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1. Introduction  

The first to introduce the concept for the standard was the Austrian scientist E. Helly 

(1844-1943), but he did not use the name of the standard nor its symbol, it was known as whichever 
function that fulfills certain conditions. Spaces of Banach are named following after the Stefan Banach 
(Polish mathematician), who in 1920-1922 familiarized such concept and considered it analytically 
joining Hans Hahn and Eduard Helly. Al- Mayahi, introduced [3] a description of topological  space 
being linear and lattice  metric as invariant. See also [1], [2], [8], [9] and[10], they presented 
description of lattice normed space. They presented in[5] and [6],  define of lattice Frechet space, 
lattice semenorm, lattice normable, open and  ball being closed in lattice norm. In[9], and [7]. They 
introduced the description of  F-normed space,  Δ normed space and quasi normed space. Sharma and 
Vasishtha presented [4] the description of  space of Banach, space being modular, lattice  functional 
being convex, lattice symmetric, and Minkowski’s functional. our paper, we provide description, 
proposition, remarks, formula and example for above concept. 

2. Basic Concepts  

2.1 Space as metric of Lattice being Linear 

Metric space being linear is a metrizable topological space being linear. A 
is supposed as metrizable when a lattice metric d is there on X that is well-
case, the balls of radius 1/n  fixed at x form a resident base at x . 

Description (2.1) [1]: 

Suppose X is a  space being linear over F  and suppose d be a function as lattice  metric on X. It can 
be said that d is a lattice  metric as invariant on X, when d(x+z,y+z)= d(x,y) for all x,y,z ∈X. Bulleted 
lists may be included and should look like this: 

Remark: 

d(-x,0)+d(x,0)  Ɐx ∈X, 

Since  d(-x,0)=d(-x+x,0+x)=d(0,x)+d(x,0) 

Formula (2.2): 
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Suppose X be a space being linear over F and suppose d be an metric as invariant on X. 

 

 d(nx,0)≤nd(x,0) for every x∈X and for n=1,2,3,…. 

 When n=2 

 d(nx,0)=d(2x,0)=d(x+x,0)=d(3x,0) 

2) When{x_n } is an order in X and when x_n→0 as n→∞, after that +ve scalar are there 𝝀𝒏→∞ and 
𝒙 𝒏𝝀𝒏→0,  in which n→∞.  

Evidence 

d(nx,0)≤∑ 𝑑(𝑘𝑥, (𝑘 − 1)𝑥)𝑛
𝑘=1  =nd(x,0). 

Since 𝑥 𝑛→0⟹ an increasing +ve integer sequence is there {𝑛k } 

Thus d(𝑥 𝑛,0)<1/k^2,   when n≥ 𝑛k . Place 𝜆k ={
1 
𝑘

          𝑛<𝑛𝑘
𝑛𝑘≤𝑛≤𝑛𝑘+

 

For such "n , we have d(λnxn, 0) = kd(xn, 0) <
1

k
 . Therefore λnxn → 0 in which n → ∞. 

Description (2.3) [1]: 

  Suppose τ be a Topology say that τ is a Topology on X when it fulfills the axioms as follow: 

1. ϕ ,xϵτ 

2. When A1, A2, A3, … , Anϵτ, afterthat  ⋂ 𝐴𝑛
𝑖=1  iϵꚍ. 

3. When Aλϵτ for all λϵ ∧, afterthat Ս Aλϵꚍ. 

Description(2.4)[6]: 

1) A topological  space being linear X with ꚍ topology  is named a lattice  F-space when its ꚍ 
topology is inducing an invariant as complete d . 

2)  A topological space being linear X is named lattice Fréchet space when X is a locally convex 
lattice F-space. 

3) A space being polish is separable complete space as metric of lattice. 

Description(2.5)[6]: 

       Suppose X be a  space being linear over F . A Lattice Δ - norm on X is a function ‖.‖ :X→E taking 

the properties as follow: 
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a. ‖x‖>0 for all x∈X ,x≠0. 

b. ‖λx‖≤‖x‖ Ɐx∈X, and Ɐ0<|ℷ |<1 . 

c. lim(λ→0)‖λx‖=0  , Ɐx∈X . 

d. ‖x+y‖≤c max{‖x‖,‖y‖} for whole x,y∈X,where c>0 is independent of x ,y  

Remark 

1) When . is a  lattice Δ - norm on X , afterthat it induces on X a linear ꚍ topology that is metrizable  

2) A local base β of 0 is set by the form sets 𝐵𝑛 ={ x∈X:‖x‖<1/n},i.e. 

