

On -regular, -normal and -connected Topological Space

1. Introduction

In the topological space X, a subset B of a space X is said to be a regularly-closed, called also closed domain if $B = cl(int(B))$. A subset B of X is said to be a regularly-open, called also open domain if $B = \text{int}(cl(B))$, An open (resp., closed) subset B of a topological space (X, T) is called F open (resp., F_closed) set if $cl(B)\B$ (resp., B\int(B)) is finite set [6]. They introduce a new type of semiopen sets which they call S_g-open sets[2]. An open (resp., closed) subset B of a topological space (X, T) is called C −open (resp., C-closed) set if cl(B)\B (resp., B\int(B)) is a countable set[3], they introduce a new definitions of Separation Axiom which we call FT_0 _space, FT_1 _space, FT_2 _space[4], In section 3, the first paragraph We defined FR space, $FT₃$ space and we have developed theorems showing the relationship between FR_space, FT_3 _space and FT_0 _space, FT_1 _space, FT_2 _space, in the second part we defined FN_space, and FT_4 _space, in the third part we defined F_separation, F_connected, F'_connected, F''_connected, F_ disconnected Spaces and we have developed theorems that show the equivalence between the previous definition, We give some examples related to the separation axioms and I have proved theorems that refer to the topics that I defined in this research proved some topological and genetic characteristics.

2. Preliminaries

Definition(2.1)[6]: Let(X,τ) be topological space and A open subset of (X,τ), then the cl(A)\A is finite set and is denoted by F_open .

Definition(2.2)[6]: Let(X,τ) be topological space and A be closed subset of (X,τ), then the A\int(A) is finite set and is denoted by F_closed .

Remark(2.3)[6]: Let (X,τ) is topological space, and $U \subseteq X$.

(1) Let U is F_{\perp} open, the complement of U is F_{\perp} closed.

a,bDepartment of Mathematics, College of Sciencen, University of Al-Qadisiyah, Diwaniyah, Iraq. ^aEmail: mustafa902m@gmail.com, *^bEmail: raad.hussain@qu.edu.iq.*

(2) Let U is F closed, the complement of U is F open .

Definition(2.4)[6]: (X, τ) is a topological space, a point in X, a F_open nieghbourhood of X is a V F open subset of X, which is containing a .

Theorem(2.5)[6]: A topological space(X, τ), then

(i) every union finite F_closed subset of X is F_closed .

(ii) every union finite F open subset of X is F open.

(iii) every intersection finite F closed subset of X is F closed.

Definition(2.6)[6]: Let (X, τ) be a topological space, and $V \subseteq X$ the intersection of all F_closed containing V is called F_closure, denoted by $\bar{\nu}^{\mathrm{F}}$.

Theorem(2.7)[6]: Let A be a subset of the topological space, (X,τ) then $A \subseteq \overline{A} \subseteq \overline{A}^F$.

Corollary(2.8)[6]: If U is F_open set and $U \cap V = \emptyset$, then $U \cap \overline{V}^F = \emptyset$ In particular, if U and V are disjoint F _open set then, $U \cap \overline{V}^F = \emptyset = (\overline{U})^F \cap V$.

Definition(2.9)[6]: Let (X, τ) be a topological space, and $V \subseteq X$, A point $z \in X$ is called F limit points of V if and only if for any F_open set U containing x ,we have $(U\{z\}) \cap V \neq \emptyset$.

Remark(2.10)[6]: The set of all F_{_}limit points of V is called the F_{_}derived set and denoted by $d_F(K)$.

Theorem(2.11)[6]: If (X, τ) a topological space, and H, $U \subseteq X$, Then.

 $(i)d(H) \subset d_F(H)$, $d(H)$ is the derived set of H.

(ii) $H \subseteq U$, then $d_F(H) \subseteq d_F(U)$.

(iii) $d_F(H) \cup d_F(U) = d_F(H \cup U)$ and $d_F(H \cap U) \subset d_F(H) \cap d_F(U)$.

Theorem(2.12)[6]: Let (X, τ) be a topological space, and H, $U \subseteq X$, Then.

(i) $\overline{(\emptyset)}^{\text{F}} = \emptyset$.

$$
\text{(ii)} \quad \ \, \mathrm{H}\subseteq \overline{\mathrm{H}}^{\mathrm{F}}.
$$

- (iii) If $H \subseteq U$, then $\overline{H}^F \subseteq \overline{U}^F$.
- (iv) If $(\overline{H \cup U})^F = (\overline{H})^F \cup (\overline{U})^F$).

$$
(v) \qquad \overline{H}^F = \overline{H}^F.
$$

Definition(2.13)[6]: $g: (X, \tau) \rightarrow (Y, \tau)$ a function g is called F_continuous if $g^{-1}(H)$ is F_ open set in X for every open set H in Y.

