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1.  Fundumental Concept 

Recall that, A sequence {𝑥𝑛} of real numbers is said to be Converge to the point 𝑥 ∈ ℝ, if for 

each 𝜀 > 0, there is 𝑘 ∈ 𝑧+ such that |𝑥𝑛 − 𝑥| < 𝜀 for all 𝑛 ≥ 𝑘 and we write lim𝑛→∞ 𝑥𝑛 = 𝑥 or 

𝑥𝑛 → 𝑥. Given a sequence {𝑓𝑛} of real valued functions defined on 𝛺, for 𝑥 ∈ 𝛺, we have real 

sequence {𝑓𝑛(𝑥)}. If {𝑓𝑛(𝑥)} is converge for all point of 𝛺. we can define the function 𝑓: 𝛺 → ℝ 

by, for any 𝑥 ∈ 𝛺, then 𝑓(𝑥) is limit point of {𝑓𝑛(𝑥)}; that is 𝑓(𝑥) = lim𝑛→∞ 𝑓𝑛(𝑥) or 𝑓𝑛(𝑥) →
𝑓(𝑥). 

Definition 1.1 

let {𝑓𝑛} be a sequence of real valued functions defined on Ω and a function 𝑓: Ω → ℝ, 𝐴 ⊆ 𝛺. We 

say that  

(1) {𝑓𝑛} converges to 𝑓 (pointwise) on 𝐴, if for every 𝑥 ∈ 𝐴, then 𝑓𝑛(𝑥) → 𝑓(𝑥), i.e. if for 

every 𝑥 ∈ 𝐴 and for every 𝜀 > 0 there is 𝑘 ∈ ℤ+ such that  

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀 for all 𝑛 > 𝑘. We write lim𝑛→∞ 𝑓𝑛(𝑥) = 𝑓(𝑥)  

or 𝑓𝑛 → 𝑓 on 𝐴. 

(2)  {𝑓𝑛} is a Cauchy sequence (pointwise) on 𝐴, if for every 𝑥 ∈ 𝐴, then {𝑓𝑛(𝑥)} is a Cauchy 

sequence, i.e., for every 𝑥 ∈ 𝐴  and for every  𝜀 > 0  there is 𝑘 ∈ ℤ+  suh that |𝑓𝑛(𝑥) −
𝑓𝑚(𝑥)| < 𝜀 for all 𝑛,𝑚 > 𝑘. 

 Note that: In the above definition when 𝐴 = Ω we can omit “on A” from the statements  

i.e. 𝑓𝑛 → 𝑓 , if for every 𝑥 ∈ Ω and for 𝜀 > 0 there is 𝑘 ∈ ℤ+ such |𝑓𝑛(𝑥) − 𝑓(𝑥))| < 𝜀 
for all 𝑛 > 𝑘. 

 

 This has meaning only if  𝑓𝑛: Ω → ℝ  is finite valued. Because ℝ is complete it is clear 

that if {𝑓𝑛} is a Cauchy sequence pointwise on Ω, there must be an 𝑓: Ω → ℝ  such that  

𝑓𝑛 → 𝑓  on Ω. 
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ABSTRACT 

 

In this work, we introduce the concept of three types of convergence (convergence almost 

everywhere, almost uniformly convergence, convergence in norm) in relation to Daniell 

integration with the properties of each type, and then discuss the relationship between 

these three types, and finally we present the basic theorems of convergence, such as 

Dominated convergence theorem, monotone convergence theorem and Fatou's  lemma  
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Definition 1.2 

let {𝑓𝑛} be a sequence of real valued functions defined on Ω and a function 𝑓: Ω → ℝ, we say that  

(1) {𝑓𝑛} converges uniformly to 𝑓 on 𝐴, if for every 𝜀 > 0 there is 𝑘 ∈ ℤ+  

such that |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀 for all 𝑛 > 𝑘 and all 𝑥 ∈ Ω, we write  

𝑓𝑛
𝑢
→ 𝑓 on 𝐴 

(2) {𝑓𝑛} is a Cauchy sequence uniformly on 𝐴, if for every 𝜀 > 0 there is 𝑘 ∈ ℤ+ 

Such that  |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| < 𝜀 for all 𝑛,𝑚 > 𝑘 and all 𝑥 ∈ 𝐴. 

 It is clear that every converges uniformly sequence are convergent pointwise, but the 

converse is not true. 

 

Remark 

Let  𝑎, 𝑏 ∈ ℝ and let 𝑓: Ω → ℝ, 𝑔: Ω → ℝ  be functions  

1.(𝑓 ∧ 𝑔)(𝑥) = 𝑓(𝑥) ∧ 𝑔(𝑥) = min{𝑓(𝑥), 𝑔(𝑥)} 

2.(𝑓 ∨ 𝑔)(𝑥) = 𝑓(𝑥) ∨ 𝑔(𝑥) = max{𝑓(𝑥), 𝑔(𝑥)} 

3.{𝑓 = 𝑔} = {𝑓 ≤ 𝑔} ∩ {𝑓 ≥ 𝑔} 

4.{𝑓 > 𝑔} = ⋃ (⋃ {𝑓 >
𝑚

𝑛
} ∩ {𝑔 <

𝑚

𝑛
}) ∞

𝑚=1
∞
𝑛=1  

5. {min {𝑓, 𝑔} < 𝑎} = {𝑓 < 𝑎} ∪ {𝑔 < 𝑎} 

6. {min{𝑓, 𝑔} > 𝑎} = {𝑓 > 𝑎} ∩ {𝑔 > 𝑎}  

7. {max{𝑓, 𝑔} < 𝑎} = {𝑓 < 𝑎} ∩ {𝑔 < 𝑎} 

8. {max{𝑓, 𝑔} > 𝑎} = {𝑓 > 𝑎} ∪ {𝑔 > 𝑎} 

Let 𝑎 ∈ ℝ and  𝑓𝑛: Ω → ℝ be a function for all 𝑛  

1.{sup 𝑓𝑛 ≤ 𝑎} = ⋂ {𝑓𝑛 ≤ 𝑎}
∞
𝑛=1  

2. {sup 𝑓𝑛 > 𝑎} = ⋃ {𝑓𝑛 > 𝑎}
∞
𝑛=1  

3.{sup 𝑓𝑛 < 𝑎} = ⋂ {𝑓𝑛 < 𝑎} 
∞
𝑛=1  

4.{inf 𝑓𝑛 > 𝑎} = ⋂ {𝑓𝑛 ≤ 𝑎}
∞
𝑛=1  

5.{inf 𝑓𝑛 < 𝑎} = ⋃ {𝑓𝑛 < 𝑎}
∞
𝑛=1  



            Journal of Iraqi Al-Khwarizmi (JIKh)   Volume:7  Issue:2 Year: 2023   pages: 94-105   
 

96 

 

Definition 1.3 

A function 𝑓 ∈ 𝐿 is called a null function if 𝐷(|𝑓|) = 0. 

Example 1.4  

the function 𝑓(𝑥) = {
1 ,   𝑥 ≠ 0
0 ,   𝑥 = 0

  be an example of a null function. 

Remark: 

if 𝑓 is a null function and |𝑔| ≤ |𝑓| then 𝑔 is a null function. 

Since 0 ≤ 𝐷(|𝑔|) ≤ 𝐷(|𝑓|) = 0. 

Definition 1.5 

A set 𝐴 ⊆ 𝛺 is called a null set if the characteristic function of 𝐴 is a null function, 

i.e., 𝐷(|𝐼𝐴|) = 0. 

