Orthogonal Generalized Higher Symmetric Reverse Bi-Derivations on Semiprime Γ- Rings

Authors Names	ABSTRACT
Jafar Salih Aneed Salah Mehdi Salih	The purpose of this paper is to study the concept of orthogonal generalized higher symmetric reverse bi- derivation on semiprime Γ -ring. We study some lemmas and theorems of orthogonality on semiprime Γ -rings. We prove that
Article History Publication date: 1/4/2025 Keywords: Symmetric Bi- Derivation, Symmetric Reverse Bi-Derivation, Higher Symmetric Reverse Bi- Derivations, Generalized Higher Symmetric Reverse Bi- Derivations and Orthogonal.	if M is a 2-tortion free semiprime Γ -ring then D_n and G_n are orthogonal generalized higher symmetric reverse bi-derivations associated with higher symmetric reverse bi-derivations d_n and g_n for all $n \in \mathbb{N}$. Then the following relations are hold for all $a,b,c\in M$, $\alpha \in \Gamma$ and $n\in \mathbb{N}$: i. $D_n(a,b)\alpha G_n(b,c) = G_n(b,c)\alpha D_n(a,b) = 0$ hence $D_n(a,b)\alpha G_n(b,c) + G_n(b,c)\alpha D_n(a,b) = 0$ ii. d_n and G_n orthogonal and $d_n(a,b)\alpha G_n(b,c)=G_n(b,c)\alpha d_n(a,b) = 0$. iii. g_n and D_n orthogonal and $g_n(a,b)\alpha D_n(b,c)=D_n(b,c)\alpha g_n(a,b) = 0$. iv. $d_n G_n = G_n d_n = 0$ and $g_n D_n = D_n g_n = 0$ v. $G_n D_n = D_n G_n = 0$.

1. Introduction

If M and Γ be two additive abelian groups, then M is said to be Γ -ring if:

1. $a\alpha b \in M$ 2. $a\alpha(b + c) = a\alpha b + a\alpha c$, $a(\alpha + \beta)b = a\alpha b + a\beta b$, $(a + b)\alpha c = a\alpha c + b\alpha c$ 3. $(a\alpha b)\beta c = a\alpha(b\beta c)$ for any a, b, $c \in M$ and $\alpha, \beta \in \Gamma$. Nobusawa 1964 [11] was the first to present the idea of Γ -ring and generalized by Barnes 1966 [3] as above. The Γ -ring M is said to be prime if $a\Gamma M\Gamma b=0$ implies that a=0 or b=0 and its called semiprime if $a\Gamma M\Gamma a=0$ implies that a=0 for each $a,b\in M$, also M is called n-torsion free (n-tf) if na =0 for all $a\in M$ implies that a=0 where n is positive integer [7]. Ozturk et al. [12] introduced his definition as follows: The mapping $d:M \times M \longrightarrow M$ is called symmetric if d(a,b)=d(b,a) for all $a,b\in M$. Jing in [6] introduced his definition as follows: The additive mapping $d:M \longrightarrow M$ is called derivation on Γ -ring M if $d(a\alpha b)=d(a)\alpha b+a\alpha d(b)$ for each $a,b\in M$ and $\alpha\in\Gamma$.

Ozturk et al. [12] its definintion is as follows: A symmetric bi-additive mapping d:M×M→M is called symmetric bi-derivation on M if d(a α b,c)=d(a,c)b α +a α d(b,c) for each a,b,c \in M and $\alpha\in\Gamma$. C. Jaya Subba Reddy in [4] its definintion is as follows: The reverse bi-additive mapping d:R×R→R is called symmetric reverse bi-derivation on prime ring R if satisfies the identity d(ab,c)=d(b,c)a+bd(a,c) and d(a,bc)=d(a,c)b+cd(a,c) for all a,b,c \in R. In [5] Ceven and Ozturk their definition as follows: Let D be additive mapping of M, then D is called generalized derivation on M if there exists a derivation d from M into M such that D(a α b)=D(a) α b+a α d(b) for every a , b \in M and $\alpha\in\Gamma$. Marir and Salih in [8] are introduced their concept as follows: If d = (d_i)_{i \in N} be a family of bi-additive mapping on M×M into M is called higher bi-derivation if d_n(a α b, c α d)= $\sum_{i+j=n} d_i(a,c)\alpha d_j(b,d)$ for every a,b,c \in M and $\alpha\in\Gamma$. H.Majeed and S.M.Salih in [1] are introduced the definition on a generalized higher derivation A as follows: Let M be a Γ -ring, D_n = (D_i)_{i \in N} be a family of additive mapping of M such that for all

 $n \in N$, $a, b \in M$ and $\beta \in \Gamma$, we have: $D_n(a\beta b) = \sum_{i+j=n} D_i(a)\beta d_j(b)$

Ashraf M. and Jamal M. in [2] introduced the definition of orthogonal derivation on Γ -ring as follows: Let d and g be two derivations from M into M, then d and g are said to be orthogonal if $d(a)\Gamma M\Gamma g(b) = (0) = g(b)\Gamma M\Gamma d(a)$ for all $a,b,c\in M$.