Definition(2.14)[6]: g: $(X, \tau) \rightarrow (Y, \tau)$ a function g is called F_open if g(H) is a F_open set in Y for every open sets H in X.

Definition(2.15)[6]: g: $(X, \tau) \rightarrow (Y, \tau)$ a function g is called F_closed if g(H) is a F_closed set in Y for every closed sets H in X.

Definition(2.16)[6]: g: $(X, T) \rightarrow (Y, \tau)$ a function g is called F_{_} hmoeomrphism if and only if h and h^{-1} are F_continuous, onto and one to one.

Theorem(2.17)[4]: Let (Y, T_y) be F_open subspace of (Y, T) if U F_open set in X then (U \cap Y) F_open set in Y

Definition(2.18)[4]: If (X, τ) be a topological space, then X is called FT_0 space if and only for each $x, y \in X$ such that $x \neq y$ and there exists V is F_open set, $[x \in V]$ and $y \notin V$ or $[x \notin V]$ and $y \in V$.

Definition(2.19)[4]:Let (X, τ) be topological space is defined FT₁ space if and only if for each x, $y \in X$ such that $x \neq y$, there exists U, V is F open set such that, $[x \in U \land y \notin U]$ and $y \in V \land x \notin V$

Definition(2.20)[4]: Let (X, τ) topological space is called a FT_2 space if for each pair distinct points a, $b \in X$, the exist F_ open sets U, V and a $\neq b$ such that [a $\in U$, $b \in V$, and U $\cap V = \emptyset$].

Definition(2.21)[1]: Let (X, τ) be a topological space and A, $B \subseteq X$ such that $A \neq \emptyset$, $B \neq \emptyset$ and $E \subseteq$ X, then we said that A, B form a separation for E if

1) E = A ∪ B $2)$ A ∩ B = A ∩ B = Ø

3. The Main Results

3.1 _ **Regular Space.**

Definition(3.1.1): Let (X, τ) be a topological space, then the space (X, τ) is called a F_regular space if and only if for each F_closed set $G \subset X$ and each point $x \notin G$, there exist F_open sets Uand V such that $x \in U$, $G \subset V$, and $U \cap V = \emptyset$ and denoted by FR_space.

Lemma(3.1.2): Every FR_space is not FT₀_ space. $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\} \{b, c\}\}$, $a \neq b$, there exists $U = \{a\}$ is F_open set. $a \in U$, $b \notin U$, $a \neq c$, and $c \notin U$, $b \neq c$, there is not exist U is F_open set. such that $[b \in U \land c \notin U] \lor [b \notin U \land c \in],$ so (X, τ) not FT_0 _space. [FR_space $\Rightarrow FT_0$ _space]

Theorem(3.1.3): Let (X, τ) be FR_space then for each $x \in X$ and each F_open set W containing x, there exists an F_open set U such that $x \in U \subseteq \overline{U}^F \subseteq W$.

Proof: suppose that X is FR_space. Let $x \in W$ is F_open, $x \in W \Rightarrow x \notin X - W$ X is FR_space. There exists U, V are F_open, $U \cap V = \emptyset$, $(x \in U \land X - W \subseteq V)$ $U \cap V = \emptyset$, $U \subseteq X - V$ we have $U \subseteq X - V$ and X – V \subseteq W, Then $\overline{U}^F \subseteq \overline{X - V}^F$ [since $A \subseteq B \Rightarrow \overline{A}^F \subseteq \overline{B}^F$]

then $\overline{U}^F \subseteq X - V$ since $[X - V]$ F-closed, $X - V = \overline{X - V}^F$ J, Then $\overline{U}^F \subseteq X - V$ }, Then $\overline{U}^F \subseteq X - V$ $V \wedge X - V \subseteq W$, Then $\overline{U}^F \subseteq W$, $x \in U \subseteq \overline{U}^F \subseteq W$ (since $A \subseteq \overline{A}^F$).

Theorem(3.1.4):The property of being a FR space is a topological property.

