Semi-approximately 2-Absorbing Sub-module and Semi-approximately 2-Absorbing Module

Authors Names	ABSTRACT
Safa Hussam Kadhim ^a Farhan Dakhil Shyaa, ^b	In this paper we define and study new concept , denoted by semi-approximately 2-absorbing submodule of M if whenever $a \in R$, $m \in M$ and
Published date : 26 /6/ 2024 <i>Keywords:</i> 2-absorbing sub- module, semi-2-absorbing sub- module, semi-approximately 2- absorbing	$1^{\circ}m \in N$ implies that either $a^{\circ}m \in N$ or $a^{\circ} \in (N :_{R} M)$ And M is called Semi- approximately 2-absorbing Module if zero sub-module is Semi- approximately 2-absorbing sub-module. As generalization to semi 2- absorbing submodule. Many properties and examples are introducing of this concept.

1. Introduction

Throughout this paper R commutative ring with identity and M unitary R-module. It is well known a proper sub-module N of M is called prime sub-module $rx \in N, r \in R, x \in M$ implies that $x \in N$ or $r \in (N: M)[1]$. Where N: M)={r $\in R: rM \leq N$ }. As a generalization of prime sub-module semi-prime sub-module if whenever $, r \in R, x \in M$ with $r^2x \in N$ implies that $, rx \in N[2]$. N is called 2-absorbing sub-module if whenever $a, b \in R, m \in M$ and $abm \in N$, then either $am \in N$ or $ab \in (N: M)[3]$. As a generalization of 2-absorbing submodule in [4] N is called semi-2-absorbing submodule if whenever $a \in R, m \in M$ and $a^2m \in N$ implies that either $am \in N$ or $a^2 \in (N: M)$. This led us introduce the concept semi- approximately 2-absorbing submodule of M if whenever $a \in R, m \in M$ and $a^3m \in N$ implies that either $a^2m \in N$ or $a^3 \in (N:_R M)$ and semi-approximately 2-absorbing module . We provide many properties, characterizations and relationship between semi-approximately 2-absorbing and other concepts.

2. Semi- approximately 2-absorbing submodule

In this section we define new concepts and study some properties and relatives with other classes of submodules

Definition 2.1: A proper submodule N of R-module M is called semi- approximately 2-absorbing submodule of M if whenever $a \in R$, $m \in M$ and $a^3m \in N$ implies that either $a^2m \in N$ or $a^3 \in (N:_R M)$.

A proper ideal I of a ring R is called semi- approximately 2-absorbing ideal if whenever a, $b \in R$ and $a^{3}b \in I$ implies that either $a^{2}b \in I$ or $a^{3} \in I$

Remarks and Examples 2.2:

(1) It is clear that every semi 2-absorbing submodule is a semi approximately -2-absorbing .

Safa Hussein Kadhim, Department of Mathematics, College of Education, University of Al-Qadisiyah, Al Diwaniyah, Iraq. edu-math.post33@qu.edu.iq

Farhan Dakhil Shayaa, Department of Mathematics, College of Education, University of Al-Qadisiyah, Al Diwaniyah, Iraq.: farhan.shyaa@qu.edu.iq

Proof: Let $a^3m \in N$ so $a^2(am) \in N$, put am = m' get $am = m' \in N$, $a^2(m') \in N$ we get $a(m') \in N$ or $a^2 M \subseteq N$ so $a(am) \in N$ or $a^3 M \subseteq N$ then $a^2m \in N$ or $a^3 M \subseteq N$. But the converse is not true, for example:

-Consider in the Z-module Z_8 Let N=(0) and $2^3 \cdot 1 = 0 \in N$, $2^2 \cdot 1 \notin N$, but $2^3Z_8 = (0) \subseteq N$ so N is a semi- approximately 2-absorbing but

 2^2 . $2 = 0 \in \mathbb{N}$ and $2.2=4 \notin \mathbb{N}$ and $2^2\mathbb{Z}_8 = 4\mathbb{Z}_8 \notin \mathbb{N}$.

-Consider in the Z-module 36Z is not semi 2-absorbing sub module since: $3^2 \cdot 4 = 12 \in N$, but $3 \cdot 4 = 12 \notin (36Z \cdot Z) = 36Z$.

