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The dynamical system is a notion that is used to explain how many events behave 

in our everyday lives. Both linear and nonlinear varieties are available. Stability 

and chaos, two fundamental characteristics that are further divided into discrete 

and continuous categories for models showing chaotic behavior and occasionally 

requiring stabilization and synchronization, define the latter. For this, there are 

numerous strategies. In this study, the prey-predator model's chaotic behavior is 

stabilized without the addition of any control factors. This method is thought to 

be effective for models with difficult-to-find analytical solutions. Also, the 

Jacobian matrix eigenvalues' modulus exceeds one. The viability and efficiency 

of this stabilizing approach are finally shown 

 

 

1- Introduction 
 

In many areas, the mathematical model is used to explain how a system behaves and how its parts 

interact. Mathematical models can be either continuous or discontinuous. Differential equations 

describe the formal, whereas It is explained through difference equations. The complexity that these 

systems' dynamics draws scholarly interest. As instances of the continuous kind, we recommend that 

the reader look at [1-3]. 

Difference equations or discrete-time dynamical systems, on the other hand have come to be more and 

more popular for modeling ecosystems and biological systems where Each of them has a difference in 

the passage of time[4-5]. Iterative maps are utilized in this modeling approach. In nonlinear systems 

dynamics, iterative maps play a crucial role. They enable us to fit the previous state's output to the 

upcoming iteration of the system. To explicitly solve a system of difference equations is, however, 

generally not simple. 

The stability of differential equation solutions and the orbits of dynamical systems are two topics 

covered utilizing stability theory to explore discrete-time dynamical systems. From the viewpoint of 

dynamical systems, The bifurcation theory focuses on the modifications within the qualitative or 

topological structure of a family of difference equation solutions. [6-7]. Dynamical systems have 

chaotic states that are frequently guided by deterministic laws, and one area of research in this field is 

called chaos theory. Its solutions behave erratically and are extremely susceptible to starting conditions 

[8]. Applications of the discrete-time chaotic system are numerous. in virtually all disciplines of 

applied sciences. This is because it may accurately explain a variety of real-world situations' behaviors. 

The majority of the animals and plants, for instance, that reproduce once a year. They included, but 

were not limited to, those in engineering [10], economics and finance [11], security and encoding [9], 

biology and medical [9], Despite the fact that in some instances chaotic behavior is required, it should 

nevertheless be avoided due to strong sensitivity to starting conditions, unpredictable influence, and 

difficulty of long-term prediction. It was necessary to Prey-Predator model in discrete time has a 

traditional work pieces with the following structure: 

 

 xi+1 = xie
a(1−xi−yi) 

yi+1=c xiyi − byi                              ... (1) 

The Ricker function, which depicts yithe Predator growth is directly correlated with the amount of 

available prey in the current predator population, is used to explain the growth of the prey population 

where xi represents the current prey population. 

The prey's growth rate, which is also its consumption rate by the predator, is determined by the 
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parameter a, and the predator's conversion rate is determined by the value c. The decay rate of the 

predator in this instance is represented by the parameter b. 

 

The organization of this essay to be as follows: The variable consideration of the Prey-Predator model 

is presented inside Section 2. Section 3 discusses the Prey-Predator model's dynamic behavior. The 

main approach to controlling discrete chaotic systems was introduced in Section 4. The prey-predator 

model's numerical stabilization technique is presented in Section 5. In section 6, the analytical result is 

statistically supported. The paper was ended at section 7. 

 

2-Analysis Evaluation of the Prey-Predator Model 

 

The discrete-time system's fixed points and stability are identified requirements are looked. The 

potential fixed locations are discovered via resolving the equation system. 

     𝓍i+1 = xie
a(1−𝓍i−yi) = f1(xi, yi) 

yi+1=c xiyi − byi = f2(xi, yi)                                       …(2) 

The system (2) has three fixed points, according to a crude calculation. Jacobian matrix for (2) is as 

follows: 

J(x, y) = (
ea(1−x−y)(1 − ax) −axea(1−x−y)

cy cx − b
) 

The following equilibrium points are obtained by solving this system (2).E0 = (0,0) &  E1 =

(1,0), E∗ = (x∗, y∗) = (
b+1

c
,1 −

b+1

c
)  Each fixed point's Jacobin matrix is determined as follows: 

1-At point E0 = (0,0), there are: 

 

JE0
= [(

ea 0
0 −b

)] 

The eigenvalues of E0 are λ1 = ea and λ2 = −b,  because of the  ea is always greater than 1 .Hence, A 

quick calculation demonstrates the local dynamics of fixed point  E0: 

E0 is a source point if and only if  b>1 and is saddle point if b<1 and is non-hyperbolic if b=1 

E0 is a saddle point if b < 1 

E0 is a non-hyperbolic point if b = 1 

2-At point  E1 =  (1,0) we have,     

 JE1 = [(
1 − a −a

0 c − b
)] 

The eigenvalues of E1 are; λ1 = (1 − a) and   λ2 = (c − b). Therefore, Proposition 2 gives an example 

of the local dynamics of E1:  

Proposition 1: About the fixed point E1, the next station holds. 