Proof: Let X is FR space, since h: $(X, \tau) \rightarrow (Y, \tau)$ there exists h one to one, onto and F continuous, h is F_open let y \in Y and G, F_closed in Y; y \notin G, h onto function there exist $x \in X$; h(x) = y, h F_ continuous \Rightarrow h⁻¹ (G) is F₋ closed in X; $x \in h^{-1}(G)$ since $(h(x) = y \notin G)$, X is FR₋space there exists U, V is F_open set $U \cap V = \emptyset$, $[x \in U \setminus h^{-1}(G) \subseteq V]$, h F_open, then h (U) , h(V) is F_ open in W, h one to one and h onto $[h(x) \in h(U) \land h(h^{-1}(G)] \subseteq h(V) \Rightarrow y \in h(U) \land G \subseteq h(V)$ (since $y = h(x) \land h(V)$) $h(h^{-1}(G) = G)$, $U \cap V = \emptyset \Rightarrow [h (U) \cap h(V) = h (U \cap V) = h(\emptyset) = \emptyset$, so X is FR_space.

Example(3.1.5): Let h: $(R, D) \rightarrow (R, \tau_{cof})$; h(x) = X for each $x \in R$, h is F_continuous function since the domain (R, D) is discrete topology and his onto and in general (X, D) is FR_ space, but in general (X, τ_{cof}) is not FR_ space.

Definition(3.1.6): Let (X, τ) be a topological space, then the space (X, τ) is called FT₃_space if and only if its F_{regular} and FT₁_space, FT₃_space = FT₁_space + FR_{re}space.

Example(3.1.7): The space (X, D) is FT_3 space since its FT_1 space and FR space **.**

Example(3.1.8): Let $X = \{1,2,3\}, \tau = \{\emptyset, X, \{1\}, \{2,3\}\}\$, The space (X, τ) is not FT₃_space since its not FT_1 _space and FR_ space.

Example(3.1.9): The usual topological space(R, τ_{u}) is FT₃_space since its itsFT₁_space and FR_space.

Example(3.1.10): The space (X, I) X contains more then one element is not FT_3 space since its not FT_1 space and not FR space.

Theorem(3.1.11): The property of being a FT_3 -space is a hereditary property.

Proof :since the property FT_1 -space and FR_space are a hereditary property then FT_3 -space is a hereditary property **.**

Theorem(3.1.12): The property of being a FT_3 -space is a topological property.

Proof: Since the property FT_1 -space and FR_3 -space are a topological property, then a FT_3 -space is a topological property.

Remark(3.1.13): The F_continuous image of FT_3 _space is not necessarily FT_3 _space if h: $(X, \tau) \rightarrow (Y, \tau')$ is F_continuous ,onto function and X is FT₃_space then Y is not necessarily $FT₃$ _space.

Example(3.1.14): Let h: $(R, D) \rightarrow (R, I)$; h(x) = x for each $x \in R$, h is F_ continuous function since the domin (R,D) is discrete topology and h is onto and in general (X, D) is FT₃_spase (R, D) is FT₃_spase but (X, I) not FT₃_spase.

Theorem(3.1.15): Let (X, τ) be FT_3 spase then X is a FT_2 spase.

Proof: Suppose that X is a FT₃_spase.Let x, $y \in X$; $x \neq y$, X is a FT₁spase \Rightarrow {y} F_closed set $\Rightarrow x \notin Y$ $\{y\}$ since $x \neq y$ X is a FR_spase \Rightarrow there exists U, V are F_open set, U \cap V = \emptyset , $(x \Rightarrow U \wedge \{y\} \subseteq V) \Rightarrow$ $(x \in U \land y \notin V)$ so (X, τ) is a FT₂_spase.

Remark (3.1.16): From above the theorem we have

FT₃ space $\vec{\leftrightarrow}$ FT₂ spase $\vec{\leftrightarrow}$ FT₁ spase $\vec{\leftrightarrow}$ FT₀ spase

3.2 F_Normal space

Definition(3.2.1): Let (X, τ) be a topological space, then the space (X, τ) is called F_Normal space and denoted by FN_space if and only if for each pair of F_closed disjoint subsets G and E of X, there exist F open sets U and V such that $G \subseteq U, E \subseteq V$ and $U \cap V = \emptyset$, $(G \subseteq U \cap E \subseteq V)$.

Example(3.2.2): Let $X = \{1, 2, 3\}$ and $\tau = \{X, \emptyset, \{1\}\}\$. Show that (X, τ) is FN _space, the family of F_closed sets $\{X, \emptyset, \{2, 3\}\}\)$, take every two F_ closed sets there intersection is empty as follows take, X, \emptyset is F_ closed; X ∩ $\emptyset = \emptyset$, there exest U = $\emptyset \wedge V = X$ is F_ open; U ∩ V = \emptyset , ($\emptyset \subseteq U \wedge X \subseteq V$), take \emptyset , {2, 3} is F_ closed; {2, 3} $\cap \emptyset = \emptyset$, there exest $U = \emptyset \land V = X$ is F_open; $U \cap V = \emptyset$, $(\emptyset \subseteq U \land V)$ $\{2, 3\} \subseteq V$). So (X, τ) is FN_ space.