 β={ Bn : n ∈ N∗},where 𝐵𝑛 ={ x∈X:‖x‖<1/n}. 

3) An order xn  in X converges to x ∈ X whenf ‖xn − x‖ → 0. 

4) When  is a topology on X with a local countable base  ={
n 

} Thus n
n 

= {0}, every 
n 

 is 

balanced and 
n+1 

+ 
n+1 

⊂ 
n 

. Afterthat we can define a  - norm on by  ‖x‖ = sup {2−n: x ∉  
n 

}  

and the  - norm induces the original topology ; here c= 2. 

5) When ‖. ‖ is whichever lattice F- norm on X , afterthat d(x,y) = ‖x − y‖ is lattice  metric as 
invariant on X. 
 Description(2.6)[7]: 

1) A lattice Δ- norm ‖.‖ on X is named a lattice F-norm when it fulfills   ‖x+y‖≤‖x‖+‖y‖ for whole x,y∈X. 

2) A lattice Δ - norm ‖.‖ on X is named a lattice quasi-norm when it fulfills ‖λx‖=|λ|‖x‖ for λ∈F and 

x∈X. 

Formula(2.7) 

Suppose . be whichever lattice Δ - norm on X .Choose p so that 2^(1/p)=c. After that for whichever 

 𝑥1,𝑥2,..,𝑥𝑛 ∈X, we get 

‖𝑥1+𝑥2+..+𝑥𝑛 ‖≤4^(1/p) (∑ ‖𝑥𝑖‖p𝑛
𝑖=1 )^(1/p)  

Evidence:                                                                                                                          

  By induction when n=1 ‖x_1 ‖≤4^(1/p)  ‖𝑥1‖  

We assume it is true when n=k  

‖𝑥1+𝑥2+..+𝑥𝑘 ‖ ≤4^(1/p)(∑ ‖𝑥𝑖‖p𝑛
𝑖=1 )^(1/p)  

And we proved when n=k+1 

‖𝑥1+𝑥2+..+𝑥𝑘+𝑥𝑘+1) ‖≤4^(1/p)( ∑ ‖𝑥1 + 𝑥2+. . +𝑥𝑘‖p + ‖𝑥𝑘+1‖p𝑘+1
𝑖=1 (∑ ‖𝑥𝑖‖

p𝑛
𝑖=1 )^(1/p) 

Formula(2.8)  

- norm on X , after that when p is chosen so that 2^(1/p)=c , the 

formal 
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‖x‖=inf‖x‖ = inf {∑ ‖xi‖
pn

i=1 : ∑ xi
n
i=1 = x}, define a lattice F- norm on X given the identical 

topology . 

Evidence: Simply note 1/4 ‖x‖^p≤ |(‖x‖)|≤ ‖x‖^p. 

Corollary (2.9) 

Suppose X is a Hausdorff topological space being linear with a countable local base of 0 . Afterthat X 

is amortizable and the topology may be given a metric as invariant. 

Remark 

Every metrizable topological space being linear X able to be embedded as a lattice linear dense sub-

space F- Space Y. The construction of Y is simply to the normal metric space complete of X regarding 

a metric as invariant and extend the space being linear operations in the clear way. The space Y 

obtained in this way is unique; it is not depending on the particular metric as invariant choice. 

Formula(2.10) 

When M is closed sub-space of a lattice F- Space X , after that X\ M is a lattice F-Space . 

Evidence : 

Suppose M is closed sub-space of a metrizable topological linear spec ,after that M lattice F-space, 

after that X\ M is also metrizable . 

Description (2.11) [11]: 

             Suppose X is a space being linear over a field 𝔽.  

              A function M: X → E̅ is named a modular on X when staffing the axioms as follow:  

1. M(x) ≥ 0 for whole x ∈ X. 

2. M(x) = 0 ⟺ x = 0 for whole x ∈ X. 

3. M(ℷx) = M(x)  for all x ∈ X and for whole ℷ ∈ 𝔽 with |ℷ| = 1.  

4. M(αx + βy) ≤ M(x) + M(y)  when f α , β ≥ 0 , for whole x,y ∈ X. 

When (4) replaced by  

5. M(αx + βy) ≤ αM(x) + βM(y) , for whole x,y ∈ X, α, β ≥ 0 with α +  β = 1 . It can be said 

M is a convex modular. 

   This shows M is increasing function 

 A modular M describes an equivalent space being modular  such as, the liner space      

XM given by XM = { x ∈ X ∶  M(ℷx) → 0 whenever ℷ → 0 } . 

