Subordination Result for new subclass of Regular Univalent Functions

Authors Names	ABSTRACT
Mohammed H. Saloomi	The objective of present work is to introduce new classes $(MO)_{\mu\lambda}^{\alpha,\gamma}(\beta)$ and discuss
Publication data: 18 /12 /2023	the sufficient conditions for $\hbar(t)$ which are given by using coefficient inequality. Several new consequences of subordination for this subclass are pointed out,
<i>Keywords:</i> Regular function, univalent Regular function, convolution, subordination, subordination factor sequence	which are new and not yet studied.

1. Introduction and Standard Result

Let Å be symbolize the class of functions in the shape

$$\hbar(t) = t + \sum_{n=2}^{\infty} \mathcal{E}_n t^n . \qquad \dots (1.1)$$

and regular in the disk $\hat{E} = \{t: |t| < 1\}$ and normalized by $\hbar(0) = 0$ and $\hbar'(0) = 1$.

Furthermore, by ξ we shall symbolize the class of functions in Å which are univalent in \hat{E} . Let $C(\xi)$ and $S^*(\xi)$ be class of convex and starlike functions of order ξ respectively where $0 \le \xi < 1$. If we put $\xi = 0$, then C and S^* represent the class of convex, starlike functions respectively. Given two functions \hbar , \hat{k} in Å such that,

$$\mathbf{k}(t) = t + \sum_{n=2}^{\infty} \nu_n t^n \,,$$

the convolution $\hbar(t) * \hat{\kappa}(t)$ is defined by

$$\hbar(t) * \hat{\kappa}(t) = t + \sum_{n=1}^{\infty} \mathcal{E}_n v_n t^n, \quad t \in \hat{E}.$$

A regular function $\hbar(t)$ is subordinate to regular function $\hat{k}(t)$ if there exists a regular function $\psi(t)$ in \hat{E} satisfying $\psi(0) = 0$ and $|\psi(t)| < 1$ ($t \in \hat{E}$) such that

$$\hbar(t) = k(\psi(t))$$
 for all $t \in \hat{E}$,

we, denote this subordination by

 $\hbar(t) \prec \hat{\mathbf{k}}(t)$

In special, when $\hat{k}(t)$ is univalent in \hat{E} ,

$$\hbar(t) \prec \hat{k}(t) \leftrightarrow \hbar(0) = \hat{k}(0) \text{ and } \hbar(\hat{E}) \subset \hat{k}(\hat{E}).$$

The concept of subordination can be found in [1]. Also several authors have defined different subclasses of univalent regular functions by using the concept of subordination such as [2,3,4,].

In [5] for sequence of complex numbers $\{\mathcal{E}_k\}$. This sequence is said to be subordination factor sequence if whenever $\hbar(t)$ is convex and regular univalent in \hat{E} , then

$$\sum_{1}^{\infty} \Theta_k \mathcal{E}_k t^k < \hbar(t) \text{ where } (t \in \hat{E}, \mathcal{E}_1 = 1)$$
(1.2)

To discuss fundamental results, we shall introduce the following

Lemma (1.1)[6]: Let $\{\Theta_k\}$ be sequence in \mathbb{C} . Then this sequence $\{\Theta_k\}$ is subordinating factor sequence if and only if

$$\mathcal{R}e\{1+2\sum_{k=2}^{\infty}\Theta_k t^k\} > 0, (t \in \hat{E})$$
(1.3)

Many authors have investigated subordination results and obtained sufficient conditions for functions in some subclasses of (see [7,8,9]). So it will be the aim of this work to get a several conditions and Interesting properties for functions related to this subclass $(MO)_{u,\lambda}^{\alpha,\gamma}(\beta)$.