Notes that this space not FT_0 _space, not FT_1 _ space, not FT_2 space, not FR _ space, andnot FT_3 _ space.

Remark(3.2.3): FN_{space} \Rightarrow FR_{space}, then

(FN_space \Rightarrow FT₁_spase) \wedge (FN_space \Rightarrow FT₂_spase)

(F R _space \Rightarrow FN _space) \wedge (FT₁ _space \Rightarrow FN _space) \wedge (T₂ _space \Rightarrow N _space).

Remark(3.2.4): (FT₀_spase \Rightarrow FN_space) \land (FN_space \Rightarrow FT₀_spase).

Example(3.2.5): The space (R, τ_{cof}) is FT_{0} space and not FN_ space, since there is twononempty disjoint F_closed sets, but there is no two nonempty disjoint F_open set. Notes that too (R, τ_{cof}) is FT_1 _space and not FN _space.

Example(3.2.6): The space (R, I) is not FT_0 gas gas gas gas gas for R is the only F_0 open set contains elements and its contains all elements. But (R, I) is RN space since the F_{colosed} sets are

 $G = R$ and $E = \emptyset$ only, and $R \cap \emptyset = \emptyset$ and the F open sets are R and \emptyset and $R \subseteq R$ and $\emptyset \subseteq \emptyset$.

Example(3.2.7): The space (X,D) is FN _space, since every sets her is F_ open and F_closed then: If V,E is F_closed, $V \cap E = \emptyset$, then V, E is F_open; $V \subseteq V \cap E \subseteq E$.

Theorem(3.2.8): The property of being a N_space is a topological property.

Proof: Let(X, τ) \cong (Y, τ)and suppose that X is FN space, to prove Y is FN space, there exist h: $(X, \tau) \rightarrow (Y, \tau)$ h is one to one and his F continuous and F open, let G, E is F closed in Y : G \cap $E = \emptyset$, h F_continuous h⁻¹(G), h⁻¹(E) F_closed in X and h⁻¹(G) \cap h⁻¹(E) = h⁻¹(G) \cap E) = $h^{-1}(\emptyset) = \emptyset$ (the function h is F_ continuous if and only if the inverse image of every F_closed set in codomain is F_closed in domain), X is FN_space, there exist U, V are F_open G \cap E = Ø, $(h^{-1}(G) \subseteq$ U Λ h⁻¹(E) ⊆ V h is F_open, h(U), h(V) is F_open in Y, h is onto, h(h⁻¹(G)) ⊆ h(U) Λ h(h⁻¹(E)) ⊆ h(V), $G \subseteq h(U) \wedge E \subseteq h(v)$, $G \subseteq h(U) \wedge E \subseteq h(V)$, $U \cap V = \emptyset$ then $h(U) \cap h(V) = h(U) \cap h(V) =$ $h(U \cap V) = h(\emptyset) = \emptyset$, so Y is N – space.

Theorem(3.2.9): The space (X, τ) is F_normal (FN_space)then for each F_closed subset $G \subseteq X$ and F_open set W containing G, there exists an F_open set U such that $G \subseteq U \subseteq \overline{U}^F$.

Proof: Suppose that X is FN – space and $G \subseteq X$, Let W is F_open; $G \subseteq W \implies G \cap X - W = \emptyset$

X is FN – space \Rightarrow there exists U, V are F open , U ∩ V = Ø; (G \subseteq U \land X – W \subseteq V), \Rightarrow

 $X-V\subseteq W,\,\ U\cap V=\emptyset\,\,\Longrightarrow\,\, U\subseteq X-V \Longrightarrow \overline{U}^F\subseteq \overline{X-V}^F \Longrightarrow \overline{U}^F\subseteq X-V \Longrightarrow G\subseteq U\wedge U\subseteq \overline{U}^F\subseteq X$ $X - V \wedge X - V \subseteq W \Longrightarrow G \subseteq U \subseteq \overline{U}^F \subseteq W.$

Theorem(3.2.10): A F closed subspace of FN space is FN space.

