Authors Names	ABSTRACT
^a Mustafa Mohammed Turki	In this paper, we introduce a new definitions of Separation Axiom Using
^b Raad Aziz Hussian	definitions F_open, F_closed FT_0 _space, FT_1 _ space and FT_2 _ space which we
	called R_space, FT_{3} space, FN_{space} , FT_{4}_{space} , and
Publication date: 22 /11 /2024	definitions F_separation, F_ connected, F'_connected, F''_connected, F_
Keywords: FR_space, FT ₃ _space,	disconnected Spaces. Then we set the characteristics for each definition and
FN_space, FT ₄ _space F_connected	the genetic and partial characteristics in each definition
, F'_connected, F''_connected	the genetic and partial characteristics in each definition.
, F_disconnected Spaces	

On F-regular, F-normal and F-connected Topological Space

1. Introduction

In the topological space X, a subset B of a space X is said to be a regularly-closed, called also closed domain if B = cl(int(B)). A subset B of X is said to be a regularly-open, called also open domain if B = int(cl(B)), An open (resp., closed) subset B of a topological space (X, T) is called F_open (resp.,F_closed) set if cl(B)\B (resp., B\int(B)) is finite set [6]. They introduce a new type of semiopen sets which they call S_g-open sets[2]. An open (resp., closed) subset B of a topological space (X, T) is called C –open (resp.,C-closed) set if cl(B)\B (resp.,B\int(B)) is a countable set[3], they introduce a new definitions of Separation Axiom which we call FT₀_space, FT₁_space, FT₂_space[4], In section 3, the first paragraph We defined FR_ space, FT₃_space and we have developed theorems showing the relationship between FR_space, FT₄_space, in the third part we defined F_separation, F_connected, F'_connected, F'_connected, F_ disconnected Spaces and we have developed theorems that show the equivalence between the previous definition, We give some examples related to the separation axioms and I have proved theorems that refer to the topics that I defined in this research proved some topological and genetic characteristics.

2. Preliminaries

Definition(2.1)[6]: Let(X, τ) be topological space and A open subset of (X, τ), then the cl(A)\A is finite set and is denoted by F_open.

Definition(2.2)[6]: Let(X, τ) be topological space and A be closed subset of (X, τ), then the A\int(A) is finite set and is denoted by F_closed.

Remark(2.3)[6]: Let (X,τ) is topological space, and $U \subseteq X$.

(1)Let U is F_ open, the complement of U is F_closed .

^{a,b}Department of Mathematics, College of Sciencen, University of Al-Qadisiyah, Diwaniyah, Iraq.

^aEmail: mustafa902m@gmail.com, ^bEmail: raad.hussain@qu.edu.iq[.]

(2) Let U is F_closed, the complement of U is F_open.

Definition(2.4)[6]: (X, τ) is a topological space, a point in X, a F_open nieghbourhood of X is a V F_open subset of X, which is containing a .

Theorem(2.5)[6]: A topological space(X, τ), then

(i) every union finite F_{closed} subset of X is F_{closed} .

(ii) every union finite F_open subset of X is F_open.

(iii) every intersection finite F_closed subset of X is F_closed.

Definition(2.6)[6]: Let (X, τ) be a topological space, and $V \subseteq X$ the intersection of all F_closed containing V is called F_closure, denoted by \overline{V}^{F} .

Theorem(2.7)[6]: Let A be a subset of the topological space, (X,τ) then $A \subseteq \overline{A} \subseteq \overline{A}^{F}$.

Corollary(2.8)[6]: If U is F_open set and $U \cap V = \emptyset$, then $U \cap \overline{V}^F = \emptyset$ In particular, if U and V are disjoint F_open set then, $U \cap \overline{V}^F = \emptyset = (\overline{U})^F \cap V$.

Definition(2.9)[6]: Let (X, τ) be a topological space, and $V \subseteq X$, A point $z \in X$ is called F_limit points of V if and only if for any F_open set U containing x ,we have $(U \setminus \{z\}) \cap V \neq \emptyset$.

Remark(2.10)[6]: The set of all F_limit points of V is called the F_derived set and denoted by $d_F(K)$.

Theorem(2.11)[6]: If (X, τ) a topological space, and H, U $\subseteq X$, Then.

 $(i)d(H) ⊂ d_F(H), d(H)$ is the derived set of H.

(ii) $H \subseteq U$, then $d_F(H) \subseteq d_F(U)$.

(iii) $d_F(H) \cup d_F(U) = d_F(H \cup U)$ and $d_F(H \cap U) \subset d_F(H) \cap d_F(U)$.

Theorem(2.12)[6]: Let (X, τ) be a topological space, and $H, U \subseteq X$, Then.