Theorem 1.6 

If 𝐴 be a null set and 𝐵 ⊆ 𝐴 then 𝐵 is a null set 

Proof 

Let 𝐴  be a null set then 𝐷(|𝐼𝐴|) = 0 , since 𝐵 ⊆ 𝐴  then 𝐼𝐵 ≤ 𝐼𝐴⟹ |𝐼𝐵| ≤ |𝐼𝐴| ⟹ 𝐷(𝐼𝐵) ≤
𝐷(𝐼𝐴) = 0  and since |𝐼𝐵| ≥ 0 ⟹ 𝐷|𝐼𝐵| ≥ 𝐷(0) = 0 implies that 𝐷(|𝐼𝐵|) = 0. Therefore 𝐵 is a 

null set. 

Theorem 1.7 

Let 𝐴𝑖 be a sequence of null set in 𝐿 for all 𝑖 = 1,2, … then ⋃ 𝐴𝑖
𝑛
𝑖=1  is a null set in 𝐿 

Proof 

Let 𝐴𝑖  be a sequence of null set, 𝐴𝑖 ⊂ 𝛺  for all 𝑖 = 1,2, … , since 𝐼⋃ 𝐴𝑖
𝑛
𝑖=1

= 𝐼𝐴1 + 𝐼𝐴2 +⋯+

𝐼𝐴𝑛 − 𝐼⋂ 𝐴𝑖
𝑛
𝑖=1

⟹ |𝐼⋃ 𝐴𝑖
𝑛
𝑖=1

| = |𝐼𝐴1 + 𝐼𝐴2 +⋯+ 𝐼𝐴𝑛 − 𝐼⋂ 𝐴𝑖
𝑛
𝑖=1

| ≤ |𝐼𝐴1| + |𝐼𝐴2| + ⋯+ |𝐼𝐴𝑛| −

|𝐼⋂ 𝐴𝑖
𝑛
𝑖=1

| = |𝐼𝐴1| + |𝐼𝐴2| + ⋯+ |𝐼𝐴𝑛| − |𝐼𝐴1∙𝐴2∙….∙𝐴𝑛| ⟹ 𝐷 (|𝐼⋃ 𝐴𝑖
𝑛
𝑖=1

|) = 𝐷(|𝐼𝐴1|) + 𝐷(|𝐼𝐴2|) +

⋯+ 𝐷(|𝐼𝐴𝑛|) − 𝐷(|𝐼𝐴1∙𝐴2∙….∙𝐴𝑛|) = 0 ⟹ 𝐷(|𝐼⋃ 𝐴𝑖
𝑛
𝑖=1

|) ≤ 0 and |𝐼⋃ 𝐴𝑖
𝑛
𝑖=1

| ≥ 0 ⟹ 𝐷 (|𝐼⋃ 𝐴𝑖
𝑛
𝑖=1

|) ≥

0 ⟹ 𝐷(|𝐼⋃ 𝐴𝑖
𝑛
𝑖=1

|) = 0 there fore ⋃ 𝐴𝑖
𝑛
𝑖=1  be a null set. 

Definition 1.8 

A function 𝑓, 𝑔 in 𝐿 are called equivalence if 𝑓 − 𝑔 is a null function,  

i.e., 𝑓 ∼ 𝑔 𝑖𝑓 𝐷(|𝑓 − 𝑔 |) = 0. 

      We will denoted to the space of equivalent class in 𝐿 by ℒ and [𝑓] be the 
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      equivalence class of 𝑓 ∈ 𝐿 such that [𝑓] = {𝑔 ∈ 𝐿: 𝐷(|𝑓 − 𝑔|) = 0}. 

     To prove that ~ be an equivalent relation on ℒ we must show that ∼ is 

(1) Reflexive: Let 𝑓 ∈ 𝐿,  |𝑓 − 𝑓| = |0| = 0 ⟹ 𝐷(|𝑓 − 𝑓|) = 𝐷(0) = 0 ⟹ 𝐷(|𝑓 − 𝑓|) =
0 ⟹ 𝑓 ∼ 𝑓. 

(2) Symmetric: let 𝑓, 𝑔 ∈ 𝐿 and  𝑓 ∼ 𝑔 then 𝐷(|𝑓 − 𝑔 |) = 0 = 𝐷(|𝑔 − 𝑓 |) hence 𝑔 ∼ 𝑓. 

(3) Transitive: let 𝑓, 𝑔, ℎ ∈ 𝐿  with 𝑓 ∼ 𝑔  and 𝑔 ∼ 𝑧  then |𝑓 − 𝑧| = |𝑓 − ℎ + 𝑔 − 𝑔| ≤
|𝑓 − 𝑔| + |𝑔 − ℎ| ⟹ |𝑓 − ℎ| ≤ |𝑓 − 𝑔| + |𝑔 − ℎ| ⟹ 𝐷(|𝑓 − ℎ|) ≤ 𝐷(|𝑓 − 𝑔| +
|𝑔 − ℎ|) = 𝐷(|𝑓 − 𝑔|) + 𝐷(|𝑔 − ℎ|) = 0 + 0 = 0. 

          then 𝐷(|𝑓 − ℎ|) ≤ 0 and since |𝑓 − 𝑧| ≥ 0 then  

           𝐷(|𝑓 − ℎ|) ≥ 𝐷(0) = 0 ⟹ 𝐷(|𝑓 − ℎ|) ≥ 0, and hence  

         𝐷(|𝑓 − ℎ|) = 0 implies that 𝑓 ∼ ℎ. 

Theorem 1.9  

the space of equivalent class (𝛺, ℒ, 𝐷) is a subspace of (𝛺, 𝐿, 𝐷). 

Proof: 

(1) Let  [𝑓], [𝑔] ∈ ℒ 𝑡ℎ𝑒𝑛 [𝑓] + [𝑔] = {ℎ ∈ 𝐿: 𝐷(|𝑓 − ℎ| = 0)} + {𝑠 ∈ 𝐿: 𝐷(|𝑔 − 𝑠| = 0)} =
{ℎ + 𝑠 ∈ 𝐿: 𝐷(|𝑓 − ℎ|) + 𝐷(|𝑔 − 𝑠|) = 0} = {ℎ + 𝑠 ∈ 𝐿: 𝐷(|𝑓 − ℎ| + |𝑔 − 𝑠|) = 0} =
{ℎ + 𝑠 ∈ 𝐿: 𝐷(|𝑓 + 𝑔| − |ℎ + 𝑠|) = 0} = [𝑓 + 𝑔]. 

Therefore [𝑓] + [𝑔] ∈ ℒ 

(2) Let [𝑓] ∈ ℒ and 𝜆 ∈ ℝ, then 𝜆[𝑓] = {𝑔 ∈ 𝐿: 𝐷(|𝑓 − 𝑔| = 0)} 

     = {𝜆𝑔 ∈ 𝐿: 𝜆𝐷(|𝑓 − 𝑔| = 0)} = {ℎ = 𝜆𝑔 ∈ 𝐿:𝐷(|𝜆𝑓 − ℎ| = 0)} = {ℎ ∈ 𝐿: 𝐷(|𝜆𝑓 − ℎ| =
0)} = [𝜆𝑓]. Therefore 𝜆[𝑓] ∈ ℒ. 

Theorem 1.10  

Let (𝛺, 𝐿, 𝐷) be a Daniell space and let 𝑓, 𝑔 ∈ 𝐿 then 

(1)  𝑓 = 𝑔 𝑎. 𝑒 if and only if 𝐷(|𝑓 − 𝑔|) = 0 

(2) 𝑓 is null sunction if and only if 𝑓 = 0 𝑎. 𝑒. 