Example (2.12):  

Suppose X = E along M(x, y) = |x| + |y| , for whichever pair (x, y) in X, after that XM is  lattice space 

being modular  . Where x⎸ = x+ + x−  

Solution:  

1. Suppose (x, y) ∈ X, since |x| + |y| ≥ 0 ,after that M(x, y) ≥ 0 . 

2. Suppose (x, y) ∈ X , after that  M(x, y) = 0  ⟺ |x| + |y| = 0 ⟺ x = y = 0 . 
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3. Suppose (x, y) ∈ X and λ, ∈ 𝔽 with |λ| = 1, after that λ(x, y)= (λx, λy)= M( λ(x, y)) 

            = |λx| + |λy| = |λ||x| + |λ||y| = |x| + |y| = M(x, y) = 0 .  

4. Suppose (x1, y1), (x2, y2) ∈ X and α, β ≥ 0, after that α(x1, y1) + β(x2, y2) = 

(αx1 + βx2,αy1, βy2) = M(α(x1, y1) + β(x2, y2) = |αx1 + βx2| + |αy1, βy2| ≤ |α|(|x1| +

             |y1|) + |β|(|x2| + |y2|) ≤ (|x1| + |y1|) + (|x2| + |y2|). 

M(α(x1, y1) + β(x2, y2)) ≤  M(x1, y1)+M(x2, y2). 

Formula(2.13)  

     Every lattice space being modular  is space as metric of lattice. 

Evidence: 

Suppose XM  is a space being modular . Describe dM: X × X → E by d(x,y) = M(x-y) for whole x, y ∈

X. 

 Suppose x, y ∈ X ⟹ x − y ∈ X (Since X is a space being linear) ⟹ M(x − y) ≥ 0 

⟹ dM(x, y) ≥ 0. 

1. Suppose x, y ∈ X,⟹ d(x, y) = 0 ⟺ M(x − y) = 0 ⟺ x − y = 0 ⟺ x = y. 

2. Suppose x, y ∈ X, d(x, y) = M(x − y) = M(−(y − x)) = M(y − x) = d(y, x). 

3. Suppose x, y , z ∈ X, M(x − y) = M((x − z) + (z − y)) ≤ M(x − z) + M(z − y) 

⟹  d(x, y) = d(x, z) + d(z, y). 

It is following in which d is a metric on X , and such metric is named the lattice metric induced 

through the modular. It is clear to show that 

When Suppose x, y , z ∈ X, λ ∈ 𝔽,after that 

1. d(x + z, y + z) =  d(x, y). 

2. d(λx, λy) = d(x, y), when |λ| = 1. 

3. M(x) = d(x, 0). 

Remark 

Whichever lattice space being modular  is a topological space being linear, Furthermore, it is space of 

Hausdorff. 

 Description (2.14)[11]: 

Suppose  XM be a space being modular  

1. The ball being open along the center x0 ∈ XM  and r radius > 0 signified by βr (x0) and define 

as βr (x0)  = {x ∈ XM : M(x − x0) < r} . 

2. A sub-set A of  XM  is said to be bounded when  daimM  (A) < ∞, where daimM  (A) =

sup {M(x − y): x, y ∈ A} is named the diameter of A . 

3. An order {xn} in XM is converge to the x point ∈ XM  , 
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when  limn→∞ M(xn − x) = 0,i.e. when for every ∀ε > 0 , ∃ k ∈ Z+ ∋ M(xn − x) < ε   ∀ n ≥ k  

and can be written limn→∞ xn = x or xn → 0 as n → ∞ . It is following that of xn → x when f   

M(xn − x) → 0. 

4.   sequence of Cauchy  in X, when∀ε > 0, ∃ k ∈ Z+ ∋  M(xn − xm) < ε   ∀ n , m ≥ k. 

5. XM is named complete when every  sequence of Cauchy in XM is converge to XM point.  

 Lattice Semi-normed spaces  

In mathematics, principally in analysis as functional, a lattice semi-norm is a space being linear norm 

which require not be +ve definite. Lattice Semi-norms are closely connected with sets as convex, 

every lattice semi-norm is the functional of Minkowski of few absorbing disk and, contrariwise, the 

Minkowski functional of whichever set is a lattice semi-norm. A topological space being linear is 

locally convex when f its topology is induced through a lattice semi-norms family. 

Description (2.15) [6]: 

 A lattice semi-norm on X is a function  p: X → E with the follow  

1. P is subadditivity triangle inequality, i.e.  p(x + y)  ≤ p(x) + p(y) for whole 

x, y ∈ X. 

2. P is +vely homogeneous (homogeneity being absolute), i.e.  

p(λx) = |λ|p(x) for whole x∈ X and for all  λ ∈ 𝔽. 