E1 is a  sink point if and only|λ1| < 1  &|λ2|  < 1 if 0 < a < 2 & 1 − b < c < 1 + b 

E1 is a  non − hyperbolic  point if and only|λ1| = 1  if a = 2&c = b − 1 

About the fixed point E∗ = (x∗, y∗) = (
b+1

c
,1 −

b+1

c
) the Jacobian matrix of 2 is 

   JE∗ =  [1 − a(
1 + b

c
) −a(

1 + b

c
)

c − 1 − b 1

] 

E∗ is a source point if and only if  |λ1| > 1  and  |λ2| > 1 if a = −1&b = c + 1. 

iii. E∗ is a saddle point if and only for |λ1|  < 1 and |λ2| > 1 if  −1 < b < c − 1&a <
2c

b+1
 

E∗ is a non-hyperbolic point if and only if |λ2| = 1,  for  a = −1 &b = −1. 
 

 3- Dynamic Analysis of Prey-Predator 

 

Bifurcation Analysis: 



      Journal of Iraqi Al-Khwarizmi (JIKh)   Volume:7  Issue:2 Year: 2023   pages: 185-190   

187 
 

The bifurcation occurs when a parameter's value has an impact on how the system behaves. A diagram 

that depicts the changing dynamic is used to describe this phenomenon. Figure 2 depicts this 

paragraph's bifurcation diagram (1). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Bifurcation diagram of the Prey-Predator model 

 

Lyapunov Exponent (LE): 

The nonlinear dynamical systems' high sensitivity to the initial condition is fundamentally what 

defines their chaos. Consider a dynamical system with two adjacent trajectories that diverge 

exponentially. In such instance, the Lyapunov exponent, a chaotic system, is described by this arbitrary 

invariant. The LE examines (1)'s chaotic nature, as seen in Fig 3. It demonstrates t that the proposed 

system shows chaotic behavior depending on various factors. To determine the local instability of a 

given system, one uses the average of LE.keep in mind that the chaotic behavior of system (1) with the 

range a∈[0,5]   

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Lyapunov Exponent of the prey-predator 

 

Complexity-Based Sample Entropy: 

 

Using a fundamental method called Sample Entropy, this part investigates the 2D-complexity. ICSM's 

(SamEn). SamEn was developed by the authors of [12] to determine how much additional data is 

needed to anticipate the (t + 1)th output of a trajectory based on the (t) outputs from the trajectory's 

previous (t) iterations.Lower levels of regularity on a chaotic map are indicated by SamEn with greater 

values. In other words, the chaotic map demonstrates a great degree of complexity and unpredictable 

behavior. 
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Figure 3. SamEn values of the 2D-ICSM as its parameters change. 

 

4- Controlling Chaotic Discrete System 

 

Let's the an n-dimensional dynamic system : 

  𝓍k+1=f (𝓍k)     
                                                                                     …(3) 

where f is a nonlinear vector-valued function and 𝓍 ∈ Rn is an n-dimensional vector. Let xf represent 

the system's fixed point (1). We select variable feedback control, which is described by: to stabilize the 

chaotic orbit of 

𝓍k+1 = f(𝓍k) + u(𝓍k)                                                                         ….     (4) 

Substitute in (4) feedback control u(𝓍k) = ℳ(f(𝓍k) − 𝓍k) we get  

𝓍k+1 = f(𝓍k) + ℳ(f(𝓍k) − 𝓍k)                                         … (5) 

Describe a  infinitesimal deviation of 𝓍k from 𝓍f as  

δ𝓍k = 𝓍k − 𝓍f. Then,from 5 using the Taylor series, from about 𝓍f , we have  

𝓍k+1 ≅ f(𝓍f) +
∂f

∂𝓍
(𝓍k − 𝓍f) +

1

2

∂2F

∂2𝓍
(𝓍k − 𝓍f)

2 + ⋯ + ℳ (
∂F

∂𝓍
(𝓍k − 𝓍f) − 0)         

𝓍k+1 ≅ 𝓍f + Jδ𝓍k + ℳJ δ𝓍k 

𝓍k+1 − 𝓍f ≅ Jδ𝓍k + ℳ(J − I) δ𝓍k 

δ𝓍k+1
=  Jδ𝓍k + ℳ(J − I) δ𝓍k       

…(6) 

where J=
∂f

∂𝓍k
|

𝓍k=𝓍f

 the Jacobin matrix of the initial-state f system that was assessed in the fixed point  

𝓍f and I represents the nxn identity matrix..  