(2) Every semi-prime submodule is a semi approximately 2-absorbing submodule. But the converse is not true, for example:

(0) in the Z-module Z_4 is a semi- approximately 2-absorbing submodule of Z_4 , but (0) not semi-prime since 2.2.1 = 0 but $2.1 \neq 7$

(3) It is clear that every approximately 2-absorbing submodule is a semi approximately -2-absorbing

submodule. However the converse is not true in general as we shown in

the following example: Consider $Z \oplus Z$ as Z-module and $N=6Z \oplus (0)$ a submodule of $Z \oplus Z$ but N is not approximately 2-absorbing submodule by Examples (1.2.1)part (2). But N is a semi-approximately 2-absorbing submodule, since if $a^3(m_1,0) \in 6Z \oplus (0)$, then, $a^3m_1 \in 6Z$ but it is clear that 6Z is a semi-prime. So $a^2m_1 \in 6Z$ and; that is

 $a^{2}(m_{1}, 0) \in 6Z \oplus (0) = N$. Thus N is a semi approximately -2-absorbing.

(4) Every quasi-prime submodule is a semi approximately -2-absorbing submodule. But the converse is not true in general for example :

(0) in the Z-module Z_4 is a semi-2-absorbing submodule of Z. but (0)

not quasi-prime since 2.2.1 = 0 but $2.1 \neq 0$

(5) Let N , K be a submodules of R-module M and N \subseteq K. If N is a semi approximately -2 absorbing of M then N is a semi approximately -2-absorbing.

Proof : Let $a \in R$, $m \in K$ such that $a^3m \in N$. Since K<M then $m \in M$ as N is a semi approximately -2-absorbing submodule of M and $a^3m \in N$ then

either $a^2m \in N$ or $a^3 \in (N_R M)$.

If $a^3 \in (N :_R M)$. then $a^3 M \subseteq N$, and since $K \subseteq$ Mimplies, $a^3 K \subseteq a^3 M$

hence $a^3K \subseteq N$, therefore $a^3 \in (N_R K)$.

Thus N is a semi approximately -2-absorbing submodule of K.

proposition 2.3: Let Mbe an R-module and N submodule of M, K⊆M .Then N is a semi

approximately if and only if $a^{3}K \subseteq N$ implies $a^{2}K \subseteq N$ or $a^{3} \in (N: M)$.

Proof: (\Leftarrow) It is clear

(⇒) Let $a^3K \subseteq N$ Suppose there exists $x \in K$ such that $a^2x \notin N$

Since $a^{3}K \subseteq N$, so $a^{3}K \in N$ for each $k \in K$, but N is a semi approximately -2-absorbing and $a^{2}x \notin N$. Hence $a^{3} \in (N: M)$.

Proposition 2.4: Let N be a proper submodule of an R-module M. if N is a semi approximately -2absorbing submodule of Mthen (N: M) is a semi approximately -2- absorbing ideal.

Proof : Let $a,b\in R$ such that $a^3 b \in (N: M)$. then $a^3bM \subseteq N$ So $a^3bm \in N$ for each $m\in M$ and assume that $a^3 \in (N: M)$.

Since N is a semi approximately -2-absorbing submodule then $a^2bm \in N$ for each $m \in M$ So. $a^2b \in (N: M)$. Thus (N: M) is a semi approximately -2-absorbing ideal.

The converse of Proposition 2.4 hold under the class of multiplication modules.

Proposition 2.5: Let N be a submodule of a multiplication R-module M such that

(N:R M) is a semi approximately 2-absorbing ideal of R. Then N is semi approximately 2-absorbing submodule of M .

Proof: Let $a, b \in R, m \in M$, and $a^3m \in N$ then $a^3(m) \subseteq N$. Since M is a

multiplication R-module, there exists an ideal I of R such that (m) = IM. Thus $a^3IM \subseteq N$. Hence, $a^3I \subseteq (N:RM)$. Now by assumption, $(a)2I \in (N:R \ M)$ or $a^3 \in (N:R \ M)$ Therefore $a^2I \ M\subseteq N$ or $a^3 \in (N:RM)$. Thus $a^2(m) \subseteq N$ or $a^3 \in (N:R \ M)$.thus N is semi approximately 2-absorbing submodule of M.

Corollary 2.6: Let N a submodule of cyclic R-module M. Then N is a semi approximately -2-absorbing submodule if and only if (N: M) is a semi approximately -2-absorbing ideal.