Remarks 

1) An  F family of lattice semi-norms on is thought to be separated when to every x ≠ 0 

Corresponds as a minimum 1 p ∈ F along p(x) ≠ 0. 

2) When condition (2) of above Description replace by p(λx) = λp(x) for whole x∈ X and for all  

λ ≥ 0 it can be said p is a sub-linear functional on X. 

3) A lattice semi-norm p on a  space being linear X is a  lattice norm when p−1({0}) = {0} ,i.e. 

when p(x) = 0. Implies x= 0 

4) A sub-linear function f on a real  space being linear X is a lattice semi-norm whenf f(−x) =

f(x) for all x∈ X. 

5) Every sub-linear function f on a real  space being linear X induces a lattice semi-norm  

p: X → E defined by p(x) = max {f(x), f(−x)} for all x∈ X. 

6) Whichever finite sum of a lattice semi-norm is a lattice semi-norm. 

7) p: X → E and q: X → E are 2 lattice semi-norm, after that the function 

 r: X × X → E defined by r(x,y)= p(x) + q(y) for whole (x,y) ∈ X × Y is a lattice semi-norm 

on X × Y. 

8) p: X → E and q: X → E are two  lattice semi-norm. 
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Definition (2.16)[11] 

1. A sub-linear  p: X → E is named a  lattice  functional being convex when p(x) ≥ 0 for all 

x∈ X 

2. A functional being convex p: X → E is said to be lattice symmetric when we have p(λx) =

|λ|p(x) for whole x∈ X and for all  λ ∈ F. 

Example (2.17) 

1. The trivial lattice semi-norm on a space being linear X, which refers to the constant 0 function 

on X, inducing the topology as indiscrete on X. 

2. When f is whichever linear on a space being linear X, after that the function p: X → ℝ definite 

via p(x) = |f|(x) for all x∈ X be a lattice semi-norm. 

3. Suppose X= E . Describe p: X → E by p(x)=  ∑ |xi|
n
i=1  for whole x = (x1, … , xn) ∈ E. 

After that P is a sub-linear functional on X and functional being convex. 

4. Suppose X= E and Suppose M is a sub-space of X .Define pM: X → E by 

pM(x) = inf {‖x − y, ‖: y ∈ M}.for whole x∈ X where‖. ‖ is the Euclidian . 

a) When d(M) ≥ 1, after that pM is a lattice semi-norm and not a lattice norm. 

b) When M = {0}, after that pM(x) = ‖x‖ for whole x∈ X. 

5.  Suppose X is a  space being linear where it is defined as non-negative sesquilinear Hermitian 

form B: X × X → F After that the function pB(x) = √B(x, x) 

be a  lattice semi-norm. pB is a norm when f B is +ve definite (i.e. B(x, x) > 0 for whole x ≠

0). 

Formula (2.18) 

Suppose p is a lattice semi-norm on a  space being linear X . After that 

1. p(x) = 0. 

2. p(-x) = p(x) for all x∈ X. 

3. p(y-x) = p(x-y) for whole x, y ∈ X. 

4.  |p(x) − p(y)| ≤ p(x − y) for whole x, y ∈ X. 

5. P(x) ≥ 0 for whole x∈ X . 

6. The set N(p)={ x∈ X: p(x) = 0} is sub-space of X. 

7. The set A={ x∈ X: p(x) < 1} is convex, absorbing and balanced set. 

8. p is a norm when it fulfills the case p(x) ≠ 0 when x ≠ 0. 
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Evidence: 

(1) ,(2) and (3) straight from description 

4) x=(x-y)+y ⟹ p(x) = p((x − y) + y ) ≤ p(x − y) + p(y) 

p(x) −  p(y) ≤ p(x − y)……(1)   Also  − p(x − y) ≤  p(x) −  p(y)..(2) 

From(1) and (2) , we nave − p(x − y) ≤  p(x) −  p(y) ≤ p(x − y). 

|p(x) −  p(y)| ≤ p(x − y). 

5. As long |p(x) −  p(y)| ≤ p(x − y)for whole x, y ∈ X 

Have y = 0 ⟹ |p(x)| ≤ p(x)for all x ∈ X 

Since |p(x)| ≥ 0 ⟹ p(x) ≥ 0 , for whole x ∈ X. 

6. p(x) = 0 ⟹ 0 ∈ N(p) ⟹ N(p) ≠ ∅ 

Suppose x,y ∈ N(p) and α, β ∈ 𝔽 ⟹ p(x) = 0 , p(y) = 0 

p(αx + βy) ≤ p(αx) + p(βy) ≤ |α|p(x) + |β|p(y) = 0 

⟹ p(αx + βy) ≤ 0.Since x,y ∈ N(p) and α, β ∈ 𝔽 , and X be space of vector, after that 

αx + βy ∈ X ⟹ p(αx + βy) ≥ 0, p(αx + βy) = 0 

αx + βy ∈ N(p) ⟹ N(p) is sub-space. 