Making is the aim of control here.⌈δ𝓍k⌉ = 0  
It requires in order reaching this aim 

          δ𝓍k+1 = Qδ𝓍k                                                                        ...(7) 

where Q is a n×n matrix and takes the form 

 

  Q = (
q1 0
0 q2

)  

                                                                                                           …(8) 

Eq. (7) and Eq. (8) being substituted into Eq (6) 

selection of a particular matrix form Q=qI, q∈(-1,1) 

We get 

δ𝓍k+1 = Jδ𝓍k + ℳ(J − I) δ𝓍k 

Qδ𝓍k = Jδ𝓍k + ℳ(J − I) δ𝓍k 

where  (J + ℳ(J − I) − Q) δ𝓍k = 0. 
We observe   J + ℳ(J − I) − Q = 0. 
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Note that ℳ(J − I) = Q − J. 
At last, we have   

 ℳ = (qI − J)(J − I).−1 
                                                  …. (9) 

5-Stabilizing of the Prey-Predator   

The following that algorithm used to stabilize the Prey-Predator system: 

Input Data : The chaotic system 

𝓍1(k + 1) = 𝓍1(k) ea(1−𝓍1(k)−𝓍2(k)) 

               𝓍2(k + 1) = c𝓍1(k)𝓍2(k) − b𝓍2(k)                           
 k = 0,1, . . , n    
                                                                               …(10) 

Output stability of the system. 

Algorithm Steps: 

Step 1. Calculate fixed point of the Prey-Predator system 

Obtaining the fixed point (0.9045, 0.3455) by fixed point iteration method.                                     

Step 2. Calculate the corresponding Jacobain matrix to the fixed point (x1f, x2f) such that: 

J = (
(1 − a𝓍1f)ea(1−𝓍1f−x2f) −a𝓍1ea(1−x1f−x2f)

c𝓍2f c𝓍1 − b
)                                       …(11)                            

Step 3. 

Calculate the matrix ℳ  from Eq. (9) after calculation matrix J from (11) and Calculate the 

inverse ℳ(J − I)−1                                                                                     

ℳ = (
q + (a𝓍1f − 1)e−a(𝓍1f+𝓍2f−1) a𝓍1fe

−a(𝓍1f+𝓍2f−1

−c𝓍2f b + q − c𝓍1f
)                                             … (12) 

      

Step4. Choose the parameter (x1f  ′ x2f)=(0, 0),(q1 ′q2)=(0.3,0.5) in (10) we get,                                 

Step 5. Calculation the matrix ℳ in Eq. (8) at q1 = 0.3& q2 = 0.5 

Specifically, we obtain 

       ℳ1 = (
−1.0131 0

0 −0.6111
) 

 

     ℳ2 = (
−1.0093 0

0 −0.7222
)                                                                                     …(13) 

  In this part, Figures 4 and 5 display the numerical outcomes. Figure 4(a) shows the Prey-Predator 

map in chaos before stabilization for xi is added with various values of a∈[0,5], whereas Figure 4(b) 

shows the Prey-Predator in stability after stabilization for xiis added for a∈[0,5]. The Prey-Predator in 

Figure 5(a) is chaotic before to adding stabilization for yi with various settings of a∈[0,5], but the 

Prey-Predator model in Figure 5(b) is stable following the addition of stabilization for yiwith a∈[0,5]. 

 
        FIGURE (4) the phase portrait of Prey- Predator before being stabilized 
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Figure (5) the phase portrait after being stabilized 

 

5- Conclusion 

The prey-predator is taken into account in this essay. It is fastened at three locations. To demonstrate 

the chaotic behavior of these points for particular eigenvalues, their behavior is discussed. The chaotic 

behavior of this map is stabilized by a simple approach. The chaotic behavior might be controlled 

using this strategy without the need for changing parameters via simulations for both before and after 

stabilization various ranges of value a that severely influenced a stable of the prey-predator system; the 

results illustrate the effectiveness of this strategy. 
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