(i) $(\overline{\emptyset})^{F} = \emptyset$.

(ii)
$$H \subseteq \overline{H}^{F}$$
.

- (iii) If $H \subseteq U$, then $\overline{H}^F \subseteq \overline{U}^F$.
- (iv) If $(\overline{H \cup U})^{F} = (\overline{H})^{F} \cup (\overline{U})^{F}$).

(v)
$$\overline{\overline{H}}^{\overline{F}}{}^{\overline{F}} = \overline{H}^{\overline{F}}.$$

Definition(2.13)[6]: g: $(X, \tau) \rightarrow (Y, \dot{\tau})a$ function g is called F_continuous if $g^{-1}(H)$ is F_ open set in X for every open set H in Y.

Definition(2.14)[6]: g: $(X, \tau) \rightarrow (Y, \dot{\tau})$ a function g is called F_open if g(H) is a F_open set in Y for every open sets H in X.

Definition(2.15)[6]: g: $(X, \tau) \rightarrow (Y, \dot{\tau})$ a function g is called F_closed if g(H) is a F_closed set in Y for every closed sets H in X.

Definition(2.16)[6]: g: $(X, T) \rightarrow (Y, \hat{\tau})$ a function g is called F_{_} hmoeomrphism if and only if h and h⁻¹ are F_{_}continuous, onto and one to one.

Theorem(2.17)[4]: Let (Y, T_y) be F_open subspace of (Y, T) if U F_open set in X then $(U \cap Y)$ F_open set in Y

Definition(2.18)[4]: If (X, τ) be a topological space, then X is called FT_{0-} space if and only for each $x, y \in X$ such that $x \neq y$ and there exists V is F_open set, $[x \in V \text{ and } y \notin V] \text{or}[x \notin V \text{and } y \in V]$.

Definition(2.19)[4]:Let (X, τ) be topological space is defined FT_1 _space if and only if for each $x, y \in X$ such that $x \neq y$, there exists U, V is F_open set such that, $[x \in U \land y \notin U \text{ and } y \in V \land x \notin V]$

Definition(2.20)[4]: Let (X, τ) topological space is called a FT₂_space if for each pair distinct points $a, b \in X$, the exist F₂ open sets U, V and $a \neq b$ such that $[a \in U, b \in V, and U \cap V = \emptyset]$.

Definition(2.21)[1]: Let (X, τ) be a topological space and $A, B \subseteq X$ such that $A \neq \emptyset$, $B \neq \emptyset$ and $E \subseteq X$, then we said that A, B form a separation for E if

1) $E = A \cup B$ 2) $\overline{A} \cap B = A \cap \overline{B} = \emptyset$

3. The Main Results

3.1 F_ Regular Space.

Definition(3.1.1): Let (X, τ) be a topological space, then the space (X, τ) is called a F_regular space if and only if for each F_closed set $G \subset X$ and each point $x \notin G$, there exist F_open sets Uand V such that $x \in U, G \subset V$, and $U \cap V = \emptyset$ and denoted by FR_space.

Lemma(3.1.2): Every FR_space is not $FT_{0_{-}}$ space. $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b, c\}\}, a \neq b$, there exists $U = \{a\}$ is F_open set. $a \in U, b \notin U, a \neq c$, and $c \notin U, b \neq c$, there is not exist U is F_open set. such that $[b \in U \land c \notin U] \lor [b \notin U \land c \in]$, so (X, τ) not $FT_{0_{-}}$ space. [FR_space \Rightarrow FT_{0_space}]

Theorem(3.1.3): Let (X, τ) be FR_space then for each $x \in X$ and each F_open set W containing x, there exists an F_open set U such that $x \in U \subseteq \overline{U}^F \subseteq W$.

Proof: suppose that X is FR_space. Let $x \in W$ is F_open, $x \in W \Rightarrow x \notin X - W X$ is FR_space. There exists U, V are F_open, $U \cap V = \emptyset$, $(x \in U \land X - W \subseteq V) \cup V = \emptyset$, $U \subseteq X - V$ we have $U \subseteq X - V$ and $X - V \subseteq W$, Then $\overline{U}^F \subseteq \overline{X - V}^F$ [since $A \subseteq B \Rightarrow \overline{A}^F \subseteq \overline{B}^F$]

then $\overline{U}^{F} \subseteq X - V$ since $[X - V \text{ F-closed}, X - V = \overline{X - V}^{F}]$, Then $\overline{U}^{F} \subseteq X - V$ }, Then $\overline{U}^{F} \subseteq X - V$ }, Then $\overline{U}^{F} \subseteq W$, $X - V \subseteq W$, Then $\overline{U}^{F} \subseteq W$, $x \in U \subseteq \overline{U}^{F} \subseteq W$ (since $A \subseteq \overline{A}^{F}$).