Majeed A.H. and Suliman N.N. in [10] present the definition of orthogonal generalized derivation on Γ – ring M as follows: Let D and G be two generalized derivations from M into M are said to be orthogonal if: D(a) Γ M Γ G(b) = (0) = G(b) Γ M Γ D(a) for all a,b \in M

Salih S.M. and Aneed J.S. [13] are presented and studied the concept of orthogonal on semiprime Γ – ring M as follows: Let D and G are two generalized higher symmetric reverse biderivations(ghsrb-d) and generalized higher symmetric bi-derivations(ghsb-d) on M, then D and G are

called orthogonal if for all a,b,c \in M and n \in N:

 $D_n(a,b)\Gamma M\Gamma G_n(b,c)=(0)=G_n(b,c)\Gamma M\Gamma D_n(a,b)$

2. Orthogonal Generalized Higher Symmetric Reverse Bi-Derivations on Semiprime Γ-ring

We will introduce the definition of orthogonality and some lemmas related to inductance and help prove some theorems.

Definition(2.1):

Let $D = (D_i)_{i \in N}$ and $G = (G_i)_{i \in N}$ are two generalized higher symmetric reverse biderivations(ghsrb-d) on a semiprime Γ -ring M, then D and G are called orthogonal if for all a, b, c \in M and n \in N, then

 $D_n(a, b)\Gamma M \Gamma G_n(b, c) = (0) = G_n(b, c) \Gamma M \Gamma D_n(a, b)$ where $D_n(a, b)\Gamma M \Gamma G_n(b, c) = \sum_{i=1}^n D_i(a, b) \alpha m \beta G_i(b, c)$ for all $m \in M$ and $\alpha, \beta \in \Gamma$ **Example(2.2):**

Let d_n and g_n are two higher symmetric reverse bi-derivations (hsrb-d) on a Γ -ring M for all n $\in \mathbb{N}$. Let $M' = M \times M$ and $\Gamma' = \Gamma \times \Gamma$ we define d'_n and g'_n by $d'_n \colon M' \times M' \to M'$ and $g'_n \colon M' \times M' \to M'$ such that $d'_n((a, b), (c, d)) = (d_n(a, b), 0)$ and $g'_n((a, b), (c, d)) = (0, g_n(c, d))$ for all $(a, b), (c, d) \in M'$. Then d'_n and g'_n are (hsrb-d). Moreover, if (D_n, d_n) and (G_n, g_n) are two (ghsrb-d) on M, we defined D'_n and G'_n on M' such that $D'_n((a, b), (c, d)) = (D_n(a, b), 0)$ and $G'_n((a, b), (c, d)) = (0, G_n(c, d))$ for all $(a, b), (c, d) \in M$. Then (D'_n, d'_n) and (G'_n, g'_n) are two (ghsrb-d) on M' such that D'_n and G'_n are orthogonal.

Lemma(2.3): [5]

Let M be a 2-tfsp $\[Gamma]$ -ring and a,b \in M, then the following conditions are equivalent for each $\alpha,\beta\in\Gamma$:

 $1.a\alpha M\beta b = 0$

 $2.b\alpha M\beta a = 0$

 $3.a\alpha M\beta b + b\alpha M\beta a = 0$

If one of these conditions is fulfilled, then $a\alpha b=b\alpha a=0$

Lemma(2.4): [4]

Let M be a 2-tfsp Γ -ring and a,b \in M such that $a\alpha M\beta b+b\alpha M\beta a=0$ for every $\alpha,\beta\in\Gamma$, then $a\alpha M\beta b=b\alpha M\beta a=0$.

Lemma(2.5):

Assume that D_n and G_n are bi-additive mappings on a semiprime Γ -ring M satisfies $D_n(a, b)\Gamma M\Gamma G_n(a, b) = (0)$, then $D_n(a, b)\Gamma M\Gamma G_n(b, c) = (0)$ for every a, b, c \in M and n \in N.