(3) 𝑓 and 𝑔 are equivalent if and only if 𝑓 = 𝑔 𝑎. 𝑒. 

Proof: 

(1)  Let 𝐴 = {𝑥 ∈ 𝛺: 𝑓(𝑥) ≠ 𝑔(𝑥)} 

          (⟹)  suppose that 𝑓 = 𝑔 𝑎. 𝑒. then 𝐷(|𝐼𝐴|) = 𝐷(𝐼𝐴) = 0 

                Then |𝑓 − 𝑔| = 𝐼𝐴 + 𝐼𝐴 +⋯, implies that 𝐷(|𝑓 − 𝑔|) = 0 
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     (⟸) suppose that 𝐷(|𝑓 − 𝑔|) = 0 then 𝐼𝐴 = |𝑓 − 𝑔| + |𝑓 − 𝑔| + ⋯ 

                There fore 𝐷(𝐼𝐴) = 𝐷(|𝐼𝐴|) = 0 this implies that 𝐴 is a null set, 

                     and hence 𝑓 = 𝑔 𝑎. 𝑒. 

(2)  Let 𝐵 = {𝑥 ∈ 𝛺: 𝑓(𝑥) ≠ 0} 

          (⟹)  suppose 𝑓 is null function then 𝐷(|𝑓|) = 0, since |𝑓| ≥ 0  

          implies     𝑓 = 0 𝑎. 𝑒., or in another proof, if 𝐷(|𝑓|) = 0  

          then 𝐼𝐵 = |𝑓| + |𝑓| + ⋯, implies  

           𝐷(𝐼𝐵) = 𝐷(|𝐼𝐵|) = 𝐷(|𝑓|) + 𝐷(|𝑓|) + ⋯ then 𝐷(|𝐼𝐵|) = 0  

         therefore 𝐵 is a null set and then 𝑓 = 0 𝑎. 𝑒. 

         (⟸) Let 𝑓 = 0 𝑎. 𝑒. then 𝐷(|𝐼𝐵|) = 𝐷(𝐼𝐵) = 0 Then  

          |𝑓| = 𝐼𝐵 + 𝐼𝐵 +⋯, implies that 𝐷(|𝑓|) = 0, then 𝑓 is null function. 

(3)  (⟹) Suppose that 𝑓 ∼ 𝑔 then  𝐷(|𝑓 − 𝑔|) = 0, then by (1), 𝑓 = 𝑔 𝑎. 𝑒. 

           (⟸) Let 𝑓 = 𝑔 𝑎. 𝑒., then by (1), 𝐷(|𝑓 − 𝑔|) = 0 implies that 𝑓 ∼ 𝑔 

2. Convergence Almost Everywhere 

Definition 2.1 

Let (𝛺, 𝐿, 𝐷)  be a Daniell space. 𝐴 sequence {𝑓𝑛} in 𝐿 is said to be  

(1) Converges almost everywhere to the function 𝑓 in 𝐿, denoted by 𝑓𝑛
𝑎.𝑒.
→ 𝑓, if there is a null 

set 𝐴 ⊆ 𝛺 such that 𝑓𝑛 → 𝑓on 𝐴𝑐.  
(2) {𝑓𝑛} Cauchy almost everywhere, denoted by 𝑓𝑛 Cauchy a.e. if there is a null set 𝐴 ⊆ 𝛺 

such that 𝑓𝑛 Cauchy on 𝐴𝑐.  

Theorem 2.2 

Let (𝛺, 𝐿, 𝐷)  be a Daniell space and let  𝑓𝑛 ∈ 𝐿, 𝑛 ∈ ℕ, if 𝑓𝑛
𝑎.𝑒.
→ 𝑓, then 𝑓 ∈ 𝐿. 

Proof:  

Let 𝐴𝑛 = {𝑥 ∈ Ω: lim𝑛→∞ 𝑓𝑛(𝑥) ≠ 𝑓(𝑥)}, since 𝑓𝑛
𝑎.𝑒.
→ 𝑓, then 𝐴 is a null set 

Define  ℎ𝑛(𝑥) = {
𝑓𝑛(𝑥),   𝑥 ∉ 𝐴
0,         𝑥 ∈ 𝐴

 , then if 𝑥 ∉ 𝐴 implies 𝑓𝑛(𝑥) = ℎ𝑛(𝑥) ⟹ 

lim𝑛→∞ 𝑓𝑛(𝑥) = lim
𝑛→∞

ℎ𝑛(𝑥) ⟹ 𝑓(𝑥) = ℎ(𝑥) implies that {ℎ𝑛} convergenc pointwise to ℎ on 𝛺. 

Also ℎ𝑛 ∈ 𝐿 for all 𝑛. Hence ℎ ∈ 𝐿. Consequently 𝑓 ∈ 𝐿. 

Theorem 2.3 
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Let (𝛺, 𝐿, 𝐷)  be a Daniell space and let  𝑓, 𝑓𝑛 ∈ 𝐿, 𝑛 ∈ ℕ, if 𝑓𝑛
𝑎.𝑒.
→ 𝑓 then 

(1)  𝑓𝑛 is a Cauchy a.e. 

(2) If 𝑔 ∈ 𝐿 and 𝑓𝑛
𝑎.𝑒.
→ 𝑔 then 𝑓 = 𝑔 a.e. 

(3) If 𝑔 ∈ 𝐿 and 𝑓 = 𝑔 a.e. then 𝑓𝑛
𝑎.𝑒.
→ 𝑔 

(4) If 𝑔𝑛 ∈ 𝐿 and 𝑓𝑛 = 𝑔𝑛 𝑎. 𝑒. then 𝑔𝑛
𝑎.𝑒.
→ 𝑓 

Proof: Let 𝐴 = {𝑥 ∈ Ω: 𝑙𝑖𝑚𝑛→∞ 𝑓𝑛(𝑥) ≠ 𝑓(𝑥)} , 𝐴 ⊆ Ω. 

(1)  Since 𝑓𝑛
𝑎.𝑒.
→ 𝑓 then 𝐷(|𝐼𝐴|) = 𝐷(𝐼𝐴) = 0 and 𝑓𝑛(𝑥) → 𝑓(𝑥) on 𝐴𝑐 then 𝑓𝑛(𝑥) is a Cauchy 

sequence for all 𝑥 ∈ 𝐴𝐶 , there fore 𝑓𝑛 is a Cauchy sequence. 

(2)  Since 𝑓𝑛
𝑎.𝑒.
→ 𝑓  then 𝐷(|𝐼𝐴|) = 𝐷(𝐼𝐴) = 0  and 𝑓𝑛(𝑥) → 𝑓(𝑥)  on 𝐴𝑐 , since 𝑓𝑛

𝑎.𝑒.
→ 𝑔  then 

there exist  𝐵 = {𝑥 ∈ Ω: 𝑙𝑖𝑚𝑛→∞ 𝑓𝑛(𝑥) ≠ 𝑔(𝑥)}, 𝐵 ⊆ Ω such that 𝐷(𝐼𝐵) = 0 and 𝑓𝑛(𝑥) → 𝑔(𝑥) 
for all 𝑥 ∈ 𝐵𝑐. 
Let 𝐶 = 𝐴 ∪ 𝐵 ⟹ 𝐼𝐶=𝐴∪𝐵 = 𝐼𝐴 + 𝐼𝐵 − 𝐼𝐴∩𝐵 = 𝐼𝐴 + 𝐼𝐵 − (𝐼𝐴. 𝐼𝐵) ⟹ 𝐷(𝐼𝐶) = 𝐷(𝐼𝐴) + 𝐷(𝐼𝐵) −
𝐷(𝐼𝐴. 𝐼𝐵) = 0 , and for any 𝑥 ∈ 𝐶𝑐𝑓𝑛(𝑥) → 𝑓(𝑥), 𝑓𝑛(𝑥) → 𝑔(𝑥) , then 𝑓(𝑥) = 𝑔(𝑥) ∀𝑥 ∉ 𝐶 

implies that 𝑓 = 𝑔 𝑎. 𝑒. 