Theorem(**3.1.4**):The property of being a FR_space is a topological property.

Proof: Let X is FR_space, since h: $(X, \tau) \rightarrow (Y, \tau)$ there exists h one to one, onto and F_ continuous, h is F_open let $y \in Y$ and G, F_closed in Y; $y \notin G$, h onto function there exist $x \in X$; h(x) = y, h F_ continuous $\Rightarrow h^{-1}(G)$ isF_ closed in X; $x \in h^{-1}(G)$ since $(h(x) = y \notin G)$, X is FR_space there exists U, V is F_open set $U \cap V = \emptyset$, $[x \in U \land h^{-1}(G) \subseteq V]$, h F_open, then h (U), h(V) is F_ open in W, h one to one and h onto $[h(x) \in h(U) \land h(h^{-1}(G)] \subseteq h(V) \Rightarrow y \in h(U) \land G \subseteq h(V)$ (since $y = h(x) \land h(h^{-1}(G) = G)$, $U \cap V = \emptyset \Rightarrow [h(U) \cap h(V) = h(U \cap V) = h(\emptyset) = \emptyset$, so X is FR_space.

Example(3.1.5): Let h: (R, D) \rightarrow (R, τ_{cof}); h(x) = X for each x \in R, h is F_continuous function since the domain (R, D) is discrete topology and his onto and in general (X, D) is FR_ space, but in general (X, τ_{cof}) is not FR_ space.

Definition(3.1.6): Let (X, τ) be a topological space, then the space (X, τ) is called FT_3 _space if and only if its F_regular and FT_1 _space, FT_3 _space = FT_1 _space + FR_space.

Example(3.1.7):The space (X, D) is FT₃_space since its FT₁_space and FR_space .

Example(3.1.8): Let $X = \{1,2,3\}, \tau = \{\emptyset, X, \{1\}, \{2,3\}\}$, The space (X, τ) is not FT₃-space since its not FT₁-space and FR_ space.

Example(3.1.9): The usual topological space(R, τ_u) is FT_3 _space since its its FT_1 _space and FR_s pace.

Example(3.1.10): The space (X,I) X contains more then one element is not FT_3 _space since its not FT_1 _space and not FR_space.

Theorem(3.1.11): The property of being a FT₃_space is a hereditary property.

Proof :since the property FT_1 _space and FR_space are a hereditary property then FT_3 _space is a hereditary property.

Theorem(**3.1.12**): The property of being a FT₃_space is a topological property.

Proof: Since the property FT_1 -space and FR_space are a topological property, then a FT_3 -space is a topological property.

Remark(3.1.13): The F_continuous image of FT_3 _space is not necessarily FT_3 _space if h: $(X, \tau) \rightarrow (Y, \tau')$ is F_continuous ,onto function and X is FT_3 _space then Y is not necessarily FT_3 _space.

Example(3.1.14): Let h: (R, D) \rightarrow (R, I); h(x) = x for each x \in R, h is F_ continuous function since the domin (R, D) is discrete topology and h is onto and in general (X, D) is FT₃-spase (R, D) is FT₃-spase but (X, I) not FT₃-spase.

Theorem(**3.1.15**): Let (X, τ) be FT_3 -spase then X is a FT_2 -spase.

Proof: Suppose that X is a FT_3 -spase.Let $x, y \in X$; $x \neq y$, X is a FT_1 spase $\Rightarrow \{y\}$ F_closed set $\Rightarrow x \notin \{y\}$ since $x \neq y$ X is a FR_spase \Rightarrow there exists U, V are F_open set, $U \cap V = \emptyset$, $(x \Rightarrow U \land \{y\} \subseteq V) \Rightarrow (x \in U \land y \notin V)$ so (X, τ) is a FT_2 -spase.

Remark (3.1.16): From above the theorem we have

 FT_3 _space $\overrightarrow{\leftarrow}$ FT_2 _spase $\overrightarrow{\leftarrow}$ FT_1 _spase $\overrightarrow{\leftarrow}$ FT_0 _spase

3.2 F_Normal space

Definition(3.2.1): Let (X, τ) be a topological space, then the space (X, τ) is called F_Normal space and denoted by FN_space if and only if for each pair of F_closed disjoint subsets G and E of X, there exist F_open sets U and V such that $G \subseteq U, E \subseteq V$ and $U \cap V = \emptyset$, $(G \subseteq U \land E \subseteq V)$.