7. (a) Suppose x,y ∈ A and 0 ≤ ℷ ≤ 1, afterthat p(x) < 1 , p(y) < 1 

P(ℷx + (1 − ℷ)y)  ≤ p(ℷx) + p((1 − ℷ)y) = |ℷ| p(x) + |1 − ℷ|p(y) 

ℷ p(x) + (1 − ℷ )p(y) Since p(x) < 1 , p(y) < 1 

⟹ ℷ p(x) < 1, (1 − ℷ )p(y) < 1 − ℷ 

ℷ p(x) + (1 − ℷ )p(y) < ℷ + (1 − ℷ) = 1  

⟹  p(ℷx + (1 − ℷ )y) < 1, (ℷx + (1 − ℷ)y) ∈ A, ⟹ A be convex. 

(b)  Suppose  ℷ ∈ 𝔽,with |ℷ| ≤ 1 

Suppose x∈ ℷA ⟹ x = ℷy where y ∈ A ⟹ p(y) < 1 

Since p(x) = p(ℷy) = |ℷ|p(y) and |ℷ| ≤ 1, p(y) < 1 

|ℷ|p(y) < 1 ⟹  p(x) < 1 ⟹ x ∈ A ⟹ ℷA ⊂ A ⟹ A be balanced. 

(b) Suppose x∈ X Suppose p(x) < ℷ ⟹ ℷ > 0 ⟹  p(ℷ−1x) < 1 ⟹ ℷ−1x ∈ A 

x ∈ ℷA ⟹A is absorbing. 

2.3Minkowski' Functional 

lattice Semi-norms on space being linear are related strongly to a special functional kind, i.e. 

functional of Minkowski. Suppose we are investigating in details additional relation. Notice that still 

we are in the realm of space being linear without topology. 
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Description (2.19)[11]: 

Suppose A be a sub-set of a  space being linear X over 𝔽 .The functional μA: X → ℝ by 

μA(x) = inf {ℷ > 0: x ∈ ℷA} for whole x ∈ X. is named the Minkowski’s functional (or gauge) of A 

.(where μA(x) = ∞ when {ℷ > 0: x ∈ ℷA} = ∅). 

It is clear to show that following Formula  

Formula (2.20) 

Suppose A be an absorbing sub-set of a  space being linear X over 𝔽. Afterthat 

1. μA(x) < ∞ , for whole x ∈ X Since that A is an absorbing. 

2. When x ∈ ℷA, after that μA(x) ≤ ℷ .In distinctive case when  y ∈ μA(x)A ,afterthat μA(y) ≤

μA(x). 

3. Whenx ∉ ℷA, for fewℷ > 0, after that  μA(x) ≥  ℷ. 

4. When A is open in topological space being linear X, after that ℷA = { x ∈ X: μA(x)  < ℷ}. 

Formula (2.21) 

Suppose P is a  lattice semi-norm on a  space being linear X over 𝔽 .When A = { x ∈ X: }, 

After that p = μA. 

Evidence: 

Since A is convex , absorbing, balanced  X set∈ X .Since A is absorbing, there exists ℷ > 0 Thus 

x ∈ ℷA ⟹ μA(x) ≤ ℷ and ℷ−1x ∈ A ⟹ p(ℷ−1x) < 1 

⟹  p(x) < ℷ, so that μA < p , since P semi-norm, after that p(x) ≥ 0, there exist 

α Thus 0 < α ≤ p(x) ⟹  p(α−1x) ≥ 1 ⟹ α−1x ∉ A, therefore p(x) ≤ μA(x) 

⟹ p ≤ μA. Therefore p = μA. 

Formula (2.22) 

Suppose A is a convex absorbing set in a  space being linear X over 𝔽  . Describe 

HA(x) = {ℷ > 0: x ∈ ℷA} for whole x ∈ X.When α ∈ HA(x), afterthat β ∈ HA(x), 

For whole β > α. 

Evidence: 

Sinceα ∈ HA(x) ⟹ x ∈ αA ⟹ α−1x ∈ A, Since A is a convex and 0, α−1x ∈ A, after that β−1x =

β−1(β − α)(0) + β−1 α(α−1x) ∈ A ⟹ x ∈ βA ⟹ β ∈ HA(x). 