Proof : Since every cyclic module over commutative ring is a multiplication module, hence by Proposition 2.6 the result is obtained.

Proposition 2.7: Let M be a faithful finitely generated multiplication R-module, N a proper submodule of M. Then the following statement are equivalent:

(1) N is a semi approximately -2- absorbing submodule of M.

(2) (N: M) is a semi approximately -2-absorbing ideal.

(3) N = IM for some semi approximately -2-absorbing ideal I of R.

Proof: (1) \Leftrightarrow (2) By Proposition (2.5) and (2.6)

(2) \Rightarrow (3) It is clear

 $(3) \Rightarrow (1)$ Let $a^3m \in N$, hence $a^3(m) \subseteq N$ Since M is multiplication(m)=JM for some ideal J of R. Hence $a^3JM \subseteq IM$ as M is finitely generated faithful multiplication, so $a^3J \subseteq I$. But I is a semi approximately -2-absorbing ideal, so either $J^2 \subseteq I$ or $a^2 \in (I: R)$.

by Proposition (2.4) This implies $a^2 JM \subseteq IM = N$ or

 $a^2 \in I = (IM: M) = (N: M)$.thus $a^2m \in N$ or $a^3 \in (N:RM)$.

Proposition 2.8: Let N be a proper submodule of an R-module M. The following statements are equivalent :

(1) N is semi approximately 2-absorrbing submodule of M.

(2) (N :_M I) is semi approximately 2-absorbing , for each ideal I of R with I M $\not\subseteq$ N

(3) $(N:_M(r))$ is semi approximately 2-absorbing submodule for each

 $r \in R \text{ with } rM \not\subseteq N$

Proof: (1)=(2) Let I be an ideal of R with IM \nsubseteq N then (N :_M I) \neq M

Iet a, $b \in R$, $m \in M$, then a^3 (Im) $\subseteq N$ But N is semi approximately 2-absorbing submodule of M, so by Proposition(2.1.3), either a^2 (Im) $\subseteq N$ or $a^3 \in (N : M)$. Hence either $a^2m \in (N : I)$ or $a^3 \in (N_M : I)$: M). Thus (N :_M I) is semi approximately 2-absorbing submodule.

(2) \Rightarrow (3) It is clear.

(3)=(1) Take r = 1 then (N : (1)) = N, so N is semi approximately 2-absorbing.

Proposition 2.9: Let M be an R-module , N a proper submodule of M ,if N is semi approximately 2-absorbing then (N:_R <m>) is semi approximately 2-absorbing ideal of R for each $m \in M$ -N.

Proof: Let $a^3 b \in (N:_R < m >)$ for some $m \in R$, then $(a^3b)m \in N$, but N is semi approximately 2-absorbing submodule then $a^2(bm) \in N$ or $a^3 \in (N:_R M)$,

so that $a^2 b \in (N :_R M)$ or $a^3 \in (N :_R M)$ hence $(N :_R (m))$ is semi approximately 2-absorbing ideal of R.

Proposition 2.10: Let N be a submodule of an R-module M. Then N is semi approximately 2absorbing submodule of M if and only if $(N: a^3 m) = (N: a^2m)$ for each $m \in M$ or $a^3 \in (N:_R M)$.

Proof: (\Rightarrow) Suppose $a^3 \notin (N :_R M)$. To prove (N: a^3m)=(N: a^2m) It is clear that (N: a^2m) \subseteq (N: a^3m).

Let $r \in (N: a^3m)$, then $a^3rm \in N$ and since N is semi approximately -2-absorbing and $a^3 \notin (N:_R M)$ so $a^2rm \in N$ and hence $r \in (N: a^2m)$. Thus $(N: a^3m)=(N: a^2m)$.

 (\Leftarrow) Let a^3m N.Then (N: a^3m)=R. But (N: a^3m)=(N: a^2m) or

 $a^3 \in (N: M)$ by hypothesis. Therefore $(N: a^2m)=R$ and hence $a^2 m \in N$. So either $a^2 m \in N$ or $a^3 \in (N: R M)$. Hence N is semi- approximately 2-absorbing.