Example(3.2.2): Let $X = \{1, 2, 3\}$ and $\tau = \{X, \emptyset, \{1\}\}$. Show that (X, τ) is FN _space, the family of F_closed sets $\{X, \emptyset, \{2, 3\}\}$, take every two F_ closed sets there intersection is empty as follows take, X, \emptyset is F_ closed; $X \cap \emptyset = \emptyset$, there exest $U = \emptyset \land V = X$ is F_ open; $U \cap V = \emptyset$, $(\emptyset \subseteq U \land X \subseteq V)$, take $\emptyset, \{2, 3\}$ is F_ closed; $\{2, 3\} \cap \emptyset = \emptyset$, there exest $U = \emptyset \land V = X$ is F_ open; $U \cap V = \emptyset$, $(\emptyset \subseteq U \land X \subseteq V)$, take $\{2, 3\}$ is F_ closed; $\{2, 3\} \cap \emptyset = \emptyset$, there exest $U = \emptyset \land V = X$ is F_ open; $U \cap V = \emptyset$, $(\emptyset \subseteq U \land X \subseteq V)$, $\{2, 3\} \subseteq V$. So (X, τ) is FN_ space.

Notes that this space not FT_0 _space, not FT_1 _ space, not FT_2 _ space, not FR _ space, and not FT_3 _ space.

Remark(3.2.3): $FN_{space} \Rightarrow FR_{space}$, then

(FN_space \Rightarrow FT₁_spase) \land (FN_space \Rightarrow FT₂_spase)

(F R _space \Rightarrow FN _space) \land (FT₁ _space \Rightarrow FN _space) \land (T₂_space \Rightarrow N _space).

Remark(3.2.4): (FT₀_spase \Rightarrow FN_space) \land (FN_space \Rightarrow FT₀_spase).

Example(3.2.5): The space (R, τ_{cof}) is FT_{0-} space and not FN_ space, since there is twononempty disjoint F_closed sets, but there is no two nonempty disjoint F_open set. Notes that too (R, τ_{cof}) is FT_{1-} space and not FN_space.

Example(3.2.6): The space (R, I) is not FT_0 _ space, since R is the only F_ open set contains elements and its contains all elements. But (R, I) is RN_ space since the F_closed sets are

G = R and $E = \emptyset$ only, and $R \cap \emptyset = \emptyset$ and the F_open sets are R and \emptyset and $R \subseteq R$ and $\emptyset \subseteq \emptyset$.

Example(3.2.7): The space (X, D) is FN _space, since every sets her is F_ open and F_closed then: If V,E is F_closed, $V \cap E = \emptyset$, then V, E is F_open; $V \subseteq V \land E \subseteq E$.

Theorem(**3.2.8**): The property of being a N_space is a topological property.

Proof: Let(X, τ) \cong (Y, τ) and suppose that X is FN_space, to prove Y is FN_space, there exist h: (X, τ) \rightarrow (Y, τ) h is one to one and his F_continuous and F_open, let G, E is F_closed in Y : G \cap E = Ø, h F_continuous h⁻¹(G), h⁻¹(E) F_closed in X and h⁻¹(G) \cap h⁻¹(E) = h⁻¹(G \cap E) = h⁻¹(Ø) = Ø (the function h is F_ continuous if and only if the inverse image of every F_closed set in codomain is F_closed in domain), X is FN_space, there exist U, V are F_open G \cap E = Ø, (h⁻¹(G) \subseteq U \wedge h⁻¹(E) \subseteq V h is F_open, h(U), h(V) is F_open in Y, h is onto, h(h⁻¹(G)) \subseteq h(U) \wedge h(h⁻¹(E)) \subseteq h(V), G \subseteq h(U) \wedge E \subseteq h(V), U \cap V = Ø then h(U) \cap h(V) = h(U) \cap H(V

Theorem(3.2.9): The space (X, τ) is F_normal (FN_space)then for each F_closed subset $G \subseteq X$ and F_open set W containing G, there exists an F_open set U such that $G \subseteq U \subseteq \overline{U}^F$.

Proof: Suppose that X is FN – space and $G \subseteq X$, Let W is F_open; $G \subseteq W \Longrightarrow G \cap X - W = \emptyset$

X is FN – space \Rightarrow there exists U, V are F_open, U \cap V = Ø; (G \subseteq U \land X – W \subseteq V), \Rightarrow

 $\begin{aligned} X - V \subseteq W, \ U \cap V = \emptyset \implies U \subseteq X - V \Longrightarrow \overline{U}^F \subseteq \overline{X - V}^F \Longrightarrow \overline{U}^F \subseteq X - V \Longrightarrow G \subseteq U \land U \subseteq \overline{U}^F \subseteq X - V \land X - V \subseteq W \implies G \subseteq U \subseteq \overline{U}^F \subseteq W. \end{aligned}$

Theorem(3.2.10): A *F*_closed subspace of *FN*_space is *FN*_space.