2. Sufficient Conditions for the Function Class $(MO)^{\alpha\gamma}_{\mu\lambda}(\beta)$

Motivated by earlier works on differential subordination [7,8,9] we, introduce the next definition:

Definition (2.1): For $0 \le \alpha \le 1$, $0 < \beta \le 1$, $-1 \le \mu \le 1$, $0 \le \lambda \le 1$ and $0 \le \gamma \le 1$

A function in (1.1) belong to family $(MO)_{\mu\lambda}^{\alpha,\gamma}(\beta)$ if it satisfies

$$\left|\frac{\hbar'(t) + t\hbar''(t)}{\alpha[\hbar'(t) + t\hbar''(t)] - \mu\hbar'(t) - (1 - \lambda)(1 - \mu)\gamma\hbar'(t)}\right| < \beta \text{ , for all } t \in \hat{\mathrm{E}}.$$

In this part of our work, we will prove a sufficient condition for regular functions in \hat{E} to be in $(MO)^{\alpha,\gamma}_{\mu\lambda}(\beta)$. Also we shall prove some results of subordination for this class $(MO)^{\alpha,\gamma}_{\mu\lambda}(\beta)$.

Theorem 2.2: Let $\hbar(t) \in \hat{A}$ given in (1.1) and satisfies the following relation

$$\sum_{n=2}^{\infty} [1 + n^2 - \beta(\alpha n^2 + \{\mu + (1 - \lambda)(1 - \mu)\gamma\})] |\mathcal{E}_n| \le \beta [\alpha - \mu - (1 - \lambda)(1 - \mu)\gamma], \text{ where}$$
$$0 \le \alpha \le 1, 0 < \beta \le 1, -1 \le \mu \le 1, 0 \le \lambda \le 1, \text{ and } 0 \le \gamma \le 1.$$

Then \hbar in the class $(MO)_{\mu,\lambda}^{\alpha,\gamma}(\beta)$.

Proof: Assume the next inequality hold

$$\sum_{n=2}^{\infty} [1 + n^2 - \eta (\alpha n^2 + \{\mu + (1 - \lambda)(1 - \mu)\gamma\})] |a_n| \le \eta [\alpha - \mu - (1 - \lambda)(1 - \mu)\gamma].$$

its suffices to prove that

$$\begin{aligned} \left| \frac{h'(t) + th''(t)}{\alpha[h'(t) + th''(t)] - \mu h'(t) - (1 - \lambda)(1 - \mu)\gamma h'(t)} \right| < \beta \text{ for all } t \in \hat{E} \\ \left| \frac{h'(t) + th''(t)}{\alpha[h'(t) + th''(t)] - \mu h'(t) - (1 - \lambda)(1 - \mu)\gamma h'(t)} \right| = \\ \frac{1 + \sum_{n=1}^{\infty} n^{2} \mathcal{E}_{n} t^{n-1}}{\alpha[1 + \sum_{n=1}^{\infty} n^{2} \mathcal{E}_{n} t^{n-1}] - \mu - \mu \sum_{n=1}^{\infty} n \mathcal{E}_{n} t^{n-1} - (1 - \lambda)(1 - \mu)\gamma \sum_{n=1}^{\infty} n \mathcal{E}_{n} t^{n-1}} \\ < \frac{1 + \sum_{n=1}^{\infty} n^{2} |\mathcal{E}_{n}|}{\alpha[1 + \sum_{n=1}^{\infty} n^{2} |\mathcal{E}_{n}|] - \mu - \mu \sum_{n=1}^{\infty} n |\mathcal{E}_{n}| - (1 - \lambda)(1 - \mu)\gamma \sum_{n=1}^{\infty} n |\mathcal{E}_{n}|} \le \beta \\ 1 + \sum_{n=1}^{\infty} n^{2} |\mathcal{E}_{n}| \le \beta \{ [\alpha + \alpha \sum_{n=1}^{\infty} n^{2} |\mathcal{E}_{n}|] - \mu - \mu \sum_{n=1}^{\infty} n |\mathcal{E}_{n}| - (1 - \lambda)(1 - \mu)\gamma - (1 - \lambda)(1 - \mu)\gamma \sum_{n=1}^{\infty} n |\mathcal{E}_{n}| \} \\ 1 + \sum_{n=1}^{\infty} n^{2} |\mathcal{E}_{n}| - \beta [\alpha \sum_{n=1}^{\infty} n^{2} |\mathcal{E}_{n}| + \mu \sum_{n=1}^{\infty} n |\mathcal{E}_{n}| + (1 - \lambda)(1 - \mu)\gamma \sum_{n=1}^{\infty} n |\mathcal{E}_{n}|] \le \beta(\alpha - \mu - (1 - \lambda)(1 - \mu)\gamma) \end{aligned}$$