Formula (2.23) 

Suppose A is a convex absorbing set in a  space being linear X over  𝔽. After that 

1. μAis a sub-linear functional. 
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2. When  B ={x ∈ X: μA(x) < 1 } and C = {x ∈ X: μA(x) ≤ 1 }, after that B⊂ A⊂ C.  μ𝐁 = μA =

μC. 

3. When A is balanced, after that μA is a lattice semi-norm. 

Evidence: 

1. Suppose x, y ∈ X for whole ε > 0 there exits ℷ1 ∈ HA(x) and ℷ2 ∈ HA(x) such  
  ℷ1 < μA(x) + ε and ℷ2 < μA(y) + ε , after that (μA(x) + ε) ∈ HA(x) and (μA(y) + ε) ∈                 

HA(y),x ∈ ( μA(x) + ε)A and y ∈ ( μA(y) + ε)A 
    ( μA(x) + ε)−1x ∈ A and ( μA(y) + ε)−1y ∈ A  

        Placeℷ = (μA(x) + ε)(μA(x) + μA(y) + 2ε)−1 ⟹ 0 < ℷ < 1, since A is convex, 
         ℷ ( μA(x) + ε)−1x + (1 − ℷ)( μA(y) + ε)−1y ∈ A ⟹ (μA(x) + μA(y) + 2ε)−1(x + y)  ∈ A .It       

is obvious to show that   
μA(0) = 0.Suppose x ∈ X for all α > 0 , after that μA(αx) = inf {ℷ > 0: αx ∈ ℷA} = inf {ℷ >
0: x ∈ α−1ℷA} =  α inf {α−1ℷ: x ∈ α−1ℷA, ℷ > 0} = αμA(x) . 

3. Since A is a balanced set, after that β−1A = A for whole β ∈ 𝔽 Thus |β| = 1 
       Hence {ℷ > 0: αx ∈ ℷA} = {ℷ > 0: |α|x ∈ ℷA} ⟹ μA(αx) = |α|μA(x) ⟹ μA is a lattice semi-

norm. 
Example (2.24) 
Suppose A be an absorbing sub-set of a  space being linear X over 𝔽 . the Minkowski’s functional of A 
is a  lattice -norm on X. More than lattice quasi-norm. 
Evidence:  
Suppose μA be the Minkowski’s functional of A, after that  μA: X → E  defined by 

μA(x) = inf {ℷ > 0: x ∈ ℷA} for whole x ∈ X. 

Description (2.25) [11]: 

Suppose X is a  space being linear over field 𝔽 . 

1.  A function p: X → E is named a lattice quasi semi-norm when it is (completely) homogeneous 

and there occurs few b≤ 1 Thus p(x + y) ≤  bp(x) −  p(y) for all x y∈ X. The smallest b 

value where such holds is named the p multiplier. 

2. A lattice quasi semi-norm which is separating points is named a lattice quasi norm on X . 

3. A function p: X → E is named a lattice k -semi-norm when it is sub-additive and there occurs a 

k. Thus 0 > b ≤ 1 and for whole x y∈ X and such scalars  , p(x) = |x|kp(x). 

4. A lattice k -semi-norm which is separating points is named k -norm on X. 

2.3 Lattice Normed Spaces   
 
The first to introduce the concept for the standard was the Austrian scientist E. Helly 
(1844 - 1943), but he did not use the name of the standard nor its symbol, it was known as whichever 
function that fulfills certain conditions (the same conditions of the standard).  
Description (2.26) [1]: 

 A norm on X is a function ‖. ‖: X → E of the properties as follow  

a. ‖x‖ ≥ 0 for whole x ∈ X. 
b. ‖x‖ = 0 when and just when x = 0. 
c. ‖λx‖ = |λ|‖x‖ for only λ ∈ 𝔽 and x ∈ X. 
d. ‖x + y‖ ≤ ‖x‖ + ‖y‖ for whole x, y ∈ X. 
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The X linear over 𝔽 collected with ‖. ‖ is named a normed space and is signified via (X, ‖. ‖)  or simply 
X . 

A norm  ‖. ‖  on a space being linear X is said to be strictly convex when  ‖x + y‖ = ‖x‖ + ‖y‖ only 
when x and y linearly independent. 

Remarks 

1.  Every sub-space of lattice normed space is as well lattice normed space. 
2.  (X, ‖. ‖1)  and (Y, ‖. ‖2)are  lattice normed spaces, after that(X × Y, ‖. ‖)   is  lattice normed 

space where ‖(x, y)‖ = max {‖x‖, ‖y‖} for whole (x, y) ∈ X × Y. 
3. Every lattice normed space is space as metric of lattice. Therefore every lattice normed space 

is a metric as invariant space. 
4. When ‖. ‖1 and ‖. ‖2 are two lattice norms on a space being linear X. Afterthat ‖. ‖1~ ‖. ‖2 , 

when f there exists +ve real numbers a and b Thus a‖x‖1 ≤ ‖x‖2 ≤ b‖x‖1 
For all x ∈ X. 