Proof :Let (X, τ) be FN_{space} and (W, τ_W) F_{closed} subspace of X, to prove (W, τ_W) FN_{space} Let G_W , E_W are F_{closed} sets in W; $G_W \cap E_W = \emptyset$, there exists G, E are F_{closed} , $G_W = G \cap E \wedge E_W = E \cap W, G \cap E = \emptyset$, since X is FN_{space} there exists $U, V F_{open} U \cap V = \emptyset, (G \subseteq U \wedge E \subseteq V)$ then $U \cap W \wedge V \cap W$ F_{open} in W (By theorem 2.17) $(U \cap W) \cap (V \cap W) = (U \cap V) \cap W = \emptyset \cap W = \emptyset$, since $G_W = G \cap W$ then $G_W \subseteq G \wedge G_W \subseteq W$ then $G_W \subseteq U \wedge G_W \subseteq W \Rightarrow G_W \subseteq U \cap W$ since $E_W = E \cap W$ then $E_W \subseteq E \wedge E_W \subseteq W$ then $E_W \subseteq V \wedge E_W \subseteq W \Rightarrow E_W \subseteq V \cap W$, so (W, τ_W) FN_{space} . **Definition(3.2.11):** Let (X, τ) be a topological space. Then the space (X, τ) is called a FT_{4} -space if and

only if F_{normal} and FT_{1}_{space} .

$$FT_4$$
_space = FT_1 _space + FN_s pace

Example(3.2.12): Let $X = \{1, 2, 3\}$ and $\tau = \{X, \tau, \{1\}, \{2, 3\}\}$ Then the space (X, τ) is not FT_4 _space, since its FN _ space but not FT_1 _ space.

Remark(3.2.13): If X is finite space, then (X, D) is FT_4 – space iff $\tau = D$, (because if X is finite space, then its FT_1 _ space iff $\tau = D$ and if $\tau = D$, then X is FN _ space).

Example(3.2.14): The space (X, D) is FT_4 _ space, since its FT_1 _ space and N _ space.

Example(3.2.15): The space (X, I); X F_contains more than one element is not FT_4 _ space, since its not FT_1 _space.

Remark(3.2.16): The property of being a FT_4 _space is not a hereditary property, since the *F*_normality is not a hereditary property.

Example(3.2.17): The space (X, τ_{cof}) is not FT_4 _ space, since its FT_1 _ space but not FN_space.

Theorem(3.2.18): The property of being FT_4 _space is a topological property.

Proof: Since the property FT_1 _ space and FN _space are a topological property, Then FT_4 _ space is a topological property.

Theorem(3.2.19): A *F*_closed subspace of FT_4 _ space is FT_4 _ space.

Proof : Let (X, τ) FT_4 _ space and W $F_closed set in X$, to prove W is FT_4 _ space, X is FT_1 _ space, W is FT_1 _ space (since FT_1 is hereditary property), W is F_c closed in X and X is FN_s pace, W is FN _ space (by theorem 3.2.10) W is FT_4 _ space.

Theorem(3.2.20): Every *FT*₄ _space is *FR* _space.

Proof: Let (X, τ) be FT_4 _ space, X is FT_1 _ space and FN _ space, Let $x \in X$ and GF_1 closed set in X; $x \notin G$, $\{x\}$ is F_1 close (since X is FT_1 space then $\{x\}F_1$ closed for each $x \in X\}$, $\{x\} \cap G = \emptyset$, X is FN_1 space, there exists $U, V F_1$ open, $X \cap V = \emptyset$, $(\{x\} \subseteq U \land G \subseteq V), x \in U \land G \subseteq V$, X is FR_1 space.

Corollary(3.2.21): Every FT_4 _space is FT_3 _space.

Proof: Every FT_4 _ space is FR _space, every FT_4 _space is FT_1 _space and FN_space we have, X is FT_1 _space FR_space, so X is FT_3 _space.

Remark(3.2.22): Every FT_4 _space is FT_2 _ space since every FT_4 _space is FT_3 _space and every FT_3 _space is FT_2 _space so that :

 FT_4 _space $\overrightarrow{\leftrightarrow}$ FT_3 _space $\overrightarrow{\leftrightarrow}$ FT_2 _space $\overrightarrow{\leftrightarrow}$ FT_1 _space $\overrightarrow{\leftrightarrow}$ FT_0 _space

Remark(3.2.23) $FN_{space} + FT_{1}_{space} \implies FT_{3}_{space}$, and $FN_{space} + FT_{1}_{space} \implies FR_{space}$.

