

*Ҝ- Operator***s**

Elaf Sabah Abdulwahid Rijab

University of Tikrit , College of Education for girls , Department of Mathematics.

Abstract

In this paper, we introduce a new class of operators on a complex Hilbert space ℋ which is called *Ҝ-*operators. An operator $T \in \mathcal{B}(\mathcal{H})$ is called *K*-operators if $(TT^*)^k = k(TT^*)$, where $k \ge 2$ and T^* is the adjoint of the operator T.

We investigate some basic properties of such operators and study the relation between *Ҝ-*operators and some other well known classes of operators on H .

Key word: *Ҝ-*operators , operators, adjoint operators .

1- Introduction

One of the important notions in applied mathematics and systems analysis is the operator theory investigation by obtaining a mathematical model, and then determining such properties as existence, uniqueness and regularity of solutions. Let $\mathcal{B}(\mathcal{H})$ denoted to the algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} . An operator $T \in \mathcal{B}(\mathcal{H})$ is called nilpotent operator if $T^n = 0$ [1], similar operator if there exists $S \in \mathcal{B}(\mathcal{H})$ such that $S = XTX^{-1}$, where X and X^{-1} are operators in $\mathcal{B}(\mathcal{H})$ [2], isometric operator if $T^*T = I$ [3] and unitary operator if $T^*T = TT^* = I$ [4].

2- *Ҝ-***operators**

In this section, we shall study some properties which are applied of *Ҝ-*operators.

Definition (2.1): If $T \in \mathcal{B}(\mathcal{H})$, then T is called K-operators if $(TT^*)^k = k (TT^*)$ where $k \ge 2$ and T^* is the adjoint operator of T and we denoted of all the class K-operator by $[ok]$.

Example (2.2): Let $T = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$ operator on a Hilbert space \mathbb{C}^2 . Then $(TT^*)^2 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$ $\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = 2(TT^*)$ Therefore $T \in [2k]$.

Example (2.3): If $T = \begin{pmatrix} 3 & -2 \\ 1 & 2 \end{pmatrix}$ $\begin{pmatrix} 3 & -2 \\ -1 & 0 \end{pmatrix}$ operator on a Hilbert space \mathbb{C}^2 . Then $(TT^*)^2 = \begin{pmatrix} 178 & -42 \\ -42 & 10 \end{pmatrix} \neq 2(TT^*) = \begin{pmatrix} 26 & -6 \\ -6 & 2 \end{pmatrix}$ $\begin{pmatrix} 20 & -6 \\ -6 & 2 \end{pmatrix}$ Thus $T \notin [2k]$.

In the following theorem, we give some properties of this operators.

Theorem (2.4): If $T \in [ok]$ and $T = T^*$, then:

$$
(1) \quad T^{-1} \in [ok]
$$

$$
(2) \quad T^* \in [ok]
$$

Proof: (1) since $T \in [ok]$, then $(TT^*)^k = k(TT^*)$

 $(T^*T)^k = k(T^*T)$ [T = T^{*}]

Taking inverse of two-sides $(T^{-1}T^{-1})^k = k(T^{-1}T^{-1})^k$

 $\therefore T^{-1} \in [ok]$

(2) since
$$
T \in [ok] \Rightarrow (TT^*)^k = k(TT^*)
$$

$$
\because [T = T^*] \implies (T^*T)^k = k(T^*T)
$$

Then
$$
T^* \in [ok]
$$

The following examples show that If *S* and *T* are *K*-operators, then not necessary $(S + T)$ and (ST) are *Ҝ-*operators .

Example (2.5): If $S = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ are operators on a Hilbert space \mathbb{C}^2 , then $(SS^*)^2 = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$ $\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = 2(SS^*)$ and $(TT^*)^2 = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix} = 2(TT^*)$ Then S and T are $[2k]$. But $[(S+T)(S+T)^{*}]^{2} = \begin{pmatrix} 29 & 12 \\ 12 & 5 \end{pmatrix}$ $\begin{pmatrix} 29 & 12 \\ 12 & 5 \end{pmatrix}$ \neq 2[(S + T)(S + T)*] = $\begin{pmatrix} 10 & 4 \\ 4 & 2 \end{pmatrix}$ $\begin{pmatrix} 0 & 7 \\ 4 & 2 \end{pmatrix}$

 \therefore $(S + T) \notin [2k]$.