Proof:

By assumption $D_n(a, b)\Gamma M\Gamma G_n(a, b) = (0)$ then

$$\begin{split} & D_n(a,b)\Gamma M \Gamma G_n(a,b) = \sum_{i=1}^n D_i(a,b) \alpha m \beta G_i(a,b) = 0 \quad (1) \\ & \text{Replace a by } a + c \text{ in } (1) \text{ for every } c \in M \text{ then} \\ & \sum_{i=1}^n D_i(a+c,b) \alpha m \beta G_i(a+c,b) = 0 \\ & \sum_{i=1}^n D_i(a,b) + D_i(c,b) \alpha m \beta (G_i(a,b) + G_i(c,b)) = 0 \\ & \sum_{i=1}^n D_i(a,b) \alpha m \beta G_i(a,b) + D_i(a,b) \alpha m \beta G_i(c,b) + D_i(c,b) \alpha m \beta G_i(a,b) + D_i(c,b) \alpha m \beta G_i(c,b) = 0 \\ & \text{By equation } (1) \text{ we get } \sum_{i=1}^n D_i(a,b) \alpha m \beta G_i(c,b) + D_i(c,b) \alpha m \beta G_i(a,b) = 0 \\ & \sum_{i=1}^n D_i(a,b) \alpha m \beta G_i(c,b) = -\sum_{i=1}^n D_i(c,b) \alpha m \beta G_i(a,b) \quad (2) \\ & \text{Multiplication the equation } (2) \text{ by } \gamma t \delta \sum_{i=1}^n D_i(a,b) \alpha m \beta G_i(c,b) = 0 \\ & \text{Since M is semiprime } \Gamma \text{-ring, we get} \\ & \sum_{i=1}^n D_i(a,b) \alpha m \beta G_i(c,b) = 0 \quad (3) \\ & \text{Replace } G_i(c,b) \text{ by } G_i(b,c) \text{ in } (3) \text{ we get } \sum_{i=1}^n D_i(a,b) \alpha m \beta G_i(b,c) = 0 \end{split}$$

Hence $D_n(a, b) \Gamma M \Gamma G_n(b, c) = (0)$

Lemma (2.6)

Let M be a 2-tfsp Γ -ring. If D_n and G_n are two (ghsrb-d) associated with two (hsrb-d) d_n and g_n respectively for all $n \in N$, then D_n and G_n are orthogonal if and only if $D_n(a, b) \alpha G_n(b, c) + G_n(b, c) \alpha D_n(a, b) = (0)$ for all $a, b, c \in M$, $n \in N$ and $\alpha, \beta \in \Gamma$.

Proof:

Suppose that
$$D_n(a, b) \alpha G_n(b, c) + G_n(b, c) \alpha D_n(a, b) = (0)$$

$$\sum_{i=1}^{n} D_i(a, b) \alpha G_i(b, c) + G_i(b, c) \alpha D_i(a, b) = 0$$
(1)
Replace a by wβa in (1) for all $w \in M$ we get

$$\sum_{i=1}^{n} D_i(w\beta a, b) \alpha G_i(b, c) + G_i(b, c) \alpha D_i(w\beta a, b) = 0$$
(2)
Replace $\alpha D_i(a, b) \beta d_i(w, b) \alpha G_i(b, c) + G_i(b, c) \alpha D_i(a, b) \beta d_i(w, b) = 0$
(2)
Replace $\alpha D_i(a, b) \beta d_i(w, b) \alpha G_i(b, c) + G_i(b, c) \alpha D_i(a, b)$ in (2) we get

$$\sum_{i=1}^{n} D_i(a, b) \beta d_i(w, b) \alpha G_i(b, c) + G_i(b, c) \beta d_i(w, b) \alpha D_i(a, b) = 0$$
By lemma (2.4) we get

$$\sum_{i=1}^{n} D_i(a, b) \beta d_i(w, b) \alpha G_i(b, c) = \sum_{i=1}^{n} G_i(b, c) \beta d_i(w, b) \alpha D_i(a, b) = 0$$
(3)
Replace $d_i(w, b)$ by m in (3) for all m M we get
 $D_n(a, b) \Gamma M \Gamma G_n(b, c) = (0) = G_n(b, c) \Gamma M \Gamma D_n(a, b)$
Thus D_n and G_n are orthogonal
Now, assume that D_n and G_n are orthogonal
 $D_n(a, b) \Gamma M \Gamma G_n(b, c) = (0) = G_n(b, c) \Gamma M \Gamma D_n(a, b)$

