable.

2. Soft Algebras

The concept of soft set theory has been initiated by Molodtsov in 1999 as a general mathematical tool for modeling uncertainties. He also pointed out several application of this theory solving many practical problems in economics, engineering, social sciences, medical sciences etc. the
maid tool many practical $P(X)$ denote eory has been initiated by Molodtsov in 1993.
A E also pointed out several application of the ngineering, social sciences, medical sciences at *X* be an initial universe set and *E* be the set $A \subseteq E$.

Throughout the lecture, let X be an initial universe set and E be the set of parameters. $P(X)$ denote the power set of X and $A \subseteq E$.

Definition (2.1)

A pair from general finities. The diso pointed out

in sin economics, engineering, social science hout the lecture, let X be an initial univer

ver set of X and $A \subseteq E$.
 ion (2.1)

(*F,A*) denoted by F_A is called a soft set
 denoted by F_A is called a soft set over X, where F is a function given by $F : A \to P(X)$. In Introduction the set of the set of the samplicable.
 F : A refultion the set of the se other words the soft set over *X* is a parameterized family of subsets of the universal set *X* . For a particular **Definition (2.1)**

A pair (*F*,*A*) denoted by F_A is called a soft

other words the soft set over *X* is a paramet
 $e \in A$, $F(e)$ may be considered the set of e
 $F(e) = \phi$, i.e. $F_A = (F, A) = {F(e) \in P(X) : e}$ may be considered the set of e - approximate elements of the soft set (F, A) and if $e \notin A$, then ers. $P(X)$ denote
ven by $F : A \rightarrow P(X)$. In
al set X. For a particular
 (F, A) and if $e \notin A$, then \rightarrow *P*(*X*). In
 e a particular
 e \notin *A*, then Fhroughout the lecture, let *X* be an ini
he power set of *X* and $A \subseteq E$.
Definition (2.1)
A pair (*F*,*A*) denoted by *F_A* is called
other words the soft set over *X* is a pa
 $e \in A$, *F*(*e*) may be considered the $F(e) = \phi$, i.e. $F_A = (F, A) = \{F(e) \in P(X) : e \in A\}$ urnal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

finds applications in areas where uncertainty or imprecision play a significant role, such as

ematics, decision making, and optimization proble set over *X*, where *F* is a function
prized family of subsets of the univapproximate elements of the soft
 $\in A$
 $S(X)$, and called soft Power Set. *F* a parameterized ramity of subsets of
 $f(e) = P(X)$: $e \in A$ }
 F (*X*): $e \in A$ }
 F (*e*) = ϕ for any $e \in A$.
 F (*e*) = ϕ for any $e \in A$.
 F if *F*(*e*) = *X* for any $e \in A$. $(X): e \in A$
 Figure 44 (*K*), and called soft Power Set.
 $= \phi$ for any $e \in A$.
 $F(e) = X$ for any $e \in A$.
 $e \in A$ such that $A(e) \neq \phi$.

The set of all soft sets over X is denoted by $S(X)$, and called s , and called soft Power Set.
 $e \in A$. *A* called soft Power Set.
 A .
 $\forall e \in A$.
 $A(e) \neq \phi$.

Definition (2.2)

A soft set F_A over X is said to be

- 1. Null soft set, denoted by ϕ if $F(e) = \phi$ for any $e \in A$.
- 2. Absolute soft set, denoted by *X* if $F(e) = X$ for any $e \in A$. $e \in A$.
- 3. Non null soft set if there is at least $e \in A$ such that $A(e) \neq \emptyset$. $= \phi$ for any $e \in A$.
 $F(e) = X$ for any $e \in A$.
 $e \in A$ such that $A(e) \neq \phi$.

Definition (2.3)

Let $F_A, G_B \in S(X)$. we say that

- $=\phi$, i.e. $F_A = (F, A) = \{F(e) \in P(X) : e \in A\}$
set of all soft sets over X is denoted by $S(X)$, an
nition (2.2)
ff set F_A over X is said to be
ull soft set, denoted by ϕ if $F(e) = \phi$ for any $e \in$
solute soft set, denoted 1. F_A and G_B are soft equal (or F_A soft equals G_B), which we write as $F_A = G_B$, if $A = B$ $F_A = G_B$, if $A = B$ $A = B$ soft set, denoted by ϕ if $F(e) = \phi$ for
lute soft set, denoted by *X* if $F(e) =$
null soft set if there is at least $e \in A$ s
ion (2.3)
 $G_B \in S(X)$. we say that
d G_B are soft equal (or F_A soft equals
 $F(e) = G(e)$ for all *e* and *e* a soft equals G_B *e* soft equals G_B *e* which we write as *P* and *e* \in *A* . *G_B*), which we write as $F_A = G_B$, if $A = B$
 $F_A \subseteq G_B$ if $A \subseteq B$ and $F(e) \subseteq G(e)$ for all $e \in A$
iff $F_A \subseteq G_B$ and $G_B \subseteq F_A$ *F* equals G_B , which we write as $F_A = G_B$, if $A =$
oted by $F_A \subseteq G_B$ if $A \subseteq B$ and $F(e) \subseteq G(e)$ for
 $F_A = G_B$ iff $F_A \subseteq G_B$ and $G_B \subseteq F_A$
and denoted by $F_A \subset G_B$ if $A \subset B$ and $F(e) \subset$
- and $F(e) = G(e)$ for all
- 2. F_A is a soft subset of G_B , and denoted by $F_A \subseteq G_B$ if $A \subseteq B$ and $F(e) \subseteq G(e)$ for all we write as $F_A = G_B$, if $A = B$
 $A \subseteq B$ and $F(e) \subseteq G(e)$ for all $e \in A$.
and $G_p \subset F$. $F_A = G_B$, if $A = B$
 $F(e) \subseteq G(e)$ for all $e \in A$. $e \in A$.

Hence
$$
F_A = G_B
$$
 iff $F_A \subseteq G_B$ and $G_B \subseteq F_A$

), which we write as $F_A = G_B$, if $A = B$
 $\subseteq G_B$ if $A \subseteq B$ and $F(e) \subseteq G(e)$ for all $e \in A$.
 $F_A \subseteq G_B$ and $G_B \subseteq F_A$
 \exists by $F_A \subset G_B$ if $A \subset B$ and $F(e) \subset G(e)$ for rite as $F_A = G_B$, if $A = B$
 B and $F(e) \subseteq G(e)$ for all $e \in A$.
 $G_B \subseteq F_A$

if $A \subset B$ and $F(e) \subset G(e)$ for 3. F_A is a soft proper subset of G_B , and denoted by $F_A \subset G_B$ if $A \subset B$ and $F(e) \subset G(e)$ for ch we write as $F_A = G_B$, if $A = B$

if $A \subseteq B$ and $F(e) \subseteq G(e)$ for all $e \in A$.
 G_B and $G_B \subseteq F_A$
 $F_A \subset G_B$ if $A \subset B$ and $F(e) \subset G(e)$ for as $P_A - O_B$, $H_A - B$

and $F(e) \subseteq G(e)$ for all $e \in A$.
 $\subseteq F_A$
 $A \subset B$ and $F(e) \subset G(e)$ for if $A = B$
 F(*e*) for all $e \in A$.
 F(*e*) \subset *G*(*e*) for all $e \in A$. is a sort subset of G_B , and denoted by F_A

Hence $F_A = G_B$ iff

is a soft proper subset of G_B , and denoted
 $e \in A$.

Definition (2.4)

A soft set F_A over X is called

1.A soft point and its denoted by $P_e = (e, F(e))$, if exactly one arizmi (JIKh) Volume:8 Issue:2 Year: 202
 $x^x = \{(e, F(e))\}$, if exactly one $e \in A$, $F(e)$

all $y \in A | \{e\}$.

X such that $F(e) = \{x\}$ for all $e \in A$. warizmi (JIKh) Volume:8 Issue:2 Year
 $p_e^x = \{(e, F(e))\}$, if exactly one $e \in A$
 r all $y \in A | \{e\}$.
 $\in X$ such that $F(e) = \{x\}$ for all $e \in A$ 2.4)

⁴ over *X* is called

and its denoted by $P_e^x = \{(e, F(e))\}$, if ex
 $x \in X$ and $F(y) = \phi$ for all $y \in A | \{e\}$. Iraqi Al-Khwarizmi (JIKh) Volume:8
 S called
 F(*y*) = ϕ for all $y \in A \setminus \{e\}$
 F(*y*) = ϕ for all $y \in A \setminus \{e\}$
 F there is $x \in X$ such that $F(e) = \{x\}$ *zmi* (*JIKh*) Volume:8 Issue:2 Year: 2024 pa
 $\{(e, F(e))\}$, if exactly one $e \in A$, $F(e) = \{x \}$
 $y \in A | \{e\}$.

Such that $F(e) = \{x\}$ for all $e \in A$. $y^{p_e} = \{(e, F(e))\}$, if exactly one $e \in A$, F
for all $y \in A | \{e\}$.
 $x \in X$ such that $F(e) = \{x\}$ for all $e \in A$. For all P is the *F* (*e*) = {*x* } if exactly one $e \in A$, $F(e) = \{x\}$
 $F(e) = \{x\}$ for all $e \in A$. $\in A$, $F(e) = \{x\}$
 $e \in A$.

for some $x \in X$ and $F(y) = \varphi$ for all $y \in A \setminus \{e\}$.

2. A singleton soft set if there is $x \in X$ such that $f'(e) = \{x \}$ for all

Definition (2.5)

Let $F_A \in S(X)$. An element $x \in X$ is said to be belongs to the soft set F_A over X, denoted by $x \in F_A$ if ft set F_A over X is called
soft point and its denoted by $P_e^x = \{(e, F(e))$
or some $x \in X$ and $F(y) = \phi$ for all $y \in A \mid \{e\}$
singleton soft set if there is $x \in X$ such that
nition (2.5)
 $F_A \in S(X)$. An element $x \in X$ is $\neq \phi$ for all $y \in A | \{e\}$.
 ϕ is $x \in X$ such that $F(e) = \{x\}$ for all $e \in A$
 $x \in X$ is said to be belongs to the soft set F_A
 ϕ ar words, we say that $x \in F_A$ read as X belon $x \in F_A$ if 1.A soft point and its denoted by $P_e = \{(e, e, e) \}$
for some $x \in X$ and $F(y) = \phi$ for all $y \in A$
2. A singleton soft set if there is $x \in X$ such
Definition (2.5)
Let $F_A \in S(X)$. An element $x \in X$ is said to
 $x \in F(e)$ for all for all $e \in A$. In other words, we say that $x \in F_A$ read as x belongs to the soft set F_A oft set if there is $x \in X$ such that $F(e) = \{x \}$
An element $x \in X$ is said to be belongs to th
 $e \in A$. In other words, we say that $x \in F_A$ rea
(e) for all $e \in A$. $(e) = \{x\}$ for all $e \in A$.

parameters of the soft set F_A over X , denoted by $x \in F_A$ read as X belongs to the soft set F_A whenever $x \in F(e)$ for all *x* \in *x* and $F(y) = \phi$ for all $y \in A | \{e\}$.
 ton soft set if there is $x \in X$ such that $F(e)$

(2.5)

(*X*). An element $x \in X$ is said to be belongs

or all $e \in A$. In other words, we say that $x \in I$
 $x \in F(e)$ for al *e e x* is said to be belongs to the soft set *i* ther words, we say that $x ∈ F_A$ read as *x* bel $e ∈ A$. *x* ∈ *X* is said to be belongs to the soft set \in *A*. In other words, we say that $x \in F_A$ read as ∞ b \in *N* or all $e \in A$.
x ∈ *X*, $x \notin F_A$, if $x \notin F(e)$ for some $e \in A$. *z x* such that $F(e) = \{x\}$ for all $e \in A$.
is said to be belongs to the soft set F_A over .
ds, we say that $x \in F_A$ read as x belongs to to $x \notin F(e)$ for some $e \in A$. *e* a to the soft set F_A over X , denoted by $x \in F_A$
 e F_A read as X belongs to the soft set F_A
 $e \in A$. An element $x \in X$ is said to be belongs to the soft set F_A over $\lambda e \in A$. In other words, we say that $x \in F_A$ read as x belongs to the soft of λ for all $e \in A$.
 $y \in X$, $x \notin F_A$, if $x \notin F(e)$ for some $e \in A$.

Exerc $x \in F(e)$ for all $e \in A$. In other words, we say t
whenever $x \in F(e)$ for all $e \in A$.
Note that for any $x \in X$, $x \notin F_A$, if $x \notin F(e)$ for
Definition (2.6)
Let X be a nonempty set and A be a nonempty
1. The function $\varepsilon : A$

Note that for any , if $x \notin F(e)$ for some

Definition (2.6)

Let X be a nonempty set and A be a nonempty parameter set.

1. The function $\varepsilon: A \to X$ is said to be a soft element of *X* .

2. A soft element ε of is said to belongs to a soft set B of X, which is denoted by $\varepsilon \in \overline{B}$, if for all $e \in B$ if. pty set and *A* be a nonempty parameter set.
 $A \rightarrow X$ is said to be a soft element of *X*.

of is said to belongs to a soft set *B* of *X*, v
 $e \in B$ if

Definition (2.7)

Let \Box be the set of real numbers and $B(\Box)$ be the collection of all nonempty bounded subsets of and ngs to a soft set *B* of *X*
 $B(\Box)$ be the collection of
ction $F : A \rightarrow B(\Box)$ is ca *A* taken as a set of parameters. The function $F : A \to B(\square)$ is called a soft real set. It is denoted by (F, A) or For some $e \in A$.
 F alternation of *X*.
 F alternation of *X* and f and and A
 (F, A) or F_A *F* all nonempty bounded
alled a soft real set. It is
F(*e*) is a subset of the s tion $F: A \to B(\square)$ is called a soft real set. It
regative soft real set if $F(e)$ is a subset of th
 $e \in E$. The set of all nonnegative $(E)^*$ denote the set of all nonnegative

1. A soft real set F_A is said to be nonnegative soft real set if is a subset of the set of

nonnegative real numbers for each $e \in E$.

2. Let \Box (E) denotes the set of all soft real sets .Also \Box (E)^{*} denote the set of all nonnegative real set F_A is said to be nonnegative and
gative real numbers for each $e \in E$.
(*E*) denotes the set of all soft real sets

soft real sets.

If specifically F_A is a singleton soft set, then identifying F_A with the corresponding soft element, it will be called a soft real number and denoted r , s , t etc. hence \Box (*E* $*$ denote the set of all nonnegative
 $*$ with the corresponding soft element,
 (E) denote the set of all sort real num denote the set of all sort real numbers. ft real sets .Also \Box (*E*)^{*} denote the set of all not
set, then identifying F_A with the corresponding
 $1 \tilde{r}$, \tilde{s} , \tilde{t} etc. hence \Box (*E*) denote the set of all
 $\tilde{0}(e) = 0$, $\tilde{1}(e) = 1$ for all e with the corresponding soft element, it will E) denote the set of all sort real numbers.
 $e \in E$, respectively.

0, 1 are the soft real numbers where $0(e) = 0$, $1(e) = 1$ for all $e \in E$, respectively.

Definition (2.8)

Let $F_A, G_B \in S(X)$

Journal of Iraqi Al-Khwarizmi (JIKh) Vo
 nition (2.8)
 $F_A, G_B \in S(X)$

the union of F_A and G_B over X, denoted by $F_A \cup$
 $F_A \cup G_B \subseteq C$ 1. The union of F_A and G_B over X, denoted by $F_A \cup G_B$ is the soft set H_C where $C = A \cup B$ and *F_A* \cup *G_B* is the soft set H_c where $C = A \cup B$ and pages: $44-68$
C = $A \cup B$ and for all $e \in C$, Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year:
 n (2.8)
 $e \in S(X)$

ion of $\begin{aligned} F_A \text{ and } G_B \text{ over } X \text{, denoted by } F_A \cup G_B \text{ is the soft set } H_C \\ e \in C \text{,} \\ H(e) = \begin{cases} F(e), & e \in A \mid B \\ G(e), & e \in B \mid A \\ F(e) \cup G(e), & e \in A \cap B \end{cases} \\ \text{written as } F_A \cup G_B = H_C \\ \text{ersection$ varizmi (JIKh) Volume:8 Issue:2 Year:
 $(e) =\begin{cases} F(e), & e \in A \mid B \\ G(e), & e \in B \mid A \\ F(e) \cup G(e), & e \in A \cap B \end{cases}$.

er X, denoted by $\begin{aligned} F_A \cap G_B &\text{is the soft s} \\ F_A \cap G_B &\text{is the soft s} \end{aligned}$ IIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 *F*_{*k*} \cup *G_{<i>B*} is the soft set H_c where $C = A \cup B$ and
 F(*e*), $e \in A \mid B$
 G(*e*), $e \in B \mid A$

(*e*) \cup *G*(*e*), $e \in A \cap B$

Period by $F_A \cap G_B$ is the soft set *H e G e e B A* (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

ed by $F_A \cup G_B$ is the soft set H_c where $C = A \cup B$ and
 $F(e)$, $e \in A \mid B$
 $G(e)$, $e \in B \mid A$
 $F(e) \cup G(e)$, $e \in A \cap B$

denoted by $F_A \cap G_B$ is the soft set H_c where $C = A \cap B$
 cmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

moted by $F_A \cup G_B$ is the soft set H_c where $C = A \cup B$ and
 $= \begin{cases} F(e), & e \in A \mid B \\ G(e), & e \in B \mid A \\ F(e) \cup G(e), & e \in A \cap B \end{cases}$
 X , denoted by $F_A \cap G_B$ is the soft set H_c where C ii (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

Med by $F_A \cup G_B$ is the soft set H_C where $C = A \cup B$ and
 $\begin{cases} F(e), & e \in A \mid B \\ G(e), & e \in B \mid A \\ F(e) \cup G(e), & e \in A \cap B \end{cases}$

, denoted by $F_A \cap G_B$ is the soft set H_C where $C = A \cap B$
 and G_B over X , denoted by $F_A \cup G_B$ is the soft set H_C where $C = A$
 $H(e) = \begin{cases} F(e), & e \in A \mid B \\ G(e), & e \in B \mid A \\ F(e) \cup G(e), & e \in A \cap B \end{cases}$
 $F_A \cup G_B = H_C$
 $f \in H_A$ and G_B over X , denoted by $F_A \cap G_B$ is the soft set H_C where \cup *B* and
 $C = A \cap B$ *e C* , *H e F e G e* () () () *FR* and *FR* and *FR* H_c where $C = A \cup B$ and $A \mid B$
 FR $A \cap B$
 FR $\cap G_B = H_c$
 FR $\cap G_B = H_c$ Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 - pages: 44-68
 straition (2.8)

(**Finition (2.8)**

(**Fig. 6.6** (*Fig.* G_x over X , denoted by $F_X \cup G_x$ is the soft set H_x where $C = A \cup B$ and

for al **finition (2.8)**

IF F_s , $G_s \in S(X)$

The union of \overline{F}_A and G_s over X , denoted by $F_s \cup G_{\overline{s}}$ is the soft set H_c where $C = A \cup B$ and
 $H(c) = \begin{cases} F(c), & c \in A \mid B \\ G(c), & c \in B \mid A \end{cases}$

and is written as $F_s \cup G_s = H_c$

The Learnal of leasi Al-Klossnizmi (JIKly Volume:8 Issue.2 Year. 2024 pages: 44-68

Definition (2.8)

1. The union of ^{F_x} and ^G_F over X, denoted by $F_x \vee G_y$ is the soft set H^2 where $C = A \vee B$ and

for all ${}^E C$, Journal of least Al Kleoarizm (JIKb) Volume N issue 2 Year 2024 pages: 44 68

Definition (2.8)

Let $F_*(G_i \leq S(X)$
 $\int_{\Omega} \cos (t - t_{\text{end}}) \frac{F_*(s)}{s}$, denoted by $F_*(s)G_0$ is the soft of $\frac{H_0}{s}$ where $C = A \cup B$ and
 \int

hwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

\n
$$
X \text{ , denoted by } F_A \cup G_B \text{ is the soft set } H_C \text{ where } C = A \cup B \text{ and}
$$
\n
$$
H(e) = \begin{cases} F(e), & e \in A \mid B \\ G(e), & e \in B \mid A \\ F(e) \cup G(e), & e \in A \cap B \end{cases}
$$
\n•c.

\nover X , denoted by $F_A \cap G_B$ is the soft set H_C where $C = A \cap B$

\n○ $\cap G(e)$, and is written as $F_A \cap G_B = H_C$.

and is written as $T_A \cup \mathbf{G}_B - \mathbf{H}_C$.

2. The intersection of F_A and G_B over X , denoted by $F_A \cap G_B$ is the soft se $e \in A \mid B$
 $e \in B \mid A$
 $e \in A \cap B$
 $F_A \cap G_B$ is the soft set H_C where $C = A \cap B$
 $F_A \cap G_B = H_C$ is the soft set H_c where $C = A \cap B$

and for all $e \in C$, $H(e) = F(e) \cap G(e)$, and is written as $T_A \cap G_B = H_C$.

Definition (2.9)

Let X be a linear space over a field F and let A be a parameter set. Let F_A and G_A be two soft set over *X* and $\lambda \in F$. Define be a parameter set. Let F_A and G_A be two a
 $e \in A$ \vec{r}_B is the soft set H_c where $C = A \cap B$
 $\vec{r}_A \cap G_B = H_c$

eter set. Let F_A and G_A be two soft set over
 n for all $e \in A$
 $A = \{1, 2, 3, \dots, n\}$ be the set of

is 0}, $i = 1, 2, \dots, n$. *H*(*e*) = *F*(*e*) ∩ *G*(*e*), and is written as $F_A \cap G_B = H_C$.

cc over a field F and let *A* be a parameter set. Let F_A and G_A be two soft set ove
 $x \in F(e)$, $y \in G(e)$ for all $e \in A$
 F(*e*) for all $e \in A$

soft se 2. The intersection of F_A and G_B over χ , denoted by $F_A \cap G_B$ is the soft set H_C where $C = A \cap B$
and for all $e \in C$, $H(e) = F(e) \cap G(e)$, and is written as $F_A \cap G_B = H_C$.
Definition (2.9)
Let χ be a linear space over

1.
$$
(F+G)(e) = {x+y : x \in F(e), y \in G(e)}
$$
 for all $e ∈ A$

2. $(\lambda F)(e) = {\lambda x : x \in F(e)}$ for all

e and let *A* be a parameter set. Let F_A and
 $G(e)$ for all $e \in A$
 $e \in A$
 (X, A) , then
 $x_n : x_i \in F(e), \quad i = 2, 3, \dots, n$ for all $e \in A$ If F_1, F_2, \dots, F_n are *n* soft sets over (X, A) , then The intersection of F_A and G_B over X , denot
and for all $e \in C$, $H(e) = F(e) \cap G(e)$, and is
finition (2.9)
t X be a linear space over a field F and let A
and $\lambda \in F$. Define
 $(F+G)(e) = \{x + y : x \in F(e), y \in G(e)\}$ for all
 $(\lambda$ $(F_1 + F_2 + \cdots, F_n)(e) = \{x_1 + x_2 + \cdots + x_n : x_i \in F(e), \quad i = 2, 3, \dots, n\}$ for all $e \in A$ $e \in A$:

if space over a field F and let A be a parameter set. Let F_A and

befine
 $x + y : x \in F(e), y \in G(e)$ for all $e \in A$
 $\exists : x \in F(e)$ for all $e \in A$

re n soft sets over (X, A) , then
 $(e) = \{x_1 + x_2 + \cdots + x_n : x_i \in F(e), i = 2, 3, \cdots, n\}$

Example (2.10)

Consider the Euclidian *n*-dimensional space \Box " over \Box . Let $A = \{1, 2, 3, \dots, n\}$ be the set of parameters. Let $F: A \to P(\square^n)$ be defined as follows : for all $e \in A$
= {1, 2, 3, ..., *n*} be the set of
0}, $i = 1, 2, \dots, n$.

$$
F(i) = \{t \in \square^n : i \text{ -th co} - \text{ordinate of } t \text{ is } 0\}, i = 1, 2, \cdots, n
$$

Then *F* is a soft linear space or soft linear space of \Box ⁿ over \Box .

Theorem (2.11)

for all soft sets F_A and G_A over X and $\lambda \in F$.

Proof :

$$
(\lambda(F+G))(e) = \{\lambda z : z \in (F+G)(e)\} = \{\lambda(x+y) : x \in F(e), y \in G(e)\} = \{\lambda x + \lambda y : x \in F(e), y \in G(e)\}
$$

$$
(\lambda F + \lambda G)(e) = \{x' + y' : x' \in (\lambda F)(e), y' \in (\lambda G)(e)\} = \{x'' + \lambda y'' : x'' \in F(e), y'' \in G(e)\}
$$

Hence the result follows.

Theorem (2.12)

Let F_A be a soft set over X *X*

1. If e the result follows.
 rem (2.12)
 F_A be a soft set over *X*
 $x \in X$, then $x + F_A$ is a soft set over *X* defin
 $(x + F)(e) = \frac{x + F}{2}$, then bllows.
 $x + F_A$ is a soft set over *X* defined as fo
 $(x + F)(a) = f x + y : y \in F$ is a soft set over *X* defined as follows :

$$
x \text{ set over } X \text{ defined as follows :}
$$
\n
$$
(x + F)(e) = \{x + y : y \in F(e)\} \text{ for all } e \in A
$$

2. If $M \subseteq X$, then $M + F_A$ is a soft set over X defined as follows : **r**_{*A*} be a soft set over *X*
 $X \in X$, then $x + F_A$ is a soft set over *X* define
 $(x + F)(e) = \{x + y\}$
 $M \subseteq X$, then $M + F_A$ is a soft set over *X* define
 $M + F_A = \left| \int (x + F_A)$, i.e. $(x + F_A)$

1 of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
\n' + y': x' ∈ (λF)(e), y' ∈ (λG)(e)} = {λx" + λy": x" ∈ F(e), y" ∈ G(e)}
\nllows.
\n
$$
+ F_A
$$
 is a soft set over X defined as follows :
\n
$$
(x + F)(e) = {x + y : y ∈ F(e)} \text{ for all } e ∈ A
$$

\n
$$
M + F_A
$$
 is a soft set over X defined as follows :
\n
$$
M + F_A = \bigcup_{x \in M} (x + F_A), \text{ i.e. } (x + F)(e) = {x + y : y ∈ F(e)} \text{ for all } e ∈ A
$$

\n
$$
A \circ B \circ B \circ B \circ C
$$

Definition (2.13)

qi Al-Khwarizmi (JIKh) Volume:
 $x' \in (\lambda F)(e), y' \in (\lambda G)(e)$ } = { $\lambda x''$
 X

s a soft set over X defined as follo
 $(x+F)(e) = \{x + y : y \in F(e) \}$
 \int_{A}^{x} is a soft set over X defined as f
 $\int_{A}^{x} = \bigcup_{x \in M} (x + F_A)$, i.e. $(x+F)(e) = \$ *M* of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year
 $f' + y' : x' \in (\lambda F)(e), y' \in (\lambda G)(e)$ = $\{\lambda x'' + \lambda y'' : x'' \in F$

lows.
 A w K F_A is a soft set over *X* defined as follows :
 $(x + F)(e) = \{x + y : y \in F(e)\}$ for all $e \in M + F_A$ is a Fraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

y': $x' \in (\lambda F)(e), y' \in (\lambda G)(e)$ } = $\{\lambda x'' + \lambda y'' : x'' \in F(e), y'' \in G(e)\}$

svs.

wer X
 Γ_A is a soft set over X defined as follows :
 $(x + F)(e) = \{x + y : y \in F(e)\}$ for Kh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $F(r(\epsilon)) = \{ \lambda x'' + \lambda y'' : x'' \in F(\epsilon), y'' \in G(\epsilon) \}$
 $F(r(\epsilon)) = \{ x + y : y \in F(\epsilon) \}$ for all $\epsilon \in A$
 $F(r(\epsilon)) = \{ x + y : y \in F(\epsilon) \}$ for all $\epsilon \in A$
 $F(r(\epsilon)) = \{ x + y : y \in F(\epsilon) \}$ for all $\epsilon \in A$
 $F(r(\epsilon))$ for Let X be a linear space over a field F and let A be the parameter set . A soft set F_A over X is said to be a soft linear space or soft vector space of X over F if $F(e)$ is a subspace of X for all $e \in A$. $(e) = {x + y : y \in F(e)}$ 1
 F(*e*) is a subspace of *X* $e \in X$ is said to be a
 $e \in A$. *A* be the parameter set . A soft set F_A over
x F if $F(e)$ is a subspace of *X* for all $e \in$
 $x \in X$ and F_A be a *G F A A* En $M + F_A$ is a soft set over X defined as follow
 $M + F_A = \bigcup_{x \in M} (x + F_A)$, i.e. $(x + F)(e) = \{x + y :$

(a)

(b)

(c)

(d)

(d)

(d)

(d)

F and let A be the parameter :

(or soft vector space of X over F if $F(e)$ is a sub

(c)
 over *X* is said to be a

Il $e \in A$.

ver F if
 $\alpha G_A + \beta G_A \subseteq G_A$

Definition (2.14)

Let X be a linear space over a field F. Let $x \in X$ and F_A be a

A soft set G_A over X is said to be a soft subspace of a soft linear space F_A of X over F if *Example 1* F_A be a
oft subspace of a soft linear space F_A of X or $e \in A$. pace of a soft linear space of X
G(*e*) is a subspace of X *X* over F if
 $e \in A$.

- 1. $G_A \subseteq F_A$, i.e. $G_A(e) \subseteq F_A(e)$ for all
- 2. G_A is a soft linear space of X over F, i.e. $G(e)$ is a subspace of X for all $e \in A$.

Theorem (2.15)

Learnal of leapi ALK bearizoni (IIKh) Volume 8 1saac2 Year 2024 pages 44.68
 $(\lambda F + \lambda O)(x) = (x^2 - y^2)$, $x^2 \le \lambda F(x)$, $y^2 \in \lambda G(\rho x) = -(\lambda x^2 - \lambda y^2)$, $x^2 \in F(x)$, $y^2 \in O(e)$

Hence the result fullows.

Learner and actioner χ A soft subset G_A of a soft linear space F_A of X over F is a soft subspace of F_A iff $\alpha G_A + \beta G_A \subseteq G$ for all $\alpha, \beta \in F$. set G_A over X is said to be a soft subsp
 $\equiv F_A$, i.e. $G_A(e) \subseteq F_A(e)$ for all $e \in A$.

is a soft linear space of X over F, i.e. (

em (2.15)

subset G_A of a soft linear space F_A of X
 $\alpha, \beta \in F$. $e \in A$. (and of Iraqi, Al-Khwarizmi (JIKh) Voltamest Issue2 Year: 2024 pages: 44-68

($x^2 - y^2, y^2 \in (LF)(\delta, \gamma') \in (L(G)(\delta))$ = = { $Ax^2 - Ay^2, y^2 \in F(\epsilon), y^2 \in G(\epsilon)$ }

follows.

tertuver X

tertuver X

tertuver X
 $x + F_1$ is a suif set over subset *G_A* of a soft linear space *F_A* of *X* over
 α, *β* ∈ F.

Let *F_A* be a soft linear space of *X* over F

uppose that *G_A* is a soft subspace of *F_A*, then
 $\equiv A$, then $(\alpha G + \beta G)(e) = \{x' + y' : x' \in \alpha G(e), \}$ *x y G e* () Its a subspace of X for all $e \in A$.

(be a

ft linear space F_A of X over F if
 F_A over F if $\alpha G_A + \beta G_A \subseteq G_A$

a soft subspace of F_A iff $\alpha G_A + \beta G_A \subseteq G_A$

is a subspace of X for all $e \in A$.
 $G(e)$ = $\{\alpha x + \beta y$ *G F_A*, i.e. $G_A(e) \subseteq F_A(e)$ for all $e \in A$.

s a soft linear space of *X* over *F*, i.e. $G(e)$ is a subspace of *X* for all $e \in A$.
 am (2.15)

subset G_A of a soft linear space F_A of *X* over *F* is a soft subspac

Proof :

Let F_A be a soft linear space of X over F F₁

Suppose that G_A is a soft subspace of F_A , then $G(e)$ is a subs $G(e)$ is a subspace of X is a subspace of X for all $e \in A$.

for all
$$
\alpha, \beta \in F
$$
.
\nProof:
\nLet F_A be a soft linear space of X over F
\nSuppose that G_A is a soft subspace of F_A , then $G(e)$ is a subspace of X for all $e \in$
\nLet $e \in A$, then $(\alpha G + \beta G)(e) = \{x' + y' : x' \in \alpha G(e), y' \in \lambda G(e)\} = \{\alpha x + \beta y : x, y \in G(e)\}$
\nSince $x, y \in G(e)$ and $\alpha, \beta \in F$, then $\alpha x + \beta y \in G(e)$, so $(\alpha G + \beta G)(e) \subseteq G(e)$
\nHence $\alpha G_A + \beta G_A \subseteq G_A$ for all $\alpha, \beta \in F$.