Proof :Let (X, τ) be FN_space and (W, τ_W) F_closed subspace of X, to prove (W, τ_W) FN_space Let G_W , E_W are F_closed sets in W; $G_W \cap E_W = \emptyset$, there exists G, E are F_closed, $G_W = G \cap E \wedge E_W =$ $E \cap W$, $G \cap E = \emptyset$, since X is FN space there exists U, V, F open $U \cap V = \emptyset$, $(G \subseteq U \land E \subseteq V)$ then $U \cap W \cap W \cap W$ \vdash _open in W (By theorem 2.17) $(U \cap W) \cap (V \cap W) = (U \cap V) \cap W = \emptyset \cap W = \emptyset$, since $G_W = G \cap W$ then $G_W \subseteq G \cap G_W \subseteq W$ then $G_W \subseteq U \cap G_W \subseteq W \Rightarrow G_W \subseteq U \cap W$ since $E_W =$ $E \cap W$ then $E_W \subseteq E \land E_W \subseteq W$ then $E_W \subseteq V \land E_W \subseteq W \Rightarrow E_W \subseteq V \cap W$, so (W, τ_W) FN_space.

Definition(3.2.11): Let (X, τ) be a topological space, Then the space (X, τ) is called a FT_4 space if and only if F _normal and FT_1 _space.

$$
FT_4_space = FT_1_space + FN_space
$$

Example(3.2.12): Let $X = \{1, 2, 3\}$ and $\tau = \{X, \tau, \{1\}, \{2, 3\}\}\$ Then the space (X, τ) is not FT_{4-} space, since its FN – space but not FT_{1-} space.

Remark(3.2.13): If X is finite space, then (X, D) is FT_4 – space iff $\tau = D$, (because if X is finite space, then its FT_1 space iff $\tau = D$ and if $\tau = D$, then X is FN space).

Example(3.2.14):The space (X, D) is FT_4 _ space, since its FT_1 _ space and N _ space.

Example(3.2.15): The space (X, I) ; $X \ F$ contains more than one element is not FT_4 gpace, since its not FT_1 _space.

Remark(3.2.16): The property of being a FT_4 space is not a hereditary property, since the F normality is not a hereditary property.

Example(3.2.17): The space (X, τ_{cof}) is not FT_4 _ space, since its FT_1 _ space but not FN _space.

Theorem(3.2.18): The property of being FT_4 space is a topological property.

Proof: Since the property FT_1 _ space and FN _ space are a topological property, Then FT_4 _ space is a topological property.

Theorem(3.2.19): A F closed subspace of FT_4 gpace is FT_4 gpace.

Proof : Let (X, τ) FT₄ _ space and W F _closed set in X, to prove W is FT₄ _ space, X is FT₁ _ space, W is FT_1 space (since FT_1 is hereditary property), W is F closed in X and X is FN space, W is FN gequence (by theorem 3.2.10) W is FT_4 grace.

Theorem(3.2.20): Every FT_4 _space is FR _space.

Proof: Let (X, τ) be FT_4 grace, X is FT_1 grace and FN grace, Let $x \in X$ and G F_{\perp} closed set in X ; $x \notin G$, $\{x\}$ is $F_{\text{-close}}$ (since X is FT_{1-} space then $\{x\} F_{\text{-closed}}$ for each $x \in X\}$, $\{x\} \cap G = \emptyset$, X is FN space, there exists U, V F open, $X \cap V = \emptyset$, $({x} \subseteq U \land G \subseteq V)$, $x \in U \land G \subseteq V$, X is FR_space.

Corollary(3.2.21): Every FT_4 _space is FT_3 _space.

Proof: Every FT_4 gpace is FR gpace, every FT_4 gpace is FT_1 gpace and FN gpace we have, X is FT_{1-} space $FR_{\text{}}$ space, so X is FT_{3-} space.

Remark(3.2.22): Every FT_{4-} space is FT_{2-} space since every FT_{4-} space is FT_{3-} space and every FT_3 space is FT_2 space so that :

 FT_4 _space \overrightarrow{H} FT_3 _space \overrightarrow{H} FT_2 _space \overrightarrow{H} FT_1 _space \overrightarrow{H} FT_0 _space

Remark(3.2.23) $FN_space +FT_1_space \implies FT_3_space$, and $FN_space +FT_1_space \implies FR_space$.

3.3 On _**connected**

Definition(3.3.1): Let (X, τ) be a topological space and $A, B \subseteq X$ such that $A \neq \emptyset$, $B \neq \emptyset$ and $E \subseteq X$, then we said that A, B form a separation for E if

1) $E = A \cup B$ $2) \bar{A} \cap B = A \cap \bar{B} = \emptyset$

Definition(3.3.2): Let (X, τ) be a topological space, we said that X is connected if X has no separation.