(3)  Since 𝑓𝑛
𝑎.𝑒.
→ 𝑓 then 𝐷(|𝐼𝐴|) = 𝐷(𝐼𝐴) = 0 and 𝑓𝑛(𝑥) → 𝑓(𝑥) ∀∉ 𝐴

𝑐, 𝑓 = 𝑔 a.e., then there 

exist  𝐵 = {𝑥 ∈ Ω: 𝑓(𝑥) ≠ 𝑔(𝑥)}, 𝐵 ⊆ Ω such that  

𝐷(𝐼𝐵) = 0  and 𝑓(𝑥) = 𝑔(𝑥)  for all 𝑥 ∉ 𝐵 . Let 𝐶 = 𝐴 ∪ 𝐵 ⟹ 𝐼𝐶=𝐴∪𝐵 = 𝐼𝐴 + 𝐼𝐵 − 𝐼𝐴∩𝐵 = 𝐼𝐴 +
𝐼𝐵 − (𝐼𝐴. 𝐼𝐵) ⟹ 𝐷(𝐼𝐶) = 

𝐷(𝐼𝐴) + 𝐷(𝐼𝐵) − 𝐷(𝐼𝐴. 𝐼𝐵) = 0, and ∀𝑥 ∉ 𝐷 lim𝑛→∞ 𝑓𝑛(𝑥) = 𝑓(𝑥) = 𝑔(𝑥), 

So lim𝑛→∞ 𝑓𝑛(𝑥) = 𝑔(𝑥)∀𝑥 ∉ 𝐷. Therefore 𝑓𝑛
𝑎.𝑒.
→ 𝑔. 

(4) Since 𝑓𝑛
𝑎.𝑒.
→ 𝑓 then 𝐷(|𝐼𝐴|) = 𝐷(𝐼𝐴) = 0 and 𝑓𝑛(𝑥) → 𝑓(𝑥) on 𝐴𝑐, and  

     𝑓𝑛 = 𝑔𝑛 𝑎. 𝑒., let 𝐵𝑛 = {𝑥 ∈ Ω: 𝑓𝑛(𝑥) ≠ 𝑔𝑛(𝑥)} be a sequence in Ω such that 𝑓𝑛(𝑥) = 𝑔𝑛(𝑥) 

∀𝑥 ∉ 𝐵𝑛  and 𝐷(𝐼𝐵𝑛) = 0 , let 𝐶 = 𝐴 ∪ (⋃ 𝐵𝑛𝑛 )  then 𝐼𝐶=𝐴∪(⋃ 𝐵𝑛)
∞
𝑛=1

= 𝐼𝐴 + 𝐼⋃ 𝐵𝑛
∞
𝑛=1

−

𝐼𝐴∩(⋃ 𝐵𝑛
∞
𝑛=1 ) = 𝐼𝐴 + 𝐼⋃ 𝐵𝑛

∞
𝑛=1

− (𝐼𝐴. 𝐼⋃ 𝐵𝑛
∞
𝑛=1

), then  

𝐷(𝐼𝐶) =  𝐷(𝐼𝐴) + 𝐷(𝐼⋃ 𝐵𝑛
∞
𝑛=1

) − 𝐷(𝐼𝐴. 𝐼⋃ 𝐵𝑛
∞
𝑛=1

) = 0 , and  ∀𝑥 ∉ 𝐶 , lim𝑛→∞ 𝑔𝑛(𝑥) =

𝑙𝑖𝑚𝑛→∞ 𝑓𝑛(𝑥) = 𝑓(𝑥). So 𝑔𝑛(𝑥) → 𝑓(𝑥) ∀𝑥 ∉ 𝐶. Therefore 𝑔𝑛
𝑎.𝑒.
→ 𝑓. 

Theorem 2.4  

Let (𝛺, 𝐿, 𝐷)  be a Daniell space and let  𝑓, 𝑓𝑛 ∈ 𝐿, 𝑛 ∈ ℕ, 𝑎𝑛𝑑 𝜆 ∈ ℝ, 

 if 𝑓𝑛
𝑎.𝑒.
→ 𝑓, 𝑎𝑛𝑑 𝑔𝑛

𝑎.𝑒.
→ 𝑔 then 

(1) 𝜆𝑓𝑛
𝑎.𝑒.
→ 𝜆𝑓 

(2) 𝑓𝑛 + 𝑔𝑛
𝑎.𝑒.
→ 𝑓 + 𝑔 

(3) |𝑓𝑛|
𝑎.𝑒.
→ |𝑓| 

Proof: 
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(1) Since 𝑓𝑛
𝑎.𝑒.
→ 𝑓  then there exist 𝐴 = {𝑥 ∈ Ω: 𝑓𝑛(𝑥) ≠ 𝑓(𝑥)} such that  𝐷(|𝐼𝐴|) = 𝐷(𝐼𝐴) =

0 𝑎𝑛𝑑 𝑓𝑛(𝑥) → 𝑓(𝑥)∀𝑥 ∉ 𝐴, then  𝜆𝑓𝑛(𝑥) → 𝜆𝑓(𝑥)∀𝑥 ∉ 𝐴 there fore 𝜆𝑓𝑛(𝑥)
𝑎.𝑒.
→ 𝜆𝑓(𝑥)∀𝑥 ∉ 𝐴.  

(2) Since 𝑓𝑛
𝑎.𝑒.
→ 𝑓 and 𝑔𝑛

𝑎.𝑒.
→ 𝑔 then the sets 𝐴 = {𝑥 ∈ Ω: 𝑙𝑖𝑚𝑛→∞ 𝑓𝑛(𝑥) ≠ 𝑓(𝑥)} , 𝐴 ⊆ Ω and 

𝐵 = {𝑥 ∈ Ω: 𝑙𝑖𝑚𝑛→∞ 𝑔𝑛(𝑥) ≠ 𝑔(𝑥)}  , 𝐵 ⊆ Ω  are null set, and 𝑓𝑛(𝑥) → 𝑓(𝑥)∀𝑥 ∉ 𝐴  and 

𝑔𝑛(𝑥) → 𝑔(𝑥)∀𝑥 ∉ 𝐵. 
     Let 𝐶 = 𝐴 ∪ 𝐵 ⟹ 𝐼𝐶=𝐴∪𝐵 = 𝐼𝐴 + 𝐼𝐵 − 𝐼𝐴∩𝐵 = 𝐼𝐴 + 𝐼𝐵 − (𝐼𝐴. 𝐼𝐵) ⟹      𝐷(𝐼𝐶) = 𝐷(𝐼𝐴) +
𝐷(𝐼𝐵) − 𝐷(𝐼𝐴. 𝐼𝐵) = 0  implies that 𝑓𝑛(𝑥) → 𝑓(𝑥)  and 𝑔𝑛(𝑥) → 𝑔(𝑥) for all 𝑥 ∈ 𝐶𝑐 , so that 

𝑓𝑛(𝑥) + 𝑔𝑛(𝑥) → 𝑓(𝑥) + 𝑔(𝑥) for all 𝑥 ∈ 𝐶𝑐 . Therefore 𝑓𝑛 + 𝑔𝑛
𝑎.𝑒.
→ 𝑓 + 𝑔. 