Proposition 2.11: $f: M \longrightarrow M'$ be an epimorphism, such that kerf $\subseteq N$ and N is semi approximately 2absorbing submodule of M then f(N) is semi approximately 2-absorbing submodule of M['].

proof: Let $a^3m' \in f(N), m' \in M', a \in R$ since f is onto, m' = f(m) for some $m \in M$ then $a^3f(m) \in f(N)$ so abf(m) = f(n), for some $n \in N$

we get $a^3m - n \in \text{kerf} \subseteq N$ implies that $a^3m \in N$ but

(N is semi approximately 2-absorbing) so either $a2m \in N$ or $a3 \in (N: M)$

if $a2m \in N$ Then $a^{2}f(m) \in f(N)$ so $a2m' \in f(N)$

if $a3 \in (N: M)$ then $a^{3}M \subseteq N$ and so $a3f(M) \subseteq f(N)$ and we get

 $a3 \in (f(N): f(M))$ Then f(N) is semi-approximately 2-absorbing submodule of M'.

Corollary 2.12: Let N is semi approximately 2-absorbing submodule of M with $K \subseteq N$ then $\frac{N}{K}$ is semi approximately 2-absorbing submodule of $\frac{M}{K}$.

Proof: Let $\pi: M \to \frac{M}{K}$, π is the natural epimorphism and hence ker $\pi = K \subseteq N$

then $\frac{N}{K}$ is semi-approximately 2-absorbing submodule of $\frac{M}{K}$.

Proposition 2.13: Let $\varphi: M - M'$ be an R-epimorphism. If W is semi-approximately 2-absorbing submodule of M', then $\varphi - 1(W)$ is semi-approximately 2-absorbing submodule of M.

proof: Let $a3m \in \phi 1(W)$ where $a \in R$, $m \in M$, then $\phi (a3m) \in W$ that is $a3 \phi (m) \in W$ and W is semi approximately 2-absorbing then either

a2 ϕ (m) \in w or a3 \in (W: M[']) that is a2 m $\in \phi^{-1}$ (W) and if

 $a^3 \in (W:M')$ then $a^3M' \subseteq W$ but $\varphi(M) \subseteq M$ so $a^3\varphi(M) \subseteq W$ that is $a^3 M \subseteq \varphi^{-1}(W)$ so $a^3 \in (\varphi^{-1}(W):M)$.

then $\varphi^{-1}(W)$ is semi-approximately 2-absorbing submodule of M.

Corollary 2.14: Let M R-module and $K \subseteq N < M$ if $\frac{N}{K}$ is semi-approximately 2-absorbing submodule of $\frac{M}{K}$ then N is semi-approximately 2-absorbing submodule of M.

Proof: Let $\pi: M \to \frac{M}{K}$, π is the canonical epimorphism, $\pi - 1(\frac{N}{K})$ is semi approximately 2-absorbing, since $\frac{N}{K}$ is semi-approximately 2-absorbing submodule of $\frac{M}{K}$. but $\pi - 1(\frac{N}{K}) = N$, so N is semi-approximately 2-absorbing submodule of M.

Proposition 2.15 : Let M be a module over a Principal Ideal Ring (P.I.R) R, N a proper submodule of M and I an ideal of R Then N is a semi-approximately -2-absorbing submodule of M if and only if $I^3m \subseteq N$ implies $I^2m \subseteq N$ or $I^3 \subseteq (N: M)$ for any ideal I of R.

Proof: (\Rightarrow) Let I be ideal of R and let m \in M. Since R is P.I.R, then I=< a > for some a \in R. If I³m \subseteq N then < a >³m \subseteq N, therefore a³m \in N which implies that a²m \in N or a³ \in (N: M) Thus I²m \subseteq N or I³ \subseteq (N: M).

 (\Leftarrow) It is clear.

Proposition 2.16: Let M_1 , M_2 , be R-modules and $M=M_1 \oplus M_2$, and let N and W be a proper Sub Modules of M_1 and M_2 respectively. Then

1)N is semi approximately 2-absorbing in M_1 if and only if $N \oplus M_2$ is semi approximately 2-absorbing in $M = M_1 \oplus M_2$ and

2)W is semi approximately 2-absorbing in M_2 if and only if $M_1 \oplus W$ is semi approximately 2-absorbing in M.