Theorem (3.3.3): Let (X, τ) be a topological space, then (X, τ) is connected. (X, τ) is connected space.

1) the only sets which are open and closed in X are \emptyset , X .

2) *X* is not a union of two nonempty disjoint open sets.

Definition(3.3.4): Let (X, τ) be a topological space and $A, B \subseteq X$ such that $A \neq \emptyset$, $B \neq \emptyset$ and $E \subseteq$ X, then we said that A, B form a F_separation for E if 1) $E = A \cup B$ $F \cap B = A \cap \overline{B}^F = \emptyset$ **Definition(3.3.5):** A topological space (X, τ) is called F connected if X is not a union of two nonempty disjoint F open sets.

Theorem(3.3.6): Let (X, τ) be a topological space, Then the following are equivalent

- 1) (X, τ) is connected space.
- 2) (X, τ) is F connected space.

Proof: $1 \rightarrow 2$

Let (X, τ) be connected space, Suppose (X, τ) is not F connected. Then there exists A, B F open sets such that $A \cap B = \emptyset$ and $X = A \cup B$, Then A, B are open sets such that $A \cap B = \emptyset$ and $X = A \cup B$. Therefore (X, τ) is not connected space which is a contradiction, Hence (X, τ) is F counected space.

 $(2\rightarrow 1)$ Let (X, τ) is F_counected space and suppose (X, τ) is not connected space, then $\exists A, B$ open sets such that $A \cap B = \emptyset$ and $A \cup B = X$. therefore A, B are F_open sets, (every open, closed set is F _{open}). Hence ∃ A, B F_{open} sets such that $A \cap B = \emptyset$ and $A \cup B = X$. Thus (X, τ) is not connected space which is a contradiction. Then (X, τ) is counected space.

Definition(3.3.7): A topological space (X, τ) is called F' connected if the only F open and F closed at the same time in X are \emptyset , X .

Theorem(3.3.8): Let (X, τ) be a topological space. Then the following are equivalent.

- 1) (X, τ) is connected space.
- 2) (X, τ) is F'-connected space.

Proof: 1 \rightarrow **2** Let (X, τ) be connected space. Suppose (X, τ) is not F' _connected. Then $\exists A \ F$ -open and F closed set $\exists A \neq \emptyset$ and $A \neq X$. Then $\exists A$ open and closed set $\exists A \neq \emptyset$ and $A \neq X$. Then (X, τ) is not connected space space which is a contradiction. Then (X, τ) is F' counected space.

Proof $2 \rightarrow 1$ Let (X, τ) is F'-counected space and suppose (X, τ) is not connected space. then $\exists A$ open and closed set such that $A \neq \emptyset$ and $A \neq X$. let $B = X - A$. Then B is open and closed set. Hence A, B and F_open sets. Therefor A is F_open and F_closed set $\exists A \neq \emptyset$ and $A \neq X$. Therefor (X, τ) is not F' connected space. which is a contradiction . Then (X, τ) is counected space.

Definition(3.3.9): A topological space (X, τ) is called F'' connected if X has no F separation.

Theorem(3.3.10): Let (X, τ) be a topological space. Then the following are equivalent

 $(i)(X, \tau)$ is connected space.

(ii) (X, τ) is F'' _connected space.

Proof:1 \rightarrow **2** Let (X, τ) be connected space. Suppose (X, τ) is not F'' connected space. Then $\exists A, B \ni A \neq \emptyset \ and \ B \neq \emptyset, X = A \cup B \ and \ \overline{A}^F \cap B = A \cap \overline{B}^F$ $\overline{A} \cap B = A \cap \overline{B} = \emptyset$ Therefor (X, τ) is not connected space. which is a contradiction. Hence (X, τ) is F'' connected space .

Proof: $2 \rightarrow 1$ Let (X, τ) is F'' _connected space .Suppose (X, τ) is not connected space. then $\exists A$ open and closed set such that $A \neq \emptyset$ and $A \neq X$, let $B = X - A$. Then $X = A \cup B$ and $A \neq \emptyset$, $B \neq \emptyset$. Therefor A, B are F_closed sets.Hence $\overline{A}^F = A$ and $\overline{B}^F = B$. Then $\overline{A}^F = A = X - B$. Hence $\overline{A}^F \cap B =$ \emptyset . Then $\overline{B}^F = B = X - A$. Hence $\overline{B}^F \cap A = \emptyset$. Therefor A and B from F separation space for X, Then (X, τ) is not F'' connected space. which is a contradiction. Therefor (X, τ) is connected space.