(3)  Since 𝑓𝑛
𝑎.𝑒.
→ 𝑓 then there exist 𝐴 = {𝑥 ∈ Ω: 𝑓𝑛(𝑥) ≠ 𝑓(𝑥)} such that  𝐷(|𝐼𝐴|) = 𝐷(𝐼𝐴) =

0 𝑎𝑛𝑑 𝑓𝑛(𝑥) → 𝑓(𝑥)∀𝑥 ∉ 𝐴, implies that  

(4) |𝑓𝑛(𝑥)| → |𝑓(𝑥)| ∀𝑥 ∉ 𝐴. Therefore |𝑓𝑛|
𝑎.𝑒.
→ |𝑓|. 

 

Theorem 2.5 

Let (𝛺, 𝐿, 𝐷)  be a Daniell space and let  𝑓, 𝑓𝑛, 𝑔 ∈ 𝐿, 𝑛 ∈ ℕ such that 𝑓𝑛
𝑎.𝑒.
→ 𝑓 then  

(1) If 𝑓𝑛 ≥ 0 a.e. then 𝑓 ≥ 0 a.e. 

(2)  If 𝑓𝑛 ≤ 𝑔 a.e. for eah n then 𝑓 ≤ 𝑔 a.e. 

(3) If |𝑓𝑛| ≤ |𝑔| a.e. then |𝑓| ≤ |𝑔|a.e. 

(4) If 𝑓𝑛 ≤ 𝑓𝑛+1 for each n, then 𝑓𝑛 ↑ 𝑓 a.e. 

Proof: 

Since 𝑓𝑛
𝑎.𝑒.
→ 𝑓 then there is a set 𝐴 = {𝑥 ∈ Ω: 𝑙𝑖𝑚𝑛→∞ 𝑓𝑛(𝑥) ≠ 𝑓(𝑥)}, 𝐴 ⊆ Ω. 

such that  𝐷(|𝐼𝐴|) = 𝐷(𝐼𝐴) = 0 𝑎𝑛𝑑 𝑓𝑛(𝑥) → 𝑓(𝑥)∀𝑥 ∉ 𝐴. 

(1) Since 𝑓𝑛 ≥ 0 a.e. then there exist 𝐵𝑛 = {𝑥 ∈ Ω: 𝑓𝑛(𝑥) < 0}, 𝐵𝑛 ⊂ Ω, such that 𝐷(𝐼𝐵𝑛) = 0 

and 𝑓𝑛(𝑥) ≥ 0 for all 𝑥 ∉ 𝐵𝑛. 

Let 𝐶 = 𝐴 ∪ (⋃ 𝐵𝑛)
∞
𝑛=1  and 𝐼𝐶=𝐴∪(⋃ 𝐵𝑛𝑛 ) = 𝐼𝐴 + 𝐼⋃ 𝐵𝑛𝑛

− 𝐼𝐴∩(⋃ 𝐵𝑛𝑛 ) = 𝐼𝐴 + 𝐼⋃ 𝐵𝑛
∞
𝑛=1

−

(𝐼𝐴. 𝐼⋃ 𝐵𝑛
∞
𝑛=1

), then 𝐷(𝐼𝐶) =  𝐷(𝐼𝐴) + 𝐷(𝐼⋃ 𝐵𝑛
∞
𝑛=1

) − 𝐷(𝐼𝐴. 𝐼⋃ 𝐵𝑛
∞
𝑛=1

) = 0 implies hat 𝐷(𝐼𝐶) = 0, 

then for any 𝑥 ∉ 𝐶  

𝑓(𝑥) = 𝑙𝑖𝑚𝑛→∞ 𝑔𝑛(𝑥) ≥ 0 therefore 𝑓 ≥ 0 𝑎. 𝑒.   

(2) Since 𝑓𝑛 ≤ 𝑔 a.e. ⟹ 𝑔− 𝑓𝑛 ≥ 0 𝑎. 𝑒. and since 𝑓𝑛
𝑎.𝑒.
→ 𝑓 then 

𝑔 − 𝑓𝑛
𝑎.𝑒.
→ 𝑔 − 𝑓, by (1) 𝑔 − 𝑓 ≥ 0 a.e. then 𝑓 ≤ 𝑔. 

(3) Since 𝑓𝑛
𝑎.𝑒.
→ 𝑓 then |𝑓𝑛|

𝑎.𝑒.
→ |𝑓| and since |𝑓𝑛| ≤ |𝑔| by (2) |𝑓| ≤ |𝑔|a.e. 

(4)  Since 𝑓𝑛 ≤ 𝑓𝑛+1 a.e. for each n, then there exist 𝐸𝑛 =
{𝑥 ∈ Ω: 𝑓𝑛(𝑥) > 𝑓𝑛+1}, 𝐸𝑛 ⊂ Ω, such that 𝐷(𝐼𝐸𝑛) = 0 and 𝑓𝑛(𝑥) ≥ 𝑓𝑛+1(𝑥) for all 𝑥 ∉ 𝐸𝑛. 

Let 𝐹 = 𝐴 ∪ (⋃ 𝐸𝑛)
∞
𝑛=1  , then 𝐷(𝐼𝐹) = 0, and 𝑓𝑛(𝑥) ↑ 𝑓(𝑥) for all 𝑥 ∉ 𝐹 and 𝑓𝑛(𝑥) → 𝑓(𝑥) on 

𝐴𝑐, therefore 𝑓𝑛 ↑ 𝑓 a.e. 

Theorem 2.6 
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Let (𝛺, 𝐿, 𝐷)  be a Daniell space and let  𝑓, 𝑓𝑛, 𝑔, 𝑔𝑛 ∈ 𝐿, 𝑛 ∈ ℕ, then 

(1) If 𝑓𝑛
𝑎.𝑒.
→ 𝑓, 𝑔𝑛

𝑎.𝑒.
→ 𝑔 and 𝑓𝑛 = 𝑔𝑛 a.e. for all n, then 𝑓 = 𝑔 a.e. 

(2) If 𝑓𝑛
𝑎.𝑒.
→ 𝑓, 𝑓𝑛 = 𝑔𝑛 a.e. for all n, and 𝑓 = 𝑔 𝑎. 𝑒. then 𝑔𝑛

𝑎.𝑒.
→ 𝑔. 

Proof 

(1) Since 𝑓𝑛
𝑎.𝑒.
→ 𝑓 then there is a set 𝐴 = {𝑥 ∈ Ω: 𝑙𝑖𝑚𝑛→∞ 𝑓𝑛(𝑥) ≠ 𝑓(𝑥)}, 𝐴 ⊆ Ω. 

    such that  𝐷(|𝐼𝐴|) = 𝐷(𝐼𝐴) = 0 𝑎𝑛𝑑 𝑓𝑛(𝑥) → 𝑓(𝑥)∀𝑥 ∉ 𝐴, and 𝑔𝑛
𝑎.𝑒.
→ 𝑔  

    then there is 𝐵 = {𝑥 ∈ Ω: 𝑙𝑖𝑚𝑛→∞ 𝑔𝑛(𝑥) ≠ 𝑔(𝑥)} , 𝐵 ⊆ Ω is a null set,  

    and 𝑔𝑛(𝑥) → 𝑔(𝑥)∀𝑥 ∉ 𝐵, also 𝑓𝑛 = 𝑔𝑛 a.e. ⟹ there exist  

 𝐶𝑛 = {𝑥 ∈ Ω: 𝑓𝑛(𝑥) ≠ 𝑔𝑛(𝑥)}, 𝐶𝑛 ⊆ Ω , which is a null set for all n and   𝑓𝑛(𝑥) = 𝑔𝑛(𝑥) on 𝐶𝑛
𝑐
. 