Journal of Iraqi Al-Khwarizmi (JIKh) Volume:7 Issue:2 Year: 2023 pages: 172-176

$$\sum [1 + n^2 - \beta \{\alpha n^2 + n(\mu + (1 - \lambda)(1 - \mu)\gamma)\}] |\mathcal{E}_n| \le \beta [\alpha - \mu - (1 - \lambda)(1 - \mu)\gamma]$$

Thus, the last step is equivalent to our condition in this theorem. Thus, the proof is complete. Another important result provides subordination result involving the function $class(MO)^{\alpha,\gamma}_{\mu,\lambda}(\beta)$. Theorem (2.3): If the function $\hbar(t)$ of the form (1.1) is in the $class(MO)^{\alpha,\gamma}_{\mu,\lambda}(\beta)$ and the following increasing sequence

$$\{|n-\beta+1|+|n-\beta-1|-2\alpha(n-1)\}_{n=2}^{\infty}, \text{ for all } n \ge 2,$$

then for any univalent function $\hat{k}(t) \in C$ and $t \in \hat{E}$
$$\frac{5-2\beta|2\alpha+\mu+(1-\lambda)(1-\mu)\gamma|}{2[7-2\beta|2\alpha+\mu+(1-\lambda)(1-\mu)\gamma|-\beta|\alpha+\mu+(1-\lambda)(1-\mu)\gamma|]} (\hbar * \hat{k})(t) < \hat{k}(t) \dots$$
(2.1)

where $0 \le \alpha \le 1, 0 < \beta \le 1, -1 \le \mu \le 1, 0 \le \lambda \le 1$ and $0 \le \gamma \le 1$

and

$$\mathcal{R}e\hbar(t) > -\frac{7-2\beta|2\alpha+\mu+(1-\lambda)(1-\mu)\gamma|-\beta|\alpha+\mu+(1-\lambda)(1-\mu)\gamma}{5-2\beta|2\alpha+\mu+(1-\lambda)(1-\mu)\gamma|} \qquad \dots (2.2)$$

The factor which is constant in the subordination (2.1).

$$\frac{5-2\beta|2\alpha+\mu+(1-\lambda)(1-\mu)\gamma|}{2[7-2\beta|2\alpha+\mu+(1-\lambda)(1-\mu)\gamma|-\beta|\alpha+\mu+(1-\lambda)(1-\mu)\gamma|]}$$

cannot be changed by another greater than it. It is the best chosen. Proof: Let $\hbar(t) \in (MO)_{\mu,\lambda}^{\alpha,\gamma}(\beta)$ and suppose that

$$\hat{\mathbf{k}}(t) = t + \sum v_n t^n \in C.$$

Assume

$$\varrho_n = 1 + n^2 - \beta |\alpha n^2 + [\mu + (1 - \lambda)(1 - \mu)\gamma]|.$$

The assertion (2.1) become

$$\frac{\varrho_2}{2[\varrho_2+\varrho_1]} \quad (\hbar * \hat{k})(t) \prec \hat{k}(t). \tag{2.3}$$

Then we readily have

$$\frac{\varrho_2}{2[\varrho_2 + \varrho_1]}(\hbar * k)(t) = \frac{\varrho_2}{2[\varrho_2 + \varrho_1]} [t + \sum_{2}^{\infty} \mathcal{E}_n \nu_n t^n]. \qquad \dots (2.4)$$

Accordingly, and through (1.2), the confirmation of the subordination result (2.3) is true if $\{\frac{\varrho_2 \mathcal{E}_n}{2[\varrho_2 + \varrho_1]}\}_1^{\infty}$ is a subordination factor sequence, with $\mathcal{E}_1=1$.