Since $x, y \in G(e)$ and $\alpha, \beta \in F$, then $\alpha x + \beta y \in G(e)$, so

Hence $\alpha G_A + \beta G_A \subseteq G_A$ for all

Conversely, let the given condition hold.

For Journal of Iraqi Al-Khwarizmi (

versely, let the given condition hold.
 $e \in A$ let $x, y \in G(e)$ and $\alpha, \beta \in F$, then and $\alpha, \beta \in F$, then

urnal of Iraqi Al-Khwarizmi (JIKh) Volume:8
 x, $y \in G(e)$ and $\alpha, \beta \in F$, then $(\alpha G + \beta G)(e) =$
 $G_A \subseteq G_A$ for all $\alpha, \beta \in F$, i.e. $(\alpha G + \beta G)(e) \subseteq$ l-Khwarizmi (JIKh) Volume:8 Issue:2 Y

ition hold.
 $\alpha, \beta \in F$, then $(\alpha G + \beta G)(e) = {\alpha x + \beta}$
 $\alpha, \beta \in F$, i.e. $(\alpha G + \beta G)(e) \subseteq G(e)$, so (Kh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $(\alpha G + \beta G)(e) = {\alpha x + \beta y : x, y \in G(e)}$
 $\alpha G + \beta G)(e) \subseteq G(e)$, so ${\alpha x + \beta y : x, y \in G(e)} \subseteq G(e)$
 $\alpha, \beta \in F$, i.e. $G(e)$ is a subspace of X for all $e \in A$.

(e) for all $e \in A$. Since $\alpha G_A + \beta G_A \subseteq G_A$ for all $\alpha, \beta \in F$, i.e. $(\alpha G + \beta G)(e) \subseteq G(e)$, so *Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 4*
 Findal Findal A A A A A A A A G A G A G A B G A B G A B E A Let X, y C G e D A EXECTIVE EXECT:

For September 1917

September 1923

For September 1923

For September 1923

For September 1924

For Sept JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $(\alpha G + \beta G)(e) = {\alpha x + \beta y : x, y \in G(e)}$
 $(\alpha G + \beta G)(e) \subseteq G(e)$, so ${\alpha x + \beta y : x, y \in G(e)} \subseteq G(e)$
 $d \alpha, \beta \in F$, i.e. $G(e)$ is a subspace of X for all $e \in A$.

(e) for all $e \in A$. fear: 2024 pages: 44-68
 $y: x, y \in G(e)$
 $\{\alpha x + \beta y: x, y \in G(e)\} \subseteq G(e)$

behavior of X for all $e \in A$. *Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024*
 xely, let the given condition hold.
 A let $x, y \in G(e)$ and $\alpha, \beta \in F$, then $(\alpha G + \beta G)(e) = {\alpha x + \beta y : x, y \in G}$
 $\alpha G_A + \beta G_A \subseteq G_A$ for all $\alpha, \beta \in F$, i.e. $(\alpha$ -Khwarizmi (JIKh) Volume:8 Issue:2 Year: 20

tion hold.
 $x, \beta \in F$, then $(\alpha G + \beta G)(e) = {\alpha x + \beta y : x, y \in \alpha, \beta \in F}$, i.e. $(\alpha G + \beta G)(e) \subseteq G(e)$, so ${\alpha x + \beta x, y \in G(e)}$ and $\alpha, \beta \in F$, i.e. $G(e)$ is a subspace

i.e. $G_A(e) \subseteq F_A(e)$ for all Kh) Volume:8 Issue:2 Year: 2024 page
 $(\alpha G + \beta G)(e) = {\alpha x + \beta y : x, y \in G(e)}$
 $\alpha G + \beta G)(e) \subseteq G(e)$, so ${\alpha x + \beta y : x, y \in \alpha, \beta \in F}$, i.e. $G(e)$ is a subspace of X for all $e \in A$. $=\{\alpha x + \beta y : x, y \in G(e)\}$
 $\subseteq G(e)$, so $\{\alpha x + \beta y : x, G(e)\}$ is a subspace of X $e \subseteq G(e)$
 $e \in A$. hwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pm

n hold.
 $\beta \in F$, then $(\alpha G + \beta G)(e) = {\alpha x + \beta y : x, y \in G(e)}$
 $\beta \in F$, i.e. $(\alpha G + \beta G)(e) \subseteq G(e)$, so ${\alpha x + \beta y : x \in G(e)}$ and $\alpha, \beta \in F$, i.e. $G(e)$ is a subspace of 2
 $G_A(e) \subseteq F_A(e)$ for al $(e) = \{ax + \beta y : x, y \in G(e)\}\$

(e) $\subseteq G(e)$, so $\{ax + \beta y : x, y \in G(e)\} \subseteq G(e)\$
 e. $G(e)$ is a subspace of *X* for all $e \in A$.
 $e \in A$.

Hence $\alpha x + \beta y \in G(e)$ for all $x, y \in G(e)$ and $\alpha, \beta \in F$, i.e. $G(e)$ is a subspace of X for all $e \in A$.

Since G_A is a soft subset F_A , i.e. $G_A(e) \subseteq F_A(e)$ for all

Therefore G_A is a soft subspace of F_A .

Corollary (2.16)

If G_A and H_A are soft subspaces of F_A of X over F, then $G_A + H_A$ and λF_A are soft subspaces of $G(e)$ is a subspace of *X* for all $e \in A$.

4.
 $G_A + H_A$ and λF_A are soft subspaces of F_A of X over F. F. G_A and H_A are soft subspaces of F_A of X over F , then $G_A + H_A$ and λF_A are soft subsorption of X over F .
 rollary (2.17)
 G_i) baa family of soft subspace of F_A of X over F , then $\bigcap_{i \in J} G_i$ is a spaces of F_A of X over F , then $G_A + H_A$ and λF_A are soft subspaces of
ubspace of F_A of X over F , then $\bigcap_{i \in J} G_i$ is a soft subspace of F_A of X over F .
field F and let A be the parameter set. A s erefore G_A is a soft subspace of F_A .
 rollary (2.16)
 G_A and H_A are soft subspaces of F_A of X over F , then $G_A + H_A$ and λF_A are soft subspaces of

of X over F .
 rollary (2.17)
 (G_i) haa family of

Corollary (2.17)

If ${ \bf i}$
Example 12.17 ${ G_i }$ baa family of soft subspace baa family of soft subspace of F_A of X over F, then $\bigcap G_i$ is a soft subspace of $\bigcap_{i \in J} G_i$ is a soft subset G_i is a soft subspace of F_A of X over F. F .

 $\in J$

Definition (2.18)

pace of F_A of X over F , then $\bigcap_{i \in J} G_i$ is a soft subspace of F_A of X over F .
d F and let A be the parameter set. A soft set F_A over X is said to be $F(e)$ is a subalgebra of X for all $e \in A$. Let X be an algebra over a field F and let A be the parameter set. A soft set F_A over X is said to be a soft algebra of X over F if $F(e)$ is a subalgebra of X for all $e \in A$. **(G_i**) baa family of soft subspace of F_A
 finition (2.18)

t X be an algebra over a field F and level of algebra of X over F if $F(e)$ is a su

s very easy to see that in a soft algebra
 $(xy)\tilde{z} = x(y\tilde{z})$
 $x(y + \tilde{z$ *A* be the parameter set. A soft set F_A over X
 x balgebra of X for all $e \in A$.

the soft elements satisfy the properties :
 $y \tilde{z}$
 $x, y, \tilde{z} \in F_A$ and for any soft scalar λ ,
 $x, y, \tilde{z} \in F_A$ and for any ft subspace of F_A of X over F , then $\bigcap_{i \in J} G_i$ is a soft subspace of F_A of X over F .

or a field F and let A be the parameter set. A soft set F_A over X is said to be
 F F if $F(e)$ is a subalgebr over F, then $\bigcap_{i \in J} G_i$ is a soft subspace of F_A of X over F.

e the parameter set. A soft set F_A over X is said to be

bra of X for all $e \in A$.

ft elements satisfy the properties :
 $\in F_A$ and for any soft

It is very easy to see that in a soft algebra the soft elements satisfy the properties :

- 1. $(xy)\overline{z} = x(y\overline{z})$
- 2. $x(y + z) = xy + xz$ and
- 3. $\lambda(xy) = (\lambda x)y = x(\lambda y)$ where for all $x, y, z \in F_A$ and for any soft scalar $e \in A$

and $(\lambda x)(e) = \lambda(e)x(e)$ for all

Definition (2.19)

Let F_A be a soft algebra of X over F F₁

- 1. F_A is called a commutative soft algebra if $xy = yx$ for all
- $\tilde{z} \in F_A$ and for any soft scalar λ ,
 d $(\lambda x)(e) = \lambda(e)x(e)$ for all $e \in A$
 xy = *yx* for all *x*, $y \in F_A$

mtity of F_A if $x \tilde{e} = \tilde{e}x = x$ for all *x*. s and *x* (*e*) for all $e \in A$
 $x, y \in F_A$
 $= e^x x = x$ for all $x \in F_A$ 2. A soft element gebra of *X* over F
pommutative soft algebra if $xy = yx$ for all $\tilde{e} \in F_A$ is called the soft identity of F_A if $x \tilde{e}$ is called the soft identity of F_A if $xe = ex = x$ for all any soft scalar λ ,
 $(e)x(e)$ for all $e \in A$
 $1 \quad x, y \in F_A$
 $x \tilde{e} = \tilde{e}x = x$ for all $x \in F_A$ $x \in F_A$

3. A soft element al of Iraqi Al-Khwarizmi (JIKh) Volume:8 Is
 $x \in F_A$ is said to be invertible if it has inverse is said to be invertible if it has inverse in F_A , i.e. if there exists a arnal of Iraqi Al-Khwarizmi (JIKh) Volume:
 $x \in F_A$ is said to be invertible if it has inv
 $y \in F_A$ such that $xy = yx = e^x$ and the y is cannot Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 4
to be invertible if it has inverse in F_A , i.e. if there exists a
 $xy = yx = \tilde{e}$ and the y is called the inverse of \tilde{x} , denoted
be non-invertible soft element of

 soft element such that $xy = yx = e$ and the y is called the inverse of \tilde{x} , denoted by

 x^{-1} . Otherwise x^{-1} is said to be non-invertible soft element of F_A .

3. Soft Normed Spaces

Let X be a linear space over a field F, X is also our initial universe set and A be a nonempty set of parameters. Let X be the absolute soft linear space, i.e., $X(e) = X$, for all $e \in A$. We use the notation x, y, z to denote soft ble if it has inverse in F_A , i.e. if there exists
and the y is called the inverse of \tilde{x} , denote
tible soft element of F_A .
lso our initial universe set and A be a nonem
 $X(e) = X$, for all $e \in A$. We use the notation *i* and *x* and *x* is said to be non-invertible soft element of F_A .
 3. Soft Normed Spaces

Let *X* be a linear space over a field F, *X* is also our initial universe set and *A* be a nonempty set of parameters.

Let ty set of parameters.
 x, y, \tilde{z} to denote soft
tote a particular type **3. Soft Normed Spaces**

Let *X* be a linear space over a field F, *X* is also our initial universe set and *A* be a nonempty set c

Let *X* be the absolute soft linear space, i.e., $X(e) = X$, for all $e \in A$. We use the not be non-invertible soft element of F_A .

eld F, X is also our initial universe se
 r space, i.e., $X(e) = X$, for all $e \in A$.
 i $\tilde{r}, \tilde{s}, \tilde{t}$ to denote soft real numbers wh
 $\tilde{r}(e) = r$, for all $e \in A$ etc. For e our initial universe set and *A* be a nonempty s
 $e = X$, for all $e \in A$. We use the notation *x*, y

soft real numbers whereas $\tilde{r}, \tilde{s}, \tilde{t}$ will denote
 $e \in A$ etc. For example $\tilde{0}$ is the soft real n

not rela etc. For example 0 is the soft real number such that 3. Soft Normed Spaces
Let X be a linear space over a field F,
Let X be the absolute soft linear space
vectors of a soft linear space and $\tilde{r}, \tilde{s}, \tilde{s}$,
of soft real numbers such that $\tilde{r}(e) = \tilde{0}(e) = 0$, for all , for all $e \in A$. Note that, in general, r is not related to r. space over a field F, *X* is also our initial un solute soft linear space, i.e., *X*(*e*) = *X*, for al linear space and \tilde{r} , \tilde{s} , \tilde{t} to denote soft real numbers such that $\tilde{r}(e) = r$, for all $e \in A$ etc. *r* . e:8 Issue:2 Year: 2024 pages: 44-68
werse in F_A , i.e. if there exists a
called the inverse of \tilde{x} , denoted by
ment of F_A .
universe set and A be a nonempty set of parameter
r all $e \in A$. We use the notation $x, y, \$ me:8 Issue:2 Year: 2024 pages: 44-68
inverse in F_A , i.e. if there exists a
is called the inverse of \tilde{x} , denoted by
lement of F_A .
al universe set and A be a nonempty set of parameters.
for all $e \in A$. We use the n foof real numbers such that $\tilde{r}(e) = r$, for all $e \in A$ etc. For $e = 0$, for all $e \in A$. Note that, in general, \tilde{r} is not related to
 inition (3.1)
 X be the absolute soft linear space. The function $|| \cdot ||$: tors of a soft linear space and $\tilde{r}, \tilde{s}, \tilde{t}$ to denot
oft real numbers such that $\tilde{r}(e) = r$, for all
 $\rho = 0$, for all $e \in A$. Note that, in general, \tilde{r} is
inition (3.1)
X be the absolute soft linear spa

Definition (3.1)

Let X be the absolute soft linear space. The function $\|\cdot\|: SE(X) \to \Box(A)^*$ is said to be a soft norm on the soft linear space X, if $\|\cdot\|$ satisfies the following conditions : solute soft linear space . The function $\|\cdot\|$: *X*
X, if $\|\cdot\|$ satisfies the following conditions
 $x \in X$

1. $||x|| \ge 0$ for all $x \in X$

2.
$$
||x|| = \tilde{0} \text{ iff } x = \tilde{0}
$$

- 3. $||r \cdot x|| = |r| ||x||$ for all $x \in X$ and for every soft scalar \tilde{r} , and for every soft scalar *r* , *x*, $y \in X$
 x, $y \in X$
 x, $y \in X$
- 4. $||x+y|| \le ||x|| + ||y||$ for all

The soft linear space X with a soft norm $\|\cdot\|$ on X is said to be a soft normed linear space and is denoted by $(X, \|\cdot\|, A)$ or call $x \in X$
 $\therefore x = 0$
 $\|x\|$ for all $x \in X$ and for every soft scalar \tilde{r} ,
 $\|x\| + \|y\|$ for all $x, y \in X$

ear space X with a soft norm $\| \cdot \|$ on X is sa
 $(X, \|\cdot\|, A)$ or $(X, \|\cdot\|)$.

...2) X and for every soft scalar \tilde{r} ,
 $x, y \in X$

ith a soft norm $\|\cdot\|$ on X is said to be
 $(X, \|\cdot\|)$. oft linear space X with a soft norm $\|\cdot\|$

ed by $(X, \|\cdot\|, A)$ or $(X, \|\cdot\|)$.
 ple (3.2)

(A) be the set of all soft real numbers
 $x|$, for all $x \in \Gamma(A)$, where $|x|$ denotes

Example (3.2)

Let be the set of all soft real numbers. Then the function \rightarrow \Box (*A*)^{*} is said to be a soft norm on the
soft normed linear space and is
 \Box (*A*) \rightarrow \Box (*A*)^{*} which is defined by
al numbers, is a soft norm on \Box (*A*) and
space. With the same argument $\Box \rightarrow \Box (A)^*$ is said to be a soft norm on the
a soft normed linear space and is
 $\Box \Box (A) \rightarrow \Box (A)^*$ which is defined by
real numbers, is a soft norm on $\Box (A)$ and
l space. With the same argument The soft linear space *X* with a soft inducted by $(X, \|\cdot\|, A)$ or $(X, \|\cdot\|)$.
 xample (3.2)
 x $\|\cdot\|$ $(x, \|\cdot\|)$ and $\|\cdot\|$ and $\|x\| = |x|$, for all $x \in \Box$ (*A*), where $\|x\|$ ince $SS(\Box (A)) = \Box$, thus $(\Box, \|\cdot\|, A)$, for all $\|\cdot\|$ for all *x*, *y*∈*X*
space *X* with a soft norm $\|\cdot\|$ on *X* is said
 $\|\cdot\|$, *A*) or $(X, \|\cdot\|)$.

ne set of all soft real numbers. Then the func
 $x \in \Box$ (*A*), where $|x|$ denotes the modulus of
 $y = \Box$, thus $(\$, where |x| denotes the modulus of soft real numbers, is a soft norm on \Box (A) and A and A and B since $SS(\Box(A)) = \Box$, thus $(\Box, \Vert \cdot \Vert, A)$ or $(\Box, \Vert \cdot \Vert)$ is a soft normed space. With the same argument $S = 0$ iff $x = 0$
 $x \leq 0$
 $\left| \left| \left| x \right| \right| \right|$ for all $x \in X$ and for every soft soft $\left| \left| \left| x \right| \right| \right|$ for all $x, y \in X$

oft linear space X with a soft norm $|| \cdot ||$ on ed by $(X, || \cdot ||, A)$ or $(X, || \cdot ||)$.
 ple (3.2) *x*, $y \in X$

ith a soft norm $\| \cdot \|$ on *X* is said to be a soft r
 $(X, \| \cdot \|)$.

soft real numbers. Then the function $\| \cdot \|$: \Box (*A*

here $|x|$ denotes the modulus of soft real nu
 $(\Box, \| \cdot \|, A)$ or $(\Box, \| \cdot \|)$ is a soft The same to be a set of $\|\cdot\|$:
tes the modulus of soft rea
 $(\Box, \Vert \cdot \Vert)$ is a soft normed spe. 3. $\|\vec{r} \cdot \vec{x}\| = |\vec{r}||\|\vec{x}\|$ for all $x \in X$ and for every
4. $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$ for all $x, y \in X$
The soft linear space X with a soft norm $\|$
denoted by $(X, \|\cdot\|, A)$ or $(X, \|\cdot\|)$.
Example (3.2)
Let $\$ $SS(\square(A)) = \square$ is also a soft normed space. *x* is said to be a soft normed linear space and is
 n the function $\|\cdot\|: \Box(A) \to \Box(A)^*$ which is defined by

nodulus of soft real numbers, is a soft norm on $\Box(A)$ and

is a soft normed space. With the same argument
 x

Example (3.3)

Let X be a normed space. In this case, for every $x_e \in SV(X)$, $||x_e|| = |e| + ||x||$ is a soft norm.

Proof :

Journal of Iraqi Al-Khwarizmi (JIKh)
\nProof:
\n1. Let
$$
x_e \in SV(X)
$$
, then $||x_e|| = |e| + ||x|| \ge 0$
\n2. Let $x_e \in SV(X)$, then $||x_e|| = 0$ iff $|e| + ||x|| = 0$
\n3. Let $x_e \in SV(X)$ and for every soft scalar \tilde{r} , then
\n
$$
||\tilde{r} \cdot x_e|| = ||(r \cdot x)_{re}|| = |re| + ||r||
$$

irnal of Iraqi Al-Khwarizmi (JIKh) Volume:8
 $x_e \in SV(X)$, then $||x_e|| = |e| + ||x|| \ge 0$
 $SV(X)$, then $||x_e|| = 0$ iff $|e| + ||x|| = 0$, iff $e =$ *x*_e $\|\cdot\|e\| + \|x\| \ge 0$
 $\bar{0} = 0$ iff $|e| + \|x\| = 0$, iff $e = 0$ and $x = 0$ iff $x_e = 0$
 x of scalar \tilde{r} then 2. Let $x_e \in SV(X)$, then $||x_e|| = 0$ iff $|e| + ||x|| = 0$, iff $e = 0$ and $x = 0$ iff $x_e = 0$ Journal of Iraqi Al-Khwarizmi (JIKh) Volur

Let $x_e \in SV(X)$, then $||x_e|| = |e| + ||x|| \ge 0$
 $x_e \in SV(X)$, then $||x_e|| = 0$ iff $|e| + ||x|| = 0$, iff
 $V(X)$ and for every soft scalar \tilde{r} , then ii (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $+||x|| \ge 0$
 $e| + ||x|| = 0$, iff $e = 0$ and $x = 0$ iff $x_e = 0$

ar \tilde{r} , then

3. Let $x_e \in SV(X)$ and for every soft scalar r, then

$$
\|\tilde{r} \cdot x_e\| = \|(r \cdot x)_{re}\| = |re| + \|r \cdot x\| = |r|(|r| + \|x\|) = |\tilde{r}|\|x_e\|
$$

4. Let $x_e, y_e \in SV(X)$, then

Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
\nof:
\n1. Let
$$
x_e \in SV(X)
$$
, then $||x_e|| = |e| + ||x|| \ge 0$
\n2. Let $x_e \in SV(X)$, then $||x_e|| = 0$ iff $|e| + ||x|| = 0$, iff $e = 0$ and $x = 0$ iff $x_e = 0$
\net $x_e \in SV(X)$ and for every soft scalar \tilde{r} , then
\n
$$
||\tilde{r} \cdot x_e|| = ||(r \cdot x)_{re}|| = |re| + ||r \cdot x|| = |r|(|r| + ||x||) = |\tilde{r}|| ||x_e||
$$
\net $x_e, y_{e'} \in SV(X)$, then
\n
$$
||x_e + y_{e'}|| = ||(x + y)_{(e + e')}|| = |e + e'| + ||x + y|| \le |e| + |e'| + ||x|| + ||y|| = (|e| + ||x||) + (|e'| + ||y||) = ||x_e|| + ||y_e||.
$$

Theorem (3.4)

1-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 4

en $||x_e|| = |e| + ||x|| \ge 0$
 $||x_e|| = 0$ iff $|e| + ||x|| = 0$, iff $e = 0$ and $x = 0$ iff $x_e = 0$
 $||x_e|| = 0$ iff $||e|| + ||x|| = 0$, iff $e = 0$ and $x = 0$ iff $x_e = 0$
 $||x_e|| = ||(r \cdot x)_e||$ *r* $\left\{\mathbf{x}_k\mathbf{x}_k\right\}$ *r* $\left\{\mathbf{x}_k\mathbf{x}_k\mathbf{x}_k\right\}$ *x* $\left\{\mathbf{x}_k\mathbf{x}_k\mathbf{x}_k\right\}$ *r* $\left\{\mathbf{x}_k\mathbf{x}_k\mathbf{x}_k\right\}$ *r* $\left\{\mathbf{x}_k\mathbf{x}_k\mathbf{x}_k\right\}$ *r* $\left\{\mathbf{x}_k\mathbf{x}_k\mathbf{x}_k\right\}$ *r* $\left\{\mathbf{x}_k\mathbf{x}_k\mathbf{x}_k\mathbf{x}_k\$ Every parametrized family of crisp norms $\{\|\cdot\|_e : e \in A\}$ on a crisp linear space X can be considered as a soft e |+||x|| = 0̃, iff $e = 0$ and $x = 0$ iff $x_e = 0$
 $\|\vec{r}\|$, then
 $\| = |re| + \|r \cdot x\| = |r|(|r| + \|x\|) = |\tilde{r}|\|x_e\|$
 $y \| \le |e| + |e'| + \|x\| + \|y\| = (|e| + \|x\|) + (|e'| + 1)\|$
 $\{\|\cdot\|_e : e \in A\}$ on a crisp linear space X c *e* + ||*x*|| = 0 , iff *e* = 0 and *x* = 0 iff *x_e* = 0
 \tilde{r} , then
 $\therefore |re| + ||r \cdot x|| = |r| (|r| + ||x||) = |\tilde{r}|| ||x_e||$
 $\leq |e| + |e'| + ||x|| + ||y|| = (|e| + ||x||) + (|e'| + ||y||) = ||x_e|| + ||y_{e'}||$.
 $\therefore ||_e : e ∈ A$ } on a crisp linear space *X* can norm on the soft linear space X . *X* .

Proof :

Journal of Inapi A4-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

(
 1. Let $x_c \in SV(X)$, then $|x_c| = c + |x| \ge 0$

Let $x_c \in SV(X)$ then $|x_c| = 0$ iff $|e + |c| = 0$, iff $e = 0$ and $x = 0$ iff $x_c = 0$
 $x_c \in SV(X)$ and fo *Fournal of Iraqi* Al-Khwarizmi (HKh) Volume:8 Issue:2 Year: 2024 - Pages: 44-68

²:

2. Let $x_e \in SV(X)$, then $\left|x_e\right| = e|+||x|| \ge 0$

2. Let $x_e \in SV(X)$, then $\left|x_e\right| = e|+||x|| = \tilde{0}$, iff $e = 0$ and $x = 0$ iff $x_e = \tilde{0}$
 Let X be the absolute soft linear space over a field F, A be a nonempty set of parameters. Let $\{\|\cdot\|_{e} : e \in A\}$:

d as a soft
 $\left\{\left\|\cdot\right\|_{e} : e \in A\right\}$

us define a $e \text{ is a soft}$
 $\cdot \parallel_e : e \in A$ }
define a be a family of crisp norms on the linear space X. Let $x \in X$, then $x(e) \in X$, for every $e \in A$. Let us define a *F*, *A* be a nonempty set of parameters. Let $x \in X$, then $x(e) \in X$, for every $e \in A$. Let u
X, for all $e \in A$. *x* ear space *X* can be considered as a soft
 onempty set of parameters. Let { $\|\cdot\|_e : e \in A$ }
 x(*e*) ∈ *X*, for every *e* ∈ *A*. Let us define a

∈ *A*. neters. Let $\{\|\cdot\|_e : e \in A\}$
 $e \in A$. Let us define a function $\|\cdot\|$: $X \to \Box$ (A)^{*} by $\|x\|(e) = \|x(e)\|_e$ for all $x \in X$, for all $\|\tilde{r} \cdot x_e\| = \|(r \cdot x)_{re}\| = |re| + \|r \cdot x\| = |r|$
 $\in SV(X)$, then
 $\| = \|(x + y)_{(e+e')} \| = |e+e'| + \|x + y\| \le |e| + |e'| + \|x\|$.

4)

atrized family of crisp norms { $\| \cdot \|_e : e \in A$ } on a

soft linear space X.

be the absolute soft linear space $\|\tilde{r} \cdot x_e\| = \|(r \cdot x)_{re}\| = |re| + \|r \cdot x\| = |r|(|r| + \|x\|) = |\tilde{r}|\|x_e\|$
 $y_e \in SV(X)$, then
 $y_e \in SV(X) = \|(x + y)_{(e + e')}\| = |e + e'| + \|x + y\| \le |e| + |e'| + \|x\| + \|y\| = (|e| + \|x\|) + (|e'| + \|y\|)$

(3.4)

innetrized family of crisp norms {|| - ||_a : *e* $|e'| + ||x + y|| \le |e| + |e'| + ||x|| + ||y||$

sp norms $\{||\cdot||_e : e \in A\}$ on a crime space over a field F, A b

details integrate X. Let $x \in X$, $(e) = ||x(e)||_e$ for all $x \in X$, for *e* + *e'* | + || *x* + *y*|| \leq |*e*|| + |*e'* | + || *x*|| + || *x*|| + || *x*|| = (|*e*||
 x .
 x . *x* .
 x . *x* . *x* . *x* Id F, A be a nonempty set of parameters. Let $\{\|\cdot\|_{e} : e \in A$
 x $\in X$, then $x(e) \in X$, for every $e \in A$. Let us define a $x \in X$, for all $e \in A$. $\|(x + y)_{(e+e')} \| = |e+e'| + \|x + y\| \le |e| + |e'| + \|x\| +$

ized family of crisp norms $\{\| \cdot \|_e : e \in A\}$ on a

ft linear space X.

e absolute soft linear space over a field F, A

is a position of the space over a field F, A

is a positi *zy*(*x*), then
 $= |(x + y)_{(x + x)}| = |e + e'| + |x + y| \le |e| + |e'| + |x| + |y| = (|e| + ||x|) + (|e'| + ||y|) = ||x_e|| + ||y_e||$.

4)

4)

4)

4)

4)

4)

4)

4)

terized family of crisp norms $(||\cdot||, :e \in A)$ on a crisp linear space *X* can be considered a () ()() () ()() $||x|| + ||y|| = (|e| + ||x||) + (|e'| + |\theta'|)$

on a crisp linear space *X* c
 F, *A* be a nonempty set of
 e X , then $x(e) \in X$, for ex
 K, for all $e \in A$.
 f soft norm.
 X, then $||x|| \ge 0$ for all $x \in X$
 $|x(e)||_e = \theta$ for all $e \$ *ratizmi* (JIKh) Volume 8 Issue:2 Year: 2024 pages: 44-68
 $\|\cdot\|e| + |x| \ge 0$
 i if $|e| + |x| \ge 0$
 i if $\|\cdot\| = |\bar{e}| + |x| \ge 0$
 $\|\cdot\|e\| = |x^2| + |x$ of final Al-Khwarizmi (HKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $Y(X)$, then $\left|x_1\right| = |\epsilon| - |\epsilon| \ge \hat{0}$
 $Y(X)$, then $\left|x_2\right| = |\epsilon| - |\epsilon| \ge \hat{0}$

(b), then $\left|x_2\right| = |\epsilon| + |\epsilon| \ge \hat{0}$

(d for every soft scalar $\hat{\epsilon}$, th *e* = 0 and $x = 0$ iff $x_e = \tilde{0}$
 $r|\langle |r| + ||x|| \rangle = |\tilde{r}|| ||x_e||$
 $|\cdot ||y|| = (|e| + ||x||) + (|e'|| + ||y||) = ||x_e|| + ||y_e||$

a crisp linear space X can be considere
 A be a nonempty set of parameters. Let
 X, then $x(e) \in X$, for every e Iraqi Al-Khwarizmi (JIKD) Volume.8 Issue.2 Year: 2024 pages: 44-68

(X), then $||x|| = |x|| + ||x|| = 0$, iff $e = 0$ and $x = 0$ iff $x_n = 0$

(for every soft scalar \hat{r} , then
 $||\hat{r} \cdot \mathbf{x}|| = |x|| + |x| = 0$, iff $e = 0$ and $x = 0$

Then $\|\cdot\|$ is a soft norm on *X* .

To verify it we now verify the conditions 1,2,3 and 4 for soft norm.

Then
$$
\|\cdot\|
$$
 is a soft norm on *X*.
To verify it we now verify the conditions 1,2,3 and 4 for soft norm.
1. We have $\|x\|(e) = \|x(e)\|_e \ge 0$ for all $e \in A$, for all $x \in X$, then $\|x\| \ge 0$ for all $x \in X$

2.Let ify it we now verify the conditions 1,2,3 and
have $||x||(e) = ||x(e)||_e \ge 0$ for all $e \in A$, for a
 $x \in X$, then $||x|| = \tilde{0}$ iff $||x||(e) = \theta$ for all $e \in A$, then $||x|| = 0$ iff $||x||(e) = \theta$ for all $e \in A$ i i the linear space *X*. Let $x \in X$, then $\|x\|(e) = \|x(e)\|_e$ for all $x \in X$, for all $e \in X$

e conditions 1,2,3 and 4 for soft norm.