Let 𝐷 = (𝐴 ∪ 𝐵) ∪ (⋃ 𝐶𝑛)
∞
𝑛=1  which is a null set,      𝑓(𝑥) = 𝑔(𝑥) = 𝑙𝑖𝑚𝑛→∞ 𝑓𝑛(𝑥) =

𝑙𝑖𝑚𝑛→∞ 𝑔𝑛(𝑥) = 𝑔(𝑥) for all 𝑥 ∉ 𝐷, so that 𝑓(𝑥) = 𝑔(𝑥)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∉ 𝐷. Therefore 𝑓 = 𝑔 𝑎. 𝑒. 

(2) Since 𝑓𝑛
𝑎.𝑒.
→ 𝑓 then there is a set 𝐴 = {𝑥 ∈ Ω: 𝑙𝑖𝑚𝑛→∞ 𝑓𝑛(𝑥) ≠ 𝑓(𝑥)}, 𝐴 ⊆ Ω. Such that 

 𝐷(|𝐼𝐴|) = 𝐷(𝐼𝐴) = 0 𝑎𝑛𝑑 𝑓𝑛(𝑥) → 𝑓(𝑥)∀𝑥 ∉ 𝐴 , and 𝑓𝑛 = 𝑔𝑛  a.e. for all n  ⟹  there 

exist  𝐵𝑛 = {𝑥 ∈ Ω: 𝑓𝑛(𝑥) ≠ 𝑔𝑛(𝑥)}, 𝐵𝑛 ⊆ Ω ,  

    which is a null set for all n and   𝑓𝑛(𝑥) = 𝑔𝑛(𝑥) on 𝐵𝑛
𝑐, also 𝑓 = 𝑔 𝑎. 𝑒 ⟹  

    there exist 𝐶 = {𝑥 ∈ Ω: 𝑓(𝑥) ≠ 𝑔(𝑥)} and 𝑓(𝑥) = 𝑔(𝑥)𝑜𝑛 𝐶𝑐 .  

    Let 𝐷 = 𝐴 ∪ 𝐶 ∪ (⋃ 𝐵𝑛
∞
𝑛=1 )  which is a null set, 𝑓(𝑥) = 𝑔(𝑥) = 𝑙𝑖𝑚𝑛→∞ 𝑓𝑛(𝑥) =

𝑙𝑖𝑚𝑛→∞ 𝑔𝑛(𝑥) for all 𝑥 ∉  𝐷, there fore 𝑔𝑛 → 𝑔 on 𝐷𝐶. Therefore 𝑔𝑛
𝑎.𝑒.
→ 𝑔 a.e. 

Theorem 2.7  

Let {𝑓𝑛} be  sequence in 𝐿, if (lim𝑛→∞𝐷( 𝑓𝑛)) < ∞ then 𝑓𝑛 converges a.e. 

Proof: let 𝑓(𝑥) = lim𝑛→∞ 𝑓𝑛 (𝑥), 𝑓 ∈ 𝐿 ⟹ 𝐷(𝑓) = 𝐷(𝑙𝑖𝑚𝑛→∞ 𝑓𝑛) = 𝑙𝑖𝑚𝑛→∞𝐷(𝑓𝑛) < ∞ 

Let 𝐴 = {𝑥 ∈ Ω: 𝑓(𝑥) ≠ 𝑙𝑖𝑚𝑛→∞ 𝑓𝑛 (𝑥)} and since 𝑓(𝑥) = lim𝑛→∞ 𝑓𝑛 (𝑥) on 𝐴𝑐 

There fore 𝑓𝑛 converges. 

3.Almost Uniformly Converence 

Let (𝛺, 𝐿, 𝐷)  be a Daniell space. A sequence {𝑓𝑛} in 𝐿 is said to be  

(1) converges almost uniformly to the function 𝑓 ∈ 𝐿, denoted by 𝑓𝑛
𝑎.𝑢.
→ 𝑓, if there is a null set 

𝐴 ⊆ 𝛺 such that 𝑓𝑛
𝑢
→𝑓 on 𝐴𝑐. 

(2){𝑓𝑛}  Cauchy almost uniformly, denoted by 𝑓𝑛  Cauchy a.u., if there is a null set 𝐴 ⊆
𝛺 such that 𝑓𝑛 Cauchy uniformly on 𝐴𝑐 . 
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Theorem 3.1 

Let (𝛺, 𝐿, 𝐷)  be a Daniell space and let 𝑓, 𝑓𝑛, 𝑔, 𝑔𝑛 ∈ 𝐿, 𝑛 ∈ ℕ, such that 𝑓𝑛
𝑎.𝑢.
→ 𝑓, then 

(1) Cauchy a.u. 

(2) If  𝑓𝑛
𝑎.𝑢.
→ 𝑔, then 𝑓 = 𝑔 a.e. 

(3) If 𝑓 = 𝑔 a.e., then 𝑓𝑛
𝑎.𝑢.
→ 𝑔 

(4) If 𝑓𝑛 = 𝑔𝑛 a.e. for all n, then 𝑔𝑛
𝑎.𝑢.
→ 𝑓 

(5) If 𝑓𝑛 = 𝑔𝑛 𝑎. 𝑒. for all n and 𝑓 = 𝑔 𝑎. 𝑒. then 𝑔𝑛
𝑎.𝑢.
→ 𝑔 

Proof: 

(1) since 𝑓𝑛
𝑎.𝑢.
→ 𝑓, then there is a null set 𝐴 ⊆ 𝛺 such that 𝑓𝑛

𝑢
→𝑓 on 𝐴𝑐, thus 𝑓𝑛 is uniformly 

Cauchy on 𝐴𝑐, therefore  𝑓𝑛 Cauchy a.u. 

(2) Since 𝑓𝑛
𝑎.𝑢.
→ 𝑓, then there is a null set 𝐴 ⊆ 𝛺 such that 𝑓𝑛

𝑢
→𝑓 on 𝐴𝑐, 

 𝑓𝑛
𝑎.𝑢.
→ 𝑔  then there is a null set 𝐵 ⊆ 𝛺  such that  𝑓𝑛

𝑢
→𝑔  on 𝐵𝑐 , 

𝑓𝑛(𝑥) → 𝑓(𝑥) uniformly for any 𝑥 ∉ 𝐴 and𝑓𝑛(𝑥) → 𝑔(𝑥)  

uniformly for any 𝑥 ∉ 𝐵. Let 𝐶 = 𝐴 ∪ 𝐵 then 𝐶 be a null set and  

      𝑓𝑛(𝑥) → 𝑓(𝑥), 𝑓𝑛(𝑥) → 𝑔(𝑥) uniformly for any 𝑥 ∉ 𝐶. Since 𝐶 is a null set and 𝑓(𝑥) = 𝑔(𝑥) 
for any 𝑥 ∉ 𝐶. Therefore 𝑓 = 𝑔 a.e. 