 $Proof: \Longrightarrow$

Let $a^3~(m_1,\,m_2)\in N{ \bigoplus } M_2~$,when $a\in R$ and $(m_1,\,m_2)\in M~$ then

 $a^3 m_1 \in N$ and $a^3 m_2 \in M_2$. Since N is semi approximately 2-absorbing in M_1 implies that either $a^2m_1 \in N$ or $a^3 \in (N : M_1)$. So that

 $a^2 (m_1, m_2) \in \mathbb{N} \bigoplus \mathbb{M}_2$ Or $a^3 \in (\mathbb{N}: \mathbb{M}_1)$ then $a^3 \in (\mathbb{N} \bigoplus \mathbb{M}_2 : \mathbb{M}_1 \bigoplus \mathbb{M}_2)$.

Hence $N \oplus M_2$ is semi approximately 2-absorbing in $M_1 \oplus M_2$.

 $\begin{array}{lll} \Leftarrow & \text{Let } a^3 \ m_1 \in N, \text{ where } a \in R, & m_1 \in M_1, \text{ then for any } m_2 \in M_2, \ a^3 \ (m_1, m_2) \in N \oplus M_2. \text{Since } \\ N \oplus M_2 \ \text{is semi approximately 2-absorbing so either } a^2 \ (m_1, \ m_2) \in N \oplus M_2, \text{ or } a^3 \in (N \oplus M_2 : \\ M_1 \oplus M_2) = (N: M_1) \ \text{Then } a^2 m_1 \in N \quad \text{or } a^3 \in (N: M_1), \text{ N is semi approximately 2-absorbing } \\ \text{submodule in } M. \ \text{The proof of (2) is similarly.} \end{array}$

Proposition 2.17: Let N semi approximately 2-absorbing submodule of R-module

 $M=M_1 \bigoplus M_2$ and $annM_1 + annM_2 = R$ then

(1) $N = N_1 \bigoplus M_2$ and N_1 is semi-approximately 2 – absorbing in M_1 .

(2) $N = M_1 \bigoplus N_2$ and N_2 is semi-approximately 2 – absorbing in M_2 .

(3) $N = N_1 \bigoplus N_2$ and N_1 is semi approximately 2 – absorbing in M_1 and N_2 is semi approximately 2 – absorbing in M_2 .

proof: Since $annM_1 + annM_2 = R$, then by the proof of [1,Theorem 2.4]

 $N = N_1 \bigoplus N_2$, for some submodules N_1 of M_1 and N_2 of M_2 .

We have

- (1) $N_1 < M_1$,and $N_2 = M_2$
- (2) $N_1 = M_1$, and $N_2 < M_2$,

(3) $N_1 < M_1$, and $N_2 < M_2$

Case (1) and (2): $N = N_1 \bigoplus M_2$ or $N = M_1 \bigoplus N_2$. Since N_1 and N_2 is semi approximately 2-absorbing in M_1 and M_2 , so by Proposition (2.1.16), then N_1 , N_2 is semi approximately 2 – absorbing in M_1 , M_2

Case (3): Let $a^3 m_1 \in N$, where $a \in R$, $m_1 \in M_1$. Then

a³ (m₁, 0)∈ N=N₁⊕ N₂. Since N is semi approximately 2-absorbing in M, then either a² (m₁,0)∈N or a³ ∈ (N₁⊕ N₂: M₁⊕ M₂), so a²m₁ ∈ N₁

Or $a^3 \in (N_1 : M_1)$.hence N_1 is semi-approximately 2-absorbing in M_1 .

Similarly we get N_2 is semi-approximately 2-absorbing in M_2 .

Proposition 2.18: If N_1 , N_2 is semi-approximately 2 – absorbing in M_1 , M_2 , such that $(N_1 : M_1) = (N_2 : M_2)$. then $N = N_1 \bigoplus N_2$ semi-approximately 2-absorbing submodule of $M = M_1 \bigoplus M_2$.

proof: Let a^3 $(m_1, m_2) \in N_1 \oplus N_2$ that is $a^3m_1 \in N_1$ and $a^3m_2 \in N_2$.since N_1 , N_2 is semi-approximately 2 – absorbing ,then $a^2m_1 \in N_1$ or

 $a^3 \in (N_1 : M_1)$ and $a^2m_2 \in N_2$ or $a^3 \in (N_2 : M_2) = (N_1 : M_1)$,so

 $a^2m_1 \in N_1$ and $a^2m_2 \in N_2$ or $a^3 \in (N_1 : M_1)$ thus

 a^2 (m₁, m₂) $\in N_1 \bigoplus N_2$ or $a^3 \in (N : M)$.hence is a semi approximately -2-absorbing.