0 for all $e \in A$, for all $x \in X$, then $\|x\|$
 $x\|(e) = \theta$ for all $e \in A$ iff $\|x(e)\|_e = \$ 3 and 4 for soft norm.

for all $x \in X$, then $||x|| \ge 0$ for all $x \in X$
 $e \in A$ iff $||x(e)||_e = \theta$ for all $e \in A$ iff $x(e) = e$ iff $\|x(e)\|_e = \theta$ for all $e \in A$ iff $x(e) = \theta$ for all \equiv *X*, then *x*(*e*) \in *X*, fc, for all *e* \in *A*.
soft norm.
, then $||x|| \ge 0$ for all *z*
(*e*) $||_e = θ$ for all *e* \in *A x* example $x(e) \in X$, for every $e \in A$.
 x, for all $e \in A$.
 x soft norm.
 x, then $||x|| \ge \tilde{0}$ for all $x \in X$
 $x(e)||_e = \theta$ for all $e \in A$ iff $x(e) = \theta$ for or all $x \in X$
 $e \in A$ iff $x(e) = \theta$ for all $x(e) = \theta$ for all 1. We have $||x||(e) = ||x(e)||_e \ge 0$ for all $e \in A$, for all $e \in A$, then $||x|| = 0$ iff $||x||(e) = \theta$ for all $e \in A$ iff $x = 0$ iff $x=0$ $x \in X$, then $||x|| = \tilde{0}$ iff $||x||(e) = \theta$ for all $e \in A$
 x iff $x = \tilde{0}$
 x and \tilde{r} soft scalar, then $||\tilde{r} \cdot x||(e) = ||(\tilde{r} \cdot x||)$ $e \in A$, so Then $\|\cdot\|$ is a soft norm on *X*.
 To verify it we now verify the conditions 1,2,3 and 4 for soft n

1. We have $\|x\|(e) = \|x(e)\|_e \ge 0$ for all $e \in A$, for all $x \in X$, the

2.Let $x \in X$, then $\|x\|=0$ iff $\|x\|(e) = \theta$ f

3. Let and r soft scalar, then $\|r \cdot x\| (e) = \| (r \cdot x)(e) \| = |r| \|x(e) \| = (|r| \|x\|)(e)$ for all $e \in A$, so

$$
\|\tilde{r} \cdot x\| = |\tilde{r}| \|x\|
$$
 for all $x \in X$ and for every soft scalar \tilde{r} ,

x \in *X* and \tilde{r} soft scalar, then $\|\tilde{r} \cdot x\|$ $(e) = \|\tilde{r} \cdot x\|$ $(e) = \|\tilde{r} \cdot x\|$ $(e) \cdot \|\tilde{r}\|$ $x(e) \cdot \|\tilde{r}\|$ $x(e) \cdot \|\tilde{r}\|$ for all $x \in X$ and for every soft scalar \tilde{r} ,
 $x, y \in X$, then $(\|x\| + \|y\|)($ 4. Let $x, y \in X$, then $(\|x\| + \|y\|)(e) = \|x\|(e) + \|y\|(e) = \|x(e)\| + \|y(e)\| \ge \|x(e) + y(e)\| = \|x + y\|(e)$ for all

Journal of Iraqi Al-Khwarizmi (JIKh) Volum
$$
e \in A, \text{ so } ||x + y|| \le ||x|| + ||y|| \text{ for all } x, y \in X
$$

$$
|| \cdot || \text{ is a soft norm on } X \text{ and consequently } (X, || \cdot ||) \text{ is a}
$$
Theorem (3.5)

 $\|\cdot\|$ is a soft norm on X and consequently $(X, \|\cdot\|)$ is a soft normed space.

Theorem (3.5)

Every crisp norm $\|\cdot\|_X$ on a crisp linear space X can be extended to a soft norm on the soft linear space *X* . Proof : Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 202

w|| for all $x, y \in X$

nd consequently $(X, \|\cdot\|)$ is a soft normed space.

crisp linear space X can be extended to a soft norm

blue soft vector space X using a nonempty set qi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

|y|| for all x, y e X

and consequently $(X, \|\cdot\|)$ is a soft normed space.

a crisp linear space X can be extended to a soft norm on the soft linear space X olume:8 Issue:2 Year: 2024

is a soft normed space.

be extended to a soft norm of

using a nonempty set of para
 $(e) = ||x(e)||_x$ for all $x \in X$, for

an be easily proved that $||\cdot||$ is Volume:8 Issue:2 Year: 2024 pages:
 $\|\cdot\|$ is a soft normed space.

an be extended to a soft norm on the soft norm of the soft norm of the soft norm of X using a nonempty set of parameters
 $x \|(e) = \|x(e)\|_X$ for all $x \in$ et of parameters A .
 $x \in X$, for all $e \in A$. e sort linear space X .

ters A .
 $e \in A$.

 First we construct the absolute soft vector space *X* using a nonempty set of parameters *A* .

Let us define a function $\|\cdot\|$: $SE(X) \to \Box (A)^*$ by $\|x\|(e) = \|x(e)\|_X$ for all $x \in X$, for all

Then using the same procedure as theorem (5.3), it can be easily proved that $\|\cdot\|$ is a soft norm on X.

This soft norm is generated using the crisp norm $\|\cdot\|_X$ and it is said to be the soft norm generated by *X* $\|\cdot\|_{X}$. st we construct the absolute soft vector space
us define a function $\|\cdot\|$: $SE(X) \rightarrow \square(A)^*$ by
n using the same procedure as theorem (5.3),
soft norm is generated using the crisp norm
.
orem (3.6)
 $(X, \|\cdot\|, A)$ is a soft n theorem (5.3), it can be easily proved the crisp norm $\|\cdot\|_x$ and it is said to be

vace, then
 $x \|(e) = 0$ iff $x(e) = \theta$, for any $x \in X$ at

set, for each $x \in X$ and $e \in A$ *x*(*e*) = *θ*, for any *x* ∈ *X* and *e* ∈ *A*.
x(*e*) = *θ*, for any *x* ∈ *X* and *e* ∈ *A*. $x \in X$ and $e \in A$. $e \in A$. First we construct the absolute soft vector space

t us define a function $\| \cdot \| : SE(X) \to \square (A)^*$ by

en using the same procedure as theorem (5.3),

is soft norm is generated using the crisp norm
 $\|_x$.
 eorem (3.6)

t (X dure as theorem (5.3), it can be easily proved that $\|\cdot\|$ is a soft nor

dusing the crisp norm $\|\cdot\|_x$ and it is said to be the soft norm gener

rmed space, then

, then $\|x\|(e) = 0$ iff $x(e) = \theta$, for any $x \in X$ and he soft norm generated by
 $d e \in A$.
 $x \in X$, $||x||_e = ||x|| (e)$,
 $x \in X$. $x \parallel_e = ||x||(e),$
 $x \parallel_e = ||x||(e),$ *x x* $\left|\frac{1}{2}(x) + \frac{1}{2}\right| \left|\frac{1}{2}\right| \left|\frac{1}{2}\right| \left|\frac{1}{2}\right| \left|\frac{1}{2}\right| \left|\frac{1}{2}\right|\left|\frac{1}{2}\right|\left|\frac{1}{2}\right|\left|\frac{1}{2}\right|\left|\frac{1}{2}\right|\left|\frac{1}{2}\right|\left|\frac{1}{2}\right|\left|\frac{1}{2}\right|\left|\frac{1}{2}\right|\left|\frac{1}{2}\right|\left|\frac{1}{2}\right|\left|\frac{1}{2}\right|\left|\frac{1}{2}\right|\left|\frac{1}{2}\right|\left|\frac{1}{$

Theorem (3.6)

Let $(X, \|\cdot\|, A)$ is a soft normed space, then

1. for any (3.6)
 $\begin{cases} 3.6 \\ \text{or} \end{cases}$, *A*) is a soft normed space, then
 $x \in X$ and $e \in A$, then $||x||(e) = 0$ iff $x(e) = e$ and oft normed space, then
 $e \in A$, then $||x||(e) = 0$ iff $x(e) = \theta$, for any $x(e) = 0$, for any $x(e) = 0$. , then $||x||(e) = 0$ iff $x(e) = \theta$, for any $x \in X$ and $x(e) = \theta$, for any $x \in X$ and $e \in A$.
 $x \in X$ and $e \in A$ any $x \in X$ and $e \in A$.
 $e \in A$ $e \in X$ and $e \in A$, then $||x||(e) = 0$ iff $x(e) = \theta$
 $x(e) = x$ is a singleton set, for each $x \in X$ a
 $e \in A$, define $||\cdot||_e : X \to \square^+$ be the function A, then $||x||(e) = 0$ iff $x(e) = \theta$, for any
ingleton set, for each $x \in X$ and $e \in$
 $|\cdot||_e : X \to \square^+$ be the function such that
 $x(e) = x$. Then for each $e \in A$, $||\cdot||_e$ i

2. $\{||x||(e): x(e) = x\}$ is a singleton set, for each $x \in X$ and

3. for each , define $\|\cdot\|_{e}: X \to \square^+$ be the function such that for each $x \in X$, $\|x\|_{e} = \|x\|(e)$, $x(e) = x$ is a singleton set, for each *x* ∈ *X*
h e ∈ *A*, define $|| \cdot ||_e : X \rightarrow ∎^+$ be the functic
x ∈ *X* such that *x*(*e*) = *x*. Then for each *e* ∈ *e* \in *k* and $e \in A$
 e \in *k* \in *k* $\|x\|_e = \|x\|(e)$
 e \in *k* \in $\| \cdot \|_e$ is a norm on *X*.
 k(*e'*) = 1 *k* if $e' = e$, $\lambda(e') = 0$ if $e' \neq e$.
 e = *e'*. We have $\|\lambda x\| = |\lambda| \|x\|$. for each $x \in X$, $||x||_e = ||x||(e)$,

a norm on X.
 $= e$, $\lambda(e') = 0$ if $e' \neq e$.
 $\lambda ||x|| = |\lambda|| ||x||$. $\|x\|_e = \|x\| (e),$
 $e' \neq e.$ $\exists X \text{ and } e \in A.$
 $\text{ar each } x \in X, ||x||_e = ||x||(e),$
 $\text{norm on } X.$
 $\forall e, \lambda(e') = 0 \text{ if } e' \neq e.$
 $\lambda x || = |\lambda|| ||x||.$

where $x \in X$ such that $x(e) = x$. Then for each $e \in A$, $\|\cdot\|$ is a norm on *X* .

Proof :

1. Let us consider a soft scalar λ such that $\lambda(e') = 1$, if $e' = e$, $\lambda(e') = 0$ if $e' \neq e$ at for each $x \in X$, $||x||_e = ||x|| (e)$
is a norm on X.
 $e' = e$, $\lambda(e') = 0$ if $e' \neq e$. $i' = e$, $\lambda(e') = 0$ if $e' \neq e$.

Then $(\lambda x)(e) = \theta$ for $e' \neq e$, $(\lambda x)(e) = x(e')$ for $e = e'$. We have $\|\lambda\|$ (*e*): $x(e) = x$ is a singleton set, for each $x \in X$ and $e \in X$

each $e \in A$, define $\|\cdot\|_e : X \to \square^+$ be the function such that
 $x(e) = x$. Then for each $e \in A$, $\|\cdot\|_e$ is
 \therefore

1. Let us consider a soft scalar λ suc at $x(e) = x$. Then for each $e \in A$, $\|\cdot\|_e$ is a norm on X .

er a soft scalar λ such that $\lambda(e') = 1$, if $e' = e$, $\lambda(e') = 0$ if e'
 $e' \neq e$, $(\lambda x)(e) = x(e')$ for $e = e'$. We have $\|\lambda x\| = |\lambda| \|x\|$. for normed space, then
 $\in A$, then $||x||(e) = 0$ iff $x(e) = \theta$, for any $x \in X$

a singleton set, for each $x \in X$ and $e \in A$
 $e ||\cdot||_e : X \to \square^+$ be the function such that for eat

at $x(e) = x$. Then for each $e \in A$, $||\cdot||_e$ is at that $x(e) = x$. Then for each $e \in A$, \vert
ider a soft scalar λ such that $\lambda(e') = 1$
or $e' \neq e$, $(\lambda x)(e) = x(e')$ for $e = e'$. W
 $x \parallel (e) = 0$ iff $\lambda x = \theta$, iff $x(e) = \theta$.
have $\Vert x \Vert = \Vert x - y + y \Vert \le \Vert x - y \Vert + \Vert y \Vert$. *x*. Then for each $e \in A$, $\|\cdot\|_e$ is a norm on *X*.

alar λ such that $\lambda(e') = 1$, if $e' = e$, $\lambda(e') = 0$ if $\lambda(x)(e) = x(e')$ for $e = e'$. We have $\|\lambda x\| = |\lambda| \|x\|$.
 $\lambda x = \theta$, iff $x(e) = \theta$.
 $\|\lambda x\| = \|x\| \|x\| + \|y\|$ $\Rightarrow \|x\| = \|y$

 This shows that iff $\lambda x = \theta$, iff

2. Let $x, y \in X$, we have *xx*)(*e*) = *θ* for *e'* \neq *e*, $(\lambda x)(e) = x(e')$ for *e* = *d*
zx)(*e*) = *θ* for *e'* \neq *e*, $(\lambda x)(e) = x(e')$ for *e* = *d*
shows that $||x||(e) = 0$ *iff* $\lambda x = \theta$ *, iff* $x(e) = \theta$ *
<i>xx*, $y \in X$, we have $||x|| = ||x - y + y|| \le ||x - y|| +$

Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
\nSimilarly
$$
||y|| - ||x|| \le ||x - y||
$$
. So $||x|| - ||y|| \le ||x - y||$. Now if $x, y \in X$ such that $x(e) = y(e)$ then
\n $||x||(e) - ||y||(e)| \le ||x - y||(e) = 0$ (by 1) since $(x - y)(e) = x(e) - y(e) = 0$. i.e. $||x||(e) = ||y||(e)$,
\nwhich proves (2).
\n3. Since for $e \in A$, $||x||(e) : x(e) = x$ is a singleton set, the function $|| \cdot ||_e : X \to \square^+$ is well defined. Hence
\nfrom soft norm axioms, it follows that $|| \cdot ||_e$ is a norm on X .
\n**Theorem (3.7) Decomposition Theorem**

which proves (2).

3. Since for $e \in A$, $\{||x||(e): x(e) = x\}$ is a singleton set, the function $||\cdot||_e : X \to \square^+$ is well defined. Hence Year: 2024 pages: 44-68

ch that $x(e) = y(e)$ then

. i.e. $||x||(e) = ||y||(e)$,
 $\cdot ||_e : X \rightarrow \square^+$ is well defined. Hence from soft norm axioms, it follows that $\|\cdot\|_e$ is a norm on X... ch proves (2).

ince for $e \in A$, $\{||x||(e) : x(e) = x\}$ is a

i soft norm axioms, it follows that $||\cdot||$

orem (3.7) Decomposition Theorem

(X, $||\cdot||$) is a soft normed space satisfie
 \therefore For $x \in X$ and $e \in A$ the set $\{||x$

Theorem (3.7) Decomposition Theorem

Let $(X, \|\cdot\|)$ is a soft normed space satisfies the following condition

 N_5 : For $x \in X$ an *x X* and **e** a *k* is the set of $\|\cdot\|_e$ is a norm on π .
 a *k* is a *k* is a *k* is a singleto
 $e \in A$, the set $\{\|x\|(e) : x(e) = x\}$ is a singleto , the set $\{\Vert x\Vert (e) : x(e) = x\}$ is a singleton set and if for each $e \in A$, $\Vert \cdot \Vert_e : X \to \Box$ varizmi (JIKh) Volume:8 Issue:2 Year: 2024
 $-\Vert y \Vert \le \Vert x - y \Vert$. Now if $x, y \in X$ such that $x(e)$
 \Rightarrow) since $(x - y)(e) = x(e) - y(e) = 0$. i.e. $||x||(e)$
 $\}$ is a singleton set, the function $|| \cdot ||_e : X \rightarrow \Box$

at $|| \cdot ||_e$ is a norm o $e \in A$, $\|\cdot\|_e : X \to \square^+$
Then for each $e \in A$ $+$ $$ ned. Hence
 $\cdot \parallel_e : X \to \Box^+$
 \cdot each $e \in A$, be a function such that for each $x \in X$, $||x||_e = ||x||(e)$, where *x* $x \in X$ is a singleton set, the function $\|\cdot\|_{e} : X$
x s that $\|\cdot\|_{e}$ is a norm on *X*..
Theorem
ace satisfies the following condition
set $\{\|x\|(e) : x(e) = x\}$ is a singleton set and i
 $x \in X$, $\|x\|_{e} = \|x\|(e)$, **a** singleton set, the function $\|\cdot\|_e : X \cdot$
 $\|_e$ is a norm on X...
 1

ies the following condition
 $e) : x(e) = x\}$ is a singleton set and if $x\|_e = \|x\|(e)$, where $x \in X$ such that probabilition
gleton set and if for each $e \in A$, $\|\cdot\|_e : X \to x \in X$ such that $x(e) = x$. Then for each $e \in A$ such that $x(e) = x$. Then for each *f* for each $e \in A$, $\|\cdot\|_e : X \to \square^+$
 $x(e) = x$. Then for each $e \in A$, $\rightarrow \Box$ ⁺
 $e \in A$, $\cdot \parallel_e$ is a norm on *X* . *EA*, $\{||x||(e): x(e) = x\}$ is a singleton set, the function $|| \cdot ||_e : X \rightarrow \mathbb{R}$

a axioms, it follows that $|| \cdot ||_e$ is a norm on X...
 Decomposition Theorem

a soft normed space satisfies the following condition

X and $e \in$ for each $e \in A$, $\|\cdot\|_e : X \to \square^+$
 $(e) = x$. Then for each $e \in A$,
 e e crisp real number for
 α the condition N_5 and
 α soft norm satisfying
 $d(x, y) = ||x - y||$, for all

Proof :

Clearly $\|\cdot\|_{e}: X \to \square^+$ is a rule that assign a vector of X to a nonnegative crisp real number for all *e* is a norm on *X*.

of :

Clearly $\|\cdot\|_e : X \to \square^+$ is a rule that assign
 $e \in A$. Now the well defined property of $\|\cdot\|$

soft norm axioms gives the norm conditions . Now the well defined property of $\|\cdot\|_e$, for all $e \in A$ of *X* to a nonnegative crisp real number for $e \in A$ is follows from the condition N_5 and for all $e \in A$. Thus the soft norm satisfying is follows from the condition N_5 and the soft norm axioms gives the norm conditions of $\|\cdot\|_e$, for all $e \in A$. Thus the soft norm satisfying o a nonnegative crisp real number for
s follows from the condition N_5 and
 $e \in A$. Thus the soft norm satisfying $N₅$ gives a parameterized family of crisp norms. of:

Clearly $\|\cdot\|_{e} : X \to \square^{+}$ is a rule that assign a
 $e \in A$. Now the well defined property of $\|\cdot\|_{e}$

soft norm axioms gives the norm conditions of

gives a parameterized family of crisp norms.
 orem (3.8)

(degrade in the sampleton set and if for each $e \in A$, $|| \cdot ||_e : X \to \Box$

where $x \in X$ such that $x(e) = x$. Then for each $e \in A$

or of X to a nonnegative crisp real number for

dull $e \in A$ is follows from the condition N_5 a condition

mgleton set and if for each $e \in A$, $\|\cdot\|_e : X \to \square^+$
 $x \in X$ such that $x(e) = x$. Then for each $e \in A$,

X to a nonnegative crisp real number for
 $\in A$ is follows from the condition N_5 and

call $e \in A$. Thus all $e \in A$. Now the well defined property of $\|\cdot\|$ the soft norm axioms gives the norm conditions N_5 gives a parameterized family of crisp norm
Theorem (3.8)
Let $(X, \|\cdot\|, A)$ be a soft normed space. Let us $x, y \in X$ *e* ∈ *A*, the set $\left\|x\right\|(\epsilon) : x(\epsilon) = x\}$ is a singleton set and if for each $\epsilon \in A$, $\|\cdot\|_e : X \to \square^+$
for each $x \in X$, $\|x\|_e = \|x\|(\epsilon)$, where $x \in X$ such that $x(\epsilon) = x$. Then for each $\epsilon \in A$,
 $\to \square^+$ is a rule that *f* leagl Al-Khwarizmi (JRh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $-\pi \int \cdot S \phi \left\| |x| - |y| \right\| \le |x - y|$. Now if $x, y \in X$ such that $x(x) = y(x)$ then
 $y(x) = 0$ (by 1) since $(x - y)(x) = x(x) - y(x) = 0$, i.e. $|x(x) = |x(x)|$
 $y(x) = |x(x) - y(x)|$ *d*[(*e*) = 0(*by* 1) since $(x - y)(e) = x(e) - y(e) = 0$; i.e., $|x| (v) = |y| (v)$.
 $d_1^2(v) : x(e) = x$ is a singleton set, the function $|z| : x \rightarrow 0^+$ is well defined. Hence
 $d_1^2(v) : x(e) = x$ is a singleton set, the function $|z| : x \rightarrow 0^+$ *x z x y y z x y y z* () () *d*_x : For $x \in X$ and $e \in A$, the set $\{||x||(e): x(e) = x\}$ is a singleton set and if for each $e \in A$, $||x||_e \cdot X \rightarrow 1$ ⁺
ex a function such that for each $x \in X$, $|x|_e = |x|(e)$, where $x \in X$ such that $x(e) = x$. Then for each

Theorem (3.8)

Let be a soft normed space. Let us define $d: X \times X \to \Box (A)^*$ by $d(x, y) = ||x - y||$, for all . Then d is a soft metric on X. *X* . **i** $\left\{\n\begin{aligned}\n\cdot \| \cdot \| \cdot A & \text{be a soft normed space.} \downarrow \\
\cdot \| \cdot \| \cdot A & \text{be a soft normed space.} \downarrow \\
X \cdot \text{Then } d \text{ is a soft metric on } X \text{ and } X \text{ is a soft metric on } X.\n\end{aligned}\n\right\}$ *x*, $\|\cdot\|$, *A*) be a soft normed space. Let us define
 x. Then *d* is a soft metric on *X*.
 x, $y \in X$, then $d(x, y) = \|x - y\| \ge 0$
 x, $y \in X$, then $d(x, y) = 0 \iff \|x - y\| = 0 \iff$
 $\|x - y\| = 0 \iff$

Proof :

1. Let $x, y \in X$, then

2. Let , then

3. Let
$$
x, y \in X
$$
, then $d(x, y) = ||x - y|| = ||y - x|| = d(y, x)$

$$
x, y \in X
$$
. Then *d* is a soft metric on *X*.
\nProof:
\n1. Let *x*, *y* ∈ *X*, then *d*(*x*, *y*) = $||x - y|| \ge 0$
\n2. Let *x*, *y* ∈ *X*, then *d*(*x*, *y*) = 0 \Leftrightarrow $||x - y|| = 0$ \Leftrightarrow *x* − *y* = 0 \Leftrightarrow *x* = *y*
\n3. Let *x*, *y* ∈ *X*, then *d*(*x*, *y*) = $||x - y|| = ||y - x|| = d(y, x)$
\n4. Let *x*, *y*, $\tilde{z} \in X$, then $||x - \tilde{z}|| = ||(x - y) + (y - \tilde{z})|| \le ||x - y|| + ||y - \tilde{z}||$, so *d*(*x*, \tilde{z}) ≤ *d*(*x*, *y*) + *d*(*y*, \tilde{z}) *d* is a soft metric on *X*, *d* is said to be the soft metric induced by the soft norm || · ||. From the a

is a soft metric on X, d is said to be the soft metric induced by the soft norm $\|\cdot\|$. From the above theorem it also follows that every soft normed space is also a soft metric space.

Theorem (3.9) Translation invariance

A soft metric d induced by a soft norm $\|\cdot\|$ on a normed linear space $(X, \|\cdot\|)$ satisfies

Journal of Iraqi Al-Khwarizmi (JKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
\n**Theorem (3.9) Translation invariance**
\nA soft metric *d* induced by a soft norm
$$
||\cdot||
$$
 on a normed linear space $(X_1||\cdot||)$ satisfies
\n1. $d(x + \bar{z}, y + \hat{z}) = d(x, y)$, for all $x, y, \bar{z} \in X$
\n2. $d(\bar{r} \cdot x, \bar{r} \cdot y) = |\bar{r}| d(x, y)$, for all $x, y \in X$ and for every soft scalar \bar{r} .
\nProof:
\nWe have,
\n $d(x + \bar{z}, y + \bar{z}) = |(x + \bar{z}) - (y + \bar{z})|| = |x - y|| = d(x, y)$ and
\n $d(\bar{r} \cdot x, \bar{r} \cdot y) = |[\bar{r} \cdot (x - \bar{y})] - |\bar{r} \cdot (x - y)|| - |\bar{r}| ||x - y| - |\bar{r}| d(x, y)$
\n**Theorem (3.10)**
\nLet $d : X \times X \rightarrow \mathbb{E}$ (A)' be a soft metric. *X* is a soft normed space iff the following conditions :
\n1. $d(x + \bar{z}, y + \bar{z}) = d(x, y)$, for all $x, y, \bar{z} \in X$
\n2. $d(\bar{r} \cdot x, \bar{r} \cdot y) = |\bar{r}| d(x, y)$, for all $x, y \in X$ and for every soft scalar \bar{r} .
\nsatisfied.
\n**Proof :**
\nIf $d(x, y) = ||x - y||$, from theorem(3.9), we have then
\n $d(x + \bar{z}, y + \bar{z}) = d(x, \bar{y})$ and $d(\bar{r} \cdot x, \bar{r} \cdot y) = |\bar{r}| d(x, y)$
\nSuppose that the conditions of the theorem are satisfied.
\nTaking $||x| = d(x, \bar{0})$ for every $x \in X$ we have
\n1.Let $x \in X$, then $||x| = \bar{0} \iff d(x, \bar{0}) = \bar{0} \iff x = \bar{0}$
\n3. Let $x \in$

Proof :

We have,

$$
d(x+\tilde{z}, y+\tilde{z}) = ||(x+\tilde{z})-(y+\tilde{z})|| = ||x-y|| = d(x, y) \text{ and}
$$

$$
d(\tilde{r} \cdot x, \tilde{r} \cdot y) = ||\tilde{r} \cdot x - \tilde{r} \cdot y|| = ||\tilde{r} \cdot (x-y)|| = |\tilde{r}||x-y|| = |\tilde{r}|d(x, y)
$$

Theorem (3.10)

Let $d: X \times X \to \Box$ (A)^{*} be a soft metric. X is a soft normed space iff the following conditions :

2.
$$
d(\vec{r} \cdot x, \vec{r} \cdot y) = |x| \cdot d(x, y)
$$
, for all $x, y \in X$ and for every soft scalar \vec{r} .
\nProof:
\nWe have,
\n $d(x + \vec{z}, y + \vec{z}) = |(x + \vec{z}) - (y + \vec{z})|| = ||x - y|| = d(x, y)$ and
\n $d(\vec{r} \cdot x, \vec{r} \cdot y) = ||\vec{r} \cdot x - \vec{r} \cdot y|| = ||\vec{r} \cdot (x - y)|| = |\vec{r}|| ||x - y|| = |\vec{r}| d(x, y)$
\n**Theorem (3.10)**
\nLet $d : X \times X \rightarrow \Box (A)^*$ be a soft metric. X is a soft normed space iff the following conditions:
\n1. $d(x + \vec{z}, y + \vec{z}) = d(x, y)$, for all $x, y, \vec{z} \in X$
\n2. $d(\vec{r} \cdot x, \vec{r} \cdot y) = |\vec{r}| d(x, y)$, for all $x, y \in X$ and for every soft scalar \vec{r} .
\nsatisfied.
\nProof:
\nIf $d(x, y) = ||x - y||$, from theorem(3.9), we have then
\n $d(x + \vec{z}, y + \vec{z}) = d(x, y)$ and $d(\vec{r} \cdot x, \vec{r} \cdot y) = |\vec{r}| d(x, y)$
\nSuppose that the conditions of the theorem are satisfied.
\nTaking $||x|| = d(x, \vec{0})$ for every $x \in X$ we have
\n1. Let $x \in X$, then $||x|| = d(x, \vec{0}) \ge \vec{0}$
\n2. Let $x \in X$, then $||x|| = \vec{0} \Leftrightarrow d(x, \vec{0}) = \vec{0} \Leftrightarrow x = \vec{0}$

satisfied.

Proof :

If $d(x, y) = ||x - y||$, from theorem(3.9), we have then

and *x X*

Suppose that the conditions of the theorem are satisfied .

Taking $||x|| = d(x, 0)$ for every $x \in X$ we have

- 1.Let $x \in X$, then $d(x+z, y+z) = d(x, y)$ as

se that the conditions of the theorem are sations $||x|| = d(x, 0)$ for every $x \in X$ we have
 $x \in X$, then $||x|| = d(x, 0) \ge 0$ 2. Let se that the conditions of the theorem are satis
 $||x|| = d(x, 0)$ for every $x \in X$ we have
 $x \in X$, then $||x|| = d(x, 0) \ge 0$
 $x \in X$, then $||x|| = 0 \iff d(x, 0) = 0 \iff x$, then $x \in X$, then $||x|| = d(x, 0) \ge 0$
 $x \in X$, then $||x|| = 0 \Leftrightarrow d(x, 0) = 0 \Leftrightarrow$
 $x \in X$ and for every soft scalar \tilde{r} , then $x \in X$, then $||x|| = a(x, 0) \ge 0$
 $x \in X$, then $||x|| = \tilde{0} \iff d(x, \tilde{0}) = \tilde{0} \iff x =$
 $x \in X$ and for every soft scalar \tilde{r} , then
 $||\tilde{r} \cdot x|| = d(\tilde{r} \cdot x, \tilde{0}) = d(\tilde{r} \cdot x, \tilde{r})$
 $x, y \in X$, then
- 3. Let $x \in X$ and for every soft scalar r, then

$$
\|\tilde{r} \cdot x\| = d(\tilde{r} \cdot x, \tilde{0}) = d(\tilde{r} \cdot x, \tilde{r} \cdot \tilde{0}) = |\tilde{r}| d(x, \tilde{0}) = |\tilde{r}| \|x\|
$$

4. Let $x, y \in X$, then

$$
\|x + y\| = d(x + y, \tilde{0}) = d(x, -y) \le d(x, \tilde{0}) + d(\tilde{0}, -y) = \|x\| + |-1\|y\| = \|x\| + \|y\|
$$

Definition (3.11)

x x y $\|\cdot\| = d(x + y, 0) = d(x, -y) \leq d(x, 0) + d(0, -y) = \|x\| + \|1\| \|y\| = \|x\| + \|y\|$

(*x + y*, $\hat{0} = d(x, -y) \leq d(x, 0) + d(0, -y) = \|x\| + \|1\| \|y\| = \|x\| + \|y\|$

(*x*) Let $(X, \|\cdot\|)$ be a soft normed space and (Y, A) be a non-null member of Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024
 $||x + y|| = d(x + y, \tilde{0}) = d(x, -y) \le d(x, \tilde{0}) + d(\tilde{0}, -y) = ||x|| + |-1||y|| =$
 inition (3.11)
 $(X, ||\cdot||)$ be a soft normed space and (Y, A) be a non-null member of $S(X)$.
 $|||y|| = ||x|| + ||y||$
S(X). Then the function Y . . Then the function Journal of Iraqi Al-Khwariz
 $||x + y|| = d(x + y, \tilde{0}) = d(x$

nition (3.11)
 $X, ||\cdot||$ be a soft normed space and
 $: SE(Y) \rightarrow \Box (A)^*$ given by $||x||_y = ||$

norm $||\cdot||_y$ is known as the relative

d a normed subspace or simply a su

nitio *Journal of Iraqi Al-Khwarizmi (JIKh) Volu*
 $||x + y|| = d(x + y, 0) = d(x, -y) \le d(x, 0) +$
 finition (3.11)
 $\therefore (X, ||\cdot||)$ be a soft normed space and (Y, A) be a nor-
 $\forall y : SE(Y) \rightarrow \Box (A)^*$ given by $||x||_y = ||x||$ for all $x \in Y$

is norm Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $||x + y|| = d(x + y, \tilde{0}) = d(x, -y) \leq d(x, \tilde{0}) + d(\tilde{0}, -y) = ||x|| + |-1||y|| = ||x|| + ||y||$
 efinition (3.11)

et $(X, ||\cdot||)$ be a soft normed space and (Y, A) be a n hwarizmi (JIKh) Volume:8 Issue:2 Y
 $y = d(x, -y) \leq d(x, 0) + d(0, -y) = ||x|| +$
 x e and (Y, A) be a non-null member of
 $x||_Y = ||x||$ for all $x \in Y$ is a soft norm of

velative norm induced on Y by $||\cdot||$. for all a non-null member of $S(X)$. Then the functor $x \in Y$ is a soft norm on Y . is a soft norm on *Y* . **nition (3.11)**
 $[X, || \cdot ||]$ be a soft normed space and (Y, A) be
 $: SE(Y) \rightarrow \Box (A)^*$ given by $||x||_y = ||x||$ for all

norm $|| \cdot ||_y$ is known as the relative norm incord a normed subspace or simply a subspace of
 nition (3.12)

This norm $\|\cdot\|_Y$ is known as the relative norm induced on Y by $\|\cdot\|$. The soft normed space $(Y, \|\cdot\|_Y, A)$ is 8

(Y , $\left\| \cdot \right\|_Y$, A) is ion $(Y, \left\| \cdot \right\|_{Y}, A)$ is called a normed subspace or simply a subspace of the soft normed space $(X, \|\cdot\|, A)$. $\begin{aligned} 1\|y\| &= \|x\| + \|y\| \ S(X) \,. \end{aligned}$ Then the function Y .
 e soft normed space $(Y, \|\cdot\|_Y, A)$ is $(X, \|\cdot\|, A)$.