(3) Since 𝑓𝑛
𝑎.𝑢.
→ 𝑓 then there is a null set 𝐴 ⊆ 𝛺 such that  

𝑓𝑛
𝑢
→𝑓 on 𝐴𝑐  and  since 𝑓 = 𝑔 a.e. then there exist 𝐵 ⊂ Ω 

which is a null set and 𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 ∉ 𝐵. 

Let 𝐶 = 𝐴 ∪ 𝐵 then 𝐶 be a null set and 𝑓𝑛(𝑥) → 𝑓(𝑥) = 𝑔(𝑥) for any 𝑥 ∉ 𝐶 

and 𝑓𝑛(𝑥) → 𝑔(𝑥) uniformly. Therefore 𝑓𝑛
𝑎.𝑢.
→ 𝑔. 

(4) Since 𝑓𝑛
𝑎.𝑢.
→ 𝑓 then there is a null set 𝐴 ⊆ 𝛺 such that 𝑓𝑛

𝑢
→𝑓 on 𝐴𝑐 and  since 𝑓𝑛 = 𝑔𝑛 

a.e. for all n then there a sequence 𝐵𝑛 ⊂ 𝛺 and 𝐵𝑛 be a null set for each n such that 𝑓𝑛(𝑥) =
𝑔𝑛(𝑥) for all 𝑥 ∈ 𝐵𝑛

𝑐 . Let 𝐶 = 𝐴 ∪ (⋃ 𝐵𝑛
∞
𝑛=1 ) then 𝐶 be a null set and since 𝑔𝑛(𝑥) = 𝑓𝑛(𝑥) →

𝑓(𝑥) uniformly for any 𝑥 ∉ 𝐶. Therefore 𝑔𝑛(𝑥) → 𝑓(𝑥) uniformly for any 𝑥 ∉ 𝐶, thus 𝑔𝑛
𝑎.𝑢.
→ 𝑓. 

(5) Since  𝑓𝑛
𝑎.𝑢.
→ 𝑓 then for any 𝜀 > 0 then there is a null set 𝐴 ⊆ 𝛺 such that 

𝑓𝑛
𝑢
→𝑓 on 𝐴𝑐 and since  𝑓𝑛 = 𝑔𝑛 𝑎. 𝑒. for all n then  

there exist a sequence 𝐵𝑛 ⊂ 𝛺 and 𝐵𝑛 be a null set for each n such that 𝑓𝑛(𝑥) = 𝑔𝑛(𝑥) for all 

𝑥 ∈ 𝐵𝑛
𝑐. And 𝑓 = 𝑔 𝑎. 𝑒. then there exist 𝐶 ⊂ Ω 

which is a null set and 𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 ∉ 𝐶, let 𝐷 = 𝐶 ∪ (⋃ 𝐵𝑛
∞
𝑛=1 ) 
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then 𝐷  is a null set and 𝑔𝑛(𝑥) = 𝑓𝑛(𝑥) → 𝑓(𝑥) = 𝑔(𝑥) uniformly  for any 𝑥 ∉ 𝐷.  Therefore 

𝑔𝑛
𝑎.𝑢.
→ 𝑔. 

Theorem 3.2 

Let (𝛺, 𝐿, 𝐷) be a Daniell space and let 𝑓, 𝑓𝑛, 𝑔, 𝑔𝑛 ∈ 𝐿, 𝑛 ∈ ℕ 𝑎𝑛𝑑 𝜆 ∈ ℝ, such that 𝑓𝑛
𝑎.𝑢.
→ 𝑓 and 

𝑔𝑛
𝑎.𝑢.
→ 𝑔, then  

(1) 𝜆𝑓𝑛
𝑎.𝑢.
→ 𝜆𝑓 

(2) 𝑓𝑛 + 𝑔𝑛
𝑎.𝑢.
→ 𝑓 +𝑔 

(3) |𝑓𝑛|
𝑎.𝑢.
→ |𝑓| 

Proof 

(1) Since 𝑓𝑛
𝑎.𝑢.
→ 𝑓  then there is a null set 𝐴 ⊆ 𝛺  such that and 𝑓𝑛

𝑢
→𝑓  on 𝐴𝑐  this mean 

𝑓𝑛(𝑥) → 𝑓(𝑥) uniformly for all 𝑥 ∉ 𝐴, then 𝜆𝑓𝑛(𝑥) → 𝜆𝑓(𝑥) uniformly for all 𝑥 ∉ 𝐴. Therefore 

𝜆𝑓𝑛
𝑎.𝑢.
→ 𝜆𝑓. 

(2) Since 𝑓𝑛
𝑎.𝑢.
→ 𝑓  then there is a null set 𝐴 ⊆ 𝛺  such that 𝑓𝑛

𝑢
→𝑓  on 𝐴𝑐,  𝑓𝑛(𝑥) → 𝑓(𝑥) 

uniformly for all 𝑥 ∉ 𝐴 and since  𝑔𝑛
𝑎.𝑢.
→ 𝑔 then  there is a null set 𝐵 ⊂ Ω such that 𝑔𝑛

𝑢
→𝑔 on 

𝐵𝑐, 𝑔𝑛(𝑥) → 𝑔(𝑥) uniformly  

         for all 𝑥 ∉ 𝐵, let 𝐶 = 𝐴 ∪ 𝐵 then 𝐶 be a null set and   

       𝑓𝑛(𝑥) + 𝑔𝑛(𝑥) → 𝑓(𝑥) + 𝑔(𝑥) uniformly for all 𝑥 ∉ 𝐶.  

       Therefore 𝑓𝑛 + 𝑔𝑛
𝑎.𝑢.
→ 𝑓 +𝑔 

(3) Since 𝑓𝑛
𝑎.𝑢.
→ 𝑓  then there is a null set 𝐴 ⊆ 𝛺  such that 𝑓𝑛

𝑢
→𝑓  on 𝐴𝑐 ,  𝑓𝑛(𝑥) → 𝑓(𝑥) 

uniformly for all  𝑥 ∉ 𝐴  then |𝑓𝑛(𝑥)| → |𝑓(𝑥)|  uniformly for all  𝑥 ∉ 𝐴 . Therefore 

|𝑓𝑛|
𝑎.𝑢.
→ |𝑓|. 

4.Convergence In Norm 

Definition 4.1 

Let  (𝛺, 𝐿, 𝐷) be a Daniell space. A norm on 𝐿  is a function ‖∙‖: 𝐿 → ℝ which is defined by 
‖𝑓‖ = 𝐷(|𝑓|). The vector lattice 𝐿 together with ‖∙‖ is called a normed space in the Daniell 

space (𝛺, 𝐿, 𝐷)and is denoted by (𝐿, ‖∙‖). 

Remark  

 ‖∙‖ need not be norm since if ‖𝑓‖ = 0 need not to be 𝑓 = 0  only if 𝑓 = 0 𝑎. 𝑒., that is 
‖∙‖ is a semi-norm but not a norm. 

 the space of equivalent class in 𝐿 is a normed space which is denoted by  (ℒ, ‖∙‖) and 
‖[𝑓]‖ = 𝐷(|𝑓|).  
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Definition 4.2 

Let (𝛺, 𝐿, 𝐷) be a Daniell space and let 𝑓, 𝑓𝑛 ∈ 𝐿, 𝑛 ∈ ℕ, we say that 

(1) 𝑓𝑛 converges in norm to 𝑓, denoted by 𝑓𝑛
𝑖.𝑛.
→ 𝑓 , if  ‖𝑓𝑛 − 𝑓‖ → 0 as 𝑛 → ∞ 

(2) {𝑓𝑛} is a cauchy in norm , denoted by 𝑓𝑛 Cauchy i.n., if  
‖𝑓𝑛 − 𝑓𝑚‖ → 0 as 𝑛,𝑚 → ∞. 