proposition 2.19: Let N is semi approximately 2-absorbing submodule of M and S multiplicative subset of R,then $S^{-1}N$ is semi approximately 2-absorbing S^{-1} R-submodule of S^{-1} M.

proof: Let $\frac{a}{s_1} \in S^{-1} R$, $\frac{\overline{m}}{s_2} \in S^{-1}M$, then $(\frac{a}{s_1})^3 \frac{\overline{m}}{s_2} \in S^{-1}N$ then There exists $t \in S$ such that $ta^3m = a^3tm \in N$ since N is semi-approximately 2-absorbing so either $a^2tm \in N$ or $a^3 \in (N: M)$ so

then
$$\frac{a^2 tm}{s_1 s_2 t} = \frac{a^2 m}{s_1 s_2} \in S^{-1}N$$
, or $\frac{a^3}{s_1} \in S^{-1}$ (N: M) $\subseteq (S^{-1}N: S^{-1}M)$ then
 $\frac{a^2 m}{s_1 s_2} \in S^{-1}N$ or $\frac{a^3}{s_1} \in (S^{-1}N: S^{-1}M)$.

Hence $S^{-1}N$ is semi-approximately 2-absorbing.

3. Semi approximately -2-Absorbing Modules.

In this section we introduce the concept of semi approximately -2-absorbing modules. Some of properties and relationships with other classes of modules are explained.

So we give the following definition :

Definition 3.1: An R-module M is called semi approximately -2-absorbing module if (0) is a semi approximately -2- absorbing submodule of M.

Remarks and Examples 3.2:

(1) Every a semi -2-absorbing module is a semi approximately -2-absorbing module.

(2) Every semi-prime module is a semi- approximately 2-absorbing module but the converse is not true in general, for example: Z_4 as Z-module is a semi approximately -2-absorbing since (0) is a semi approximately -2-absorbing submodule of Z_4 but it is not semi-prime.

(3) Every quasi-prime module is a semi approximately -2-absorbing module. But the converse is not true in general for example: Z_4 as Z-module is a semi approximately -2-absorbing module, but it is not quasi-prime since 2.2.1=0 and 2.1 \neq 0

(4)Every submodule of semi approximately -2-absorbing module is a semi approximately -2-absorbing module.

Proposition 3.3: If M is a semi approximately -2-absorbing module, then ann_RM is a semi approximately -2-absorbing ideal.

Proof: By applying Proposition (2.4) when N =(0), we get the result.

Proposition 3.4: Let M be a multiplication R-module. Then M is a semi approximately -2-absorbing module if and only if annM is a semi approximately -2-absorbing ideal.

Proof : (\Rightarrow) It follows by Proposition (3.3).

(⇐)It follows by Proposition (2.5).

Corollary 3.5: Let M be a faithful multiplication R-module. Then the following statements are equivalent:

(1) M is a semi approximately -2-absorbing module

(2) R is a semi approximately -2-absorbing ring

Proof: (1) Since M is a semi approximately -2-absorbing module, so by Proposition(3.4) annM is a semi approximately -2-absorbing ideal . But

annM =(0). Thus (0) is a semi approximately -2-absorbing ideal, that is R is a semi approximately -2-absorbing ring.

(2) R is a semi approximately -2-absorbing, so (0_R) is a semi approximately -2-absorbing, but $(0_R) = ann_R M$ since M is faithful. Thus M is a semi approximately -2-absorbing module by Proposition(3.4).

Proposition 3.6: Let M be an R-module. If M is a semi approximately -2-absorbing module, then annN is a semi approximately -2-absorbing ideal for each nonzero submodule N of M.

Proof: Let N be a nonzero submodule of M, first $ann_R N \neq R$ because if $ann_R = R$, then N=(0) which is a contradiction!

Now let $a^{3}b\in annN$ for some a, $b\in R$. Then $a^{3}bN = 0$. Since M is a semi approximately -2- absorbing module, so by Proposition (2.3) either

 $a^{2}bN=(0)$ or $a^{3} \in ((0): M)$ and hence either $a^{2}b \in annN$ or $a^{3} \in annN$, since $annM \subseteq annN$. Thus annN is a semi approximately-2-absorbing ideal.

Recall that "Let R be an integral domain. A module M is called divisible if, for every $0 \neq r \in R$ then r M = M "[5]

Proposition 3.7: Over an integral domain R. Then M is a semi approximately -2-absorbing module if and only if M is a quasi-prime module.