5. On a dimensional finite space being linear whole lattice norms are equivalent. 
Remark 
As long each lattice normed space is space as metric of lattice and each  space as metric  of lattices is 
a topological space, after that every lattice normed space is topological space. βr (x0) is x0 
neighborhood. This topology is named a lattice norm topology on X, and the space X is named the 
lattice normed topological space. 

Description (2.27)[6] 
A topological  space being linear X is so called a lattice normable when a norm occurs on X Thus the 
metric induced by the  lattice norm is well-matched  with  . 

Description (2.28)[6] 
Suppose X be lattice normed space 

1. The ball being open  along center x0 ∈ X and r radius > 0 denoted through βr (x0) and define 
as βr (x0)  = {x ∈ X: ‖x − x0‖ < r} and the  ball being closed be βr̅ (x0)  = {x ∈
X: ‖x − x0‖ ≤ r}. 

2. A sub-set A of X is said to be an open set when given whichever point x ∈ A , there exists 
r > 0 thus βr (x) ⊆ A. 

3. A sub-set A of  X is so called as bounded when  there occurs k > 0 Thus‖x‖ ≤ k. For Ɐ   
x ∈ A. 

4. An order {xn} in X is converge to the point x ∈ X  , 
when  limn→∞‖xn − x‖ = 0, such as when for every ∀ε > 0 , ∃ k ∈ Z+ ∋ ‖xn − x‖ < ε   ∀ n ≥ k  

and we are writing limn→∞ xn = x or xn → 0 as n → ∞ . It is following that  
xn → x when f   ‖xn − x‖ → 0. 
5.   sequence of Cauchy  in X, when∀ε > 0, ∃ k ∈ Z+ ∋  ‖xn − xm‖ < ε   Ɐ n , m ≥ k. 

Remarks 

1. βr (x0) = x0 + βr (0) = x0 + rβ1 (0). 

2. Each open and ball being closed in lattice normed space are convex. 

3. The lattice norm ‖. ‖ on X is a continuous function. 

4.  The addition of vector and multiplication of scalar are together continuous. 

5.  Every lattice normed space X is topological space being linear. 

Example(2.29) 

Each lattice normed space is convex locally.    

Evidence: 

Suppose (X, ‖. ‖) be a lattice normed space, after that X is topological space being linear. 

Suppose β = {βr (0) ∶ r > 0} in whichβr (x0)  = {x ∈ X: ‖x‖ < r}. 

Suppose G be an open set in X , after that G is the combination of ball being open s, so 0∈ βr (0)  ⊂ G. 
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For few r > 0 , after that β is a base as local at 0 in X. As long each ball being open is convex set, after 
that βr (0) is convex set for whole r > 0 , after that β is a local convex base at 0 in X. 
Therefore (X, ‖. ‖)  is convex locally space. 

 2.4  Banach lattice space 

   Space of Banach is a complete normed space. Therefore, a space of Banach is a space 
being linear with, a metric which permits the vector distance and length computation 
between vectors and is complete where vectors sequence of Cauchy  converges always to a 
well-defined boundary" which is within the space. Spaces of Banachs are named following 
Stefan Banach (Polish mathematician) who familiarized such concept and in 1920–1922 
systematically studied it jointly with Hans Hahn and Eduard Helly. Maurice René Fréchet 
was the 1

st
 to utilizee the space of Banach term and Banach in line after that created the 

Fréchet space” term. Space of Banachs grew out originally of the function spaces study 
through Hilbert, Fréchet, and Riesz former in the century.  Space of Banachs is of a crucial 
role in functional analysis. In other analysis areas, the spaces under study are frequently 
space of Banachs. 

Description (2.30) [5]: 

A lattice normed space X is named complete when each  sequence of Cauchy  in X is converging to an 

X point. A complete lattice normed space is named a space of Banach 

Formula (2.31) 

Suppose M be a sub-space of Banach lattice   space X, after that M is Banach lattice space when f it is 

closed in X. 

