

K- Operators

Elaf Sabah Abdulwahid Rijab

University of Tikrit, College of Education for girls, Department of Mathematics.

<u>Abstract</u>

In this paper, we introduce a new class of operators on a complex Hilbert space \mathcal{H} which is called *K*-operators. An operator $T \in \mathcal{B}(\mathcal{H})$ is called *K*-operators if $(TT^*)^k = k (TT^*)$, where $k \ge 2$ and T^* is the adjoint of the operator T.

We investigate some basic properties of such operators and study the relation between K-operators and some other well known classes of operators on \mathcal{H} .

Key word: K-operators , operators, adjoint operators .

1- Introduction

One of the important notions in applied mathematics and systems analysis is the operator theory investigation by obtaining a mathematical model, and then determining such properties as existence, uniqueness and regularity of solutions. Let $\mathcal{B}(\mathcal{H})$ denoted to the algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} . An operator $T \in \mathcal{B}(\mathcal{H})$ is called nilpotent operator if $T^n = 0$ [1], similar operator if there exists $S \in \mathcal{B}(\mathcal{H})$ such that $S = XTX^{-1}$, where X and X^{-1} are operators in $\mathcal{B}(\mathcal{H})$ [2], isometric operator if $T^*T = I$ [3] and unitary operator if $T^*T = TT^* = I$ [4].

2- K-operators

In this section, we shall study some properties which are applied of *K*-operators.

Definition (2.1): If $T \in \mathcal{B}(\mathcal{H})$, then *T* is called *K*-operators if $(TT^*)^k = k (TT^*)$ where $k \ge 2$ and T^* is the adjoint operator of *T* and we denoted of all the class *K*-operator by [ok].

Example (2.2): Let $T = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$ operator on a Hilbert space \mathbb{C}^2 . Then $(TT^*)^2 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = 2(TT^*)$ Therefore $T \in [2k]$.

Example (2.3): If $T = \begin{pmatrix} 3 & -2 \\ -1 & 0 \end{pmatrix}$ operator on a Hilbert space \mathbb{C}^2 . Then $(TT^*)^2 = \begin{pmatrix} 178 & -42 \\ -42 & 10 \end{pmatrix} \neq 2(TT^*) = \begin{pmatrix} 26 & -6 \\ -6 & 2 \end{pmatrix}$ Thus $T \notin [2k]$.

In the following theorem, we give some properties of this operators.

<u>Theorem (2.4)</u>: If $T \in [ok]$ and $T = T^*$, then :

(1)
$$T^{-1} \in [ok]$$

(2) $T^* \in [ok]$

Proof: (1) since $T \in [ok]$, then $(TT^*)^k = k(TT^*)$

 $(T^*T)^k = k(T^*T)$ $[T = T^*]$

Taking inverse of two-sides $(T^{-1}T^{-1^*})^k = k(T^{-1}T^{-1^*})$

 $\therefore T^{-1} \in [ok]$

(2) since
$$T \in [ok] \Rightarrow (TT^*)^k = k(TT^*)$$

$$: [T = T^*] \implies (T^*T)^k = k(T^*T)$$

Then
$$T^* \in [ok]$$

The following examples show that If S and T are K-operators, then not necessary (S + T) and (S.T) are K-operators.

Example (2.5): If $S = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ are operators on a Hilbert space \mathbb{C}^2 , then $(SS^*)^2 = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = 2(SS^*)$ and $(TT^*)^2 = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix} = 2(TT^*)$ Then *S* and *T* are [2k]. But $[(S+T)(S+T)^*]^2 = \begin{pmatrix} 29 & 12 \\ 12 & 5 \end{pmatrix} \neq 2[(S+T)(S+T)^*] = \begin{pmatrix} 10 & 4 \\ 4 & 2 \end{pmatrix}$ $\therefore (S+T) \notin [2k]$.

Theorem (2.6): If S and T are commuting K-operators, then (S + T) is K-operators.