Theorem 4.3 

Let (𝛺, 𝐿, 𝐷) be a Daniell space and let 𝑓, 𝑓𝑛, 𝑔, 𝑔𝑛 ∈ 𝐿, 𝑛 ∈ ℕ 𝑎𝑛𝑑 𝜆 ∈ ℝ, such that 𝑓𝑛
𝑖.𝑛.
→ 𝑓 and 

𝑔𝑛
𝑖.𝑛.
→ 𝑔, then 

(1)  𝑓𝑛 Cauchy a.u 

(2) 𝜆𝑓𝑛
𝑖.𝑛.
→ 𝜆𝑓 

(3) 𝑓𝑛 + 𝑔𝑛
𝑖.𝑛.
→ 𝑓 + 𝑔 

(4) |𝑓𝑛|
𝑖.𝑛.
→ |𝑓| 

(5) 𝐷(𝑓𝑛)
𝑖.𝑛.
→ 𝐷(𝑓) 

Proof 

(1)  Since 𝑓𝑛
𝑖.𝑛.
→ 𝑓  then ‖𝑓𝑛 − 𝑓‖ = 𝐷(|𝑓𝑛 − 𝑓|) → 0 as 𝑛 → ∞  implies that  𝑓𝑛  Cauchy 

sequence in norm. 

(2) Since 𝑓𝑛
𝑖.𝑛.
→ 𝑓 then ‖𝑓𝑛 − 𝑓‖ = 𝐷(|𝑓𝑛 − 𝑓|) → 0 as 𝑛 → ∞, 

since 𝜆‖𝑓𝑛 − 𝑓‖ = ‖𝜆𝑓𝑛 − 𝜆𝑓‖ = 𝐷(|𝜆𝑓𝑛 − 𝜆𝑓|) ) → 0 as 𝑛 → ∞.  

therfore 𝜆𝑓𝑛
𝑖.𝑛.
→ 𝜆𝑓 

(3) Since 𝑓𝑛
𝑖.𝑛.
→ 𝑓 then ‖𝑓𝑛 − 𝑓‖ = 𝐷(|𝑓𝑛 − 𝑓|) → 0 as 𝑛 → ∞ and since 𝑔𝑛

𝑖.𝑛.
→ 𝑔 then ‖𝑔𝑛 −

𝑔‖ = 𝐷(|𝑔𝑛 − 𝑔|) → 0 as 𝑛 → ∞ therefore 

‖(𝑓𝑛 + 𝑔𝑛) − (𝑓 + 𝑔)‖ = 𝐷(|(𝑓𝑛 + 𝑔𝑛) − (𝑓 + 𝑔)|) 
= 𝐷(|(𝑓𝑛 − 𝑓) + (𝑔𝑛 − 𝑔)|) ≤ 𝐷(|𝑓𝑛 − 𝑓|) + 𝐷(|𝑔𝑛 − 𝑔|) → 0 𝑎𝑠 𝑛 → ∞, 

    then ‖(𝑓𝑛 + 𝑔𝑛) − (𝑓 + 𝑔)‖ → 0 𝑎𝑠 𝑛 → ∞. Therefore 𝑓𝑛 + 𝑔𝑛
𝑖.𝑛.
→ 𝑓 + 𝑔 

(4)  Since 𝑓𝑛
𝑖.𝑛.
→ 𝑓 then ‖𝑓𝑛 − 𝑓‖ = 𝐷(|𝑓𝑛 − 𝑓|) → 0 as 𝑛 → ∞ then 

      ‖|𝑓𝑛| − |𝑓|‖ = 𝐷(||𝑓𝑛| − |𝑓||) ≤ 𝐷(|𝑓𝑛 − 𝑓|) → 0 𝑎𝑠 𝑛 → ∞  then       ‖|𝑓𝑛| − |𝑓|‖ →

0 𝑎𝑠 𝑛 → ∞ Therefore |𝑓𝑛|
𝑖.𝑛.
→ |𝑓|. 

(5)  Since  𝑓𝑛
𝑖.𝑛.
→ 𝑓 then ‖𝑓𝑛 − 𝑓‖ = 𝐷(|𝑓𝑛 − 𝑓|) → 0 as 𝑛 → ∞ then  

‖𝐷(𝑓𝑛) − 𝐷(𝑓)‖ = |𝐷(𝑓𝑛) − 𝐷(𝑓)| = |𝐷(𝑓𝑛 − 𝑓)| ≤ 𝐷(|𝑓𝑛 − 𝑓|) → 0 as 𝑛 → ∞ . 

Therefore 𝐷(𝑓𝑛)
𝑖.𝑛.
→ 𝐷(𝑓). 
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Theorem 4.4  

Let (𝛺, 𝐿, 𝐷) be a Daniell space and let 𝑓, 𝑓𝑛, 𝑔 ∈ 𝐿 , if 𝑓𝑛
𝑖.𝑛.
→ 𝑓 then 𝑓𝑛

𝑖.𝑛.
→ 𝑔 if and only if 𝑓 =

𝑔 a.e. 

Proof 

 (⟹) Let  𝑓𝑛
𝑖.𝑛.
→ 𝑔 and since 𝑓𝑛

𝑖.𝑛.
→ 𝑓 then 𝑓𝑛 − 𝑓𝑛

𝑖.𝑛.
→ 𝑓 − 𝑔 implies that ‖𝑓 − 𝑔‖ = 𝐷(|𝑓 − 𝑔|) =

𝐷(|𝑓𝑛 − 𝑓𝑛 − 𝑓 + 𝑔|) ⟶ 0 as 𝑛 ⟶ ∞⟹ 𝐷(|𝑓 − 𝑔|) = 0 ⟹ 𝑓 = 𝑔 𝑎. 𝑒. 

(⟸)  Let 𝑓 = 𝑔 a.e. then ‖𝑓𝑛 − 𝑔‖ = 𝐷(|𝑓𝑛 − 𝑔|) = 𝐷(|𝑓𝑛 − 𝑔 − 𝑓 + 𝑓|) ≤ 𝐷(|𝑓𝑛 − 𝑓|) +

𝐷(|𝑓 − 𝑔|) = 𝐷(|𝑓𝑛 − 𝑓|)) ⟶ 0 as 𝑛 ⟶ ∞. Therefore 𝑓𝑛
𝑖.𝑛.
→ 𝑔. 

Theorem 4.5 

Let (𝛺, 𝐿, 𝐷) be a Daniell space and let 𝑓 ∈ 𝐿 and 𝑓 = lim𝑛→∞ 𝑓𝑛, then 𝑓𝑛
𝑖.𝑛.
→ 𝑓 

Proof: 

Let 𝜀 > 0 ,since 𝑓 = lim𝑛→∞ 𝑓𝑛  there is 𝑘 ∈ ℤ+ such that |𝑓𝑛 − 𝑓| < 𝜀  for all 𝑛 ≥ 𝑘,  then 

𝐷(|𝑓𝑛 − 𝑓|) < 𝜀 for all 𝑛 ≥ 𝑘. There fore 𝑓𝑛
𝑖.𝑛.
→ 𝑓. 
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