Theorem (2.6): If *S* and *T* are commuting *K*-operators, then $(S + T)$ is *K*-operators.

Proof: since $S, T \in [ok]$, then there exists $k_1, k_2 \in K$ such that

$$
(TT^*)^k = k_1(TT^*)
$$
, $(SS^*)^k = k_2(SS^*)$ and $k_1k_2 = k$

$$
[(S+T)(S+T)^*]^k = [(S+T)(S^*+T^*)]^k = [(S^k+T^k)(S^{*k}+T^{*k})]
$$

 $=\left[S^kS^{*^k}+S^kT^{*^k}+T^kS^{*^k}+T^kT^{*^k}\right]$ $=(SS^*)^k + (ST^*)^k + (TS^*)^k + (TT^*)^k$ $= k_1 k_2 \left[(SS^*)^k + (ST^*)^k + (TS^*)^k + (TT^*)^k \right]$ $= k \left[(S + T)(S + T)^* \right]$ Then $(S + T) \in [ok]$. **Example (2.7):** Let $S = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$ $\begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$ are operators on a Hilbert space \mathbb{C}^2 . Then *S* and *T* are [2k], but $[(ST)(ST)^*]^2 = \begin{pmatrix} 16 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 6 & 0 \\ 0 & 0 \end{pmatrix}$ \neq 2 [(ST)(ST)*] = $\begin{pmatrix} 8 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $(ST) \notin [2k]$. **Theorem (2.8):** If *S* and *T* are *K*-operators such that $ST = TS$, then

(ST) is *K*-operators.

Proof : since $S, T \in [ok]$, then $(TT^*)^k = k(TT^*)$ and $(SS^*)^k = k(SS^*)$

and $k^2 = k$ $[(ST)(ST)^{*}]^{k} = [S(TT^{*})S^{*}]^{k} = [S^{k}(TT^{*})^{k}S^{*}^{k}]$ $=[k S^{k}(TT^{*}) S^{*k}] = [k(S^{k}T)(T^{*} S^{*k})] = [k(TS^{k})(S^{k}T)^{*}]$ $=[k(TS^k)(TS^k)^*] = [kT(S^kS^{*k})T^*] = [kT(SS^*)^kT^*]$ $=[kTk(SS^*)T^*] = [k^2(TS)(S^*T^*)] = k(ST)(ST)^*]$ Thus $(ST) \in [ok]$.

Remark (2.9): The class of [*2k*] and [*3k*] are independent as the following examples:

Example (2.10): If $T = \begin{pmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$ is an operator on a Hilbert space \mathbb{C}^2 . Then $(TT^*)^2 = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix} = 2(TT^*)$. Thus $T \in [2k]$. But

$$
(TT^*)^3 = \begin{pmatrix} 8 & 0 \\ 0 & 0 \end{pmatrix} \neq 3(TT^*) = \begin{pmatrix} 6 & 0 \\ 0 & 0 \end{pmatrix}
$$
. Thus $T \notin [3k].$

Example (2.11): If $T = \begin{pmatrix} \sqrt[4]{3} & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}$ is an operator on a Hilbert space \mathbb{C}^2 . Then

$$
(TT^*)^3 = \begin{pmatrix} 3\sqrt[2]{3} & 0\\ 0 & 0 \end{pmatrix} = 3(TT^*) \text{ Thus } T \in [3k]. \text{ But}
$$

 $(TT^*)^2 = \begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix} \neq 2(TT^*) = \begin{pmatrix} 2\sqrt[2]{3} & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Thus $T \notin [2k]$.

Proposition (2.12): If $T \in [ok]$ such that T commute with T^* , then $T^2 \in [ok]$.