Proof: since $S, T \in [ok]$, then there exists $k_1, k_2 \in K$ such that

$$(TT^*)^k = k_1(TT^*)$$
, $(SS^*)^k = k_2(SS^*)$ and $k_1k_2 = k$
 $[(S+T)(S+T)^*]^k = [(S+T)(S^*+T^*)]^k = [(S^k+T^k)(S^{*k}+T^{*k})]$

 $= \left[S^{k}S^{*^{k}} + S^{k}T^{*^{k}} + T^{k}S^{*^{k}} + T^{k}T^{*^{k}}\right]$ $= (SS^{*})^{k} + (ST^{*})^{k} + (TS^{*})^{k} + (TT^{*})^{k}$ $= k_{1}k_{2}\left[(SS^{*})^{k} + (ST^{*})^{k} + (TS^{*})^{k} + (TT^{*})^{k}\right]$ $= k\left[(S + T)(S + T)^{*}\right]$ Then $(S + T) \in [ok]$. **Example (2.7):** Let $S = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$ are operators on a Hilbert space \mathbb{C}^{2} . Then S and Tare [2k], but $[(ST)(ST)^{*}]^{2} = \begin{pmatrix} 16 & 0 \\ 0 & 0 \end{pmatrix} \neq 2\left[(ST)(ST)^{*}\right] = \begin{pmatrix} 8 & 0 \\ 0 & 0 \end{pmatrix}$ $(ST) \notin [2k]$.

(ST) is K-operators.

Proof: since $S,T \in [ok]$, then $(TT^*)^k = k(TT^*)$ and $(SS^*)^k = k(SS^*)$

Theorem (2.8): If S and T are K-operators such that ST = TS, then

and $k^{2} = k$ $[(ST)(ST)^{*}]^{k} = [S(TT^{*})S^{*}]^{k} = [S^{k}(TT^{*})^{k}S^{*^{k}}]$ $= [k S^{k}(TT^{*}) S^{*^{k}}] = [k (S^{k}T)(T^{*} S^{*^{k}})] = [k (TS^{k})(S^{k}T)^{*}]$ $= [k (TS^{k})(TS^{k})^{*}] = [k T (S^{k}S^{*^{k}})T^{*}] = [k T (SS^{*})^{k} T^{*}]$ $= [kTk(SS^{*})T^{*}] = [k^{2}(TS)(S^{*}T^{*})] = k[ST)(ST)^{*}]$ Thus $(ST) \in [ok]$. **Remark (2.9):** The class of [2k] and [3k] are independent as the following examples:

Example (2.10): If $T = \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix}$ is an operator on a Hilbert space \mathbb{C}^2 . Then $(TT^*)^2 = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix} = 2(TT^*)$. Thus $T \in [2k]$. But

$$(TT^*)^3 = \begin{pmatrix} 8 & 0 \\ 0 & 0 \end{pmatrix} \neq 3(TT^*) = \begin{pmatrix} 6 & 0 \\ 0 & 0 \end{pmatrix}$$
 .Thus $T \notin [3k]$.

Example (2.11): If $T = \begin{pmatrix} \sqrt[4]{3} & 0 \\ 0 & 0 \end{pmatrix}$ is an operator on a Hilbert space \mathbb{C}^2 . Then

$$(TT^*)^3 = \begin{pmatrix} 3\sqrt[2]{3} & 0\\ 0 & 0 \end{pmatrix} = 3(TT^*)$$
 .Thus $T \in [3k]$. But

 $(TT^*)^2 = \begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix} \neq 2(TT^*) = \begin{pmatrix} 2\sqrt[2]{\sqrt{3}} & 0 \\ 0 & 0 \end{pmatrix}$. Thus $T \notin [2k]$.

Proposition (2.12): If $T \in [ok]$ such that T commute with T^* , then $T^2 \in [ok]$.