Proof : (\Rightarrow) Let abm=0, where a,b \in R,m \in M

If ab=0 then a=0 or b=0, so am=0 or bm=0

If $ab \neq 0$, then $a \neq 0$ and $b \neq 0$ since R is integral domain.

If am=0 we are done. If am $\neq 0$ and $a\neq 0$ and M is divisible, then

 $a^2M = M$, So m= a^2m' then $abm=aba^2m'=a^3bm=0$.

But (0) is semi approximately -2-absorbing implies that, either $a^{2}b$ m' =0 or $a^{3} \in ann M$.

If $a^3 \in ann M$ then $a^3M=0$ but $a \neq 0$ then $a^2 \neq 0$.

It follows that $a^{3}M = M = 0$ which is a contradiction!

Therefore at $a^3 \notin ann M$. Thus abm=0, so $a^2b m'=0$ so bm=0

Thus (0) is quasi-prime.

 (\Leftarrow) It is clear.

Corollary 3.8: Let M be a nonzero divisible module over an integral domain R. The

following conditions are equivalent:

(1) M is a semi approximately -2-absorbing module.

(2) M is a quasi-prime module.

(3) M is a prime module.

Proof: (1) \Leftrightarrow (2) It follows by Proposition (3.7).

 $(2) \Leftrightarrow (3)$ It follows by [6, Proposition (1.5.10)]

Proposition 3.9: Let N be submodule of an R-module M. Then N

is semi approximately 2-absorbing submodule if and only if $\frac{M}{N}$

is semi approximately 2-absorbing module.

Proof: (\Longrightarrow)Let $a^3(x+N) = N = 0_{\frac{M}{N}}$, where $a \in \mathbb{R}$, $x \in M$

Then $a^3x+N = N$, so $a^3x \in N$. Since N is semi approximately 2-absorbing,

then either $a^2x \in N$ or $a^3 \in (N: M)$,hence we get either

$$a^{2}(x+N) = N = 0_{\frac{M}{N}} \text{ or } a^{3} \in (0_{\frac{M}{N}} : \frac{M}{N}) \text{ since } (N:M) = ann \frac{M}{N}$$

Hence $\frac{M}{N}$ is semi approximately 2-absorbing module.

(⇐) let
$$a^3x \in N$$
 are $a, \in R, x \in M$. Then $a^3(x+N) = N = 0_{\frac{M}{N}}$ but $0_{\frac{M}{N}}$

Is semi approximately 2-absorbing submodule, then

$$a^{2}(x+N) = N \text{ or } a^{3} \in \operatorname{ann} \frac{M}{N} = (N:M) \text{ so that } a^{2}x \in N \text{ or } a^{3} \in (N:M).$$

Hence N is semi approximately 2-absorbing submodule of M.

Proposition 3.10: An R-module M is a semi approximately -2-absorbing module if and only if either anna²m=anna³m for any m \in M such that a³m \neq 0 or a³M=0

Proof: (⇒)Let r∈anna³m, a³m ≠ 0. Then a³rm =0. But M is a semi approximately -2-absorbing and a³ ∉annM, so that a²rm=0; that is r∈anna²m. Thus anna²m=anna³m.

 (\Leftarrow) It is clear.

Proposition 3.11: Let $M = M_1 \bigoplus M_2$ be an R-module. If M is a semi approximately -2-absorbing module, then M_1 and M_2 are semi approximately -2-absorbing module.

Proof: By Remarks and Examples 3.2 part 3 the result hold.

Theorem 3.12: Let M_1 and M_1 be prime R-modules. Then $M = M_1 \bigoplus M_2$ is a semi-approximately -2-absorbing module.

Proof: Let $a^{3}(m_{1}, m_{2})=(0,0)$ where $a \in \mathbb{R}$, $(m_{1}, m_{2}) \in \mathbb{M}$. Then $a^{3}m_{1}=0$ and

 $a^{3}m_{2}=0$ that a $(a^{2}m_{1})=0$ and $a(a^{2}m_{2})=0$.

Since M_1 and M_1 be a prime R-module either ($a^2m_1=0$ or $a\in annM_1$) and

 $(a^2m_2=0 \text{ or } a\in annM_2).$

(1) If $a \in annM_1$ and $a \in annM_2$, then $a \in annM_1 \cap annM_2 = annM$ but $a \in annM$ so $a^3 \in annM$.