Theorem(3.3.11): Let A be connected sets and H, K are F_separated sets. if $A \subseteq H \cup K$, then either $A \subseteq H$.

Proof: Let A be connected set and H, K be F_separated sets. then $H \neq \emptyset$, $K \neq \emptyset$ and $\overline{H}^F \cap K = H \cap$ $\overline{K}^F = \emptyset$. Let $A \subseteq H \cup K$. Suppose $A_1 = A \cap H \neq \emptyset$, $A_2 = A \cap K \neq \emptyset$. Then $A = A_1 \cup A_2$, $A_1 \neq$ \emptyset , $A_2 \neq \emptyset$. $A_1 \subseteq H \longrightarrow \overline{A_1}^F \subseteq \overline{H}^F \longrightarrow \overline{A_1}^F \cap A_2 \subseteq \overline{H}^F \cap A_2 \subseteq \overline{H}^F \cap K$. Since $\overline{H}^F \cap H = \emptyset$, then $\overline{A_1}^F \cap A_2 = \emptyset$. $A_2 \subseteq K \longrightarrow \overline{A_2}^F \subseteq \overline{K}^F \longrightarrow \overline{A_2}^F \cap A_1 \subseteq \overline{K}^F \cap A_1 \subseteq \overline{K}^F \cap H$, Since $\overline{K}^F \cap H = \emptyset$, then $\overline{A_2}^F \cap A_1 = \emptyset$. Then A_2 , A_1 from a F_{-} separation for A. which is a contradiction since A connected set .Then either $A \subseteq H$ or $A \subseteq K$.

Theorem (3.3.12): If *A* is connected set, then \overline{A}^F is connected.

Proof : Let *A* be connected set. Suppose \overline{A}^F is not connected. Then \exists *H*, *K* from a F_separation for \overline{A}^F . Hence $H \neq \emptyset$, $K \neq \emptyset$, $\overline{A}^F = H \cup K$, and $\overline{H}^F \cap K = H \cap \overline{K}^F = \emptyset$, Since $A \subseteq \overline{A}^F$, Then $A \subseteq H \cup K$. Then by theorem(3.2.11), either $A \subseteq H$ or $A \subseteq K$. If $A \subseteq H$, then $\overline{A}^F \subseteq \overline{H}$, hence $\overline{A}^F \cap K \subseteq \overline{H}^F \cap K$. Since $\overline{H}^F \cap K = \emptyset$, then $\overline{A}^F \cap K = \emptyset$. Therefore $K = \emptyset$ which is a contradiction. By the same way get a contradiction if $A \subseteq K$.therefore \overline{A}^F is connected.

Definition(3.3.13): The space (X, τ) is F ^{disconnected} space if and only if there exist two F ^{open} set disjoint nonempty sets A and B such that $A \cup B = X$, and $A \cap B = \emptyset$, $A \neq \emptyset$ and $B \neq \emptyset$.

Example(3.3.14): Let $X = \{1, 2, 3\}$ and $\tau = \{X, \emptyset, \{1\}, \{2, 3\}\}\$, the F -open set $\{1\}$, $\{2, 3\}$ and $X =$ $\{1\} \cup \{2,3\}$ and $\{1\} \cap \{2,3\} = \emptyset$, $\{1\}$, $\{2,3\} \neq \emptyset$, So X F_disconnected.

Remark(3.3.15): In discrete topological $\tau = \{X, \emptyset\}$ X is not union of two nonempty disjoint F open sets, then X is $F_{\text{-connected}}$.

Remark(3.3.16): Let (X, T_D) be discrete topological let A be open subset of X. $b(A) = \overline{A} - A^o = A A = \emptyset$ is finite then A is F open set.

Remark(3.3.17): In discrete topological every open set is F -open.

Remark(3.3.18): Let (X, D) is F disconnected if X contains more than one element, since there exists A ; $\emptyset \neq A \nsubseteq X$. $X = A \cup A^c$, A , A^c F -open sets $A \cap A^c = \emptyset$ and $A \neq \emptyset$, $A^c \neq \emptyset$ since $(A \neq X)$.

Example(3.3.19): Let (X, τ_{cof}) be is F_{1} connected space, if X is infinite set since there are not exist nonempty disjoint open sets.