Proof: $(T^2T^{2^*})^k = (TTT^*T^*)^k = (T^kT^kT^{*^k}T^{*^k})^k$ = $T^k(TT^*)^kT^{*^k} = kT^k(TT^*)T^{*^k} = kT(T^kT^{*^k})T^*$ = $kT(TT^*)^kT^* = k^2(TTT^*T^*) = k(T^2T^{2^*})$

Example(2.13): Let $T = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$ operator on a Hilbert space \mathbb{C}^2 . Then $T \in [2k]$, but $(T^2 T^{2^*})^2 = \begin{pmatrix} 16 & 0 \\ 0 & 16 \end{pmatrix} \neq 2(T^2 T^{2^*}) = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}$ Thus $T^2 \notin [2k]$.

<u>Remark (2.14)</u>: The class of [*ok*] and isometric operator are independent as the following examples :

Example (2.15): Let U be the unilateral shift operator on ℓ_2 ;

(i.e. $U(x_1, x_2, x_3, ...) = (0, x_1, x_2, x_3, x_4 ...)$). Then

 $(U^*U) = I$. Then U is isometric operator. But

 $(UU^*)^k \neq k(UU^*)$. Thus $U \notin [ok]$.

In example (2.12) $T \in [2k]$ but $T^*T = 2I \neq I \Longrightarrow T$ is not isomeric operator.

proposition (2.16): If T is nilpotent operator and $T^* = T^k$, then $T \in [ok]$.

Proof: since $T^k = 0$, then $(TT^*)^k = 0 = k(TT^*)$, $T \in [ok]$.

Remark (2.17): If $T \in [ok]$ and S is similar of T, then not necessary $S \in [ok]$.

For example : If $T = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ operator on a Hilbert space \mathbb{C}^2 , then

 $(TT^*)^2 = 2(TT^*) = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \implies T \in [2k]$, but if $X = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ and

$$X^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \text{ operators on } \mathbb{C}^2 \implies S \text{ is similar of } T \quad (i.e. \ S = XTX^{-1})$$

Thus $S = \begin{pmatrix} -2 & 5 \\ -2 & 4 \end{pmatrix} \implies (SS^*)^2 \neq 2(SS^*) = \begin{pmatrix} 58 & 48 \\ 48 & 40 \end{pmatrix}$ $S \notin [2k].$

<u>Corollary (2.18)</u>: Unitary operators and [ok] are independent as we seen in example (2.11): $T \in [3k]$ but T is not unitary operator; and if $T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Operator on \mathbb{C}^2 , then $TT^* = T^*T = I \implies T$ is unitary operator; but

$$(TT^*)^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \neq 2(TT^*) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \Longrightarrow T \notin [2k]$$

Example (2.19): If $T \in [2k]$ when $T = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$, then $T + I = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Therefore $((T+I)(T+I)^*)^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \neq 2((T+I)(T+I)^*)$

We conclude that $(T + I) \notin [2k]$.

الملخص الهدف من هذا البحث هو تقديم نوع جديد من المؤثرات المعرفة على فضاء هلبرت الذي أطلقنا عليه اسم المؤثر ـ K . المؤثر (H ∈ B(H یسمی المؤثر – K اذا کان $(TT^*)^k = k (TT^*)$ حيث $2 \ge k \ge 2$ و T^* هو المؤثر المرافق (المصاحب) للمؤثر T . سوف نقدم في هذا البحث بعض الخواص الأساسية لهذا المؤثر وندرس العلاقة بين المؤثر - / ويعض الأنواع الأخرى من المؤثر ات.

References

- [1] Belton C.R. Alexander, "Functional Analysis", University College Cork, (2006).
- [2] Berberian S.K, "Introduction to Hilbert space", Chelsea Publishing Company, New Yourk, (1976).
- [3] Kreyszig Erwin, "Introductory Functional Analysis With Applications". New York Santa Barbara London Sydney Toronto, (1978).
- [4] Paul R.Halmos, "A Hilbert space problem book ". Springer- Verlag, New York Heidelberg Berlin, (1980).