 $\sum_{I=1}^{n} D_{i}(a, b)\alpha m\beta G_{i}(b, c) = 0 = \sum_{i=1}^{n} G_{i}(b, c)\alpha m\beta D_{i}(a, b)$ $\sum_{i=1}^{n} D_i(a, b) \alpha m \beta G_i(b, c) +$ $G_i(b, c)\alpha m\beta D_i(a, b) = 0$ By lemma (2.3) we get $\sum_{i=1}^{n} D_i(a, b) \alpha G_i(b, c) = \sum_{i=1}^{n} G_i(b, c) \alpha D_i(a, b) = 0$ $\sum_{i=1} D_i(a,b)\alpha G_i(b,c) + \sum_{i=1} G_i(b,c)\alpha D_i(a,b) = 0$ Thus $D_n(a,b)\alpha G_n(b,c) + G_n(b,c)\alpha D_n(a,b) = 0$

Lemma(2.7)

If M be a 2-tfsp Γ -ring. Let D_n and G_n are two (ghsrb-d) associated with two (hsrb-d) d_n and g_n respectively for all $n \in \mathbb{N}$. Then D_n and G_n orthogonal iff $D_n(a,b)\alpha G_n(b,c) = (0)$ or $G_n(b, c)\alpha D_n(a, b) = 0$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$.

Proof:

Suppose that
$$D_n(a, b) \alpha G_n(b, c) = (0)$$

 $D_n(a, b) \alpha G_n(b, c) = \sum_{i=1}^n D_i(a, b) \alpha G_i(b, c) = 0$ (1)
Replace a by w a in (1) for all $w \in M$ we get $\sum_{i=1}^n D_i(w \beta a, b) \alpha G_i(b, c) = 0$
 $\sum_{i=1}^n D_i(a, b) \beta d_i(w, b) \alpha G_i(b, c) = 0$ (2)

i=1
Replace
$$d_i(w, b)$$
 by m for all $m \in M$ in (2) we get $\sum_{i=1}^{n} D_i(a, b)\beta m\alpha G_i(b, c) = 0$
Then D and G orthogonal

Then D_n and G_n orthogonal

Now, if $G_n(b,c)\alpha D_n(a,b) = (0)$. Then D_n and G_n orthogonal.

Conversely, assume that D_n and G_n orthogonal

Then $D_n(a, b) \Gamma M \Gamma G_n(b, c) = (0)$ implies that $\sum_{i=1}^n D_i(a, b) \alpha m \beta G_i(b, c) = 0$ By lemma (2.3) we get $\sum_{i=1}^{n} D_i(a, b) \alpha G_i(b, c) = 0$ Hence $D_n(a, b)\alpha G_n(b, c) = 0$ And by $G_n(b,c)\Gamma M \Gamma D_n(a,b) = \sum_{i=1}^n G_i(b,c) \alpha m \beta D_i(a,b) = 0$ By lemma(2.3) we get $\sum_{i=1}^{n} G_i(b, c)\alpha D_i(a, b) = 0$ Hence $G_n(b, c)\alpha D_n(a, b) = 0$

Lemma (2.8)

If M be a 2-tfsp Γ -ring. Let D_n and G_n are two (ghsrb-d) associated with two (hsrb-d) d_n and g_n respectively for all $n \in N$. Then D_n and G_n orthogonal iff $D_n(a, b) \alpha g_n(b, c) = 0$ or $d_n(a, b) \alpha G_n(b, c) = 0$ for all a, b, c \in M and α , $\beta \in \Gamma$.

Proof:

Suppose that
$$D_n(a, b)\alpha g_n(b, c) = (0)$$

 $D_n(a, b)\alpha g_n(b, c) = \sum_{i=1}^n D_i(a, b)\alpha g_i(b, c) = 0$ (1)
Replace a by w βa in (1) for all $w \in M$ we get

$$\sum_{i=1}^{n} D_i(w\beta a, b)\alpha g_i(b, c) = 0$$

$$\sum_{i=1}^{n} D_i(a, b)\beta d_i(w, b)\alpha g_i(b, c) = 0$$
(2)