Definition (3.12)

Let $(X, \|\cdot\|, A)$ be a soft normed space and $r \ge 0$ be a soft real number. We define the followings;

be a soft normed space and
$$
\tilde{r} \ge \tilde{0}
$$
 be a soft real number. We define the fo
\n
$$
\beta(a, \tilde{r}) = \{x : \|x - a\| < \tilde{r}\} \subset SE(X), \ \overline{\beta}(a, \tilde{r}) = \{x : \|x - a\| \le \tilde{r}\} \subset SE(X) \text{ and }
$$
\n
$$
S(a, \tilde{r}) = \{x : \|x - a\| = \tilde{r}\} \subset SE(X)
$$
\nand $S(a, \tilde{r})$ are respectively called an open ball, a closed ball and a sph
\n
$$
S(\beta(a, \tilde{r}))
$$
,
$$
SS(\overline{\beta}(a, \tilde{r}))
$$
 and
$$
SS(S(a, \tilde{r}))
$$
 are respectively called a soft op

firmal of Iraqi AI-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $|x + y|| = d(x + y, \hat{0}) = d(x, -y) \leq d(x, \hat{0}) + d(\hat{0}, -y) = ||x|| + ||-1||y|| = ||x|| + ||y||$

1)

1)

asoft normed space and (Y, A) be a non-null member of $S(X)$. Then the *Journal of Traqi* Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $||x + y|| = d(x + y, \delta) = d(x, -y) \leq d(x, \delta) + d(\delta, -y) = ||x|| + ||-1||y|| = ||x|| + ||y||$
 Definition (3.11)
 Solution (3.11)
 $||\cdot||_r$ is known as the relative norm and are respectively called an open ball, a closed ball and a sphere with centre at *a* and radius r. $SS(\beta(a,r))$, $SS(\beta(a,r))$ and $SS(S(a,r))$ are respectively called a soft open ball, a soft closed *r* π
 r π **r** and subspace or simply a subspace of the soft norme

(3.12)
 f α, \tilde{r} = { x : $\|x-a\| < \tilde{r}$ } \subset $SE(X)$, $\overline{\beta}(a, \tilde{r}) = \{x : \|B\| > 0$
 $S(a, \tilde{r}) = \{x : \|x-a\| = \tilde{r}\} \subset SE$

(*a,* \tilde{r}) and \hat{S} ≥ \tilde{O} be a soft real number. We (\tilde{X}) , $\overline{\beta}(a, \tilde{r}) = \{x : ||x - a|| \le \tilde{r}\}$ \subset
 $[x : ||x - a|| = \tilde{r}\}$ \subset $SE(X)$
y called an open ball, a closed b.
 $SS(S(a, \tilde{r}))$ are respectively cal dius \tilde{r} . ball and a soft sphere with centre at x and radius r . *r* . $\hat{f} = \{x : ||x - a|| \le \tilde{r}\} \subset SE(X)$ and
 $\hat{f} \subset SE(X)$

pen ball, a closed ball and a sphere with central

are respectively called a soft open ball, a soft
 $(X, ||\cdot||, A)$ is said to be convergent in $(X, ||\cdot||)$
 $\rightarrow \infty$. This mean

Definition (3.13)

A sequence of soft elements $S(\beta(a,r))$ and $SS(S(a,r))$ are i
intre at x and radius \tilde{r} .
 ${x_n}$ in a soft normed space $(X,$ in a soft normed space $(X, \|\cdot\|, A)$ is said to be convergent in $(X, \|\cdot\|, A)$ if th centre at *a*

, a soft closed
 $(X, \|\cdot\|, A)$ if

sen arbitrarily, there is a soft element *x*_{*x*</sup>, *x*_{*x*} *x x* and radius \tilde{r} .
 x and radius \tilde{r} .
 x and radius \tilde{r} .
 x and *x* and radius \tilde{r} .
 x and *x* and radius \tilde{r} .
 x and *x* and *x* and *x* and *x* and *x* and *x*} such that $||x_n - x|| \to 0$ as $n \to \infty$. This means for every $\varepsilon > 0$, chosen arbitrarily, $\subset SE(X)$, $\overline{\beta}(a, \tilde{r}) = \{x : ||x - a|| \leq \tilde{r}\} \subset SE(X)$ and
 \tilde{r} $= \{x : ||x - a|| = \tilde{r}\} \subset SE(X)$

tively called an open ball, a closed ball and a sphere with centre at

and $SS(S(a, \tilde{r}))$ are respectively called a soft open ball, there exists a natural number $B(\overline{\beta}(a, r))$ and $SS(S(a, r))$ are resp
tire at x and radius \overline{r} .
 x_n in a soft normed space $(X, \|\cdot\|)$,
uch that $||x_n - x|| \to 0$ as $n \to \infty$. T
 $k = k(\varepsilon)$, such that $\overline{0} \le ||x_n - x|| < \varepsilon$
 $n \to \infty$ or by , such that $\overline{\beta}(a,\tilde{r}) = \{x : ||x - a|| \leq \tilde{r}\} \subset SE(X)$ and
 $-a||=\tilde{r}\} \subset SE(X)$

ed an open ball, a closed ball and a sphere with centre at *a*
 (a,\tilde{r}) are respectively called a soft open ball, a soft closed
 \tilde{r} .

space $(X, ||\cdot||, A$ be convergent in $(X, \|\cdot\|, A)$ if
every $\varepsilon > 0$, chosen arbitrarily,
 $n > k$. i.e., $n > k$ $x \in \beta(x, \varepsilon)$. . i.e., *n* externally a soft closed
 n ball, a soft closed
 n in $(X, \|\cdot\|, A)$ if
 n, chosen arbitrarily,
 $n > k$ $x \in \beta(x, \varepsilon)$. We denote this by $x_n \to x$ as $n \to \infty$ or by Elements $\{x_n\}$ in a soft normed space $(X, \|\cdot\|, A)$ is said to be c

nt $x \in X$ such that $||x_n - x|| \to 0$ as $n \to \infty$. This means for eve

1 number $k = k(\varepsilon)$, such that $0 \le ||x_n - x|| < \varepsilon$, whenever $n >$
 $x_n \to x$ as $n \to \infty$ and a soft sphere with centre at
 inition (3.13)

equence of soft elements { x_n } in

e is a soft element $x \in X$ such th

e exists a natural number $k = k$ (

denote this by $x_n \to x$ as $n \to$
 $x_n = x$, x is said to be the l k. i.e., $n > k$ $x \in \beta(x, \varepsilon)$.
(\Box , $\Vert \cdot \Vert$) or $(\Box$, $\Vert \cdot \Vert$, A) be
rameters. Let $Y_A \subset \Box$ such $(X, \| \cdot \|, A)$ if

bsen arbitrarily,
 $x \in \beta(x, \varepsilon)$.
 $(\Box, \| \cdot \|, A)$ be
 $\forall t \in Y_A \subset \Box$ such

of *Y* where

 $\lim_{n\to\infty} x_n = x$, x is said to be the limit of the sequence x_n as $n \to \infty$.

Example (3.14)

Let us consider the set of all real numbers endowed with the usual norm $\|\cdot\|$. Let $(\Box, \|\cdot\|)$ or $(\Box, \|\cdot\|, A)$ be the soft norm generated by the crisp norm $\|\cdot\|$, where A is the nonempty set of parameters. Let $Y_A \subset \Box$ such that $Y(e) = (0,1]$ in the real line, for all *Y*: exists a natural number $k = k(\varepsilon)$, such that $||x_n - \varepsilon|$ exists a natural number $k = k(\varepsilon)$, such denote this by $x_n \to x$ as $n \to \infty$ or both $x_n = x$, x is said to be the limit of the **mple (3.14)**
as consider the set Figure 2.1 and $\|\cdot\|$. Let \Box
 e \in *A*. Let us choose a sequence $\{x_n\}$ of soft \Box
 e \in *A*. Let us choose a sequence $\{x_n\}$ of soft . Let us choose a sequence $\|\cdot\|$. Let $(\Box, \|\cdot\|)$ or $(\Box, \|\cdot\|, A)$
set of parameters. Let $Y_A \subset \Box$ su
 $\{x_n\}$ of soft elements of Y_A when of soft elements of Y_A where $\tilde{z}_{n}(e) = \frac{1}{n}$ for all $n \in \mathbb{Z}$, for all $e \in A$. $\lim_{n \to \infty} x_n = x$, *x* is said to be the
 Example (3.14)

et us consider the set of all reverse to the last $Y(e) = (0,1]$ in the real line
 $x_n(e) = \frac{1}{n}$ for all $n \in \mathbb{Z}$, for all *n* $f(x) = \frac{1}{n}$ for all $n \in \mathbb{Z}$, for all $e \in A$. Then there is $x \in Y_A$ such that $x_n \to x$ in $(Y, \|\cdot\|_Y, A)$. However the I numbers endowed with the usual norm $\|\cdot\|$. Let $(\square, \|\cdot\|)$ or $(\square, \text{sign norm})\|\cdot\|$, where *A* is the nonempty set of parameters. Let *Y* for all $e \in A$. Let us choose a sequence $\{x_n\}$ of soft elements of $e \in A$. Then t *xm* $\|\cdot\|$. Let $(\Box, \|\cdot\|)$ or $(\Box, \|\cdot\|, A)$ be
pty set of parameters. Let $Y_A \subset \Box$ such
ce $\{x_n\}$ of soft elements of Y_A where
 $x_n \to x$ in $(Y, \|\cdot\|_Y, A)$. However the $\forall x \in \mathbb{R}^n, n \geq k$ $x \in p(x, \varepsilon)$.

t $(\Box, \Vert \cdot \Vert)$ or $(\Box, \Vert \cdot \Vert, A)$ be arameters. Let $Y_A \subset \Box$ such soft elements of Y_A where $(Y, \Vert \cdot \Vert_Y, A)$. However the *K*. I.e., $n > k$ $x \in p(x, \varepsilon)$.
 $(\Box, \Vert \cdot \Vert)$ or $(\Box, \Vert \cdot \Vert, A)$ be

arameters. Let $Y_A \subset \Box$ such

oft elements of Y_A where
 $[Y, \Vert \cdot \Vert_Y, A)$. However the

sequence **Journal of Iraqi Al-Khwa**
{ y_n } of soft elements of Y_A of soft elements of Y_A where $y_n(e) = \frac{1}{2}$ for all $n \in \mathbb{Z}$, for all $e \in A$. IKh) Volume:8 Issue:2 Year: 2024 pa
 $y_n(e) = \frac{1}{2}$ for all $n \in \mathbb{Z}$, for all $e \in A$. for all $n \in \mathbb{Z}$, for all $e \in A$. is convergent in 924 pages: $44-68$
e \in *A*. is convergent in Journal of Iraqi Al-Khwarizmi (
sequence $\{y_n\}$ of soft elements of Y_A where
 $(Y, \|\cdot\|, A)$ and converges to $\frac{1}{2}$.
Theorem (3.15) and converges to $\frac{1}{2}$. 1 2²

Theorem (3.15)

Limit of a sequence in a soft normed space, if exists is unique.

Proof :

 If possible let there exists a sequence form, if exists is unique.
{ x_n } of soft elements in a soft not
Then there is at least one a $\epsilon \in A$. of soft elements in a soft normed space $(X, \|\cdot\|, A)$ such onvergent in
 $(X, \| \cdot \|, A)$ such
 $-y \| (e) \neq 0$. We that $\lim_{n \to \infty} x_n = x$, $\lim_{n \to \infty} x_n = y$, where $x \neq y$. Then ther 4) and converges to $\frac{1}{2}$.
 n (3.15)

a sequence in a soft normed spa

ossible let there exists a sequence $x_n = x$, $\lim_{n \to \infty} x_n = y$, where $x \neq$

a positive real number ε_e satisfy $\lim_{n \to \infty} x_n = x$, $\lim_{n \to \infty} x_n = y$, where $x \neq y$. Then there is at least erges to $\frac{1}{2}$.
in a soft normed space, if exists
nere exists a sequence { x_n } of so
 $x_n = y$, where $x \neq y$. Then thereal number ε_e satisfying $0 < \varepsilon_e$ $\lim_{x \to \infty} x_n = y$, where $x \neq y$. Then there is *x* and *x* a *x* is unique.
 1 we are $\{x_n\}$ of soft elements in a so $x \neq y$. Then there is at least one expansion . Then there is at least one soft normed space $(X, \|\cdot\|, A)$ such
 $e \in A$ such that $||x - y|| (e) \neq 0$. We such that convergent in
 $e(X, ||\cdot||, A)$ such
 $x - y || (e) \neq 0$. We consider a positive real number ε_e satisfying $0 < \varepsilon_e < \frac{1}{2} ||x - y|| (e)$. JIKh) Volume:8 Issue:2 Year: 2024 p
 $y_n(e) = \frac{1}{2}$ for all $n \in \mathbb{Z}$, for all $e \in A$.

f exists is unique.

f exists is unique.
 x_n } of soft elements in a soft normed sp

hen there is at least one $e \in A$ such that
 $e \rightarrow \mathbf{e}$ \mathbf{v} \mathbf{v} Kh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $v_n(e) = \frac{1}{2}$ for all $n \in \mathbb{Z}$, for all $e \in A$, is convergent in

exists is unique.

} of soft elements in a soft normed space $(X, \|\cdot\|, A)$ such

nn there is at least Let there exists a sequence $\{x_n\}$ of soft elements in a soft normed space $(X, \|\cdot\|, A)$ such
 $\lim_{n \to \infty} x_n = y$, where $x \neq y$. Then there is at least one $e \in A$ such that $||x - y||(e) \neq 0$. We

tive real number ε_e sat It elements in a soft normed space $(X, \|\cdot\|, A)$ s

e is at least one $e \in A$ such that $||x - y||(e) \neq 0$.
 $\frac{1}{2}||x - y||(e)$.
 $k_1 = k_1(\varepsilon)$, $k_2 = k_2(\varepsilon)$ such that $n > k_1$
 $k_2 \in \varepsilon_e$, in particular. Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

sequence $\{y_n\}$ of soft elements of Y_k where $y_n(e) = \frac{1}{2}$ for all *n* ∈ l, , for all *e* ∈ A, is convergent in
 $(x, | \cdot |, A)$ and conver *e* of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 of dements of Y_x where $y_n(e) = \frac{1}{2}$ for all $n \in \mathbb{N}$, for all $e \in A$, is convergent in
 verges to $\frac{1}{2}$.

in a soft normed space, i Journal of Iraqi Al-Khwarizmi (JIKh) Volume: 8 Issue: 2 Year: 2024 pages: 44-68

cc [y_n] of soft elements of Y_x where $y_x(e) = \frac{1}{2}$ for all $\pi \in \mathbb{N}$, for all $e \in A$, is convergent

(A) and converges to $\frac{1}{2}$. Chwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 f Y_a where $y_a(e) = \frac{1}{2}$ for all $n \in \mathbb{D}$, for all $e \in A$, is convergent in

read space, if exists is unique.

sequence $\{x_*\}$ of soft elements in a so xumal of fraqi Al-Khwarizmi (HKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

of soft elements of Y_k where $y_k(e) = \frac{1}{2}$ for all $n \in \mathbb{D}$, for all $e \in A$, is convergent in

2 converges to $\frac{1}{2}$.

5)

5)

1 anoce Somptime 1 and $x_n = x$, $\lim_{n \to \infty} x_n = y$, where $x \neq$

a positive real number ε_e satisf

with $\varepsilon(e) = \varepsilon_e$. Since $x_n \to x$

anding to $\varepsilon > 0$, there exist nature $\beta(x, \varepsilon) \Rightarrow \|x_n - x\| < \varepsilon \Rightarrow$
 $\Rightarrow k_2 \Rightarrow x_n \in \beta(y, \varepsilon) \Rightarrow \|x$ If possible let there exists a sequence { x_n } of soft elements in a soft normed
 $\lim_{n\to\infty} x_n = x$, $\lim_{n\to\infty} x_n = y$, where $x \neq y$. Then there is at least one $e \in A$ such t

sider a positive real number ε_e satisfying d space $(X, \|\cdot\|, A)$ such

that $||x - y||(e) \neq 0$. We

that $n > k_1$

cular.
 $\|\cdot\|x_n - y\|(e) < 2\varepsilon_e$
 $\{\|x_n - x_m\| : n, m \in \mathbb{Z}\}$ of soft real
 $n \in \mathbb{Z}$

Let $\varepsilon > 0$ with $\varepsilon(e) = \varepsilon_e$. Since $x_n \to$

Corresponding to $\varepsilon > 0$, there exist natural numbers $k_1 = k_1(\varepsilon)$, $k_2 = k_2(\varepsilon)$ such that $\Rightarrow x_n \in \beta(x, \varepsilon) \Rightarrow ||x_n - x|| < \varepsilon \Rightarrow ||x_n - x|| (e) < \varepsilon_e$, in particular.

Also, $n > k$, $\Rightarrow x_n \in \beta(y, \varepsilon) \Rightarrow ||x_n - y|| < \varepsilon \Rightarrow ||x_n - y|| (e) < \varepsilon$, in particular.

Hence for all $n > k = \max\{k_1, k_2\}$, \Rightarrow $||x - y|| < \varepsilon \Rightarrow ||x - y||(e) \le ||x_n - x||(e) + ||x_n - y||(e) < 2\varepsilon_e$

Definition (3.16)

So, $\varepsilon_e > \frac{1}{2} ||x - y||(e)$. This contradicts our hypothesis. Hence the result follows.
 Definition (3.16)

A sequence $\{x_n\}$ of soft elements in $(X, ||\cdot||, A)$ is said to be bounded if the set A sequence $\{x_n\}$ of soft elements in $(X, \|\cdot\|, A)$ is said to be bounded if the set $\{\|x_n - x_m\| : n, m \in \Box\}$ of soft real $\|\mathbf{x}_n - \mathbf{x}\| \le \varepsilon \ \Rightarrow \ \|\mathbf{x}_n - \mathbf{y}\| \le \varepsilon$, in particular.
 $\|\mathbf{x}_n - \mathbf{y}\| \le \varepsilon \ \Rightarrow \ \|\mathbf{x}_n - \mathbf{y}\| \le \varepsilon \le \varepsilon$, in particularity is our hypothesis. Hence the result follows.
 $(\mathbf{X}, \|\cdot\|, \mathbf{A})$ is said to be bo numbers is bounded, i.e., the there exist $k > 0$ such that $||x_n - x_m|| \le k$ for all *x* - *y* $\|(e) \le \varepsilon_e$, in particular.
 x - *y* $\|(e) \le \|x_n - x\|(e) + \|x_n - y\|(e) < 2\varepsilon_e$

nce the result follows.

be bounded if the set $\{\|x_n - x_m\| : n, m \in \square\}$ of soft real
 $x_n - x_m \| \le k$ for all $n, m \in \square$ $(e) + ||x_n - y|| (e) < 2\varepsilon_e$
ws.
et $\{||x_n - x_m|| : n, m \in \square \}$ of soft real
 $n, m \in \square$ $\|x_m\|$: *n*, *m* \in \Box } of soft real
 n, *m* \geq *k*, i.e.,

Definition (3.17)

A sequence $\{x_n\}$ of soft elements in a soft normed space $(X, \|\cdot\|, A)$ is said to be a Cauchy sequence in bounded, i.e., the there exist $k > 0$
3.17)
{ x_n } of soft elements in a soft no
conding to every $s > 0$, there exist the result follows.

be bounded if the set $\{\Vert x_n - x_m \Vert : n, m \in \Box \}$ of
 $x_n - x_m \Vert \le k$ for all $n, m \in \Box$

(X, $\Vert \cdot \Vert$, A) is said to be a Cauchy sequence in

the that $\Vert x_n - x_m \Vert \le k$, for all $n, m \ge k$, i.e., X if corresponding to every $\varepsilon > 0$, there exist $k \in \mathbb{Z}$ such that $||x_n - x_m|| \le k$, for all $n, m \ge k$, i.e., result follows.
 nded if the set $\{\Vert x_n - x_m \Vert : n, m \in \Box \}$ of soft real
 $\Vert \leq k$ for all $n, m \in \Box$
 x, *A*) is said to be a Cauchy sequence in
 $x_n - x_m \Vert \leq k$, for all $n, m \geq k$, i.e., *x* $c_{\epsilon} > \frac{1}{2} ||x - y||(\epsilon)$. This contradicts our hypothesis. Hence the rest
Definition (3.16)
A sequence { x_n } of soft elements in $(X, ||\cdot||, A)$ is said to be bounded
umbers is bounded, i.e., the there exist $k > 0$ such of soft elements in $(X, \|\cdot\|, A)$ is said to be bounded

2d, i.e., the there exist $k > 0$ such that $||x_n - x_m|| \le k$
 f soft elements in a soft normed space $(X, \|\cdot\|, A)$ is

1g to every $\varepsilon > 0$, there exist $k \in \square$ such tha

Theorem (3.18)

Every convergent sequence in a soft normed linear space is Cauchy and every Cauchy sequence is bounded.

Proof :

 Let ${x_n}$ be a convergent sequence of ${x_n}$ be a convergent sequence of soft elements with limit x (say) in $(X, \|\cdot\|)$

124 pages: 44-68
(X , $\|\cdot\|$)
 $\|\cdot\|$ Then corresponding to each $\varepsilon > 0$, there exists $k \in \mathbb{Z}$ such that $x_n \in \beta(x, \frac{\varepsilon}{2})$ i.e., $||x_n - x|| \leq \frac{\varepsilon}{2}$ for all First 2024 pages: 44-68

(ay) in $(X, \|\cdot\|)$

($(x, \frac{\varepsilon}{2})$ i.e., $||x_n - x|| \leq \frac{\varepsilon}{2}$ for all

ce $\{x_n\}$ is ue:2 Year: 2024 pages: 44-68

int *x* (say) in $(X, \|\cdot\|)$
 $x_n \in \beta(x, \frac{\varepsilon}{2})$ i.e., $||x_n - x|| \leq \frac{\varepsilon}{2}$ for
 \therefore Hence $\{x_n\}$ is 2 $\overline{}$ pages: 44-68
 \cdot | \cdot | \cdot | $\leq \frac{\varepsilon}{2}$ for all ges: 44-68
 $-x \leq \frac{\varepsilon}{2}$ for all Let $\{x_n\}$ be a convergent sequence of soft elements with limit x (say) in $(X, \|\cdot\|)$

Then corresponding to each $\varepsilon > 0$, there exists $k \in \square$ such that $x_n \in \beta$ $(x, \frac{\varepsilon}{2})$ i.e., $\|x_n - x\| \leq \frac{\varepsilon}{2}$ for all
 n Then for $n, m \ge k$, $||x_n - x_m|| \le ||x_n - x|| + ||x - x_m|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Hence $\{x_n\}$ is
chy sequence.
let $\{x_n\}$ be a Cauchy sequence of soft elements in $(X, ||\cdot||)$. Then there exis *nnal* of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages:
 n a convergent sequence of soft elements with limit x (say) in $(X, \|\cdot\|)$

ding to each $\varepsilon > 0$, there exists $k \in \square$ such that $x_n \in \beta(x, \frac{\varepsilon}{$ *x*^{*x*} *x*_{*x*} *x*_{*x*} *x*_{*x*} *x x*^{*x*} *x x x*^{*x*} *x x*^{*x*} *x x*^{*x*} *x x*^{*x*} *x*^{*x*} Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

t sequence of soft elements with limit x (say) in $(X, \|\cdot\|)$
 $\varepsilon > 0$, there exists $k \in \square$ such that $x_n \in \beta(x, \frac{\varepsilon}{2})$ i.e., $||x_n - x|| \leq \frac{\varepsilon}{2}$ for all ch that $x_n \in \beta(x, \frac{\varepsilon}{2})$ i.e., $||x_n - x|| \leq \frac{\varepsilon}{2}$
 $\frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Hence $\{x_n\}$ is
 $(X, ||\cdot||)$. Then there exists $k \in \mathbb{Z}$ such $x\{\|x_n - y_m\|(e) : 1 \leq n, m \leq k\}$ for all $e \in$ *x x*_{*n*} *y* be a convergent sequence of soft elements w
 x **z** *z k x*_{*n*} be a convergent sequence of soft elements w
 x x x x k n n <i>m x k , $||x_n - x_m|| \le ||x_n - x|| + ||x - x_m|| < \frac{\varepsilon}{2}$
 x x x n to each $\varepsilon > 0$, there exists $k \in \mathbb{Z}$ such
 $\geq k$, $||x_n - x_m|| \leq ||x_n - x|| + ||x - x_m|| < \frac{\varepsilon}{2}$

auchy sequence of soft elements in (*i*, $n, m \geq k$. Take *M* with $M(e) = \max\{n, m \geq k, ||x_n - y_m|| \leq ||x_n - y_k|| + ||x_k - y_k||$ *MKh)* Volume:8 Issue:2 Year: 2024 pages: 44-68
 ft elements with limit *x* (say) in $(X, \|\cdot\|)$
 $\leq k \in \square$ such that $x_n \in \beta(x, \frac{\varepsilon}{2})$ i.e., $\|x_n - x\| \leq \frac{\varepsilon}{2}$ for all
 $\|x - x_m\| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Henc *m m n m k m <i>k n n n n n e e k n n n n x e <i>n n x n n x e <i>g* (*x*, *n n n x e <i>g* (*x*, *n n n x e e y n n x n a x e g* (*x*, *x*_{*x*} be a convergent sequence of soft elements with limit *x* (say) in $(X, \|\cdot\|)$
orresponding to each $\varepsilon > 0$, there exists $k \in \|\cdot\|$ such that $x_n \in \beta(x, \frac{\varepsilon}{2})$ i.e., $\|x_n - x\|$
then for $n, m \ge k$, $\|x_n - x_m\| \le \|x$

a Cauchy sequence.

Next let $\{x_n\}$ be a Cauchy sequence of soft elements in $(X, \|\cdot\|)$. Then there exists $k \in \square$ such that , for all $n,m \ge k$. Take M with $M(e) = \max\{\Vert x_n - y_m \Vert (e): 1 \le n, m \le k\}$ for all *e* \in *A* . Then for responding to each $\varepsilon > 0$, there exists $\kappa \in$

en for $n, m \ge k$, $||x_n - x_m|| \le ||x_n - x|| + ||x - x||$

sequence.
 $[x_n]$ be a Cauchy sequence of soft elemen
 $\langle x_n \rangle$ be a Cauchy sequence of soft elemen
 $\langle x_n \rangle$ be a Cauchy sequenc and and the same of soft elements in $(X, \|\cdot\|)$. Then there e
 n axe *M* with *M*(*e*) = max{ $\|x_n - y_m\|$ (*e*) : 1 ≤ *n*, *n*
 $\|x_n - y_m\|$ ≤ $\|x_n - y_k\|$ + $\|x_k - y_m\|$ < *M* + 1 .
 n, *m* ∈ □ and consequently the sequence $m \ge k$. Take *M* with $M(e) = \max\{\left\|x_n\right\}$
 $m \ge k$, $\left\|x_n - y_m\right\| \le \left\|x_n - y_k\right\| + \left\|x_k - y_m\right\|$

for all $n, m \in \square$ and consequently the
 $Y(e) \ne \phi$ for all $e \in A$, in a soft norme

1 number *k* such that $\left\|x\right\| \le k$ for In there exists $k \in \Box$ such that
 $\{ :1 \le n, m \le k \}$ for all $e \in A$.
 \Box
 \Box $(X, \Vert \cdot \Vert, A)$ is said to be bounded

Thus, $||x_n - y_m|| < M + 1$ for all $n, m \in \square$ and consequently the sequence is bounded.

Definition (3.19)

A soft subset Y_A with $Y(e) \neq \emptyset$ for all $e \in A$, in a soft normed space $(X, \|\cdot\|, A)$ is said to be bounded and consequently the sequence is bounded.
 $e \in A$, in a soft normed space $(X, \|\cdot\|, A)$ is

that $\|x\| \le k$ for all $x \in Y_A$. if there exists a soft real number k such that $||x|| \le k$ for all x the sequence is bounded.
 A Area *x* \in *Y_A*.
 X \in *Y_A*. Therefore $X_m \parallel \cdots \parallel X_m \parallel \cdots \parallel X_m \parallel$
 $\cdots \parallel X_m \parallel \cdots \parallel X_m \parallel$
 $\cdots \parallel X_m \parallel \cdots \parallel X_m \parallel$
 $\cdots \parallel X_m \parallel \cdots \parallel X_m \parallel$
 $\cdots \parallel X_m \parallel \cdots \parallel X_m \parallel$
 $\cdots \parallel X_m \parallel \cdots \parallel X_m \parallel$
 $\cdots \parallel X_m \parallel \cdots \parallel X_m \parallel$
 $\cdots \parallel X_m \parallel \cdots \parallel X_m \parallel$
 $\cdots \parallel X_m \parallel \cdots \parallel X_m \parallel$
 $\cdots \parallel X_m \$ oft subset Y_A with $Y(e) \neq \phi$ for all $e \in A$, in
ere exists a soft real number k such that $||x|| \le$
nition (3.20)
oft normed space $(X, ||\cdot||, A)$ is said to be con
element of X i.e., every complete soft norm
orem (3.21) *n*, *m* ∈ *□* and consequently the sequence is bounded.

for all $e \in A$, in a soft normed space $(X, ||\cdot||, A)$ is said to be bounded
 $\cdot k$ such that $||x|| \le k$ for all $x \in Y_A$.

is said to be complete if every Cauchy sequen for all $e \in A$, in a soft normed space $(X, \|\cdot\|, A)$ is said to be bounded x *k* such that $\|x\| \le k$ for all $x \in Y_A$.

is said to be complete if every Cauchy sequence in *X* converges to amplete soft normed space is cal

Definition (3.20)

A soft normed space $(X, \|\cdot\|, A)$ is said to be complete if every Cauchy sequence in X converges to a soft element of X i.e., every complete soft normed space is called a soft Banach's Space. *x* it normed space $(X, \|\cdot\|, A)$ is said to be complete if every Cau lement of *X* i.e., every complete soft normed space is called **rem (3.21)**
 $X, \|\cdot\|, A$ be a soft normed space. Then
 $x_n \to x$ and $y_n \to y$ then $x_n + y_n \to x +$ *n* $(X, \|\cdot\|, A)$ is said to be complete if every Cauchy sequence
i.e., every complete soft normed space is called a soft Banach
a soft normed space. Then
 $y_n \to y$ then $x_n + y_n \to x + y$.
 $\lambda_n \to \lambda$ then $\lambda_n \cdot x_n \to \lambda \cdot x$., where i.e., every complete soft normed space is called a soft Banach
 n a soft normed space. Then
 $y_n \to y$ then $x_n + y_n \to x + y$.
 $\lambda_n \to \lambda$ then $\lambda_n \cdot x_n \to \lambda \cdot x$., where $\{\lambda_n\}$ is a sequence of soft
 n are Cauchy sequences i

Theorem (3.21)

Let $(X, \|\cdot\|, A)$ be a soft normed space. Then $\|\cdot\|$, *A*) be a soft normed space. The
 $\lambda_n \to x$ and $y_n \to y$ then $x_n + y_n \to x$
 $\lambda_n \to x$ and $\lambda_n \to \lambda$ then $\lambda_n \cdot x_n \to \lambda \cdot x_n$ and $\{y_n\}$ are Cauchy sequences in
 $\{x_n + y_n\}$ and $\{\lambda_n \cdot x_n\}$ are also Cauchy

1. If $x_n \to x$ and $y_n \to y$ then $x_n + y_n \to y$.
2. If $x_n \to x$ and $\lambda_n \to \lambda$ then $\lambda_n \cdot x_n \to \lambda$
3. If $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences

2. If $x_n \to x$ and $\lambda_n \to \lambda$ then $\lambda_n \cdot x_n \to \lambda \cdot x$, where Element of *X* i.e., every complete soft normed space is called
 rem (3.21)
 X, $\|\cdot\|$, *A*) be a soft normed space. Then
 $x_n \to x$ and $y_n \to y$ then $x_n + y_n \to x + y$.
 $x_n \to x$ and $\lambda_n \to \lambda$ then $\lambda_n \cdot x_n \to \lambda \cdot x$., where $\{\lambda_n\}$ is a sequence of soft scalars is a sequence of soft scalars. e { λ_n } is a sequence of soft scalard λ_n } is a Cauchy sequence of some oft normed space. Then
 \rightarrow y then $x_n + y_n \rightarrow x + y$.
 $\rightarrow \lambda$ then $\lambda_n \cdot x_n \rightarrow \lambda \cdot x$., where { λ

re Cauchy sequences in X and { λ_n }

{ $\lambda_n \cdot x_n$ } are also Cauchy sequences

3. If $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences in X and $\{\lambda_n\}$ is a Cauchy sequence of is a Cauchy sequence of soft scalars,

then $\{x_n + y_n\}$ and $\{\lambda_n \cdot x_n\}$ are also Cauchy sequences in X.