By using Lemma (1.1) this is equivalent to the condition

$$\mathcal{R}e\left[1+\sum_{1}^{\infty}\frac{\varrho_{2}\mathcal{E}_{n}}{\varrho_{2}+\varrho_{1}}t^{n}\right] > 0, t \in \hat{E}, \qquad \dots(2.5)$$

$$\mathcal{R}e\left[1+\sum_{1}^{\infty}\frac{\varrho_{2}\mathcal{E}_{n}}{\varrho_{2}+\varrho_{1}}t^{n}\right] = \mathcal{R}e\left\{1+\frac{\varrho_{2}}{\varrho_{2}+\varrho_{1}}t+\frac{1}{\varrho_{2}+\varrho_{1}}\sum_{2}^{\infty}\varrho_{2}\mathcal{E}_{n}t^{n}\right\}$$

$$= 1+\mathcal{R}e\left\{\frac{\varrho_{2}}{\varrho_{2}+\varrho_{1}}t+\frac{1}{\varrho_{2}+\varrho_{1}}\sum_{2}^{\infty}\varrho_{2}\mathcal{E}_{n}t^{n}\right\}$$

$$\geq 1 - \left| \frac{\varrho_2}{\varrho_2 + \varrho_1} \mathbf{t} + \frac{1}{\varrho_2 + \varrho_1} \sum_{2}^{\infty} \varrho_2 \mathcal{E}_n t^n \right|$$

$$\geq 1 - \left\{ \frac{\varrho_2}{\varrho_2 + \varrho_1} \rho + \frac{1}{\varrho_2 + \varrho_1} \sum_{2}^{\infty} \varrho_2 |\mathcal{E}_n| \rho^n \right\}, \quad \dots (2.6)$$

Where $\varrho_1, \varrho_2 > 0$.

Since

$$\varrho_n = \{1 + n^2 - \beta | \alpha n^2 + [\mu + (1 - \lambda)(1 - \mu)\gamma] \}_2^{\infty}$$

is an increasing of $n(n \ge 2)$ we get

$$\varrho_2 \sum_{n=1}^{\infty} |\mathcal{E}_n| \le \sum_{n=1}^{\infty} \varrho_n |\mathcal{E}_n| \le \beta |\alpha - \mu - (1 - \lambda)(1 - \mu)\gamma|. \quad \dots (2.7)$$

Applying (2.7) in (2.6) we get

$$1 - \left\{ \frac{\varrho_2}{\varrho_2 + \varrho_1} \rho + \frac{1}{\varrho_2 + \varrho_1} \sum_{2}^{\infty} \varrho_2 |\mathcal{E}_n| \rho^n \right\} > 1 - \left\{ \frac{\varrho_2}{\varrho_2 + \varrho_1} \rho + \frac{\varrho_1}{\varrho_2 + \varrho_1} \rho \right\} > 0, \text{ (since } |\mathsf{t}| = \rho < 1).$$

Thus (2.5) is realized in $|t| \gg 1$. Consequently the subordination (2.1) is established.

By taking a convex function in (2.1)

$$g(t) = \frac{t}{1-t} = t + \sum_{n=2}^{\infty} t^n$$

The inequality (2.2) follows.

Now, we consider function $g(t) \in (MO)_{\mu,\lambda}^{\alpha,\gamma}(\beta)$ given by

$$g(t) = t - \frac{\beta |\alpha - \mu - (1 - \lambda)(1 - \mu)\gamma|}{5 - 2\beta |2\alpha + \mu + (1 - \lambda)(1 - \mu)\gamma|} t^2, \qquad (2.8)$$

where $0 \le \alpha \le 1$, $0 < \beta \le 1$, $-1 \le \mu \le 1$, $0 \le \lambda \le 1$ and $0 \le \gamma \le 1$.

By using the result (2.1), we get

$$\frac{5-2\beta|2\alpha+\mu+(1-\lambda)(1-\mu)\gamma|}{2[7-2\beta|2\alpha+\mu+(1-\lambda)(1-\mu)\gamma-\beta|\alpha+\mu+(1-\lambda)(1-\mu)\gamma|]}g(t) < \frac{t}{1-t} .$$
(2.9)

Also, we can prove the following for the function g(t) $\min \left[\mathcal{R}e \left\{ \frac{5-2\beta |2\alpha+\mu+(1-\lambda)(1-\mu)\gamma|}{2[7-2\beta |2\alpha+\mu+(1-\lambda)(1-\mu)\gamma|-\beta |\alpha+\mu+(1-\lambda)(1-\mu)\gamma|]} g(t) \right\} \right] = -\frac{1}{2}, t \in \hat{E}.$

Then the value of next constant

$$\frac{5-2\beta |2\alpha+\mu+(1-\lambda)(1-\mu)\gamma|}{2[7-2\beta |2\alpha+\mu+(1-\lambda)(1-\mu)\gamma|-\beta |\alpha+\mu+(1-\lambda)(1-\mu)\gamma|]}$$

cannot be changed by another greater than it. The proof is complete.