Remark(3.3.20): If (X, τ) is topological space and (W, τ_w) is a subspace of X, then the space W being F_d disconnected or F_1 connected not directly relation by X and the open sets in X , but dependent on the F_open sets in W, its dependent on τ_w ; so that W is F connected space if and only if there exist two F _open disjoint nonempty sets A and B in W such that $A \cup B = W$.

Remark(3.3.21): If (X, τ) is topological space and (W, τ_w) is a subspace of X, then the space W being F_d isconnected or F_1 connected not directly relation by X and the F_1 open sets in X , but dependent on the F open sets in W, its dependent on τ_w ; so that W is F connected space if and only if there exist two F_open disjoint nonempty sets A and B in W such that $W = A \cup B$, Wis F_disconnected $\Leftrightarrow A \cup$ $B = W$, A, B F open in W, $A \cap B = \emptyset$; $A \neq \emptyset$, $B \neq \emptyset$ The space (W, τ_w) is F connected if and only if its not F_disconnected W F_connected if and only if $W \neq A \cup B$; A, B F_open in W; $A \cap B =$ \emptyset ; $A \neq \emptyset$, $B \neq \emptyset$.

Remark(3.3.22): The property of being a F connected space is not a hereditary property and the following example show that:

Example(3.3.23): Let $X = \{1, 2, 3\}$ and $\tau = \{X, \emptyset, \{1, 2\}, \{1, 3\}, \{1\}\}$ and $W \subseteq X$; $W = \{2, 3\}$. Is W is F_connected space. $\tau_w = \{W \cap U; U \text{ open in } X\} = \{W, \emptyset, \{2\}, \{3\}\}\.$ Notes that $\tau_w = D$, then W is F_disconnected space but not F_connected space, since : $W = \{2\} \cup \{3\}$ and $\{2\}, \{3\}$ F_open in W and $\{2\} \cap \{3\} = \emptyset$ and $\{2\} \neq \emptyset$, $\{3\} \neq \emptyset$, Notes that X is F_connected space but not F_disconnected, while it's have \ddot{F} disconnected subspace.

Remark(3.3.24): If $f: (X, \tau) \to (Y, \tau)$ is F_continuous and onto function and Y is F_connected space then, then X not necessary F_{\perp} connected space and the following example show that :

Example(3.3.25): Let $f: (R, D) \rightarrow (R, I); f(x) = x$ for each $x \in R$ clear that f is F_ continuous and onto function and (R, I) is F_ connected, but (R, D) is not F_ connected.

Theorem(3.3.26): Let $((X, \tau)$ be a topological space if W is connected and F- open subsets of X and $X = A \cup B$ such that A,B F-open and $A \cap B = \emptyset$ and $A \neq \emptyset$, $B \neq \emptyset$ then $W \subseteq A$ or $W \subseteq B$.

Proof: Suppose that $W \nsubseteq A$ and $W \nsubseteq B \implies W \cap A \neq \emptyset$ and $W \cap B \neq \emptyset$; A, B is F open in $X \implies$ $W \cap A, W \cap B$ is F_open in W ; $W \cap A \neq \emptyset$ (since if $W \cap A = \emptyset \rightarrow W \subseteq B$), $W \cap B \neq \emptyset$ \emptyset (since if $W \cap A = \emptyset \to W \subseteq A$), $(W \cap A) \cap (W \cap B) = W \cap (A \cap B) = W \cap \emptyset = \emptyset$, then W is F disconnected (C !! contradiction !!); so $W \subseteq A \vee W \subseteq B$.

References

1. Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2) 19 (1970), 89–96. MR 46 4471. Zbl 231.54001.

- 2. H. M. Darwesh, N .O. Hessean, S_g -open Sets in Topological Spaces, JZS(2015) 17 -1(Part-A).
- 3. L. Steen and J. Seebach. G. Counterexamples in Topology. Dover Publications, INC, 1995
- 4. Mustafa M. Al-Turki, Raad A. H. Al-Abdulla, "On Some FT_i -space ; $i = 0,1,2$ in Topological Space", Journal of Al-Qadisiyah for Computer Science and Mathematics, to appear2024
- 5. M. H. Alqahtani "C-open Sets on Topological Spaces, arXiv:2305.03166(math)on 4 May 2023
- 6. M. H. Alqahtani "F-open and F-closed Sets in Topological Spaces"European Journal of Pure And Applied Mathematics, Vol. 16, No. 2, 2023, 819-832
- 7. R. Engelking. General Topology. PWN, Warszawa, 1977. C. Kuratowski. Topology I. 4th. ed., in French, Hafner, New york, 1958.