Evidence: 

Suppose M is Banach lattice space ⟹ M is complete space. Suppose x  M, an order {xn} is there in M 
Thus xn→x, Therefore {xn} is a sequence of Cauchy in M.                                                                                             
As long M is complete, there is y   M Thus xn→y, nonetheless the converge is exclusive ⟹ y = x ⟹
x  M ⟹ M ⊑ M, after that M is closed.                                                                                                              
Conversly. Suppose that M is a closed set in X.                                                                                                                
Suppose {xn} be a sequence of Cauchy in M.                                                                                                 
As long M ⊑ X ⟹ {xn} is a sequence of Cauchy in X.                                                                         
 As long M is complete space, there is x  X. Thus xn→x.                                                                                                       
As long xn M ⟹   x M.                                                                                                                    
As long M is a closed set in X, after that M= M ⟹x  M⟹{xn} is  sequence of converge in M, after 
that M is complete space. 
Formula (2.32) 

Each dimensional as finite lattice norm space is complete. 

Evidence  

Suppose X be finite dimensional lattice normed space with dim X = n > 0 and Suppose {x1, x2….xn} 
be abasis for X. Suppose {yn} be whichever sequence of Cauchy  in X. 

 ║ym − yi ║ → 0 as m,l→ …….(1).  

Since ym, yi ∈ X ⟹ ym=∑ ג
im

Xi , גim
 ∈ F and yi=∑ ג

i1
Xi ,גi1

∈ F ⟹ym − yi=∑ ג
i1 ,גi1

)xi 

Since {x1,…..xn} is independently linear via linear combination of lemma, there is c >0 Thus  

║ym − yi ║=║ ∑ ג
i1 ,גi1

)xi║ ≥c∑ |ג
im

ג-
i1

|                ……..(2) 
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From (1) and (2), we have ∑ |ג
im

ג-
i1

| →0 as m, l→ɪα for i=1,2…..n                                                                 
for i=1,2….n ⟹{ג

im
} is  sequence of Cauchy  in F. As long F is either R or C and every R, C are 

complete⟹ גi€F Thus ג
im

→ ג  i. Place y=∑גixi ,⟹ym→y,  y∈ X ⟹X is complete. 

Corollary (2.33) 

Each dimensional finite sub-space M of lattice normed space X is closed. 

Evidence: 

As long M is a dimensional finite sub-space of a lattice normed space X ⟹M be a complete space 

⟹M is closed. Notice that, dimensional infinite sub-space of space of Banach required no closing. 

Example (2.34)  

Suppose X=c[0,1] and Suppose M=[{f0,f1,…..}] where fi(x)=x
i 

  so that M is the set of whole 
polynomials. M is a dimensional infinite sub-space of X nonetheless not closed in X. 

Display that X\M is as well space of Banach. 

Example (2.34)  

Suppose X=c[0,1] and Suppose M=[{f0,f1,…..}] where fi(x)=x
i 

  so that M is the set of whole 
polynomials. M is a dimensional infinite sub-space of X nonetheless not closed in X. 

Display that X\M is as well space of Banach. 

References 
 

[1]Abd, S., "On Invariant Best Approximation in Space being modular s", M.S.C. Thesis, University of Baghdad, 

(2018). 

[2] Bilik, Dmitriy, Vladimir Kadets, Roman Shvidkoy, Gleb Sirotkin, and Dirk Werner. "Narrow Operators on 

Vector-Valued Sup-Normed Spaces." Illinois Journal of Mathematics 46, no. 2 (2002): 421-4. 

[3]Al- Mayahi. N.F, Introduction in Mathematical analysis, Al- Qadisiyah University, (2015). 

[4]Chen, R. Wang, X.," Fixed point of nonlinear contraction in space being modular s" J.  of Iraq. And Appl. (2013). 

[5] Goffman, Caspar, and George Pedrick. A First Course in Functional Analysis. Vol. 319: American Mathematical 

Soc., 2017. 

[6]Johnson, William B, Bernard Maurey, Gideon Schechtman, and Lior Tzafriri. Symmetric Structures in Banach 

Spaces. Vol. 217: American Mathematical Soc., 1979. 

[7]Lindenstrauss, Joram, and Lior Tzafriri. "Classical Banach Spaces I, Ergeb. Math. Grenzgeb. 92." Springer, 

Berlin-New York 10 (1977): 978-3. 

[8]Pliev, Marat. "Narrow Operators on Lattice-Normed Spaces." Open Mathematics 9, no. 6 (2011): 1276-87. 

Sharma J.N & Vasishtha A.R,”Introduction To Functional Analysis .(1975). 

[9]Teschl, Gerald. "Topics in Linear and Nonlinear Functional Analysis." American Mathematical Society  (2020). 

[10] Teschl, Gerald. "Topics in Real and Functional Analysis." unpublished, available online at http://www. mat. 

univie. ac. at/~ gerald  (1998). 