Proof :

1. Since $x_n \to x$ and $y_n \to y$, for $\varepsilon > 0$, there exist a positive integers *x_n* \rightarrow *x* and $y_n \rightarrow y$, for $\varepsilon > 0$, there exist a positive integers k_1, k_2 such that $n > k_1$ and $||y_n - y|| < \frac{\varepsilon}{2}$ for all $n > k_2$. Let $k = \max\{k_1, k_2\}$, then both 924 pages: 44-68
 k_1, k_2 such that such that 2² Journal of Iraqi Al-1
 x_n - *x* in *x_n* - *x* and *y_n* -
 x_n - *x* $\|x\| < \frac{\varepsilon}{2}$ for all *n* > *k*₁ and $\|$

elations hold for *n* ≥ *k*. Then $\frac{\varepsilon}{2}$ for all $n > k_1$ and $\|y_n -$ Journal of Iraqi Al-Khwarizmi (JIKh) Volu

1. Since $x_n \to x$ and $y_n \to y$, for $\varepsilon > 0$, there exi
 $-x \leq \frac{\varepsilon}{2}$ for all $n > k_1$ and $||y_n - y|| < \frac{\varepsilon}{2}$ for all $n > k$

tions hold for $n \geq k$. Then 1 of Iraqi Al-Khwarizmi (JIKh) Vol
 x and $y_n \to y$, for $\varepsilon > 0$, there ex
 $n > k_1$ and $||y_n - y|| < \frac{\varepsilon}{2}$ for all $n >$
 $\ge k$. Then and 2^{2} Khwarizmi (JIKh) Volume:8 Is:
 y, for $\varepsilon > 0$, there exist a posi
 *y*_n - *y*|| < $\frac{\varepsilon}{2}$ for all *n* > *k*₂. Let *l* $\frac{\varepsilon}{2}$ for all $n > k_2$. Let $k = n$ warizmi (JIKh) Volume:8 Issue:2 Year: 2024 page:

, for $\varepsilon > 0$, there exist a positive integers k_1, k_2 such
 $-y \le \frac{\varepsilon}{2}$ for all $n > k_2$. Let $k = \max\{k_1, k_2\}$, then bo Volume:8 Issue:2 Year: 2024 pag

re exist a positive integers k_1, k_2 sue
 $n > k_2$. Let $k = \max\{k_1, k_2\}$, then b . Let $k = \max\{k_1, k_2\}$, then both the above ssue:2 Year: 2024 pages: 44-68

sitive integers k_1, k_2 such that
 $k = \max\{k_1, k_2\}$, then both the above
 $||y_1 - y|| \le \frac{\varepsilon}{\epsilon} + \frac{\varepsilon}{n} = \varepsilon$ for $n \ge k$. relations hold for $n \geq k$. Then \rightarrow *x* and $y_n \rightarrow y$, for $\varepsilon > 0$, there $\vert n > k_1$ and $\Vert y_n - y \Vert < \frac{\varepsilon}{2}$ for all $n > n \ge k$. Then urnal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $\pi x \to x$ and $y_n \to y$, for $\varepsilon > \hat{0}$, there exist a positive integers k_1, k_2 such that

call $n > k_1$ and $||y_n - y|| < \frac{\varepsilon}{2}$ for all $n > k_2$. That $x + h$ the above $n \geq k$. **1.** Since $x_n \to x$ and $y_n \to y$, for $\varepsilon > 0$, there exist a positive integers k_1, k_2 such that $||x_n - x|| < \frac{\varepsilon}{2}$ for all $n > k_1$ and $||y_n - y|| < \frac{\varepsilon}{2}$ for all $n > k_2$. Let $k = \max\{k_1, k_2\}$, then both the above relat 1. Since $x_n \to x$ and $y_n \to y$, for $\varepsilon > 0$, there e
 $x_n - x \le \frac{\varepsilon}{2}$ for all $n > k_1$ and $\|y_n - y\| < \frac{\varepsilon}{2}$ for all $n >$

elations hold for $n \ge k$. Then
 $\|(x_n + y_n) - (x + y)\| = \|(x_n - x) + (y_n - y)\| \le$
 \Rightarrow $x_n + y_n \to x + y$.

Since *n k x x ⁿ*

$$
\|(x_n + y_n) - (x + y)\| = \|(x_n - x) + (y_n - y)\| \le \|x_n - x\| + \|y_n - y\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \text{ for } n \ge k
$$

2. Since $\|x_n - x\|^2$
 $\|f(x_n + y_n) - (x + y)\| = \|f(x_n - x) + (y_n - y)\| \le \|x_n - x\| + \|y_n - y\| <$
 $y_n \to x + y$.
 $x_n \to x$ and $\lambda_n \to \lambda$ we get, for $\varepsilon > 0$, there exist a positive i
 ε for all $n \ge k$ and k_1 and $||y_n - y|| \le \frac{1}{2}$ for all $n > k_2$. Let $k = \max\{k_1, k_2\}$, then
 k . Then
 $(x + y)|| = ||(x_n - x) + (y_n - y)|| \le ||x_n - x|| + ||y_n - y|| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ for
 $\lambda_n \to \lambda$ we get, for $\varepsilon > 0$, there exist a positive integers k su we get, for $\varepsilon > 0$, there exist a positive integers k such that $\|x_n - x\| < \varepsilon$ for all $n \ge k$ *y*.
 n $\lambda_n \rightarrow \lambda$ we get, for $\varepsilon > 0$, then
 $n \ge k$ h that
 $n \geq k$ and $\lambda_n \to \lambda$ we get, for $\varepsilon > 0$, , the
 $n \ge k$
 $\|x_n - x\| + \|x\| < \varepsilon + \|x\|$, for al
 $\{\|x_n\|\}$ is bounded.

Now,
$$
||x_n|| = ||x_n - x + x|| \le ||x_n - x|| + ||x|| < \varepsilon + ||x||
$$
, for all $n \ge k \implies ||x_n|| < \varepsilon + ||x||$ for all $n \ge k$

Thus the sequence $\{\Vert x_n \Vert\}$ is bounded.

Journal of Iraqi AI-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
\n1. Since
$$
x_n \rightarrow x
$$
 and $y_n \rightarrow y$, for $\varepsilon > \bar{0}$, there exist a positive integers k_1, k_2 such that
\n
$$
||x_n - x|| \leq \frac{\varepsilon}{2}
$$
 for all $n > k_1$ and
$$
||y_n - y|| \leq \frac{\varepsilon}{2}
$$
 for all $n > k_2$. Let $k = \max\{k_1, k_2\}$, then both the above
\nrelations hold for $n \geq k$. Then
\n
$$
||(x_n + y_n) - (x + y)|| = |[(x_n - x) + (y_n - y)]| \leq ||x_n - x|| + ||y_n - y|| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
$$
 for $n \geq k$.
\n⇒ $x_n + y_n \rightarrow x + y$.
\n2. Since $x_n \rightarrow x$ and $\lambda_n \rightarrow \lambda$ we get, for $\varepsilon > \bar{0}$, , there exist a positive integers k such that
\n
$$
||x_n - x|| < \varepsilon
$$
 for all $n \geq k$
\nNow,
$$
||x_n|| = ||x_n - x + x|| \leq ||x_n - x|| + ||x|| < \varepsilon + ||x||
$$
, for all $n \geq k$ ⇒ $||x_n| < \varepsilon + ||x||$ for all $n \geq k$
\nThus the sequence $(||x_n||)$ is bounded.
\nNow,
\n
$$
||\lambda_n - x_n - \lambda \cdot x|| = ||\lambda_n - \lambda - x_n + \lambda \cdot x_n - \lambda \cdot x|| = ||(\lambda_n - \lambda) \cdot x_n + \lambda \cdot (x_n - x)| \leq ||(\lambda_n - \lambda) \cdot x_n|| + ||\lambda \cdot (x_n - x)||
$$

\nSince $x_n \rightarrow x$ and $\lambda_n \rightarrow \lambda$ we get, $|\lambda_n - \lambda| \rightarrow \bar{0}$ and $||x_n - x|| \rightarrow \bar{0}$ as $n \rightarrow \infty$.
\nNow using above we get,
$$
||\lambda_n - x_n - \lambda \cdot x|| \Rightarrow |\
$$

3. Let If and be Cauchy sequences in X , then for $\varepsilon > 0$, there exist a positive integers Now using above we
3. Let If $\{x_n\}$ and $\{y_n, k_1, k_2 \text{ such that } ||x_n - z|| \}$ such that 2² $\frac{\varepsilon}{2}$ for all $n \geq k_1$ and $||y_n$ and 2² $\frac{\varepsilon}{2}$ for all $n \geq k_2$ *x x n m*

Let $k = \max\{k_1, k_2\}$, then both the above relations hold for

Now,
$$
||(x_n + y_n) - (x_m + y_m)|| = ||(x_n - x_m) + (y_n - y_m)|| \le ||x_n - x_m|| + ||y_n - y_m|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
$$
 for $n, m \ge k$.

is a Cauchy sequences in *X* .

Since $\{x_n\}$ is a Cauchy sequences in X, for $\varepsilon > 0$, there exist a positive integers k such that $||x_n + y_n) - (x_m + y_m)|| = ||(x_n - x_n + y_n)||$
is a Cauchy sequences
 $\{x_n\}$ is a Cauchy sequences in X
 $||x_n|| \leq \varepsilon$ for all $n, m \geq k$ $\|x_n - x_m\| < \varepsilon$ for all $n, m \ge k$. then both the above relations hold to
 $(x_m + y_m) \le ||x_m - x_m + (y_n - y_m)|| \le ||x||$

Cauchy sequences in *X*.

hy sequences in *X*, for $\varepsilon > 0$, there $n, m \ge k$.

Taking in particular of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issu $n = m + 1$, $||x_{m+1}|| < \varepsilon$ for all $n, m \ge k$, so $\{||x, \}$
d too. for all $n, m \geq k$, so $\{||x_n||\}$ is bounded. *h*) Volume:8 Issue:2 Year: 2024 pag
 $n, m \ge k$, so $\{\Vert x_n \Vert\}$ is bounded. g in particular $n = m + 1$, $||x_{m+1}||$
{ λ_n } is bounded too.

Now $\{\lambda_n\}$ is bounded too.

Journal of Iraqi AI-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
\nTaking in particular
$$
n = m + 1
$$
, $|x_{m+1}| \le \varepsilon$ for all $n, m \ge k$, so $||x_{m}||$ is bounded.
\nNow (λ_{τ}) is bounded too.
\nThen, $||\lambda_{\tau} \cdot x_{n} - \lambda_{\tau} \cdot x_{m}|| = ||\lambda_{\tau} \cdot (x_{n} - \lambda_{\tau} \cdot x_{m} + \lambda_{\tau} \cdot x_{m} - \lambda_{\tau} \cdot x_{m}|| = ||\lambda_{\tau} \cdot (x_{n} - x_{m}) + (\lambda_{\tau} - \lambda_{m}) \cdot x_{m}||$
\n $||\lambda_{\tau} \cdot x_{n} - \lambda_{m} \cdot x_{m}|| \le ||\lambda_{\tau}|| \cdot x_{m} - \lambda_{\tau} \cdot x_{m} + \lambda_{\tau} \cdot x_{m} - \lambda_{m} \cdot x_{m}|| = ||\lambda_{\tau} \cdot (x_{n} - x_{m}) + (\lambda_{\tau} - \lambda_{m}) \cdot x_{m}||$
\n $||\lambda_{\tau} \cdot x_{n} - \lambda_{m} \cdot x_{m}|| \le ||\lambda_{\tau}|| \cdot x_{m} - \lambda_{\tau} \cdot ||\lambda_{\tau}|| \cdot ||\lambda_{\tau}||$, then $||\lambda_{\tau}||$
\n $||\lambda_{\tau}||$ are also Cauchy sequences in X .
\n**PROOF**
\nIf $\lambda_{\tau} \ge \delta$ and subspace in a soft normed space $(X, ||\cdot||, \Lambda)$, then the closure of M_A , M_A is also a soft
\nsubspace.
\nProof:
\nLet $x, y \in \overline{M_A}$, we must show that any linear combination of x, y belongs to $\overline{M_A}$.
\nSince $x, y \in \overline{M_A}$, corresponding to $z > \delta$, there exists soft elements $x_1, y_2 \in \overline{M_A}$ such that
\n $||x - x_1|| < |x - x_1| + |y - y_1| < |x - x_1| + |y - y_1| + |x - x_1| + |y - y_1| + |x$

 \Rightarrow { $\lambda_n \cdot x_n$ } are also Cauchy sequences in X. *X* .

Theorem (3.22)

If M_A is a soft subspace in a soft normed space $(X, \|\cdot\|, A)$, then the closure of M_A , M_A is also a soft subspace. ⇒ { $\lambda_n \cdot x_n$ } are also Cauchy sequences in *X*.
 Theorem (3.22)

If *M_A* is a soft subspace in a soft normed space $(X, \|\cdot\|, A)$

subspace.

Proof :

Let *x*, *y*∈ $\overline{M_A}$, we must show that any linear comb

Since *x x*, *y* belongs to \overline{M} **em (3.22)**

is a soft subspace in a soft normed space $(X, |\cos \theta|)$
 Ce.

Let $x, y \in M_A$, we must show that any linear conductions $x, y \in M_A$, corresponding to $\varepsilon > 0$, there exists $\|x - x_1\| < \varepsilon$, is also a soft
 x, y belongs to \overline{M}_A , \overline{M}_A is also a soft
 $x_1, y_2 \in \overline{M}_A$ such that *x* \mathbb{R}^d and $(X, \|\cdot\|, A)$, then the closure of M_A , $\overline{M_A}$ is also a soft
x any linear combination of x, y belongs to $\overline{M_A}$.
x there exists soft elements $x_1, y_2 \in \overline{M_A}$ such that
 $x - x_1 \leq \varepsilon$,

Proof :

Let $x, y \in M_A$, we must show that any linear combination of belongs to M_A . M_A .

, corresponding to $\varepsilon > 0$, there exists soft elements $x_1, y_2 \in M_A$ such that

$$
\|x - x_1\| < \varepsilon \,, \quad \|y - y_1\| < \varepsilon
$$

For soft scalars $\alpha, \beta > 0$,

$$
\left\|(\alpha \cdot x + \beta \cdot y) - (\alpha \cdot x_1 + \beta \cdot y_1)\right\| = \left\|\alpha \cdot (x - x_1) + \beta \cdot (y - y_1)\right\| \leq |\alpha| \left\|x - x_1\right\| + |\beta| \left\|y - y_1\right\| \leq \varepsilon (|\alpha| + |\beta|) = \varepsilon' \text{ (say)},
$$

The above inequality shows that $\alpha x_1 + \beta y_1$ belongs to the open ball $\beta(\alpha x + \beta y_1, \vec{\epsilon})$. As $\alpha x_1 + \beta y_1$ both what any linear combination of x, y belongs to
 $\varepsilon > \tilde{0}$, there exists soft elements $x_1, y_2 \in \overline{M_A}$ such
 $||x - x_1|| < \varepsilon$, $||y - y_1|| < \varepsilon$
 $\alpha \cdot (x - x_1) + \beta \cdot (y - y_1)|| \le | \alpha | ||x - x_1|| + |\beta || |y - y_1||$
 $\alpha x_1 + \beta y_1$ belon closure of M_A , $\overline{M_A}$ is also a soft
 \therefore , y belongs to $\overline{M_A}$.
 \therefore , y ₂ $\in \overline{M_A}$ such that
 $+ |\beta| \|y - y_1\| < \varepsilon (|\alpha| + |\beta|) = \varepsilon'$ (say),
 $\beta(\alpha x + \beta y, \varepsilon')$. As $\alpha x_1 + \beta y_1$

a soft subspace of X. $\left|\beta\right|$ = ε' (say),
 $\alpha x_1 + \beta y_1$ and $\varepsilon' > 0$ are arbitrary, it follows that $\alpha x + \beta y \in \overline{M_A}$. Hence $\overline{M_A}$ is a soft subspace of X. at any linear combination of x, y belongs to \overline{M}_A .
 \tilde{J} , there exists soft elements $x_1, y_2 \in \overline{M}_A$ such that
 $||x - x_1|| < \varepsilon$, $||y - y_1|| < \varepsilon$
 $-x_1) + \beta \cdot (y - y_1)|| \le |a|| ||x - x_1|| + |\beta|| |y - y_1|| < \varepsilon (|\alpha| + |\beta|) = \varepsilon'$ (sa *x* + *p* · *y*) – (*a* · *x*₁ + *p* · *y*₁)||= ||*a* · (*x* –
above inequality shows that $\alpha x_1 + \beta x_2$
 $\epsilon' > 0$ are arbitrary, it follows that α
nition (3.23)
ft linear space *X* is said to be of fin
vectors in the open ball $\beta(\alpha x + \beta y, \varepsilon')$. As $\alpha x_1 + \beta y_1$

the open ball $\beta(\alpha x + \beta y, \varepsilon')$. As $\alpha x_1 + \beta y_1$

[ence \overline{M}_A is a soft subspace of X .

if there is a finite set of linearly independent

ctors in a soft linear sp

Definition (3.23)

A soft linear space *X* is said to be of finite dimensional if there is a finite set of linearly independent soft vectors in X which also generates X . *X* .

Theorem(3.24)

Let x_1, x_2, \dots, x_n be a linearly independent set of soft vectors in a soft linear space X. Then there is a soft real number $c > 0$ such that for every set of soft scalars $\lambda_1, \lambda_2, \dots, \lambda_n$ we have

$$
\|\lambda_1\cdot x_1+\lambda_2\cdot x_2+\cdots+\lambda_n\cdot x_n\|\geq \tilde{c}(|\lambda_1|+|\lambda_2|+\cdots+|\lambda_n|)
$$

Proof :

The theorem will be proved if we can prove

orem will be proved if we can prove
\n
$$
\|\lambda_1 \cdot x_1 + \lambda_2 \cdot x_2 + \dots + \lambda_n \cdot x_n \| (e) \ge \tilde{c}(\lambda_1 | + |\lambda_2| + \dots + |\lambda_n|)(e) \text{ for all } e \in A
$$

i.e., $\|\lambda_1(e) \cdot x_1(e) + \lambda_2(e) \cdot x_2(e) + \cdots + \lambda_n(e) \cdot x_n(e)\|_e \geq (c(e)(|\lambda_1(e)| + |\lambda_2(e)| + \cdots + |\lambda_n(e)|))$ for all $e \in A$.

Now, x_1, x_2, \dots, x_n being soft vectors in X , $x_1(e), x_2(e), \dots, x_n(e)$ are vectors in X and $\lambda_1, \lambda_2, \dots, \lambda_n$ *x* Journal of Iraqi Al-Khwarizm
 x 1 2 π 4 π 2 π 4 π 2 π 4 π 5 π 3 π 3 π 3 π *x_n* $\| (JIKh) \text{ Volume:8 Issue:2 Year: } 2024 \text{ pages: } 44$
 x_n $\| (e) \ge \tilde{c}(\lambda_1 | + |\lambda_2| + \cdots + |\lambda_n|)(e) \text{ for all } e \in A$
 $\langle x, y \rangle \cdot x_n(e) \| \ge \langle \tilde{c}(e)(\lambda_1(e) | + |\lambda_2(e) | + \cdots + |\lambda_n(e)|) \rangle \text{ for } X \text{ , } x_1(e), x_2(e), \cdots, x_n(e) \text{ are vectors in } X \text{ and } \lambda \text{ are scalars.}$

space $(X, \$ 14-68

or all $e \in A$.
 $\lambda_1, \lambda_2, \dots, \lambda_n$

at the above being soft scalars $\lambda_1(e), \lambda_2(e), \dots, \lambda_n(e)$ are scalars. $\ge \tilde{c}(\vert \lambda_1 \vert + \vert \lambda_2 \vert + \cdots + \vert \lambda_n \vert)(e)$ for $\Vert e \ge \tilde{c}(e)(\vert \lambda_1(e) \vert + \vert \lambda_2(e) \vert + \cdots)$
(e), $x_2(e), \cdots, x_n(e)$ are vectors.
ars.
(X, $\Vert \cdot \Vert_e$) we get a real num $\lambda_2(e) \cdot x_2(e) + \cdots + \lambda_n(e) \cdot x_n(e) \Big|_e \geq \tilde{c}(e)$
being soft vectors in X , $x_1(e), x_2(e)$
 $\lambda_1(e), \lambda_2(e), \cdots, \lambda_n(e)$ are scalars.
operty of normed linear space $(X, \|\cdot\|_e)$
 $\tilde{c}(e) = c_e$, for all $e \in A$. rs in X , $x_1(e), x_2(e), \dots, x_n(e)$ are vectors
 $a_n(e)$ are scalars.

linear space $(X, \|\cdot\|_e)$ we get a real number
 $e \in A$.

al of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

m will be proved if we can prove
 $\|\cdot x_1 + \lambda_2 \cdot x_2 + \cdots + \lambda_n \cdot x_n\| (e) \ge \tilde{c}(\lambda_1 | + |\lambda_2| + \cdots + |\lambda_n|)(e)$ for all $e \in A$
 $\lambda_2(e) \cdot x_2(e) + \cdots + \lambda_n(e) \cdot x_n(e)$ Then using the property of normed linear space $(X, \|\cdot\|_e)$ we get a real number c_e , such that the above relation holds for $c(e) = c_e$, for all or all $e \in A$.

(*A*) with finite parameter set *A* is consistent norm as defined in Example (*5*)

Theorem (3.25)

nal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

em will be proved if we can prove
 $\lambda_1 \cdot x_1 + \lambda_2 \cdot x_2 + \cdots + \lambda_n \cdot x_n |e) \ge \tilde{c}(|\lambda_1| + |\lambda_2| + \cdots + |\lambda_n|)(e)$ for all $e \in A$
 $+\lambda_2(e) \cdot x_2(e) + \cdots + \lambda_n(e) \$ Every Cauchy sequence in \Box (A) with finite parameter set A is convergent, i.e., the set of all soft real numbers with its usual modulus soft norm as defined in Example (5.2) with finite parameter set *A* , is a soft Banach space. Every Cauchy sequence in \Box (*A*) with finite parameter set *A* is convergent, i.e., the set of

numbers with its usual modulus soft norm as defined in Example (5.2) with finite paramete

soft Banach space.

Proof:

Let

Proof :

Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

1 The theorem will be proved if we can prove
 $\left|\lambda_1 \cdot x_1 + \lambda_2 \cdot x_2 + \cdots + \lambda_n \cdot x_n \right| (\epsilon) \geq \tilde{c}(\left|\lambda_1 \right| + \left|\lambda_2 \right|) + \cdots + \left|\lambda_n \right|)(\epsilon)$ for all Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

²

²:

²:

²: *Parameters will be proved if we can prove***
** $\left| \lambda_2 \cdot x_2 + \cdots + \lambda_n \cdot x_n \right| (e) \ge c(\left| \lambda_1 \right| + \left| \lambda_2 \right| + \cdots + \left| \lambda_n \right|) (e)$ Let with its usual modulus soft norn
ach space.
 $\{x_n\}$ be any arbitrary Cauchy se
uch that $|x_n - x_m| < \varepsilon$ for all *n m* be any arbitrary Cauchy sequence in \Box (A). Then corresponding to every $\varepsilon > 0$, there exist operty of normed linear space $(X, \|\cdot\|_e)$ we get a real nu
 $\tilde{c}(e) = c_e$, for all $e \in A$.

quence in \Box (*A*) with finite parameter set *A* is converge

usual modulus soft norm as defined in Example (5.2) wi

e.

any *n* finite parameter set *A* is converged
 n form as defined in Example (5.2) wit
 y sequence in \Box (*A*). Then correspone
 n, $m \ge k$, i.e., $|x_n - x_m|(e) < \varepsilon(e)|$ for a
 n. Then $\{x_n(e)\}$ is a Cauchy sequence , i.e., $|x_n - x_m|(e) < \varepsilon(e)$ for all $n, m \ge k$, i.e. $\geq (\tilde{c}(e)(|\lambda_1(e)| + |\lambda_2(e)| + \cdots + |\lambda_n(e)|))$ for all $e \in A$.
 *x*₂(*e*), \cdots , *x_n*(*e*) are vectors in *X* and $\lambda_1, \lambda_2, \cdots, \lambda_n$
 n, $\|\cdot\|_e$) we get a real number c_e , such that the above

eter set *A* is convergent i.e., the set of all soft real

inite parameter set *A*, is a
 \log to every $\varepsilon > 0$, there exist
 $n, m \ge k$, i.e.

ordinary real numbers \square $| \lambda_1 \cdot x_1 + \lambda_2 \cdot x_2 + \cdots + \lambda_n \cdot x_n | (e) \ge c(\lambda_1| + |\lambda_2| + \cdots + |\lambda_n|) (e)$ for all $e \in A$
 x e.. $| \lambda_1(e) \cdot x_1(e) + \lambda_2(e) \cdot x_2(e) + \cdots + \lambda_n(e) \cdot x_n(e)|$ $\ge \left(\tilde{c}(e) (\lambda_1(e)| + |\lambda_2(e)| + \cdots + |\lambda_n(e)|) \right)$ for all e .
 xow, x_1, x_2, \cdots, x_n be for all $n, m \ge k$. Then $\{x_n(e)\}\$ is a Cauchy sequence of ordinary real numbers \Box
 e Completeness of \Box and finiteness of *A*, it follows that $\{x_n(e)\}\$ is convergent
 $x_n(e) \rightarrow x_e$, for each *e* ∈ *A*.
 e ment *x* d (*A*) with finite parameter set *A* is convergent, i.e.

lus soft norm as defined in Example (5.2) with finit
 y Cauchy sequence in \Box (*A*). Then corresponding to
 $|$ for all $n, m \ge k$, i.e., $|x_n - x_m|(e) \le \varepsilon(e)$ for a for each $e \in A$. By the Completeness of \Box and finiteness of A, it follows that $\{x_n(e)\}\$ is convergent *f*_{*x_n*}} be any arbitrary Cauchy sequence in *□*
e e h that $|x_n - x_m| < \varepsilon$ *f* for all *n*, *m* ≥ *k*, i.e., $|x_n - x_m| < \varepsilon$ *e (e) f* or all *n*, *m* ≥ *k*. Then {*x_n*(*e)*} is
e ∈ *A*. By the Completenes to every $\varepsilon > 0$, there exist
 $m \ge k$, i.e.

dinary real numbers \Box

{ $x_n(e)$ } is convergent for each $e \in A$. Let $x_n(e) \to x_e$, for each *e* $\left| \int_{x_n}^{\infty} f(x_n) \right| \leq \frac{2}{\pi} \int_{x_n}^{\infty} f(x_n) \, dx$ *e A e A e A e A e A e A e A e e A e e A e e A e e e A e e e A e e e A e e e A e e n* (*A*) with limited in \Box (*A*) with limited in modulus soft norm as arbitrary Cauchy seque x_m $\leq \varepsilon$ | for all *n*, *m* ≥ *k* for all *n*, *e k i e x*_{*n*} (*A*) with limite parameter set *A* is convergent, i.e., the
*i*al modulus soft norm as defined in Example (5.2) with finite parabitrary Cauchy sequence in \Box (*A*). Then corresponding to ev quence in \Box (*A*). Then corresponding
 $\lambda \ge k$, i.e., $|x_n - x_m|(e) < \varepsilon(e)|$ for all *n*

hen $\{x_n(e)\}$ is a Cauchy sequence of o
 \Box and finiteness of *A*, it follows that
 $e \in A$.
 $x(e) = x_e$, for each $e \in A$. Then *x* is Let $\{x_n\}$ be any arbitrary Cauchy sequence in $\Box(A)$. $1 \le \Box$ such that $\left|x_n - x_m\right| < \varepsilon \mid$ for all $n, m \ge k$, i.e., $\left|x_n - x_m\right|$ $\left|x_n(e) - x_m(e)\right| < \varepsilon(e) \mid$ for all $n, m \ge k$. Then $\{x_n(e)\}$ is a Car for each $e \in A$. By urbitrary Cauchy sequence in \Box (
 $x_m \leq \varepsilon$ | for all $n, m \geq k$, i.e., x_n

for all $n, m \geq k$. Then $\{x_n(e)\}$ is
 \Box Completeness of \Box and finiten
 $x(e) \rightarrow x_e$, for each $e \in A$.

nent x defined by $x(e) = x_e$, for *m* $\left[\text{Cov}(A) \right]$ *y* + $\lambda_2(e)$ -*x*₂(*e*) + \cdots + $\lambda_a(e)$ - $x_a(e)$ $\Big|_{e} \geq \frac{1}{2}c(e)\Big|\lambda_2(e)\Big| + \frac{1}{2}2(e)\Big| + \cdots$
 x_x being soft vectors in X , $X_1(e), X_2(e), \cdots, X_n(e)$ are vectors $X_1(x), X_2(x), \cdots, X_n(e)$ are vectors $\lambda_1(e), \lambda_2(e), \cdots,$ *A*·(c) *n*·*n*(c)+*n*·**-***n*, *n*(e) *x**n*(c) *n*, *z*(c) *n*(*x*₁*n*(c), *x*_{*n*}(c))^{*n*} *n* .*x*_{*n*}(c), *n* .*x*_{*n*}(c), *n* .*x*_{*n*}(c), *n* .*x*_{*n*}(c) *n* .*x*_{*n*}(c) *n* .*x*_{*n*}(c) *n* .*x*_{*n*}(*n*)

Consider the soft element x defined by $x(e) = x_e$, for each $e \in A$. Then x is a soft real number and it follows that the sequence $\{x_n\}$ of soft real numbers is convergent and it converges to the soft real le Completeness of $□$ and finiteness of $x_n(e) \rightarrow x_e$, for each $e \in A$.

ment *x* defined by *x*(*e*) = *x_e*, for each ence {*x_n*} of soft real numbers is conv (*A*) is a soft Banach space. number x. Hence \Box (A) is a soft Banach space.