Proof: $(T^2T^{2^*})^k = (TTT^*T^*)^k = (T^kT^k T^{*k} T^{*k})$ $T^k(TT^*)^k T^{*k} = k T^k (TT^*) T^{*k} = k T (T^k T^{*k}) T^{*k}$ $= k T (TT^*)^k T^* = k^2 (TTT^*T^*) = k (T^2T^2^*)$

Example(2.13): Let $T = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}$ $\begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix}$ operator on a Hilbert space \mathbb{C}^2 . Then $T \in [2k]$, but $(T^2T^{2^*})^2 = \begin{pmatrix} 16 & 0 \\ 0 & 16 \end{pmatrix} \neq 2(T^2T^{2^*}) = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \\ 0 & 8 \end{pmatrix}$ Thus $T^2 \notin [2k]$.

Remark (2.14): The class of [*ok*] and isometric operator are independent as the following examples :

Example (2.15): Let U be the unilateral shift operator on ℓ_2 ;

(i.e. $U(x_1, x_2, x_3, ...) = (0, x_1, x_2, x_3, x_4, ...)$). Then

 $(U^*U) = I$. Then U is isometric operator. But

 $(UU^*)^k \neq k(UU^*)$. Thus $U \notin [ok]$.

In example (2.12) $T \in [2k]$ but $T^*T = 2I \neq I \implies T$ is not isomeric operator.

proposition (2.16): If T is nilpotent operator and $T^* = T^k$, then $T \in [ok]$.

Proof: since $T^k = 0$, then $(TT^*)^k = 0 = k(TT^*)$, $T \in [ok]$.

Remark (2.17): If $T \in [ok]$ and *S* is similar of *T*, then not necessary $S \in [ok]$.

For example : If $T = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ operator on a Hilbert space \mathbb{C}^2 , then

 $(TT^*)^2 = 2(TT^*) = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$ $\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \Rightarrow T \in [2k]$, but if $X = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ and

$$
X^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}
$$
 operators on $\mathbb{C}^2 \implies S$ is similar of T (*i.e.* $S = XTX^{-1}$)

Thus $S = \begin{pmatrix} -2 & 5 \\ 2 & 4 \end{pmatrix}$ $\begin{pmatrix} -2 & 5 \\ -2 & 4 \end{pmatrix} \Rightarrow (SS^*)^2 \neq 2(SS^*) = \begin{pmatrix} 58 & 48 \\ 48 & 40 \end{pmatrix}$ $S \notin [2k].$

Corollary (2.18): Unitary operators and $[\alpha k]$ are independent as we seen in example (2.11): $T \in [3k]$ but *T* is not unitary operator; and if $T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Operator on \mathbb{C}^2 , then $TT^* = T^*T = I \implies T$ is unitary operator; but

$$
(TT^*)^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \neq 2(TT^*) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \Longrightarrow T \notin [2k]
$$

Example (2.19): If $T \in [2k]$ when $T = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$, then $T + I = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Therefore $((T + I)(T + I)^{*})^{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ \neq 2((T + I)(T + I)^{*})

We conclude that $(T + I) \notin [2k]$.

الملخص الهدف من هذا البحث هو تقديم نوع جديد من المؤثرات المعرفة على فضاء هلبرت الذي أطلقنا عليه اسم المؤثر -*Ҝ* . المؤثر (ℋ(ℬ ∈ يسمى المؤثر – *Ҝ* اذا كان (∗) (حيث2 ≤ و [∗]) = ∗ هو المؤثر المرافق)المصاحب(للمؤثر *T* . سوف نقدم في هذا البحث بعض الخواص األساسية لهذا المؤثر وندرس العالقة بين المؤثر **-***Ҝ* وبعض األنواع األخرى من المؤثرات**.**

References

- [1] Belton C.R. Alexander, "Functional Analysis", University College Cork,(2006).
- [2] Berberian S.K ,"Introduction to Hilbert space", Chelsea Publishing Company, New Yourk, (1976).
- [3] Kreyszig Erwin, "Introductory Functional Analysis With Applications". New York Santa Barbara London Sydney Toronto, (1978).
- [4] Paul R.Halmos, "A Hilbert space problem book ". Springer- Verlag, New York Heidelberg Berlin, (1980).