3.3 On F_connected

Definition(3.3.1): Let (X, τ) be a topological space and $A, B \subseteq X$ such that $A \neq \emptyset, B \neq \emptyset$ and $E \subseteq X$, then we said that A, B form a separation for E if

1) $E = A \cup B$ 2) $\overline{A} \cap B = A \cap \overline{B} = \emptyset$

Definition(3.3.2): Let (X, τ) be a topological space, we said that X is connected if X has no separation.

Theorem (3.3.3): Let (X, τ) be a topological space, then (X, τ) is connected. (X, τ) is connected space.

- 1) the only sets which are open and closed in X are \emptyset , X.
- 2) *X* is not a union of two nonempty disjoint open sets.

Definition(3.3.4): Let (X, τ) be a topological space and $A, B \subseteq X$ such that $A \neq \emptyset$, $B \neq \emptyset$ and $E \subseteq X$, then we said that A, B form a F_separation for E if 1) $E = A \cup B$ 2) $\overline{A}^F \cap B = A \cap \overline{B}^F = \emptyset$ **Definition(3.3.5):** A topological space (X, τ) is called F_connected if X is not a union of two nonempty disjoint F_open sets.

Theorem(3.3.6): Let (X, τ) be a topological space. Then the following are equivalent

- 1) (X, τ) is connected space.
- 2) (X, τ) is F_connected space.

Proof: $1 \rightarrow 2$

Let (X, τ) be connected space, Suppose (X, τ) is not *F*_connected. Then there exists *A*, *B F*_open sets such that $A \cap B = \emptyset$ and $X = A \cup B$, Then *A*, *B* are open sets such that $A \cap B = \emptyset$ and $X = A \cup B$. Therefore (X, τ) is not connected space which is a contradiction, Hence (X, τ) is *F*_counceted space.

 $(2 \rightarrow 1)$ Let (X, τ) is *F*_counceted space and suppose (X, τ) is not connected space, then $\exists A, B$ open sets such that $A \cap B = \emptyset$ and $A \cup B = X$. therefore A, B are *F*_open sets, (every open, closed set is *F*_open). Hence $\exists A, B F_open$ sets such that $A \cap B = \emptyset$ and $A \cup B = X$. Thus (X, τ) is not connected space which is a contradiction. Then (X, τ) is counceted space.

Definition(3.3.7): A topological space (X, τ) is called F'_connected if the only F_open and F_closed at the same time in X are \emptyset, X .

Theorem(3.3.8): Let (X, τ) be a topological space. Then the following are equivalent.

- 1) (X, τ) is connected space.
- 2) (X, τ) is F'-connected space.

Proof: $1 \rightarrow 2$ Let (X, τ) be connected space. Suppose (X, τ) is not F'_connected. Then $\exists A F$ -open and F_{closed} set $\exists A \neq \emptyset$ and $A \neq X$. Then $\exists A$ open and closed set $\exists A \neq \emptyset$ and $A \neq X$. Then (X, τ) is not connected space space which is a contradiction. Then (X, τ) is F'_{closed} space.

Proof $2 \rightarrow 1$ Let (X, τ) is *F'*-counceted space and suppose (X, τ) is not connected space. then $\exists A$ open and closed set such that $A \neq \emptyset$ and $A \neq X$. let B = X - A. Then *B* is open and closed set. Hence *A*, *B* and F_open sets. Therefor *A* is *F*_open and *F*_closed set $\exists A \neq \emptyset$ and $A \neq X$. Therefor (X, τ) is not *F'*_connected space. which is a contradiction .Then (X, τ) is counceted space.

Definition(3.3.9): A topological space (X, τ) is called F''_connected if X has no F_separation.

Theorem(3.3.10): Let (X, τ) be a topological space. Then the following are equivalent

(i)(X, τ) is connected space.

(ii)(X, τ) is F''_connected space.

Proof:1 \rightarrow 2 Let (X, τ) be connected space. Suppose (X, τ) is not $F''_{connected}$ space. Then $\exists A, B \ni A \neq \emptyset$ and $B \neq \emptyset, X = A \cup B$ and $\overline{A}^F \cap B = A \cap \overline{B}^F = \emptyset$. Then $\overline{A} \cap B = A \cap \overline{B} = \emptyset$ Therefor (X, τ) is not connected space. which is a contradiction. Hence (X, τ) is $F''_{connected}$ space

Proof: $2 \to 1$ Let (X, τ) is $F''_{connected}$ space. Suppose (X, τ) is not connected space. then $\exists A$ open and closed set such that $A \neq \emptyset$ and $A \neq X$. let B = X - A. Then $X = A \cup B$ and $A \neq \emptyset, B \neq \emptyset$. Therefor A, B are F_{closed} sets. Hence $\overline{A}^F = A$ and $\overline{B}^F = B$. Then $\overline{A}^F = A = X - B$. Hence $\overline{A}^F \cap B = \emptyset$. Then $\overline{B}^F = B = X - A$. Hence $\overline{B}^F \cap A = \emptyset$. Therefor A and B from $F_{separation}$ space for X, Then (X, τ) is not $F''_{connected}$ space. which is a contradiction. Therefor (X, τ) is connected space.