Theorem (3.26)

Every finite dimensional soft normed linear space over a finite parameter set *A* is complete. Proof :

Let X be a finite dimensional soft normed linear space over a finite parameter set A. Let $\{y_m\}$ be any ${y_m}$ be any
Suppose arbitrary Cauchy sequence in X . We show that $\{y_m\}$ converges to Exercise the parameter set
 ${y_m}$ converges to some sof
 ${x_n}$ be a basis for X. converges to some soft element $y \in X$. Suppose blete.
 y E *X* . Suppose
 y E *X* . Suppose

as a unique that the dimension of X is n, and let $\{x_1, x_2, \dots, x_n\}$ be a basis for X . Then each y_m has a unique x x $(x e) = x_e$, for each $e \in A$. Then x is a so
real numbers is convergent and it converg
h space.
inear space over a finite parameter set A is
normed linear space over a finite parameter
show that $\{y_m\}$ converge

Because **Journal of Iraqi Al-Khwa**
{ y_m } is a Cauchy sequence,
 $\leq \varepsilon$ for $m r > k$. From then is a Cauchy sequence, for $\varepsilon > 0$ arbitrary there exist a positive integer k such that *Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 l*
 m y_m y_r *j s a Cauchy sequence, for* $\varepsilon > 0$ *arbitrary there* $y_m - y_r$ $\leq \varepsilon$ *for* $m, r > k$ *. From theorem(4.5.23), it follows there* $x > |y_m - y_r|$ *= \left\| \sum_{j=1}* for al of Iraqi Al-Khwarizmi (JIKh) Volum
 Cauchy sequence, for $\varepsilon > 0$ arbitrary
 m, r > k. From theorem(4.5.23), it fol . From theorem(4.5.23), it follows that there exists $c > 0$ such that me:8 Issue:2 Year: 2024 pages: 44-6
there exist a positive integer k such there exist a positive integer k such that
ows that there exists $\tilde{c} > \tilde{0}$ such that
 $m, r > k$.

Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issu
\nBecause
$$
\{y_m\}
$$
 is a Cauchy sequence, for $\varepsilon > \tilde{0}$ arbitrary there exist
\n
$$
\|y_m - y_r\| < \varepsilon
$$
 for $m, r > k$. From theorem(4.5.23), it follows that t
\n
$$
\varepsilon > \|y_m - y_r\| = \left\| \sum_{j=1}^n (\lambda_j^{(m)} - \lambda_j^{(r)}) x_j \right\| \ge \tilde{c} \sum_{j=1}^n |\lambda_j^{(m)} - \lambda_j^{(r)}|
$$
, for $m, r > k$.
\nConsequently, $|\lambda_j^{(m)} - \lambda_j^{(r)}| \le \tilde{c} \sum_{j=1}^n |\lambda_j^{(m)} - \lambda_j^{(r)}| < \frac{\varepsilon}{c}$
\nshows that each of the *n* sequences $\lambda_j^{(m)} = {\lambda_j^{(n)}, \lambda_j^{(2)}, \lambda_n^{(3)}, \cdots}$, $j =$
\nis finite, converges to λ_j , (say), $j = 1, 2, \cdots, n$.
\nWe now define the soft element $y = \lambda_1 \cdot x_1 + \lambda_2 \cdot x_2 + \cdots + \lambda_n \cdot x_n$ w
\nMoreover, since $\lambda_j^{(m)} \rightarrow \lambda_j$ as $m \rightarrow \infty$ and $j = 1, 2, \cdots, n$; we have
\n
$$
\|y_m - y\| = \left\| \sum_{j=1}^n (\lambda_j^{(m)} - \lambda_j) x_j \right\| \ge \tilde{c} \sum_{j=1}^n |\lambda_j^{(m)} - \lambda_j| \|x_j\| \rightarrow \tilde{0}
$$
as $m \rightarrow \infty$.
\n**4. Soft Banach Algebra**
\n**Definition (4.1)**
\nA soft algebra F_A of *X* over *F* is called a soft Banach algebra if
\nrespect to a soft norm that satisfies the inequality $\|x_1 y\| \le \|x\| \|y\|$ and

Consequently, 1^+ $1^ 1^ C^$ $n \mid (m)$ $(n) \mid C$ *j* $c\sum|\lambda_j^{(m)}-\lambda_j^{(r)}|<\frac{c}{r}$ *c*

Iournal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 Pocause $\{y_m\}$ is a Cauchy sequence, for $\epsilon > \tilde{0}$ arbitrary there exist a positive integer k such that
 $\left|y_m - y_r\right| \le \epsilon$ for $m, r > k$ Journal of Iraqi AL-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

ccause $\{y_n\}$ is a Cauchy sequence, for $z > 0$ arbitrary there exist a positive integer k such that
 $\left\|y_m - y_x\right\| \le \delta$ for $m, r > k$. From t rnal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

a Cauchy sequence, for $\varepsilon > 0$ arbitrary there exist a positive integer k such that
 $m, r > k$. From theorem(4.5.23), it follows that there exists of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

auchy sequence, for $\varepsilon > 0$ arbitrary there exist a positive integer k such that
 $r > k$. From theorem(4.5.23), it follows that there exists $\tilde{c} >$ shows that each of the *n* sequences $\lambda_j^{(m)} = {\lambda_j^{(1)}, \lambda_j^{(2)}, \lambda_n^{(3)}, \cdots}$, $j = 1, 2, \cdots, n$ is Cauchy in \Box (*A*) and rizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages:

or $\varepsilon > 0$ arbitrary there exist a positive integer k s

em(4.5.23), it follows that there exists $\tilde{c} > 0$ such t
 $\left| \lambda_j^{(m)} - \lambda_j^{(r)} \right|$, for $m, r > k$.
 $\left| \lambda_j^{(m)} - \lambda$ arizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

for $\varepsilon > 0$ arbitrary there exist a positive integer k such that
 *j*₂ $\left| \lambda_j^{(m)} - \lambda_j^{(r)} \right|$, for *m*, *r* > k .
 $-\lambda_j^{(r)} \left| \langle \lambda_j^{(m)} - \lambda_j^{(r)} \rangle \right|$, for *m*, *r* (A) and A *A* is finite, converges to λ_j , (say), $j = 1, 2, \dots, n$. ce, for $\varepsilon > \tilde{0}$ arbitrary there exist a positi

heorem(4.5.23), it follows that there exist
 $\geq \tilde{c} \sum_{j=1}^{n} \left| \lambda_j^{(m)} - \lambda_j^{(r)} \right|$, for $m, r > k$.
 $\left| \lambda_j^{(m)} - \lambda_j^{(r)} \right| < \frac{\varepsilon}{c}$

es $\lambda_j^{(m)} = \left\{ \lambda_j^{(1)}, \lambda_j^{(2)},$ *y x x x* 1 1 2 2 *n n* the *n* sequences $\lambda_j^{(m)} = \{\lambda_j^{(m)} = 0\}$

(to λ_j , (say), $j = 1, 2, \dots, n$

(soft element $y = \lambda_1 \cdot x_1 +$
 $\lambda_j^{(m)} \rightarrow \lambda_j$ as $m \rightarrow \infty$ and j $\left|\sum_{i=1}^{m} (\lambda_i^{(m)} - \lambda_j^{(r)}) x_j \right| \geq c \sum_{j=1}^{n} \left| \lambda_j^{(m)} - \lambda_j^{(r)} \right|, \text{ for } m, r > k.$
 $\left| \lambda_j^{(m)} - \lambda_j^{(r)} \right| \leq c \sum_{j=1}^{n} \left| \lambda_j^{(m)} - \lambda_j^{(r)} \right| < \frac{\varepsilon}{c}$

of the *n* sequences $\lambda_j^{(m)} = {\lambda_j^{(m)}, \lambda_j^{(2)}, \lambda_n^{(3)}, \cdots}, j = 1, 2, \cdots, n$ $-\lambda_j^{(r)}\Big|$, for $m, r > k$.
 $\leq \frac{\varepsilon}{c}$
 $\lambda_j^{(1)}, \lambda_j^{(2)}, \lambda_n^{(3)}, \cdots$ }, $j = 1, 2, \cdots, n$ is Cauchy
 n .
 $\lambda_2 \cdot x_2 + \cdots + \lambda_n \cdot x_n$ which is clearly a so:
 $j = 1, 2, \cdots, n$; we have
 $\Big\|x_j\Big\| \to \tilde{0}$ as $m \to \infty$. i.e. y *m* $\cdot \cdot$, *n* is Cauchy in \Box (*A*) and *A*
is clearly a soft element of *X*.
 $y_m \to y$ as $m \to \infty$.

We now define the soft element $y = \lambda_1 \cdot x_1 + \lambda_2 \cdot x_2 + \cdots + \lambda_n \cdot x_n$ which is clearly a soft element of X. Moreover, since as $m \to \infty$ and $j = 1, 2, \dots, n$; we have

$$
\left\|y_m - y\right\| = \left\|\sum_{j=1}^n (\lambda_j^{(m)} - \lambda_j) x_j\right\| \ge \tilde{c} \sum_{j=1}^n \left|\lambda_j^{(m)} - \lambda_j\right| \left\|x_j\right\| \to \tilde{0} \text{ as } m \to \infty \text{ i.e. } y_m \to y \text{ as } m \to \infty.
$$

4. Soft Banach Algebras

Definition (4.1)

ournal of Iraqi Al-Khwarizmi (JIKh)

is a Cauchy sequence, for $\varepsilon > 0$ arbit

for $m, r > k$. From theorem(4.5.23), i
 $= \left\| \sum_{j=1}^{n} (\lambda_j^{(m)} - \lambda_j^{(r)}) x_j \right\| \ge \tilde{c} \sum_{j=1}^{n} |\lambda_j^{(m)} - \lambda_j^{(r)}|$
 $\cdot |\lambda_j^{(m)} - \lambda_j^{(r)}| \le \tilde{c} \sum_{$ urnal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024

s a Cauchy sequence, for $\varepsilon > \tilde{0}$ arbitrary there exist a positive integ

or $m, r > k$. From theorem(4.5.23), it follows that there exists $\tilde{c} > \tilde{0}$
 Journal of Iraqi Al-Khwarizmi (JIKh) Volur

cause $\{y_m\}$ is a Cauchy sequence, for $\varepsilon > \tilde{0}$ arbitrary t
 $\|y_m - y_r\| \le \varepsilon$ for $m, r > k$. From theorem(4.5.23), it follows $\|y_m - y_r\| = \left\|\sum_{j=1}^n (\lambda_j^{(m)} - \lambda_j^{(r)})x_j\right\|$ Journal of Iraqi Al-Khwarizm
 j is a Cauchy sequence, for ε
 \therefore for $m, r > k$. From theorem(
 $\left| = \left\| \sum_{j=1}^{n} (\lambda_j^{(m)} - \lambda_j^{(r)}) x_j \right\| \geq \tilde{c} \sum_{j=1}^{n} \left| \lambda_j^{(m)} - \lambda_j^{(r)} \right|$
 $y, \left| \lambda_j^{(m)} - \lambda_j^{(r)} \right| \leq \tilde{c} \sum_{j$ *Journal of Iraqi Al-Khwarizmi (JIKh)* Volume:8 Issue:2 Year: 2024 pages: 44-68

recase $\{y_n\}$ is a Cauchy sequence, for $z > \hat{0}$ arbitrary there exist a positive integer k such that
 $y_n - y_r \Big| \leq \hat{c}$ for $m, r > k$. Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

use $\{y_n\}$ is a Cauchy sequence, for $z > \hat{0}$ arbitrary there exit a positive integer k such that
 $y_n - y_n\Big| = \left|\sum_{j=1}^{n} (\lambda_j^{(n)} - \lambda_j^{(n)})x_j\$ A soft algebra F_A of X over F is called a soft Banach algebra if F_A is a soft Banach space with respect to a soft norm that satisfies the inequality $||xy|| \le ||x|| ||y||$ and if F_A contains an identity \tilde{e} such that $x\tilde{e} = \tilde{e}x = x$ with $||\tilde{e}|| = 1$.
 Theorem (4.2)
 F_A is a soft Banach algebra iff $F(e)$ is a $+ \cdots + \lambda_n \cdot x_n$ which is clearly a soft e
 i, *n*; we have

→ Ô as $m \rightarrow \infty$. i.e. $y_m \rightarrow y$ as $m \rightarrow \infty$

mach algebra if F_A is a soft Banach s
 $xy \le ||x|| ||y||$ and if F_A contains an ide that $xe = ex = x$ with $||e|| = 1$. better, since $\lambda_j^{(m)} \to \lambda_j$ as $m \to \infty$ and $j = 1, 2, \dots, n$; wordenly $\|x_j\| = \left\| \sum_{j=1}^n (\lambda_j^{(m)} - \lambda_j) x_j \right\| \ge \tilde{c} \sum_{j=1}^n |\lambda_j^{(m)} - \lambda_j| \|x_j\| \to 0$ as m -
oft Banach Algebras
nition (4.1)
ft algebra F_A of X over $F(e)$ is a Banach algebra $F(e)$ is a Banach algebra. oft norm that satisfies
 $= x$ with $||\tilde{e}|| = \tilde{1}$.

2)

Banach algebra iff $F(x)$

s from the definition c

space $(X, ||\cdot||)$ is soft c

(e) for each $x \in X$, w

3) bet to a soft norm that satisfies the in
 $x \tilde{e} = \tilde{e} x = x$ with $||\tilde{e}|| = \tilde{1}$.
 orem (4.2)

is a soft Banach algebra iff $F(e)$ is a

f:

f:

follows from the definition of soft

normed space $(X, ||\cdot||)$ is soft com

Theorem (4.2)

F^A is a soft Banach algebra iff is a Banach algebra for all

Proof :

follows from the definition of soft algebra and the following theorem .

soft normed space $(X, \|\cdot\|)$ is soft complete iff $(X, \|\cdot\|_e)$ is complete for all $e \in A$ where $\|\cdot\|_e$ defined h algebra iff $F(e)$ is a Banach algebra
the definition of soft algebra and the
 $(X, \|\cdot\|)$ is soft complete iff $(X, \|\cdot\|_e)$
r each $x \in X$, where $x \in X$ such that. ch algebra for all $e \in A$.

a and the following theorem
 $(X, ||\cdot||_e)$ is complete for all

uch that $x(e) = x$ $e \in A$ where $\|\cdot\|_e$ defined as $||x||_e = ||x||(e)$ for each $x \in X$, where $x \in X$ such that finition of soft algebra and the following theorem .

is soft complete iff $(X, ||\cdot||_e)$ is complete for all $e \in A$ w
 $x \in X$, where $x \in X$ such that $x(e) = x$ a for all *e* ∈ *A*.

following theorem .

is complete for all *e* ∈ *A* where $\|\cdot\|_e$
 $x(e) = x$ *x* in of soft algebra and the following theorem.

ft complete iff $(X, \|\cdot\|_{e})$ is complete for all $e \in A$ where $\|\cdot\|_{e}$,
 $x_n \to x$ and $y_n \to \tilde{y}$ then $x_n y_n \to x \tilde{y}$.
 $x_n \to x$ and $y_n \to \tilde{y}$ then $x_n y_n \to x \tilde{y}$. *n* θ *n* θ *n* θ *n* θ *n* θ *****n* θ *n* θ *n* for all $e \in A$.

bllowing theorem .
 s complete for all $e \in A$ where $||\cdot||_e$ defined
 $(e) = x$
 $x_n y_n \to x \tilde{y}$.
 s.

Theorem (4.3)

In a soft Banach algebra F_A , if $x_n \to x$ and y_n .

i.e., multiplication in a soft Banach algebra is continuous.

Proof :

Since $x_n \to x$ and $y_n \to y$ in F_A . So $x_n(e) \to x(e)$ and $y_n(e) \to y(e)$ for all $e \in A$ in pages: 44-68
 $e \in A$ in $(F(e), ||\cdot||_e)$ *e*

Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Y
 $x_n \to x$ and $y_n \to y$ in F_A . So $x_n(e) \to x(e)$ and $y_n(e) \to y(e)$

ce $F(e)$ is Banach algebra for all $e \in A$ (by theorem 6.2) and of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 p
 $y_n \to y$ in F_A . So $x_n(e) \to x(e)$ and $y_n(e) \to y(e)$ for all $e \in A$

anach algebra for all $e \in A$ (by theorem 6.2) and in Banach al mi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $x_n(e) \rightarrow x(e)$ and $y_n(e) \rightarrow y(e)$ for all $e \in A$ in $(F(e), \|\cdot\|_e)$
 $1 e \in A$ (by theorem 6.2) and in Banach algebra
 $e) \rightarrow x(e)y(e)$ for all $e \in A$, which proves that $x_n y_n \rightarrow xy$. Sume: 2 Year: 2024 pages: 44

(*e*) \rightarrow y(*e*) for all *e* \in *A* in (*F*)

6.2) and in Banach algebra
 e \in *A*, which proves that x_n 8 Issue: 2 Year: 2024 pages: 44-68
 y_n(*e*) \rightarrow *y*(*e*) for all *e* \in *A* in (*F*(*e*), $\|\cdot\|_e$)
 m 6.2) and in Banach algebra

all *e* \in *A*, which proves that $x_n y_n \rightarrow xy$. 44-68
 $(F(e), \| \cdot \|_e)$ 4-68
F(*e*), $\|\cdot\|_e$) Now since $F(e)$ is Banach algebra for all $\rightarrow x$ and $y_n \rightarrow y$ in F_A . So $x_n(e) \rightarrow x(e)$ and $y_n(e) \rightarrow y(e)$ for all $e \in A$ in $F(e)$ is Banach algebra for all $e \in A$ (by theorem 6.2) and in Banach algebra on is continuous so, $x_n(e)y_n(e) \rightarrow x(e)y(e)$ for all $e \in A$, which proves multiplication is continuous so, $x_n(e)y_n(e) \rightarrow x(e)y(e)$ for all hwarizmi (JIKh) Volume:8 Issue:2 Year
 *n*_A. So $x_n(e) \rightarrow x(e)$ and $y_n(e) \rightarrow y(e)$:
 *n*_n $(e)y_n(e) \rightarrow x(e)y(e)$ for all $e \in A$, whisp Banach algebras on a crisp linear space \tilde{X} . *Xhwarizmi (JIKh)* Volume:8 Issue:2 Year: 2024 pages: 44-68
 F_A . So $x_n(e) \rightarrow x(e)$ and $y_n(e) \rightarrow y(e)$ for all $e \in A$ in $(F(e), \|\cdot\|_e)$

ora for all $e \in A$ (by theorem 6.2) and in Banach algebra
 $x_n(e)y_n(e) \rightarrow x(e)y(e)$ for all $e \$ *e*) → *y*(*e*) for all *e* ∈ *A* in (*F*(*e*), $|| \cdot ||_e$)
5.2) and in Banach algebra
e ∈ *A*, which proves that $x_n y_n \to xy$. , which proves that $(F(e), \| \cdot \|_e)$
 $x_n y_n \to xy$. $x_n \to x$ and $y_n \to y$ in F_A . So $x_n(e)$ –

nce $F(e)$ is Banach algebra for all $e \in A$

cation is continuous so, $x_n(e)y_n(e) \to x$

m (4.4)

arameterized family of crisp Banach alg

algebra on the soft vector space \hat{X} .
 $\{\$ *e* \rightarrow *x* and $y_n \rightarrow y$ in F_A . So $x_n(e) \rightarrow x(e)$ and $y_n(e) \rightarrow$
 e $F(e)$ is Banach algebra for all $e \in A$ (by theorem 6.2) *i*
 e (4.4)

ameterized family of crisp Banach algebras on a crisp line

gebra on the soft ve

Theorem (4.4)

Every parameterized family of crisp Banach algebras on a crisp linear space *X* can be considered as a soft Banach algebra on the soft vector space \tilde{X} . *X* ̃. ves that $x_n y_n \to xy$.

an be considered as a soft
 $(X, ||\cdot||_e)$
 $||x||(e) = ||x(e)||$ for all $x \in X$

Proof :

Let $\{\|\cdot\|_{e} : e \in A\}$ be a family of crisp norms on the linear space X such that $(X, \|\cdot\|_{e})$ *e*

are Banach algebra for first vector space *X*.
 a family of crisp norms on the linear space
 $e \in A$. Now let us define a function $\|\cdot\|$: *X* → . Now let us define a function $\|\cdot\|: X \to \Box (A)^*$ by $\|x\|(e) = \|x(e)\|_e$ for all $x \in X$, *z*) → *y*(*e*) for all $e \in A$ in $(F(e), \|\cdot\|_e)$

.2) and in Banach algebra
 $e \in A$, which proves that $x_n y_n \to xy$.

linear space *X* can be considered as a soft

ace *X* such that $(X, \|\cdot\|_e)$
 $\therefore X \to \square (A)^*$ by $\|x\|(e) = \|$ $g(e) \rightarrow y(e)$ for all $e \in A$ in $(F(e), || \cdot ||_e)$

6.2) and in Banach algebra

1 $e \in A$, which proves that $x_n y_n \rightarrow xy$.

sp linear space *X* can be considered as a soft

space *X* such that $(X, || \cdot ||_e)$
 $\cdot ||: X \rightarrow ∎ (A)^*$ by $||x|| (e) =$ A in $(F(e), ||\cdot||_e)$
gebra
that $x_n y_n \to xy$.
be considered as a soft
 $||\cdot||_e$)
 $(e) = ||x(e)||_e$ for all $x \in X$,
 $y||$ for all $x, y \in X$ and *z* \in *A* in $(F(e), \| \cdot \|_{e})$
algebra
es that $x_n y_n \rightarrow xy$.
n be considered as a soft
 $(X, \| \cdot \|_{e})$
 $x \| (e) = \| x(e) \|_{e}$ for all $x \in X$,
 $x \| \| y \|$ for all $x, y \in X$ and $x \in X$, for all $e \in A$. Then $\|\cdot\|$ is a soft norm on X. *e* $\{ \| \cdot \|_e : e \in A \}$ be a family of crisp norms on the linnach algebra for $e \in A$. Now let us define a funct $e \in A$. Then $\| \cdot \|$ is a soft norm on *X*.
 o show that $(X, \| \cdot \|)$ is a soft Banach algebra we h $\|$ is com $x \text{ can be considered as a soft}$
 $x \text{ that } (X, \|\cdot\|_e)$
 $x \text{ by } \|x\|(e) = \|x(e)\|_e \text{ for all } x \in X,$
 $x \text{ by } \|x\| \|y\| \text{ for all } x, y \in X \text{ and}$ \int_{e} for all $x \in X$,
 $x, y \in X$ and Let $\{\|\cdot\|_e : e \in A\}$ be a family of cri
are Banach algebra for $e \in A$. Now le
for all $e \in A$. Then $\|\cdot\|$ is a soft norm o
Now to show that $(X, \|\cdot\|)$ is a soft Ba
 $(X, \|\cdot\|)$ is complete.
Now $\|xy\|_{(e)} = \|x(e)y(e)\| \le \|x(e)\| \|y$ $x(e)$ for all $x \in X$,
all $x, y \in X$ and
 $xy \leq |x| ||y||$.
umber k such

Now to show that $(X, \|\cdot\|)$ is a soft Banach algebra we have to show that $||xy|| \le ||x|| ||y||$ for all $x, y \in X$ and $(X, \|\cdot\|)$ is complete. show that $||xy|| \le ||x|| ||y||$ for all $x, y \in X$ and
 $e \in A$, which shows that $||xy|| \le ||x|| ||y||$.

$$
(X, \|\cdot\|) \text{ is complete.}
$$

\nNow $\|xy\|(e) = \|x(e)y(e)\|_e \le \|x(e)\|_e \|y(e)\|_e \le \|x\|(e)\|y\|(e)$ for all $e \in A$, which shows that $\|xy\| \le \|x\| \|y\|$.
\nNow let $\{x_n\}$ be a Cauchy sequence in X. Then for any $\varepsilon > 0$ there exists a soft natural number k such

Journal of Iraqi Al-Khwarizmi (JIKh) Volume: 8 Issue: 2 Year:
 $\rightarrow x$ and $y_n \rightarrow y$ in F_A . So $x_n(e) \rightarrow x(e)$ and $y_n(e) \rightarrow y(e)$ for $F(e)$ is Banach algebra for all $e \in A$ (by theorem 6.2) and in Bition is continuous so, $x_n(e)y_n(e)$ *eqi Al-Khwarizmi (JIKh) Volur*
 \rightarrow *y* in F_A . So $x_n(e) \rightarrow x(e)$ and
 \rightarrow *e* e *A* (by the us so, $x_n(e)y_n(e) \rightarrow x(e)y(e)$ f
 \rightarrow *e* e *A* (by the us so, $x_n(e)y_n(e) \rightarrow x(e)y(e)$ f
 \rightarrow *e* e *x f* (*e*) *e* \rightarrow *x f* (*e*) $\$ Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue.2 Year: 2024 pages: 44-68

 x x - > *x* and $y_x \rightarrow y$ in F_x . So $x_x(e) \rightarrow x(e)$ and $y_x(e) \rightarrow y(e)$ for all $e \in A$ in $(F(e), \|\cdot\|)$

ince $F(e)$ is Banach algebra for all $e \in$ Now let be a Cauchy sequence in X . Then for any $\varepsilon > 0$ there exists a soft natural number k such that $||x_{n+p} - x_n|| (e) < \frac{\varepsilon}{\epsilon}$ for all $n \ge k(e)$, for all ϵ on the soft vector space \overrightarrow{X} .
 $\in A$ be a family of crisp norms on
 \exists bra for $e \in A$. Now let us define a

len $\|\cdot\|$ is a soft norm on X .

aat $(X, \|\cdot\|)$ is a soft Banach algebra

plete.
 $\|x(e)y(e)\|_{e} \leq \|x(e)\|_{e$ *x* $\|e\|_e : e \in A\}$ be a family of crisp nearboth algebra on the soft vector space X
 \vdots
 $\|e\|_e : e \in A\}$ be a family of crisp nearbon and algebra for $e \in A$. Now let us $\|e \in A$. Then $\| \cdot \|$ is a soft norm on X arameterized family of crisp Banach algebras on a crisp linear space X can be con
algebra on the soft vector space X.
 $\left\{\left\|\cdot\right\|_c : e \in A\right\}$ be a family of crisp norms on the linear space X such that $(X, \|\cdot\|_c)$

ach a soft Banach algebra we have to sl
 $\mathcal{L}(e) \leq ||x|| (e)||y|| (e)$ for all ϵ

uence in *X* . Then for any $\varepsilon > 0$ the
 $n \geq k(e)$, for all $e \in A$, then $||x_{n+p}(\epsilon)$

in $(X, ||\cdot||_{e})$ for all $e \in A$. ,for all $e \leq ||e||y||(e)$ for all $e \in A$, which shows that $||e||$.

en for any $\varepsilon > 0$ there exists a soft natural nu
 $e \in A$, then $||x_{n+p}(e) - x_n(e)|| < \frac{\varepsilon}{2}(e)$ for all e , then $||x_{n+p}(e) - x_n(e)|| \leq \frac{\varepsilon}{e}(e)$ for all $e \in A$, i.e. 5.2) and in Banach algebra
 $e \in A$, which proves that $x_n y_n \to xy$.

b linear space X can be considered as a soft

back X such that $(X, \|\cdot\|_e)$
 $\|X \to \Box (A)^*$ by $\|x\|(e) = \|x(e)\|_e$ for all $x \in A$,

show that $\|xy\| \le \|x\| \|y$ *x* end in Banach algebra
 x all $e \in A$, which proves that $x_n y_n \rightarrow xy$.
 x erisp linear space *X* can be considered as a sor
 x ar space *X* such that $(X, \|\cdot\|_e)$
 $\|\cdot\|: X \rightarrow \square (A)^*$ by $\|x\|(e) = \|x(e)\|_e$ for all *x*
 1 6.2) and in Banach algebra
 $\mathbb{I} e \in A$, which proves that $x_n y_n \to xy$.

isp linear space X can be considered as a soft

space X such that $(X, \|\cdot\|_e)$
 $\|\cdot\| \colon X \to \square (A)^*$ by $\|x\| (e) = \|x(e)\|_e$ for all $x \in X$,

to s $\|xy\| \le \|x\| \|y\|.$

number k such
 $e \in A$, i.e. $(X, \|\cdot\|)$ is complete.

Now $\|xy\|(e) = \|x(e)y(e)\|_{e} \le \|x(e)\|_{e} \|y(e)\|_{e} \le \|x\|(e) \|y\|(e)$ for a

Now let $\{x_n\}$ be a Cauchy sequence in X . Then for any $\varepsilon > 0$

that $\|x_{n+p} - x_n\|(e) < \frac{\varepsilon}{2}$ for all $n \ge k(e)$, for all $e \in A$ is a Cauchy sequence in $(X, \|\cdot\|_e)$ for all $e \in A$. $||y||(e)$ for an $e \in A$, which shows that $||xy||$ -
or any $\varepsilon > 0$ there exists a soft natural number
4, then $||x_{n+p}(e) - x_n(e)|| < \frac{\varepsilon}{2}(e)$ for all $e \in A$,
 $e \in A$. $xy \parallel (e) = \parallel x(e)y(e) \parallel_e \leq \parallel x(e) \parallel$

et { x_n } be a Cauchy sequence
 $x_{n+p} - x_n \parallel (e) < \frac{\varepsilon}{2}$ for all $n \geq n$

} is a Cauchy sequence in (
 $(X, \parallel \cdot \parallel_e)$ are Banach algebra

Hence there must exist sor Then for any $\varepsilon > 0$ there exists a soft natural
all $e \in A$, then $||x_{n+p}(e) - x_n(e)|| < \frac{\varepsilon}{2}(e)$ for all
for all $e \in A$.
 $e \in A$, so there exist x_e such that $x_n(e) \to x_e$ shows that $||xy|| \le ||x|| ||$
oft natural number k sun
 $\sum_{r=0}^{\infty} (e)$ for all $e \in A$, i.e.
 $\sum_{r=0}^{\infty} (e) \rightarrow x_e$ algebra for a
for all $e \in A$. *^e x e x* (*e*) $\|e\|_{e} \le \|x\| (e) \|y\| (e)$ for all $e \in A$, wh
 $x \in X$. Then for any $\varepsilon > 0$ there exists
 $x \in X$, then $\|x_{n+p}(e) - x_n(e) \|x\|_{e}$ for all $e \in A$.
 $x \in X$ and $e \in A$, so there exist x_e such that
 $k_e(> k(e))$ such that $\|\cdot X \to \Box(A)^*$ by $\|x\| (e) = \|x(e)\|_e$ for a

o show that $\|xy\| \le \|x\| \|y\|$ for all $x, y \in X$

all $e \in A$, which shows that $\|xy\| \le \|x\| \|y\|$

o there exists a soft natural number k such

there exists a soft natural number *n* $\| \cdot \| : X \to \Box (A)^*$ by $\| x \| (e) = \| x(e) \|_e$ for $\| \cdot \| : X \to \Box (A)^*$ by $\| x \| \| y \|$ for all $x, y \in X$
 n all $e \in A$, which shows that $\| xy \| \le \| x \| \| y$
 $> \tilde{0}$ there exists a soft natural number k su
 $x_{n+p}(e) - x_n(e) \| \le \frac{\varepsilon}{2$ $X \rightarrow \Box (A)^*$ by $||x||(e) = ||x(e)||_e$ for all $x \in X$,

how that $||xy|| \le ||x|| ||y||$ for all $x, y \in X$ and
 $e \in A$, which shows that $||xy|| \le ||x|| ||y||$.

here exists a soft natural number k such
 $e \in A$, which shows that $||xy|| \le ||x|| ||y||$.
 e (coursal of Fraqi Al-Khwarizmi (IIKh) Volume:8 Issue:2 Year: 2024 page

(c) is Barnach algebra for all $e \in A$ (by theorem 6,2) and in Barnach algebra is continuous so, $x_1(e) \rightarrow x(e)$ and $y_1(e) \rightarrow y(e)$ for all $e \in A$

(c) i *x_n* \rightarrow *x* and *y_n* \rightarrow *y* in *F_A* . So *x_n*(*e*) \rightarrow *x*(*e*) and *y_n*(*e*) \rightarrow *y*(*e*) cece *F*(*e*) is Banach algebra for all $e \in A$ (by theorem 6.2) and i
eation is continuous so, *x_n*(*e*) *y_n*(in F_A . So $x_n(e) \rightarrow x(e)$ and $y_n(e) \rightarrow y(e)$ for

gebra for all $e \in A$ (by theorem 6.2) and in Ba

gebra for all $e \in A$ (by theorem 6.2) and in Ba

f crisp Banach algebras on a crisp linear space

ctor space \overline{X} .

ily of *z x x x x z <i>x x*

Since $(X, \|\cdot\|_e)$ are Banach algebra for all $e \in A$, so there exist x_e such that $x_n(e) \to x_e$ algebra for all *e* $\left\{x_n(e)\right\}$ is a Cauchy sequence in $(X, \|\cdot\|_e)$ for $\left\{x_n(e)\right\}$ is a Cauchy sequence in $(X, \|\cdot\|_e)$ for $\text{Since } (X, \|\cdot\|_e)$ are Banach algebra for all $e \in A$. Hence there must exist some $k_e > k$. Hence there must exist some k_e (> $k(e)$) such that $||x_n(e) - x_e|| < \frac{\varepsilon}{2}(e)$ for all $e \in A$. *e* and $e \in A$, i.e.
 x_e algebra for all $e \in A$. $\frac{c}{2}(e)$ for all $e \in A$, i.e.
 $x_n(e) \rightarrow x_e$ algebra for all
for all $e \in A$.
 $n \ge k(e)$, for all $e \in A$,
 $k \in \mathbb{N}$ is a soft Banach $e \in A$, is a Cauchy sequence in $(X, \|\cdot\|_e)$ for all $e \in A$.
 $X, \|\cdot\|_e$ are Banach algebra for all $e \in A$, so there exist x_e such th

Hence there must exist some $k_e(> k(e))$ such that $||x_n(e) - x_e|| < \frac{\varepsilon}{2}$
 \int_{R}^{∞}
 $x - x||($ t $x_n(e) \to x_e$ algebra for all
 e) for all $e \in A$.