(2) If $a^2m_1=0$ and $a^2m_2=0$, then $a^2(m_1, m_2)=0$.

Thus M is a semi approximately -2- absorbing module.

Note: As an application of theorem (3.12), each of the following Z-module semi-2-absorbing modules : $Z_p \oplus Z_q$, $Z_p \oplus Z_p$, $Z_p \oplus Z_p$, $Z_p \oplus Z$, $Q \oplus Z$, $Z \oplus Z$, $Q \oplus Q$

where p, q are two prime numbers.

Proposition 3.13: Let $M = M_1 \bigoplus M_2$ be an R-module such that $annM_1 = annM_2$. Then M semi approximately -2-absorbing module if and only if M_1 and M_2 are semi approximately -2-absorbing modules.

Proof: (\Leftarrow)Let $a^3(m_1, m_2) = (0,0)$, where $a \in \mathbb{R}$, $(m_1, m_2) \in \mathbb{M}$

 $a^3m_1=0$ and $a^3m_2=0$. Since M_1 and M_2 are semi approximately -2-

absorbing modules, then either $(a^2m_1=0 \text{ or } a^3 \in annM_1)$ and

 $(a^2m_2=0 \text{ or } a^3 \in annM_2 = annM_1).$

It follows that $(a^2m_1=0 \text{ and } a^2m_2=0) \text{ or } a^3 \in annM_1$

Hence $a^3(m_1, m_2) = (0,0)$ or $a^3 \in annM_1 = annM_1 \cap annM_2 = annM$.

Thus (0,0) is a semi approximately -2-absorbing so M semi approximately -2-absorbing module.

 (\Rightarrow) It is clear.

Proposition 3.14: For an R-module M The following assertions are equivalent:

(1) M is semi approximately 2-absorbing R-module

(2) ann_MI is semi approximately 2-absorbing for each ideal I of R with I⊈ annM

(3) $\operatorname{ann}_{M}(r)$ is semi-approximately 2-absorbing for each ideal $r \in R$ with $r \notin \operatorname{ann}M$.

proof: It follows directly by Proposition (2.8) and definition of semi approximately -2-absorbing module.

Proposition 3.15: Let M is semi approximately 2-absorbing comultiplication R-module. Then every proper submodule N of M is semi approximately 2-absorbing submodule .

proof : Let N be proper submodule of M. Let $ann_R N = I$ where I is an ideal of R

So $ann_M ann_R N = N$, then $N = ann_M I$. since if, $I \subseteq ann_R M$

So $ann_RN = ann_RM$. It follows $N = ann_Mann_RN = ann_Mann_RM = M$, then N = M which is a contradiction! Then by Proposition (3.14),

 $ann_M I = N$ is semi-approximately 2-absorbing sub-module.

Proposition 3.16: Let S is multiplicative subset of R and M is an R-module, If M is a semi-approximately 2-absorbing module, then S^{-1} M is a semi-approximately -2-absorbing module.

Proof: It follows by Proposition (2.19)

Lemma 2.2.17: Let M be an R-module and let A, B < M. Then $A = B \Leftrightarrow A_p = B_p$, for every maximal idea P of R.[21]

Corollary 3.18: Let M be a finitely generated R-module. if M_p is a semi approximately -2-absorbing R_p -module for each P maximal ideal of R, then M is a semi approximately -2-absorbing R-module.

References

^[1] C.P. Lu, Prime submodules of modules, Comm. Math., University Spatula, 33 (1981), 61-69.

^[2] E.A. Athab, Prime submodules and semiprime submodules, M.sc. Thesis, University of Baghdad, 1996.

^[3] A.Y.Darain, F.Soheilnia, 2-absorbing and weakly 2-absorbing submodule. 2011.

^[4] M.A. Inaam, A.H. Abdurehman, Semi-2-Absorbing Submodules and Semi2-Absorbing Modules, International Journal of Advanced Scientific and Technical Research, 3 (2015), 521-530.

^[5] D.W. Sharpe and P.Vamos, Injective modules. Cambrdige University, press 1972.

^[6] H.M.Abdul-Razak, Quasi-prime Modules and Quasi-orime submodules, M.Sc. Thesis, College of Education Ibn-Haitham, University of Baghdad, 1999.