Letting $\mu = -1$ and $\lambda = \frac{1}{2}$, in Theorem (2.2), we have the next result for the class $(MO)_{-1,\frac{1}{2}}^{\alpha,\gamma}(\beta)$.

Corollary (2.4): If $\hbar(t)$ of the form (1.1) is in the class $(MO)_{\mu,\lambda}^{\alpha,\gamma}(\beta)$, then for each univalent function $\hat{k}(t) \in C$, $t \in \hat{E}$

$$\frac{5-2\beta|2\alpha+\gamma-1|}{2[7-2\beta|2\alpha+\gamma-1|-\beta|\alpha+\gamma-1|]}(\hbar * \mathbf{k})(t) \prec \mathbf{k}(t) ,$$

and

$$\mathcal{R}e(\hbar(t)) > - \frac{7-2\beta|2\alpha+\gamma-1|-\beta|\alpha+\gamma-1|}{5-2\beta|2\alpha+\gamma-1|}.$$

The next constant factor

$$\frac{5 - 2\beta |2\alpha + \gamma - 1|}{2[7 - 2\beta |2\alpha + \gamma - 1| - \beta |\alpha + \gamma - 1|]}$$

cannot be changed by another greater than it..

Putting $\mu = -1$, $\lambda = 0$ and $\beta = 1$ in Theorem (2.3), we get the next result for the class $(MO)_{-1,0}^{\alpha,\gamma}$ (1).

Corollary (2.5): If $\hbar(t)$ of the form (1.1) belong to the class $(MO)_{-1,0}^{\alpha,\gamma}(1)$,

then for each univalent function $\hat{k}(t) \in C$, $t \in \hat{E}$

$$\frac{5-2|2\alpha+2\gamma-1|}{2[7-2|2\alpha+2\gamma-1|-|\alpha+2\gamma-1|]} (\hbar * k)(t) \prec k(t) ,$$

and

$$\mathcal{R}e(\hbar(t)) > - \frac{7-2|2\alpha+2\gamma-1|-|\alpha+2\gamma-1|}{5-2|2\alpha+2\gamma-1|}$$

The constant factor

$$\frac{5-2|2\alpha+2\gamma-1|}{2[7-2|2\alpha+2\gamma-1|-|\alpha+2\gamma-1|]}$$

cannot be changed by another greater than it.

References

- P. Duren, Subordination in complex analysis, Lecture Note in Mathematics, Springer, Berlin. Germany, 599, 22-29, 1977.
- [2].M. H. Saloomi, E. H. Abd, and R. D. Ali, The Fekete-SzegÖ Problem for Certain Subclasses of p-Valent Functions Associated with Quasi-Subordination Involving the Function k_{α} , AIP Conference Proceedings 2201, 020021, 2019.
- [3] A. K. Mishra, T. Panigrahi, R. K. Mishra, Subordination and inclusion theorems for subclasses of meromorphic functions with applications to electromagnetic cloaking, Math. Comput. Modelling 57, 945-962, 2013.
- [4].M. H. Saloomi, E. H. Abd, and G. A. Qahtan, Coefficient bounds for biconvex and bistarlike functions associated by quasisubordination, Journal of Interdisciplinary Mathematics Vol. 24, No. 3, pp. 753–764, 2021.
- [5]K.S. Padmanabhan and R. Manjini, Certain applications of differential subordination. Publ. Inst. Math. (N.S.), Tome 39 (53), 107-118, 1986.
- [6] H.S. WILF, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc., 12, 689–693, 1961.
- [7] H.M. Sivastava and A.A. Attiya, Some Subordination results associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math, 5(4), Art. 82, 1-6, 2014.
- [8]M.H. Al-Abbadi and M. Darus, Subordination results for some subclasses of analytic functions, IJISM, 2(6), 519-522, 2014.
- [9] R.K.Raina and Deepak Bansal, Some propertis of a new class of analytic functions defined in term of a Hadamard product, J.Ineqal.Pure and Appl.Math., 9(1) Art. 22,9pp, 2008'