Il $n \ge k(e)$, for all $e \in A$,
 $(X, \|\cdot\|)$ is a soft Banach

Now
$$
||x_n - x||(e) = ||x_n(e) - x_e||_e < ||x_n(e) - x_{k_e}(e)|| + ||x_{k_e} - x_e(e)||_e < \varepsilon(e)
$$
 for all $n \ge k(e)$, for all $e \in A$,

where $x(e) = x_e$. This shows that $(X, \|\cdot\|)$ is a soft Banach space. Hence $(X, \|\cdot\|)$ is a soft Banach algebra.

Definition (4.5)

Let F_A be a soft algebra of X over F. A soft element $x \in F_A$ is said to be invertible if it has inverse *A* Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 Definition (4.5)

Let F_A be a soft algebra of X over F . A soft element $x \in F_A$ is said to be invertible if it has inverse

in F_A mi (JIKh) Volume:8 Issue:2 Year: 2024 pa
A soft element $x \in F_A$ is said to be invertity
 $y \in F_A$ such that $xy = yx = e^x$ and the y is cassid to be non-invertible soft element of F_A . such that $xy = yx = e$ and the y is called the inverse ie:8 Issue:2 Year: 2024 pages: 44-68
x ∈ *F_A* is said to be invertible if it has inverse
xy = *yx* = \tilde{e} and the *y* is called the inverse
vertible soft element of *F_A*. of \tilde{x} , denoted by x^{-1} . Otherwise x^{-1} is said to be non-invertible soft element of F_A . **Definition (4.5)**

Let F_A be a soft algebra of X over F . A soft element
 $n F_A$, i.e. if there exists a soft element $y \in F_A$ such that

of \tilde{x} , denoted by x^{-1} . Otherwise x^{-1} is said to be non-

Remark

Cle *y ye y xz yx z ez z* () () . 2:2 Year: 2024 pages: 44-68

said to be invertible if it has inverse
 $= \tilde{e}$ and the y is called the inverse

oft element of F_A .

the inverse is unique. because if
 $(xy)^{-1} = y^{-1} x^{-1}$.
 $y^{-1} x^{-1} (xy) = \tilde{e}$. invertible 11 it has inverse

e y is called the inverse

at of F_A .

is unique, because if Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Is
 4.5)

soft algebra of *X* over F. A soft element $x \in F_A$

f there exists a soft element $y \in F_A$ such that $xy = y$

d by x^{-1} . Otherwise x^{-+} is said to be non-invertib Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year:
 nition (4.5)
 F_A be a soft algebra of X over F. A soft element $x \in F_A$ is said to be
 F_A i.e. if there exists a soft element $y \in F_A$ such that $xy = yx = e^x$ Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

(4.5)

soft algebra of X over F. A soft element $x \in F_A$ is said to be invertible if it has inverse

fif there exists a soft element $y \in F_A$ su e:2 Year: 2024 pages: 44-08

s said to be invertible if it has inverse
 $=\tilde{e}$ and the y is called the inverse

soft element of F_A .

the inverse is unique. because if
 $(xy)^{-1} = y^{-1}x^{-1}$.
 $(y^{-1}x^{-1})(xy) = \tilde{e}$.

id to be .

Remark

Clearly e is invertible. If x is invertible, then we can verify that the inverse is unique. because if $vx = \tilde{e} = x\tilde{z}$. Then $y = y\tilde{e} = y(x\tilde{z}) = (yx)\tilde{z} = \tilde{e}z = \tilde{z}$. it element of F_A .
 $y^{1} = y^1 x^1$.
 $y^{1} = y^1 x^1$.
 $y^{1} = y^1 x^1$. enoted by x . Otherwise x is said to be non-invertible soft element of F_A .
 \hat{y} \hat{e} is invertible. If x is invertible, then we can verify that the inverse is unique. because if
 \hat{x} \hat{x} Then $y = y\hat{e}$

Further, if x and y are both invertible then xy is invertible and $(xy)^{-1} = y^{-1}x^{-1}$.

For $(xy)(y-x) = x(yy)$ $x^{-1} = x(e)x^{-1} = xx^{-1} = e$ and similarly

Definition (4.6)

Let $(G,*)$ be a group and F_A be a soft set over G. Then F_A is said to be a soft group over G if $F(e)$ is her, if x and y are both invertible then xy
 $(xy)(y^{-1}x^{-1}) = x(yy^{-1})x^{-1} = x(e^{-1})x^{-1} = x^{-1}$
 antion (4.6)
 $(G, *)$ be a group and F_A be a soft set over C

group of $(G, *)$ for all $e \in A$. $F(e)$ is a subgroup of $(G,*)$ for all $(x) = x(yy^{-1})x^{-1} = x(e^{-x})e^{-x} = 0$

(*G*,*) for all $e \in A$.

(*G*,*) for all $e \in A$. (*G*,*) be a group and F_A be a soft set over
bgroup of (*G*,*) for all $e \in A$.
orem (4.7)
(*G*,*) be a group and F_A be a soft set over said to be a soft group over *G* if $F(e)$ is
 $x, y \in F_A$ over *G*. Then F_A is said to be a soft group

over *G*. If for any *x*, $y \in F_A$
 $x^* y \in F_A$ 2. $x^{-1} \in F_A$,
 $x(e)^{-1}$. Then F_A is a soft group over *G*. *A A x* is said to be a soft group over *G* if *A* $x^{-1} \in F_A$,
 $x^{-1} \in F_A$, ertible then *xy* is invertible and (xy)
 $x(e^{-x})x^{-1} = xx^{-1} = e^{-x}$ and similarly $(y^{-1}x)$

a soft set over G. Then F_A is said to b

..

a soft set over G. If for any *x*, $y \in F_A$

1. $x * y \in F_A$ 2. $x^{-1} \in F_A$,
 $x^{-1}(e) = (x(e))^{-$

Theorem (4.7)

Let be a group and F_A be a soft set over G. If for any $x, y \in F_A$

1.
$$
x * y \in F_A
$$
 2. $x^{-1} \in F_A$,

where $x * y(e) = x(e) * y(e)$ and $x^{-1}(e) = (x(e))^{-1}$. Then F_A is a soft group over *G* .

Proof :

Proof is obvious.

Remark

This shows that in a soft algebra, the soft set generated by the all invertible elements is a soft group with respect to the composition defined as in theorem.

Definition (4.8)

A series 1 *n* of soit elements *n*=1 x_n of soft elements is said t $\sum_{n=1}^{\infty} x_n$ of soft elements is said to be soft convergent if the partial sum of the series 1 $=\sum_{n=1}^k x_n$ is if group
 $k = \sum_{n=1}^{k} x_n$ is *n*=1 oft group
 $\tilde{s}_k = \sum_{n=1}^k x_n$ is soft convergent.

Theorem (4.9)

Let *F^A* be a soft Banach algebra. If *^A x F* satisfies $||x|| \le 1$, then $(e-x)$ is invertible an sue: 2 Year: 2024 pages: 44-68
 $(\tilde{e} - x)$ is invertible and Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44.
 eorem (4.9)
 F_A be a soft Banach algebra. If $x \in F_A$ satisfies $||x|| \le \tilde{1}$, then $(\tilde{e} - x)$ is invertible and
 $-x)^{-1} = \tilde{e} + \sum_{n=1}^{\infty}$

Journal of Iraqi Al-Khwariz
\n**Theorem (4.9)**
\nLet
$$
F_A
$$
 be a soft Banach algebra. If $x \in F$
\n $(\tilde{e} - x)^{-1} = \tilde{e} + \sum_{n=1}^{\infty} x^n$.
\nProof :
\nSince F_A is soft algebra, so we have

Proof :

Journal of Iraqi Al-Khwarizmi
 heorem (4.9)
 $et F_A$ be a soft Banach algebra. If $x \in F_A$ sa
 $\tilde{e} - x$)⁻¹ = $\tilde{e} + \sum_{n=1}^{\infty} x^n$.

Proof :

Since F_A is soft algebra, so we have Since F_A is soft algebra, so we have $||x^j|| \le ||x||^j$ for any j tisfies $||x|| \le \tilde{1}$, then $(\tilde{e} - x)$ is invertion-
 $x^j ||\le ||x||^j$ for any positive integer j
the sequence of partial sum $\tilde{s}_k = \sum^k j$ for any positive integer j , so that the infinite series 1 (1995) (1996) (1996) (1996) *n* $n=1$ $n=1$ *x*|| is soft convergent becau $\sum_{n=1}^{\infty} ||x||^n$ is soft convergent because. So the sequence of partial sum 1¹ *k* ger *j*, so that the infinite
 $k = \sum_{n=1}^{k} x_n$ is a soft Cauchy $=\sum_{n=1}$ x_n is a soft Cauchy invertible and

ger *j*, so that the infinite
 $\tilde{s}_k = \sum_{n=1}^k x_n$ is a soft Cauchy sequence since $\|\sum_{n=1}^{k+p} x^n\| \leq \sum_{n=1}^{k+p} \|x\|^n$. s soft algebra, so we have $\begin{vmatrix} x^n \\ \vdots \\ x^{k+p} \\ \sum_{n=k}^{k+p} x^n \\ \vdots \\ x^{k+p} \\ \vdots \\ x^{k+p} \\ \end{vmatrix}$ s soft algebra, so we have
soft convergent because. S
 $\sum_{n=k}^{k+p} x^n \le \sum_{n=k}^{k+p} ||x||^n$.
complete so $\sum_{n=0}^{\infty} x^n$ is soft of Iraqi Al-Khwarizmi (JIKh) Voluated and algebra. If $x \in F_A$ satisfies $||x|| \le$
 \therefore

oft algebra, so we have $||x^j|| \le ||x||^j$ for convergent because. So the sequen $\|x^n\| \le \sum_{n=k}^{k+p} ||x||^n$.
 \therefore
 $\|x\| \le \sum_{n=1}^{\infty} x$ soft algebra, so we have $||x^i|| \le ||x||^i$ for any position convergent because. So the sequence of parallel $||x^i|| \le ||x||^i$ for any position $\sum_{i=k}^{+\infty} x^n ||\langle \sum_{n=k}^{k+\infty} ||x||^n$. mal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

Banach algebra. If $x \in F_A$ satisfies $||x|| \leq 1$, then $(\bar{e} - x)$ is invertible and
 $\begin{vmatrix} x^s \\ x^s \end{vmatrix}$.

Sooft algebra, so we have $||x'|| \leq ||x||'$ sitive integer j , so that the infinite

tial sum $\tilde{s}_k = \sum_{n=1}^k x_n$ is a soft Cauchy
 $\tilde{s} = \tilde{e} + \sum_{n=1}^\infty x^n$. tive integer j , so that the infinite
al sum $\tilde{s}_k = \sum_{n=1}^k x_n$ is a soft Cauchy
 $= \tilde{e} + \sum_{n=1}^\infty x^n$. have $||x^j|| \le ||x||^j$ for any positive integer *j*, so that the

use. So the sequence of partial sum $\tilde{s}_k = \sum_{n=1}^k x_n$ is a sof

s soft convergent. Now let $\tilde{s} = \tilde{e} + \sum_{n=1}^\infty x^n$.
 $\tilde{s} = (\tilde{e} - x)^{-1}$.
 $\tilde{s} = (\tilde{$ warizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $x \in F_A$ satisfies $||x|| \leq 1$, then $(\tilde{e} - x)$ is invertible and
 xe have $||x'|| \leq ||x||'$ for any positive integer j , so that the infinite

cause. So the sequence o 1 of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-6

ach algebra. If $x \in F_x$ satisfies $||x|| \le 1$, then $(\tilde{e} - x)$ is invertible and

the digebra, so we have $||x'|| \le ||x||'$ for any positive integer $|f|$, (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 *n*tisfies $||x|| \le 1$, then $(\bar{e} - x)$ is invertible and
 n $x' || \le ||x||'$ for any positive integer *j*, so that the infinite

the sequence of partial sum $\bar{s}_k = \sum_{n=1}^{k} x_n$ of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

ach algebra. If $x \in F_x$ satisfies $||x|| \le 1$, then $(\hat{e} - x)$ is invertible and
 π halgebra, so we have $||x'|| \le |x||$ for any positive integer f j, so f Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

th algebra. If $x \in F_n$ satisfies $||x|| \le 1$, then $(\tilde{e} - x)$ is invertible and

algebra, if $x \in F_n$ satisfies $||x|| \le 1$, then $(\tilde{e} - x)$ is invertible ansies $||x|| \le 1$, then $(e - x)$ is invertible and
 $||x^i|| \le ||x||^i$ for any positive integer j , so that the infinite

o the sequence of partial sum $\overline{s}_k = \sum_{n=1}^k x_n$ is a soft Cauchy

convergent. Now let $\overline{s} = \hat{e} + \sum_{$ t Cauchy
 $(\tilde{e} - x)^n$ $\tag{2.3}$ $x_n^{x_n}$ is a soft Cauchy
 x^{n+1}
 x^{n+1}
 $x^{n+2} = e^x + \sum_{n=1}^{\infty} (e^x - x)^n$.
 $\geq ||x||$. is a soft Cauchy
 $= \tilde{e} + \sum_{n=1}^{\infty} (\tilde{e} - x)^n.$ $\| \cdot \|$

Since F_A is soft complete so 1 and 1 n , α *n*=1 x["] is soft convergent. Now $\sum_{n=1}^{\infty} x^n$ is soft convergent. Now let $\tilde{s} = \tilde{e} + \sum_{n=1}^{\infty} x^n$. 1 *n n*=1 ∞

Now it is only we have to show that $\tilde{s} = (\tilde{e} - x)^{-1}$. 1

We have

$$
(\tilde{e} - x)(\tilde{e} + x + x^2 + \dots + x^n) = (\tilde{e} + x + x^2 + \dots + x^n)(\tilde{e} - x) = \tilde{e} - x^{n+1}
$$

Now again since $||x|| \leq \tilde{1}$ so $x^{n+1} \to 0$ as $n \to \infty$. Therefore letting $n \to \infty$ in and remembering that multiplication in F is continuous we get, $(c-x)s = s$ *s* is soft complete so $\sum_{n=1}^{\infty} x^n$ is soft convergent. Now let
 s only we have to show that $\tilde{s} = (\tilde{e} - x)^{-1}$.
 $(\tilde{e} - x)(\tilde{e} + x + x^2 + \dots + x^n) = (\tilde{e} + x + x^2 + \dots)$

in since $||x|| \le \tilde{1}$ so $x^{n+1} \to \tilde{0}$ as $n \$ $(\tilde{e} + x + x^2 + \dots + x^n)(\tilde{e} - x) = \tilde{e} - x^{n+1}$

Therefore letting $n \to \infty$ in and remember
 $\tilde{\delta} = \tilde{s}(\tilde{c} - x) = \tilde{c}$

1.
 $\tilde{e} - x \le |\tilde{s}|$, Then x^{-1} exists and $x^{-1} = \tilde{e} + \sum_{n=1}^{\infty}$ Igam since $||x|| \le 1$ so $x \to 0$ as $n \to \infty$. Therefore letting $n \to \infty$ in and remembering that

ilication in *F* is continuous we get, $(\tilde{c} - x)\tilde{s} = \tilde{s}(\tilde{c} - x) = \tilde{c}$

at $\tilde{s} = (\tilde{e} - x)^{-1}$. This proves the propo $\sum_{n=1}^{\infty} x^n$ is soft convergent. 1

ow that $\tilde{s} = (\tilde{e} - x)^{-1}$.
 $+x + x^2 + \dots + x^n = (\tilde{e} + x + x^{n+1})$
 $\tilde{e} = (\tilde{e} + x + x^{n+1})$
 $\tilde{e} = (\tilde{e} - x)^n \tilde{s} = \tilde{s}(\tilde{c} - x)$

oves the proposition.

bra. If $x \in F_A$ and $\|\tilde{e} \sum_{n=1}^{\infty} x^n$ is soft convergent. Now let $\bar{x} = \bar{e} + \sum_{n=1}^{\infty} x^n$.

w that $\bar{s} = (\bar{e} - x)^{-1}$.
 $x + x^2 + \dots + x^n = (\bar{e} + x + x^2 + \dots + x^n)(\bar{e} - x) = \bar{e} - x^{n+1}$
 $\longrightarrow \bar{0}$ as $n \longrightarrow \infty$. Therefore letting $n \longrightarrow \infty$ in and rememb x^{*} is soft convergent. Now let $\vec{s} = \vec{e} + \sum_{n=1}^{\infty} x^n$.

hat $\vec{s} = (\vec{e} - x)^{-1}$.
 $\vec{x}^2 + \dots + x^n = (\vec{e} + x + x^2 + \dots + x^n)(\vec{e} - x) = \vec{e} - x^{n+1}$
 $\rightarrow \vec{0}$ as $n \rightarrow \infty$. Therefore letting $n \rightarrow \infty$ in and remembering that

sw

So that $\tilde{s} = (\tilde{e} - x)^{-1}$. This proves the proposition.

Corollary (4.10)

Let *F^A* be a soft Banach algebra. If e get, $(\tilde{c} - x)\tilde{s} = \tilde{s}(\tilde{c} - x) = \tilde{c}$

e proposition.
 $x \in F_A$ and $\|\tilde{e} - x\| < 1$, Then x^{-4} exists and x and Then x^{-1} exists and $x^{-1} = e^{-1} + \sum_{n=0}^{\infty} (e^{-n})^n$ $n=1$ -1 \sim $\sum_{n=1}^{\infty}$ \sim $\sum_{n=1}^{\infty}$ $\forall x \in F_A$ and $\|\tilde{e} - x\| < 1$, Then x^{-1} exists and x^{-1}
 $x \in F_A$ and λ be a soft scalar such that $|\lambda| >$

Corollary (4.11)

Let F_A be a soft Banach algebra. Let $x \in F_A$ and λ be a soft scalar such that $|\lambda| > ||x||$.

Then
$$
(\lambda \tilde{e} - x)^{-1}
$$
 exists and $(\lambda \tilde{e} - x)^{-1} = \sum_{n=1}^{\infty} \lambda^{-n} x^{n-1} (x^0 = \tilde{e})$

Proof :

Then $(\lambda \tilde{e} - x)^{-1}$ exists and $(\lambda \tilde{e} - x)^{-1} = \sum_{n=1}^{\infty} \lambda^{-n} x^n$

Proof:
 $y \in F_A$ be such that y^{-1} exists in F_A and α be it is clear that $(\alpha y)^{-1} = \alpha^{-1} y^{-1}$. be such that y^{-1} exists in F_A and α be a soft scalar such that $\alpha(e) \neq 0$, for all $e \in A$. Then that $|\lambda| > ||x||$.
 $\alpha(e) \neq 0$, for all $e \in A$. Then $e \in A$. Then So that $s = (e - x)$. I has proves the proposition.
 Corollary (4.10)

Let F_A be a soft Banach algebra. If $x \in F_A$ and $\|\vec{e} - x\| < 1$, Then x^{-4} exists and $x^{-1} = \vec{e} +$
 Corollary (4.11)

Let F_A be a soft Banach lgebra. Let $x \in F_A$ and λ be a soft scalar

and $(\lambda \tilde{e} - x)^{-1} = \sum_{n=1}^{\infty} \lambda^{-n} x^{n-1}$ $(x^0 = \tilde{e})$
 \int_{-1}^{-1} exists in F_A and α be a soft scalar such $\int_{-1}^{-1} y^{-1}$. it is clear that $(\alpha y)^{-1} = \alpha^{-1} y^{-1}$.

Having noted this we can write $\lambda \tilde{e} - x = \lambda (\tilde{e} - \lambda^{-1} x)$ and now we show that $(\tilde{e} - \lambda^{-1} x)^{-1}$ exists.

Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $\lambda \tilde{e} - x = \lambda (\tilde{e} - \lambda^{-1} x)$ and now we show that $(\tilde{e} - \lambda^{-1} x)^{-1}$ exists.
 $= |\lambda^{-1}| ||x|| < 1$ by hypothesis. So, By Corollary(6.10) $(\tilde{e} - \lambda^{-1} x)^{-1}$ exists an warizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $-x = \lambda (e^{-\lambda^{-1} x})$ and now we show that $(e^{-\lambda^{-1} x})^{-1}$ exists.
 $|\lambda^{-1}| ||x|| < 1$ by hypothesis. So, By Corollary(6.10) $(e^{-\lambda^{-1} x})^{-1}$ exists and inite series representat 2024 pages: 44-68
 $(\tilde{e} - \lambda^{-1} x)^{-1}$ exists.

ary(6.10) $(\tilde{e} - \lambda^{-1} x)^{-1}$ exists and We have $\|\tilde{e} - (\tilde{e} - \lambda^{-1} x)\| = \|\lambda^{-1} x\| = |\lambda^{-1}|\|x\| < 1$ by hypothesis. So, By Corollary(6.10) $(\tilde{e} - \lambda^{-1} x)^{-1}$ exists and of Iraqi Al-Khwarizmi (JIKh) Volu

e can write $\lambda \tilde{e} - x = \lambda (\tilde{e} - \lambda^{-1} x)$ and
 $||x|| = ||\lambda^{-1}x|| = |\lambda^{-1}|| ||x|| < \tilde{1}$ by hypoth

sts. For the infinite series represent *Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68*
 ed this we can write $\lambda \tilde{e} - x = \lambda(\tilde{e} - \lambda^{-1}x)$ *and now we show that* $(\tilde{e} - \lambda^{-1}x)^{-1}$ exists.
 $\tilde{e} - (\tilde{e} - \lambda^{-1}x)\Big| = \Big|\lambda^{-1}x\Big| =$ Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

d this we can write $\lambda \tilde{e} - x = \lambda (\tilde{e} - \lambda^{-1} x)$ and now we show that $(\tilde{e} - \lambda^{-1} x)^{-1}$ exists.
 $- (\tilde{e} - \lambda^{-1} x) \Big| = \Big| \lambda^{-1} x \Big| = |\lambda^{-1} \Big| ||$ ges: 44-68
 $(\tilde{e} - \lambda^{-1} x)^{-1}$ exists and hence $(\lambda \tilde{e} - x)^{-1}$ exists. For the infinite series representation, using the theorem (6.9) Journal of Iraqi Al-Khwari

2 noted this we can write $\lambda \tilde{e} - x =$
 $ve \|\tilde{e} - (\tilde{e} - \lambda^{-1} x)\| = \|\lambda^{-1} x\| = |\lambda^{-1}|$
 $(\lambda \tilde{e} - x)^{-1}$ exists. For the infinite we have Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

oted this we can write $\lambda \vec{e} - x = \lambda (\vec{e} - \lambda^{-1} x)$ and now we show that $(\vec{e} - \lambda^{-1} x)^{-1}$ exists.
 $\left|\vec{e} - (\vec{e} - \lambda^{-1} x)\right| = \left|\lambda^{-1} x\right| = \left|\lambda^{$ izmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $= \lambda (\tilde{e} - \lambda^{-1} x)$ and now we show that $(\tilde{e} - \lambda^{-1} x)^{-1}$ exists.
 $||x|| < 1$ by hypothesis. So, By Corollary(6.10) $(\tilde{e} - \lambda^{-1} x)^{-1}$ e

series representation, usin Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

Having noted this we can write $\lambda \tilde{e} - x = \lambda(\tilde{e} - \lambda^{-1}x)$ and now we show that $(\tilde{e} - \lambda^{-1}x)^{-1}$ exists.

We have $\left\|\tilde{e} - (\tilde{e} - \lambda^{-1}$ ges: 44-68
 $(\tilde{e} - \lambda^{-1} x)^{-1}$ exists a
 \cdots
 \cdots
 \cdots
 \cdots
 $\begin{array}{c}\n\cdot x^{-n-1} \\
x^{-n} \\
\hline\n\end{array}$
 $\begin{array}{c}\n\cdot x^{-n-1} \\
\hline\nx^{-n} \\
\hline\n\end{array}$
 $\begin{array}{c}\n\cdot x^{-n-1} \\
\hline\n\end{array}$ ume:8 Issue:2 Year: 2024 pages: 44-6

d now we show that $(\tilde{e} - \lambda^{-1} x)^{-1}$ exists.

hesis. So, By Corollary(6.10) $(\tilde{e} - \lambda^{-1} x)$

tation, using the theorem (6.9)
 $n = \lambda^{-1} (\tilde{e} + \sum_{n=1}^{\infty} (\lambda^{-1} x))^n = \sum_{n=1}^{\infty} \lambda^{-n} x$ *n*izmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $x = \lambda(\tilde{e} - \lambda^{-1}x)$ and now we show that $(\tilde{e} - \lambda^{-1}x)^{-1}$ exists.
 $\begin{aligned}\n&\int_{-\infty}^{\infty} |\mathbf{x}| \leq |\tilde{h}| \leq |\$ **Example 10** Island of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 Example 2014 the we can write $\lambda \vec{e} - x = \lambda (\vec{e} - \vec{A}^{-1}x)$ and now we show that $(\vec{e} - \vec{A}^{-1}x)^{-1}$ exists.

We have $|\vec{e}$ ournal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

this we can write $\lambda e^{-x} = \lambda (e^{-\lambda^{-1}x})$ and now we show that $(e^{-\lambda^{-1}x})^{-1}$ exists.
 $(e^{-\lambda^{-1}x})^{\parallel} = |\lambda^{-1}x| = |\lambda^{-1}||x|| < 1$ by hypothesis. So, B Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

anoted this we can write $\lambda e^{-x} = \lambda(\tilde{e} - \lambda^{-1}x)$ and now we show that $(\tilde{e} - \lambda^{-1}x)^{-1}$ exists.
 $\left\| \tilde{e} - (\tilde{e} - \lambda^{-1}x) \right\| = \left\| \lambda^{-1}x$ Journal of Iraqi Al-Khwarizmi (JIKh) Volume-8 Issues2 Year: 2024 pages: 44-68

ing noted this we can write $\lambda \hat{i} = z = \lambda(\hat{i} - z^2)$ and now we show that $(\hat{i} - z^2)^2$ y evists,

there $|\hat{i} = (\hat{i} - \hat{i} - \hat{j})|^2 = |\hat{i} - \hat{j}| = |\hat{i}| = |\hat$ ow we show that $(\tilde{e} - \lambda^{-1} x)^{-1}$ exists.

So, By Corollary(6.10) $(\tilde{e} - \lambda^{-1} x)^{-1}$ exists.

So, By Corollary(6.10) $(\tilde{e} - \lambda^{-1} x)^{-1}$
 $\lambda^{-1} (\tilde{e} + \sum_{n=1}^{\infty} (\lambda^{-1} x))^n = \sum_{n=1}^{\infty} \lambda^{-n} x^{n-1}$

1 by the set of all *z y e x x x x x x x* 0 0 0 0 0 1 JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 $-\lambda^{-1}$ x) and now we show that $(\vec{e} - \lambda^{-1} x)^{-1}$ exists.

by hypothesis. So, By Corollary(6.10) $(\vec{e} - \lambda^{-1} x)^{-1}$ exists and

s representation, using the theorem (6.9)

$$
(\lambda \tilde{e} - x)^{-1} = \lambda^{-1} (\tilde{e} - \lambda^{-1} x)^{-1} = \lambda^{-1} (\tilde{e} + \sum_{n=1}^{\infty} (\tilde{e} - (\tilde{e} - \lambda^{-1} x))^n = \lambda^{-1} (\tilde{e} + \sum_{n=1}^{\infty} (\lambda^{-1} x))^n = \sum_{n=1}^{\infty} \lambda^{-n} x^{n-1}
$$

This proves the corollary.

Theorem (4.12)

Let F_A be a soft Banach algebra. The soft set S generated by the set of all invertible soft elements of F_A is a soft open subset in F_A . Let F_A be a soft Banach algebra. The soft set S gen
 F_A is a soft open subset in F_A .

Proof :
 $x_0 \in S$. We have to show that x_0 is a soft inter-

Proof :

.

. We have to show that x_0 is a soft interior point of F_A . Consider the open sphere $S(x_0, \frac{1}{\| -1 \|})$ $1 \sim$ $\left|\frac{1}{x_0}\right|$

0

nts of $S(x_0, \frac{1}{\left\|x_0^{-1}\right\|})$
 $x_0 - x \leq |x|$ with centre at x_0 and radius $\frac{1}{\| -1 \|}$. Every soft ele 0 1 Γ α α $\frac{1}{|x_0|}$. Every soft element x of this sphere satisfies the inequality $||x_0 - x|| < \frac{1}{||x_0||}$ \mathbf{x}_0 ^{\parallel} 1 nts of
 $S(x_0, \frac{1}{\|x_0^{-1}\|})$
 $x_0 - x \le \le \frac{1}{\|x_0^{-1}\|}$ of
 x_0 , $\frac{1}{\|x_0^{-1}\|}$
 $-x \le \frac{1}{\|x_0^{-1}\|}$ *y* = *x*₀ = *x* we have to show that *x*₀ is a soft interior poir

centre at *x*₀ and radius $\frac{1}{\|x_0^{-1}\|}$. Every soft element *x* of
 $y = x_0^{-1} x$ and $\tilde{z} = \tilde{e} - y$ then we have $\|\tilde{z}\| = \|y - \tilde{e}\| = \|x_0^{-1}$

Let $y = x_0^{-1} x$ and $\tilde{z} = \tilde{e} - y$ then we have

So by theorem(6.9), $e-z$ is invertible i.e. y is invertible. Hence $y \in S$. Now $x_0 \in S$, $y \in S$ and so by $\tilde{e} - y$ then we have $\|\tilde{z}\| = \|y - \tilde{e}\| = \|\tilde{e} - \tilde{z}\|$ is invertible i.e. *y* is invertible *y* = $x_0^{-1}x$ and $\tilde{z} = \tilde{e} - y$ then we have $||\tilde{z}|| = ||y - \tilde{e}|| = ||x_0^{-1}x - x_0^{-1}x_0|| \le ||x_0^{-1}|| ||x - x_0|| < 1$.