Theorem(3.3.11): Let *A* be connected sets and *H*, *K* are *F*_separated sets. if $A \subseteq H \cup K$, then either $A \subseteq H$.

Proof: Let A be connected set and H, K be F_separated sets. then $H \neq \emptyset, K \neq \emptyset$ and $\overline{H}^F \cap K = H \cap \overline{K}^F = \emptyset$. Let $A \subseteq H \cup K$. Suppose $A_1 = A \cap H \neq \emptyset$, $A_2 = A \cap K \neq \emptyset$. Then $A = A_1 \cup A_2$, $A_1 \neq \emptyset$, $A_2 \neq \emptyset$. $A_1 \subseteq H \to \overline{A_1}^F \subseteq \overline{H}^F \to \overline{A_1}^F \cap A_2 \subseteq \overline{H}^F \cap A_2 \subseteq \overline{H}^F \cap K$. Since $\overline{H}^F \cap H = \emptyset$, then $\overline{A_1}^F \cap A_2 = \emptyset$. $A_2 \subseteq K \to \overline{A_2}^F \subseteq \overline{K}^F \to \overline{A_2}^F \cap A_1 \subseteq \overline{K}^F \cap A_1 \subseteq \overline{K}^F \cap H$, Since $\overline{K}^F \cap H = \emptyset$, then $\overline{A_2}^F \cap A_1 = \emptyset$. Then A_2, A_1 from a F_- separation for A. which is a contradiction since A connected set. Then either $A \subseteq H$ or $A \subseteq K$.

Theorem (3.3.12): If A is connected set, then \overline{A}^F is connected.

Proof: Let *A* be connected set. Suppose \overline{A}^F is not connected. Then $\exists H, K$ from a F_separation for \overline{A}^F . Hence $H \neq \emptyset, K \neq \emptyset, \overline{A}^F = H \cup K$, and $\overline{H}^F \cap K = H \cap \overline{K}^F = \emptyset$, Since $A \subseteq \overline{A}^F$, Then $A \subseteq H \cup K$. Then by theorem(**3.2.11**), either $A \subseteq H$ or $A \subseteq K$. If $A \subseteq H$, then $\overline{A}^F \subseteq \overline{H}$, hence $\overline{A}^F \cap K \subseteq \overline{H}^F \cap K$. Since $\overline{H}^F \cap K = \emptyset$, then $\overline{A}^F \cap K = \emptyset$. Therefore $K = \emptyset$ which is a contradiction. By the same way get a contradiction if $A \subseteq K$.therefore \overline{A}^F is connected.

Definition(3.3.13): The space (X, τ) is *F*_disconnected space if and only if there exist two *F*_open set disjoint nonempty sets *A* and *B* such that $A \cup B = X$, and $A \cap B = \emptyset$, $A \neq \emptyset$ and $B \neq \emptyset$.

Example(3.3.14): Let $X = \{1, 2, 3\}$ and $\tau = \{X, \emptyset, \{1\}, \{2, 3\}\}$, the *F*_open set $\{1\}, \{2, 3\}$ and $X = \{1\} \cup \{2, 3\}$ and $\{1\} \cap \{2, 3\} = \emptyset, \{1\}, \{2, 3\} \neq \emptyset$, So *X F*_disconnected.

Remark(3.3.15): In discrete topological $\tau = \{X, \emptyset\} X$ is not union of two nonempty disjoint *F*_open sets, then *X* is *F*_connected.

Remark(3.3.16): Let (X, T_D) be discrete topological let A be open subset of X. $b(A) = \overline{A} - A^o = A - A = \emptyset$ is finite then A is F_open set.

Remark(3.3.17): In discrete topological every open set is F-open.

Remark(3.3.18): Let (X, D) is *F*_disconnected if *X* contains more than one element, since there exists $A : \emptyset \neq A \nsubseteq X. X = A \cup A^c$, A, A^c *F*-open sets $A \cap A^c = \emptyset$ and $A \neq \emptyset, A^c \neq \emptyset$ since $(A \neq X)$.

Example(3.3.19): Let (X, τ_{cof}) be is *F*_connected space, if *X* is infinite set since there are not exist nonempty disjoint open sets.

Remark(3.3.20): If (X, τ) is topological space and (W, τ_w) is a subspace of *X*, then the space *W* being *F*_disconnected or *F*_connected not directly relation by *X* and the open sets in *X*, but dependent on the *F*_open sets in *W*, its dependent on τ_w ; so that *W* is *F*_connected space if and only if there exist two *F*_open disjoint nonempty sets *A* and *B* in *W* such that $A \cup B = W$.