So by theorem(6.9), $\tilde{e} - \tilde{z}$ is invertible i.e. *y* is invertible. Hence $y \in S$.. Now $x_0 \in S$, $y \$ $x_0 \le \tilde{1}$.
 $x_0 \le S$, $y \in S$ and so by
 $x_0 - x \le \frac{1}{2}$ belongs to S. $\left\|x_0^{-1}\right\|$

¹x and $\tilde{z} = \tilde{e} - y$ then we have $\|\tilde{z}\| = \|y - \tilde{e}\| = \|x\|$

orem(6.9), $\tilde{e} - \tilde{z}$ is invertible i.e. y is invertible
 $x_0 y \in S$. But $x_0 y = x_0 x_0^{-1} y = x$. So any x satis 1 \sim algebra. The soft set *S* generated by the set of all invertible soft elements of
in F_A .
to show that x_0 is a soft interior point of F_A . Consider the open sphere $S(x_0, \frac{1}{|x_0^+|}]$
dius $\frac{1}{|x_0^-|}$. Every soft . So any x satisfying the inequality $||x_0 - x|| < \frac{1}{||x_0 - x||}$ belongs to S. 0 1 below to β *x* the open sphere $S(x_0, \frac{1}{\|x_0^{-1}\|})$

ies the inequality $\|x_0 - x\| < \frac{1}{\|x_0^{-1}\|}$
 $-x_0 \leq S$, $y \in S$ and so by
 $x_0 - x \leq \frac{1}{\|x_0^{-1}\|}$ belongs to S . \mathbf{x}_0 ^{\parallel} ne open sphere $S(x_0, \frac{1}{\|x_0^{-1}\|})$
the inequality $\|x_0 - x\| < \frac{1}{\|x_0^{-1}\|}$
 $\circ \|\leq 1$.
 $\leq S$, $y \in S$ and so by
 $-x \leq \frac{1}{\|x_0^{-1}\|}$ belongs to S. belongs to *S* . \mathbb{R}^n \mathbb{R}^n , \mathbb{R}^n , \mathbb{R}^n , \mathbb{R}^n , $\mathbb{R}^$

This shows that S is a soft open subset of F_A .

Corollary (4.13)

The soft set $P = (S^c)$ of F_A is soft closed subset of F_A .

Definition (4.14)

A function T from a soft normed space F_A onto F_A is said to be continuous If for any sequence { x_n }, $x_n \to x$ implies $T(x_n) \rightarrow T(x)$.

Theorem (4.15)

In a soft Banach algebra F_A , the function $x \to x^{-1}$ of S onto S is (JIKh) Volume:8 Issue:2 Year:
 $x \rightarrow x^{-1}$ of *S* onto *S* is continued *S* \rightarrow *x*⁻¹ of *S* onto *S* is continuous.

Proof :

Let $x_0 \in S$ and let $\{x_n\}$ be a sequence of soft elements in S such that $x_n \rightarrow x_0$. to *S* is continuous.
 $x_n \to x_0$.
 $x_n \to x_0$ ⁻¹
 $x_n \to x_0$ ⁻¹

(4.15)
anach algebra F_A , the function $x \to x^{-1}$ of *S* onto *S* is continuous.
 $x_0 \in S$ and let $\{x_n\}$ be a sequence of soft elements in *S* such that $x_n \to x_0$
 $x \to x^{-1}$ is continuous, it is enough to show that x_n To prove $x \rightarrow x^{-1}$ is continuous, it (4.15)
anach algebra F_A , the function
 $x_0 \in S$ and let $\{x_n\}$ be a sequen
 $x \to x^{-1}$ is continuous, it is enous $\rightarrow x^{-1}$ is continuous, it is enough to show that $x_n^{-1} \rightarrow x_0^{-1}$

Now $\left\|x_n^{-1} - x_0^{-1}\right\| = \left\|x_n^{-1}(x_0 - x_n)x_0^{-1}\right\| \le \left\|x_n^{-1}\right\| \left\|x_0 - x_n\right\| \left\|x_0^{-1}\right\|$ Let $x_0 \,\epsilon S$ and let $\{x_n\}$ be a sequence of soft elements in *S* su
 x $x \to x^{-1}$ is continuous, it is enough to show that $x_n^{-1} \to x_0^{-1}$
 $\left\|x_n^{-1} - x_0^{-1}\right\| = \left\|x_n^{-1}(x_0 - x_n)x_0^{-1}\right\| \le \left\|x_n^{-1}\right\| \|x_0 - x_n\| \left\|x_0^{-$ Let $x_0 \in S$ and let $\{x_n\}$ be a sequence of soft elements in *S* such that $x_n \to x_0$.
 $\text{we } x \to x^{-1}$ is continuous, it is enough to show that $x_n^{-1} \to x_0^{-1}$
 $\left\|x_n^{-1} - x_0^{-1}\right\| = \left\|x_n^{-1}(x_0 - x_n)x_0^{-1}\right\| \le \left\|x_n^{-1}\right\$

Since $x_n \to x_0$, for any given $\varepsilon > 0$; there exists N such that for all $n \ge N(e)$,

Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024
\n**Theorem (4.15)**
\nIn a soft Banach algebra
$$
F_A
$$
, the function $x \to x^{-4}$ of *S* onto *S* is continuous.
\nProof:
\nLet $x_0 \in S$ and let $\{x_n\}$ be a sequence of soft elements in *S* such that $x_n \to$.
\nTo prove $x \to x^{-1}$ is continuous, it is enough to show that $x_n^{-1} \to x_0^{-1}$
\nNow : $\left\|x_n^{-1} - x_0^{-1}\right\| = \left\|x_n^{-1}(x_0 - x_n)x_0^{-1}\right\| \le \left\|x_n^{-1}\right\| \|x_0 - x_n\| \left\|x_0^{-1}\right\|$
\nSince $x_n \to x_0$, for any given $\varepsilon > 0$; there exists *N* such that for all $n \ge N(e)$,
\n $\left\|x_n - x_0\right\| (e) \le \frac{1}{2\left\|x_0^{-1}\right\|} (e)$ where we have taken $\varepsilon = \frac{1}{2\left\|x_0^{-1}\right\|}$
\nNow $\left\|\tilde{e} - x_0^{-1} x_n\right\| = \left\|x_0^{-1}(x_0 - x_n)\right\| \le \left\|x_0^{-1}\right\| \|x - x_n\|$, we get $\left\|\tilde{e} - x_0^{-1} x_n\right\| = \le \frac{1}{2}(e) = \frac{1}{2}$ for
\nSo by Corollary(4.10), $x_0^{-1} x_n$ is invertible and its inverse is given by
\n $x_n^{-1} x_0 = (x_0^{-1} x_n)^{-1} = \tilde{e} + \sum_{n=1}^{\infty} (\tilde{e} - x_0^{-1} x_n)^n$

x x x x x x x x x x n n n n n 0 0 0 0 0 () Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

(4.15)

(4.15)

(anach algebra F_A , the function $x \to x^{\rightarrow}$ of *S* onto *S* is continuous.
 $x_0 \in S$ and let $\{x_*\}$ be a sequence of soft e Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

orem (4.15)

soft Banach algebra F_A , the function $x \rightarrow x^*$ of S onto S is continuous.

of:

Let $x_0 \in S$ and let $\{x_n\}$ be a sequence of s Now $\left\| \tilde{e} - x_0^{-1} x_n \right\| = \left\| x_0^{-1} (x_0 - x_n) \right\| \le \left\| x_0^{-1} \right\| \left\| x - x_n \right\|$, we get $\left\| \tilde{e} - x_0^{-1} x_n \right\| = \left\| \frac{1}{e} - e \right\| = \frac{1}{e}$ $\|x_n\| = \leq \frac{1}{e}(e) = \frac{1}{e}$ for all ear: 2024 pages: 44-68

innous.

that $x_n \to x_0$.
 $\frac{1}{2}(e) = \frac{1}{2}$ for all $n \ge N(e)$. *e*: 8 Issue: 2 Year: 2024 pages: 44-68

onto *S* is continuous.

ents in *S* such that $x_n \to x_0$.
 $x_n^{-1} \to x_0^{-1}$

that for all $n \ge N(e)$,
 $\tilde{e} - x_0^{-1} x_n \Big| = \frac{\tilde{e}}{2}(e) = \frac{1}{2}$ for all $n \ge N(e)$.

is given by
 \int_1 $n \ge N(e)$. $x_0 - x_n$) $\leq \left\| x_0^{-1} \right\| \left\| x - x_n \right\|$, we g
 $x_0^{-1} x_n$ is invertible and its invertible and $\left\| x \right\|$

So by Corollary(4.10), x_0^{-1} , is invertible and its inverse is given by

$$
x_n^{-1} x_0 = (x_0^{-1} x_n)^{-1} = \tilde{e} + \sum_{n=1}^{\infty} (\tilde{e} - x_0^{-1} x_n)^n
$$

Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Y
 em (4.15)
 em (4.15)
 et $x_0 \in S$ and let $\{x_n\}$ be a sequence of soft elements in *S* such
 et $x_0 \in S$ and let $\{x_n\}$ be a sequence of soft elements Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

a (4.15)

Banach algebra F_A , the function $x \rightarrow x^{\infty}$ of S onto S is continuous.

1 $x_0 \in S$ and let $\{x_n\}$ be a sequence of soft elements unction $x \rightarrow x^{-4}$ of *S* onto *S* is continuous.

sequence of soft elements in *S* such that $x_n \rightarrow x$

i is enough to show that $x_n^{-1} \rightarrow x_0^{-1}$

¹ $\leq |x_n^{-1}| ||x_0 - x_n|| |x_0^{-1}||$
 \geq i, there exists *N* such that for al ction $x \rightarrow x^{-4}$ of *S* onto *S* is continuous.

equence of soft elements in *S* such that $x_n \rightarrow$

enough to show that $x_n^{-1} \rightarrow x_0^{-1}$
 $\leq |x_n^{-1}| ||x_0 - x_n|| ||x_0^{-1}||$

there exists *N* such that for all $n \geq N(e)$,

we taken mi (JIKh) Volume:8 Issue:2 Year: 2024 page

n $x \rightarrow x^{-4}$ of *S* onto *S* is continuous.

nnce of soft elements in *S* such that $x_n \rightarrow x_0$.

bugh to show that $x_n^{-1} \rightarrow x_0^{-1}$

re exists *N* such that for all $n \ge N(e)$,

re e function $x \rightarrow x^{-4}$ of *S* onto *S* is continuous.

a sequence of soft elements in *S* such that $x_n \rightarrow x_0$

it is enough to show that $x_n^{-1} \rightarrow x_0^{-1}$
 $\begin{vmatrix} -1 \ 0 \end{vmatrix} \leq |x_n^{-1}| ||x_0 - x_n|| ||x_0^{-1}||$
 $\begin{vmatrix} 0 \end{vmatrix}$; there e Shwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-

function $x \rightarrow x^{\rightarrow}$ of *S* onto *S* is continuous.

2 a sequence of soft elements in *S* such that $x_n \rightarrow x_0$.

it is enough to show that $x_n^{\dagger} \rightarrow x_0^{\dagger}$
 $x_0^{\$ function $x \to x^{-1}$ of *S* onto *S* is continuous.

a sequence of soft elements in *S* such that $x_n \to x_0$.

t is enough to show that $x_n^{-1} \to x_0^{-1}$
 $\left\| \left\| x_0^{-1} \right\| \right\| x_0 - x_n \left\| \left\| x_0^{-1} \right\| \right\|$
 $\left\| \left\| x_n^{-1} \right$ izmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

ion $x \rightarrow x^{-+}$ of *S* onto *S* is continuous.

uence of soft elements in *S* such that $x_a \rightarrow x_0$.

mough to show that $x_a^2 \rightarrow x_0^{-1}$
 $||x_a^{-1}|| ||x_0 - x_n|| ||x_0^{-1}||$

here ex Thus 1 (4.15)

Banach algebra F_A , the function x :
 $x_0 \in S$ and let $\{x_n\}$ be a sequence
 $\begin{aligned}\n&\geq x \to x^{-1} \text{ is continuous, it is to}\\
&\geq x^{-1} \cdot x^{-1} = x^{-1} \cdot \left\| = \left\|x_n^{-1}(x_0 - x_n)x_0^{-1}\right\| \leq \left\|x_n^{-1}\right\| \right\| \\
&\to x_0 \text{ , for any given } \varepsilon > 0 \text{ ; there exists } n \ge$ 4.15)

anach algebra F_A , the function $x \rightarrow x^{-4}$ of S onto
 $x_0 \in S$ and let $\{x_n\}$ be a sequence of soft elements
 $x \rightarrow x^{-1}$ is continuous, it is enough to show that x_n^2
 $\left\| -x_0^{-1} \right\| = \left\| x_n^{-1} (x_0 - x_n) x_0^{-1} \right\$ 1^{II} $1 - \|e - x_0 x_n\|$ $1 \t\t \cdot \cdot \t\t \cdot \t\t \cdot \t\t \cdot$ urnal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024

5)

b) algebra F_A , the function $x \to x^+$ of S onto S is continuous.

S and let $\{x_n\}$ be a sequence of soft elements in S such that $x_n - x^+$ is continuou $1 - \|e - x_0^\top x_n\|$ *n* **n** (4.15)

Banach algebra F_A , the function $x \rightarrow$
 $x^2 + x^3 = 0$ and let $\{x_n\}$ be a sequence of
 $x^2 + x^3 + x^4 = 0$ is continuous, it is enough to
 $\left|x_n^{-1} - x_0^{-1}\right| = \left||x_n^{-1}(x_0 - x_n)x_0^{-1}\right| \le \left||x_n^{-1}\right|| \le 0$
 $\left|\left(e\right) \le$ $n=1$ " $1-||e-x_0 x_n||$ Journal of Iraqi Al-Khwarizmi (JIKh) Volumnal

com (4.15)

ft Banach algebra F_A , the function $x \rightarrow x^{-4}$ of .

Let $x_0 \in S$ and let $\{x_n\}$ be a sequence of soft election
 $x \rightarrow x^{-1}$ is continuous, it is enough to show t rizmi (JIKh) Volume:8 Issue:2 Ye

ion $x \rightarrow x^{-4}$ of S onto S is cont

quence of soft elements in S such

enough to show that $x_n^{-1} \rightarrow x_0^{-1}$
 $\left\| x_n^{-1} \right\| \left\| x_0 - x_n \right\| \left\| x_0^{-1} \right\|$

here exists N such that for all n:
 n (4.15)

Banach algebra F_A , the function $x \to x^2$ of S onto S is continuous.
 $x \cdot x_0 \in S$ and let $\{x_0\}$ be a sequence of soft elements in S such that $x_n \to x_0$.
 $x \cdot x^{-1}$ is continuous, it is enough to show that -1 \parallel \parallel ournal of Iraqi Al-Khvarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

15)

15)

15)

16)

ach algebra F_x , the function $x \rightarrow x^{-1}$ of *S* conto *S* is continuous.
 $\propto S$ and let $\{x_x\}$ be a sequence of soft e al of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

ligebra F_n , the function $x \rightarrow x^{\infty}$ of S onto S is continuous.

and let $\{x_1\}$ be a sequence of soft elements in S such that $x_3 \rightarrow x_0$.

is 1 $x_n \le \frac{1}{2}(e) = \frac{1}{2}$ for all $n \ge N(e)$.
 x_n x_n
 x_n $x_0 \le 2$ so that we have $\left\| \begin{matrix} -1 \\ x_0 \end{matrix} \right\| \leq 2$ so that we have sequence of soft elements in S such that $x_n \to x_0$.

is enough to show that $x_n^{-1} \to x_0^{-1}$
 $\leq ||x_n^{-1}|| ||x_0 - x_n|| ||x_0^{-1}||$
 \therefore i, there exists N such that for all $n \geq N(e)$,

have taken $\varepsilon = \frac{1}{2||x_0^{-1}||}$
 $||x_0^{-1}|| ||$ Shwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

function $x \rightarrow x^{-4}$ of *S* onto *S* is continuous.
 x a sequence of soft elements in *S* such that $x_n \rightarrow x_0$.
 xi it is enough to show that $x_n^{-1} \rightarrow x_0^{-1}$
 x Notarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68

inction $x \rightarrow x^+$ of *S* onto *S* is continuous.

is enough to show that $x_n^+ \rightarrow x_n^+$

is enough to show that $x_n^+ \rightarrow x_n^+$

if $\left\|x_0 - x_n\right\| \left\|x_0\right\|^2$
 $\left\|x$ we get : $||x_n^{-1} - x_0^{-1}||(e) \le 2||x_0||(e)||x_0 - x_n||(e) \to 0$ as $n \to \infty$. → x^{-1} is continuous, it is enough t
 $-x_0^{-1}$ = $||x_n^{-1}(x_0 - x_n)x_0^{-1}|| \le ||x_n^{-1}|| ||x_0$
 x_0 , for any given $\varepsilon > 0$; there exis
 $\le \frac{1}{2||x_0^{-1}||}(e)$ where we have taken
 $\le \frac{1}{2||x_0^{-1}||}(e)$ where we have taken
 $\left|\$ Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 202

(4.15)

(4.15)

anach algebra F_x , the function $x \rightarrow x^{-4}$ of *S* onto *S* is continuous.
 $x_0 \in S$ and let $\{x_n\}$ be a sequence of soft elements in *S* Journal of Iraqi Al-Khwarizmi (IIKh) Volume: 8 Issue: 2 Year: 2021 pages: 44-68

1.15)

1.15)

1.15)

and algebra F_n , the function $x \to x^+$ of S onto S is continuous.
 $\therefore x^2$ is continuous, it is enough to show that $\left\|x_n^{-1}\right\| = \left\|x_n^{-1}\right\|$
 $(e) \le 2\left\|x_0^{-1}\right\| (e) \left\|x_0 - x_n\right\|$
 $\to x_0^{-1}$. So the function $\sum_{n=1}^{\infty} \left\| \tilde{e} - x_0^{-1} x_n \right\|^n \le \frac{\tilde{1}}{1 - \left\| \tilde{e} - x_0^{-1} x_n \right\|^2} \le 2$ This gives $\left\| x_n^{-1} x_0 \right\| \le 2$ so
 $\left\| x_n^{-1} \right\| = \left\| x_n^{-1} x_0 x_0^{-1} \right\| \le \left\| x_n^{-1} x_0 \right\| \left\| x_0^{-1} \right\| \le 2 \left\| x_0^{-1} \right\|$
 $\left\| (e) \le 2 \left$ $||x_0x_0|| = ||x_n|| \times v ||x_0|| \times v$
 $(e) \rightarrow 0$ as $n \rightarrow \infty$.
 $x \rightarrow x^{-1}$ of *S* onto *S* is continuos $x \rightarrow x^{-1}$ of *S* onto *S* is continuos

This proves that $x_n^{-1} \to x_0^{-1}$. So the function $x \to x^{-1}$ of S onto S is continuous.

Corollary (4.16)

In a soft Banach algebra F_A , the function $x \to x^{-1}$ of S onto S is continuous.

Definition (4.17)

Let F_A be a soft Banach algebra. A soft element $x \in F_A$ is called a soft topological divisor of zero if *Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-6
 Definition (4.17)

<i>Let* F_A be a soft Banach algebra. A soft element $x \in F_A$ is called a soft topological divisor of there exists a sequen a algebra. A soft element $x \in F_A$
{ x_n } in F_A , $||x_n|| = \tilde{1}$ for $n = 1, 2$, in F_A , $||x_n|| = 1$ for $n = 1, 2, 3, \cdots$ and such that either $x x_n \to 0$ or *Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Is:
 Definition (4.17)

Let* F_A *be a soft Banach algebra. A soft element* $x \in F_A$ *is called

there exists a sequence* $\{x_n\}$ *in* F_A *,* $||x_n|| = 1$ *for* $n = 1, 2, 3, \cdots$ *and
* ngi Al-Khwarizmi (JIKh) Volum

llgebra. A soft element $x \in F_A$ is
 $[x_n]$ in F_A , $||x_n|| = \tilde{1}$ for $n = 1, 2, 3,$

there Z denotes there $\tilde{1}$ for $n = 1, 2, 3,$

there $\tilde{1}$ and $\tilde{2}$ and $\tilde{2}$ and $\tilde{2}$

Theorem (4.18)

The soft set Z is a soft subset of P, where Z denotes the set of all soft topological divisors of zero. Proof : 4.18)
 $z \in Z$ is a soft subset of P, where Z denotes
 $\tilde{z} \in Z$. The there exists a sequence $\{z_n\}$ such Z denotes the set of all s
 $\{z_n\}$ such that $\|\tilde{z}_n\| = \tilde{1}$ for

 Let . The there exists a sequence such that $||z_n|| = 1$ for $n = 1, 2, 3, \cdots$ and either $z z_n \to 0$ or $z_n z \to 0$ as $n \to \infty$. Suppose that $z z_n \to 0$. **8)**
 z is a soft subset of P, where Z denotes the set of all soft top
 z. The there exists a sequence $\{z_n\}$ such that $\|\tilde{z}_n\| = \tilde{1}$ for $n = 1$,
 $\tilde{z}_n \tilde{z} \to 0$ as $n \to \infty$. Suppose that $\tilde{z} \tilde{z}_n \to$ Z. The there exists a sequence $\{z_n\}$ such that
 $\tilde{z} \to 0$ as $n \to \infty$. Suppose that $\tilde{z} \tilde{z}_n \to 0$.
 $\tilde{z} \in P$. Then $\tilde{z}(e)^{-1}$ exists for some e. Now
 $(e) = \tilde{z}(e)^{-1}(\tilde{z}\tilde{z}_n) \to \tilde{z}(e)^{-1}0(e) = 0$ as

If possible, let $\bar{z} \in P$. Then $\bar{z}(e)^{-1}$ exists for some e. Now as multiplication is continuous operation, we should have $z_n(e) = z(e)^{-1}(z z_n) \rightarrow z(e)^{-1}0(e) = 0$ as $n \rightarrow \infty$.

This contradicts the fact that $||z_n|| = 1$ for $n = 1, 2, 3, \cdots$. Hence Z is a soft subset of P. *P* .

Definition (4.19)

z fournal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
 z n n n n <i>n z n n n n n n n n n n n n n n n n Let $(X, \|\cdot\|)$ be a soft normed space and bossible, let $\tilde{z} \in P$. Then $\tilde{z}(e)^{-1}$ exists for $\tilde{z}_n(e) = \tilde{z}(e)^{-1}(\tilde{z}\tilde{z}_n) \rightarrow \tilde{z}(e)^{-1}(\tilde{z}\tilde{z}_n)$

contradicts the fact that $||\tilde{z}_n|| = 1$ for *n* **nition (4.19)**

(*X*, $||\cdot||$) be a soft normed spa ose that $\tilde{z}\tilde{z}_n \to 0$.
 S for some *e*. Now as multiplication is contin
 $f(0(e)) = 0$ as $n \to \infty$.
 $n = 1, 2, 3, \cdots$. Hence *Z* is a soft subset of *P*
 $Y \in S(X)$. A soft element $x \in X$ is called a s
 $[y_n]$ of soft e a soft subset of *P*.
 $x \in X$ is called a soft boundary elements of
and Y^c respectively such that $x_n \to x$ and is called a soft boundary elements of *Y* if there exist two sequence $\{x_n\}$ and $\{y_n\}$ of soft elements in *Y* and *Y^c* respectively such that $x_n \to x$ and shift $Y \in S(X)$. A soft element $\{x_n\}$ and $\{y_n\}$ of soft elements in Y and $\{y_n\}$ *x_n* \rightarrow *x* and This contradicts the fact that $\|\tilde{z}_n\| = \tilde{1}$ for $n = 1, 2, 3, \cdots$. Hence .
 Definition (4.19)
 Let $(X, \|\cdot\|)$ be a soft normed space and $Y \in S(X)$. A soft elements if $y_n \to x$.
 Theorem (4.20) A soft element $x \in X$ is called

elements in Y and Y^c respe

st two sequences of soft elements
 $z - \tilde{e} = \tilde{r}_n^{-1}(\tilde{z} - \tilde{r}_n)$. The set

there exists some $e \in A$ and *n*→0.

2. Now as multiplication is continuous operation, we
 $n \rightarrow \infty$.

A soft element $x \in X$ is called a soft boundary elements of

elements in *Y* and *Y^c* respectively such that $x_n \rightarrow x$ and

ist two sequences of so

Theorem (4.20)

The boundary of P is a soft subset of Z.

Proof :

Let z be a boundary point of P. So there exist two sequences of soft elements r_n in S and s_n in P *P* such that $r_n \to z$ and (4.20)
 z be a boundary point of *P*. So there exist two sequences of soft elemen
 $\tilde{r}_n \rightarrow \tilde{z}$ and $\tilde{s}_n \rightarrow \tilde{z}$.
 s soft closed so $\tilde{z} \in P$. Now let us write $\tilde{r}_n \tilde{z} - \tilde{e} = \tilde{r}_n \tilde{z} - \tilde{r}_n$). *z* point of *P*. So there exist two sequences $\rightarrow \tilde{z}$.
 $\tilde{z} \in P$ Now let us write $\tilde{r}_n^{-1} \tilde{z} - \tilde{e} = \tilde{r}_n^{-1} (\tilde{z} - \tilde{r}_n)$ $\sum_{n=1}^{\infty}$ for S and \widetilde{S}_n in P
 $\{\widetilde{r}_n^{-1}(e)\}$
such that

Since *P* is soft closed so $z \in P$ Now let us Now let us write $\overline{r}_n^{-1} \overline{z} - \overline{e} = \overline{r}_n^{-1} (\overline{z} - \overline{r}_n)$. The sequence $\{\overline{r}_n^{-1}(e)\}$

e. Now as multiplication is continuous of
as $n \rightarrow \infty$.
 \cdots *Hence Z* is a soft subset of *P*.
 A soft element $x \in X$ is called a soft bo
 f **t** elements in *Y* and *Y*^{*c*} respectively such
 x x xist two s given above is unbounded for all $e \in A$. If not, then there exists some $e \in A$ and $n(e)$ such that *e* \in *A*. So there exist two sequences of soft elements \tilde{r}_n in *S* and \tilde{s}_n in

bw let us write $\tilde{r}_n^{-1} \tilde{z} - \tilde{e} = \tilde{r}_n^{-1} (\tilde{z} - \tilde{r}_n)$. The sequence $\{\tilde{r}_n^{-1}(e)\}$
 $e \in A$. If not, then there *f* soft elements \tilde{r}_n in *S* and \tilde{s}_n in *P*
 e \in *A* and *n*(*e*) such that

1) $\{\tilde{r}_n^{-1}\tilde{z}(e)\}$ is regular and hence $\|\tilde{z}-\tilde{e}\|$ (e) < 1 for all $n \ge n(e)$, for all $e \in A$. So that by Corollary(6.11), $\{\tilde{r}_n^{-1}\tilde{z}(e)\}$ is regular and hence *z* if there exist two sequence $\{x_n\}$ and $\{y_n\}$
 z if there exist two sequence $\{x_n\}$ and $\{y_n\}$
 i if there exist two sequence $\{x_n\}$ and $\{y_n\}$
 i $\varphi_n \to x$.
 heorem (4.20)

The boundary of P is a t (X,||⋅|) be a soft normed space and $Y \in S(X)$. A soft element $x \in X$ is c

if there exist two sequence $\{x_n\}$ and $\{y_n\}$ of soft elements in Y and Y^c re:

→ x.
 eorem (4.20)

e boundary of P is a soft subset of dary point of *P*. So there exist two
 n → \tilde{z} .
 \therefore $\tilde{z} \in P$ Now let us write $\tilde{r}_n^{-1} \tilde{z} - \tilde{e}$

ed for all *e* ∈ *A*. If not, then there
 $n \ge n(e)$, for all *e* ∈ *A*. So that by C

regular, contradi us write $\tilde{r}_n^{-1} \tilde{z} - \tilde{e} = \tilde{r}_n^{-1} (\tilde{z} - \tilde{r}_n)$. The sequen
E E n n(*e* ∈ *A n*(*e* ← ft elements \tilde{r}_n in *S* and \tilde{s}_n in *P*
he sequence $\{\tilde{r}_n^{-1}(e)\}$
A and *n*(*e*) such that
 $\{\tilde{r}_n^{-1}\tilde{z}(e)\}$ is regular and hence
pounded for all $e \in A$, so that $\tilde{z}(\hat{z})$ is regular, contradicting $\tilde{z} \in P$. Hence $\{\tilde{r}_n^{-1}(e)\}$ is unbounded for all $e \in A$. so that **Definition (4.19)**

Let $(X, \|\cdot\|)$ be a soft normed space and $Y \in S$
 Y if there exist two sequence $\{x_n\}$ and $\{y_n\}$,
 $y_n \to x$.
 Theorem (4.20)

The boundary of P is a soft subset of Z.

Proof :

Let \tilde{z} be te $r_n z - e = r_n (z - r_n)$. The sequence $\{r_n$, then there exists some $e \in A$ and $n(e)$ such So that by Corollary(6.11), $\{\tilde{r}_n^{-1}\tilde{z}(e)\}\)$ is reg $\tilde{z} \in P$. Hence $\{\tilde{r}_n^{-1}(e)\}$ is unbounded for all equences of soft elements r_n in S and r_n ⁻¹ \tilde{r}_n $(\tilde{z} - \tilde{r}_n)$. The sequence $\{\tilde{r}_n^{-1}(e)\}$ is some $e \in A$ and $n(e)$ such that prollary(6.11), $\{\tilde{r}_n^{-1}\tilde{z}(e)\}$ is regular and $\{\tilde{r}_n^{-1}(e)\}$ is unbou *e* $\{e\}$
e \in *A*. so that $\left\| \tilde{r}_n^{-1} \right\| \to \infty$. Let \tilde{z} be a boundary point of *P*. So there ex

uch that $\tilde{r}_n \to \tilde{z}$ and $\tilde{s}_n \to \tilde{z}$.

ince *P* is soft closed so $\tilde{z} \in P$ Now let us write \tilde{r}

iven above is unbounded for all $e \in A$. If not, the

Journal of Iraqi Al-Khwarizmi (JIKh) Volume:8 Issue:2 Year: 2024 pages: 44-68
\nNow let us define
$$
\tilde{z}_n = \frac{\tilde{r}_n^{-1}}{\left\| \tilde{r}_n^{-1} \right\|}
$$
. From the definition of \tilde{z}_n , we have $\left\| \tilde{z}_n \right\| = \tilde{1}$.
\nFurther $\tilde{z} \tilde{z}_n = \frac{z r_n^{-1}}{\left\| \tilde{r}_n^{-1} \right\|} = \frac{\tilde{e} + z \tilde{z}_n - \tilde{e}}{\left\| \tilde{r}_n^{-1} \right\|} = \frac{\tilde{e} + (\tilde{z} - \tilde{r}_n) \tilde{r}_n^{-1}}{\left\| \tilde{r}_n^{-1} \right\|}$
\nBut $\frac{\tilde{e} + (\tilde{z} - \tilde{r}_n) \tilde{r}_n^{-1}}{\left\| \tilde{r}_n^{-1} \right\|} = \frac{\tilde{e}}{\left\| \tilde{r}_n^{-1} \right\|} + (\tilde{z} - \tilde{r}_n) \tilde{z}_n$, we get $\tilde{z} \tilde{z}_n = \frac{\tilde{e}}{\left\| \tilde{r}_n^{-1} \right\|} + (\tilde{z} - \tilde{r}_n) \tilde{z}_n$
\nwe see that $\tilde{z} \tilde{z}_n \to 0$ as $n \to \infty$. Hence \tilde{z} is a topological divisor of zero.
\n5. Conclusion
\nIn this paper underscores the significance of soft Banach Algebras as a powerful mathematical tool for investigating algebraic phenomena within diverse applied contexts.
\nReferences

we see that $z z_n \to 0$ as $n \to \infty$. Hence z is a topological divisor of zero.

5. Conclusion

In this paper underscores the significance of soft Banach Algebras as a powerful mathematical tool for investigating algebraic phenomena within diverse applied contexts.

References

1. D. Molodtsov, Soft set theory first results, Comput. Math. Appl. 37 (1999) 19{31.

2. P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555{562.

3. M. Shabir, M. Naz, On soft topological Spaces, Comput. Math. Appl. 61

(2011) 1786 –1799.

4. Sabir Hussain and Bashir Ahmadc , Some properties of soft topological spaces. 62 (2011) 4058 - 4067

5. S. Das and S. K. Samanta, On Soft Metric Spaces, J. Fuzzy Math. 21(3) (2013) 707-734.

6. S. Das and S. K. Samanta, Soft linear operators in soft normed linear spaces, Ann. Fuzzy Math. Inform. 6 (2) (2013) 295-314.

7. R. Thakur, S. K. Samanta, Soft Banach Algebra, Ann. Fuzzy Math. Inform. 10 (3) (2015) 397-412

8. S. Das, P. Majumdar and S. K. Samanta, On Soft linear spaces and soft normed linear spaces, Ann. Fuzzy Math Inform. 9 (1) (2015) 91-109.

9. Sanjay Roy and T,K.Samanta , Balanced and Absorbing Soft Sets. 8 (2015) 36 – 46

10. S. H .J. Petroudi and S. A. Sadati and A. Yaghobi , New Results on Soft Banach Algebra. 6 (68) (2017)