Remark(3.3.21): If (X, τ) is topological space and (W, τ_w) is a subspace of *X*, then the space *W* being *F*_disconnected or *F*_connected not directly relation by *X* and the *F*_open sets in *X*, but dependent on the *F*_open sets in *W*, its dependent on τ_w ; so that *W* is *F*_connected space if and only if there exist two *F*_open disjoint nonempty sets *A* and *B* in *W* such that $W = A \cup B$, *W* is *F*_disconnected $\Leftrightarrow A \cup B = W$, *A*, *B F*_open in *W*, $A \cap B = \emptyset$; $A \neq \emptyset$, $B \neq \emptyset$ The space (W, τ_w) is *F*_connected if and only if its not *F*_disconnected *W F*_connected if and only if $W \neq A \cup B$; *A*, *B F*_open in *W*; $A \cap B = \emptyset$; $A \neq \emptyset$, $B \neq \emptyset$.

Remark(3.3.22): The property of being a $F_{\text{connected space is not a hereditary property and the following example show that:$

Example(3.3.23): Let $X = \{1, 2, 3\}$ and $\tau = \{X, \emptyset, \{1, 2\}, \{1, 3\}, \{1\}\}$ and $W \subseteq X$; $W = \{2, 3\}$. Is W is $F_{\text{connected space}}$. $\tau_w = \{W \cap U; U \text{ open in } X\} = \{W, \emptyset, \{2\}, \{3\}\}$. Notes that $\tau_w = D$, then W is $F_{\text{disconnected space}}$ but not $F_{\text{connected space}}$, since $:W = \{2\} \cup \{3\}$ and $\{2\}, \{3\}$ $F_{\text{open in }}W$ and $\{2\} \cap \{3\} = \emptyset$ and $\{2\} \neq \emptyset, \{3\} \neq \emptyset$, Notes that X is $F_{\text{connected space}}$ but not $F_{\text{disconnected}}$, while it's have $F_{\text{disconnected subspace}}$.

Remark(3.3.24): If $f: (X, \tau) \to (Y, \dot{\tau})$ is F_ continuous and onto function and Y is F_connected space then, then X not necessary F_ connected space and the following example show that :

Example(3.3.25): Let $f: (R, D) \to (R, I); f(x) = x$ for each $x \in R$ clear that f is F_ continuous and onto function and (R, I) is F_ connected, but (R, D) is not F_ connected.

Theorem(3.3.26): Let $((X, \tau)$ be a topological space if W is connected and *F*- open subsets of X and $X = A \cup B$ such that A, B *F*-open and $A \cap B = \emptyset$ and $A \neq \emptyset, B \neq \emptyset$ then $W \subseteq A$ or $W \subseteq B$.

Proof: Suppose that $W \not\subseteq A$ and $W \not\subseteq B \Longrightarrow W \cap A \neq \emptyset$ and $W \cap B \neq \emptyset$; A, B is F_open in $X \Longrightarrow$ $W \cap A, W \cap B$ is F_open in W; $W \cap A \neq \emptyset$ (since if $W \cap A = \emptyset \rightarrow W \subseteq B$), $W \cap B \neq \emptyset$ \emptyset (since if $W \cap A = \emptyset \rightarrow W \subseteq A$), $(W \cap A) \cap (W \cap B) = W \cap (A \cap B) = W \cap \emptyset = \emptyset$, then W is F_disconnected (C !! contradiction !!); so $W \subseteq A \lor W \subseteq B$.

References

1. Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2) 19 (1970), 89–96. MR 46 4471. Zbl 231.54001.

- 2. H. M. Darwesh, N.O. Hessean, S_a –open Sets in Topological Spaces, JZS(2015) 17 -1(Part-A).
- 3. L. Steen and J. Seebach. G. Counterexamples in Topology. Dover Publications, INC, 1995
- 4. Mustafa M. Al-Turki, Raad A. H. Al-Abdulla, "On Some FT_i -space ;i = 0,1,2 in Topological Space", Journal of Al-Qadisiyah for Computer Science and Mathematics, to appear2024
- 5. M. H. Alqahtani "C-open Sets on Topological Spaces, arXiv:2305.03166(math)on 4 May 2023
- 6. M. H. Alqahtani "F-open and F-closed Sets in Topological Spaces"European Journal of Pure And Applied Mathematics, Vol. 16, No. 2, 2023, 819-832
- 7. R. Engelking. General Topology. PWN, Warszawa, 1977. C. Kuratowski. Topology I. 4th. ed., in French, Hafner, New york, 1958.