Replace $g_i(b, c)$ by $G_i(b, c)$ and $\beta d_i(w, b) \alpha$ by $\alpha m\beta$ for all $m \in M$ in (2) we get $\sum_{i=1}^{n} D_i(a, b) \alpha m \beta G_i(b, c) = 0$ By lemma(2.3) we get $\sum_{i=1}^{n} D_i(a, b) \alpha G_i(b, c) = 0$ $D_n(a,b)\alpha G_n(b,c) = 0$ By lemma(2.7) we get D_n and G_n orthogonal. Similarly way if $d_n(a, b)\alpha G_n(b, c) = 0$ we get D_n and G_n are orthogonal Conversely, assume that D_n and G_n are orthogonal. By lemma(2.7) we get $D_n(a, b)\alpha G_n(b, c) = 0$ $\sum D_i(a,b)\alpha G_i(b,c) = 0$ (3)Replace a by w βa in (3) we get $\sum_{i=1}^{n} D_i(w\beta a, b)\alpha G_i(b, c) = 0$ $\sum_{i=1}^{n} D_{i}(a, b)\beta d_{i}(w, b)\alpha G_{i}(b, c) = 0$ (4)Replace $\beta d_i(w, b) \alpha G_i(b, c)$ by $\alpha d_i(w, b) \beta g_i(b, c)$ in (4) we get $\sum_{i=1}^{n} D_i(a, b) \alpha d_i(w, b) \beta g_i(b, c) = 0$ By lemma(2.3) we get $\sum_{i=1}^{n} D_i(a, b)\alpha g_i(b, c) = 0$ Hence $D_n(a, b)\alpha g_n(b, c) = (0)$ Also replace a by a βw in (3) we get $\sum_{i=1}^{n} D_i(a\beta w, b)\alpha G_i(b, c) = 0$ $\sum D_{i}(w,b)\beta d_{i}(a,b)\alpha G_{i}(b,c) = 0$ (5)Left multiplication the equation (5) by $d_i(a, b)\alpha G_i(b, c)\delta$ for all $\delta \in \Gamma$ we get $\sum_{i=1}^{n} d_i(a,b) \alpha G_i(b,c) \delta D_i(w,b) \beta d_i(a,b) \alpha G_i(b,c) = 0$ Since M is semiprime, then $\sum_{i=1}^{n} d_i(a, b) \alpha G_i(b, c) = 0$

Hence $d_n(a, b)\alpha G_n(b, c) = (0)$

Lemma(2.9)

Let M be a 2-tfsp Γ -ring. If D_n and G_n are two (ghsrb-d) associated with two (hsrb-d) d_n and g_n respectively for every $n \in N$. Then D_n and G_n orthogonal iff $D_n(a,b)\alpha G_n(b,c) = d_n(a,b)\alpha G_n(b,c) = 0$ for all $a, b, c \in M$ and $\alpha \in \Gamma$.

Proof:

Assume that D_n and G_n orthogonal From lemma(2.7) we get $D_n(a, b)\alpha G_n(b, c) = 0$ (1) And by lemma (2.8) we get $d_n(a, b)\alpha G_n(b, c) = 0$ (2) From (1) and (2) we get $D_n(a, b)\alpha G_n(b, c) = d_n(a, b)\alpha G_n(b, c) = 0$ Conversely, suppose that $D_n(a, b)\alpha G_n(b, c) = 0$ By lemma(2.7) we get D_n and G_n are orthogonal Now, if $d_n(a, b)\alpha G_n(b, c) = 0$ By lemma(2.8) we get D_n and G_n are orthogonal

3. Main Theorems

We will present and study some basic theorems for orthogonality on Γ -ring M.

Theorem(3.1):

If M be a 2-tfsp Γ -ring. Let D_n and G_n are orthogonal associated with two (hsrb-d) d_n and g_n respectively for every n ϵ N. Then the following relations are hold for every a, b, $c\epsilon M$ and α , $\beta\epsilon\Gamma$ i. $D_n(a,b)\alpha G_n(b,c) = G_n(b,c)\alpha D_n(a,b) = 0$ hence $D_n(a, b)\alpha G_n(b, c) + G_n(b, c)\alpha D_n(a, b) = 0$ ii. d_n and G_n orthogonal and $d_n(a, b)\alpha G_n(b, c) = G_n(b, c)\alpha d_n(a, b) = 0$. iii. g_n and D_n orthogonal and $D_n(a, b)\alpha g_n(b, c) = g_n(b, c)\alpha D_n(a, b) = 0$. iv. d_n and g_n are orthogonal (hsrb-d). v. $d_n G_n = G_n d_n = 0$ and $g_n D_n = D_n g_n = 0$ vi. $G_n D_n = D_n G_n = 0$. **Proof: (i)** Since D_n and G_n orthogonal and by lemma(2.7) we get $D_n(a, b)\alpha G_n(b, c) = 0$ and $G_n(b, c)\alpha D_n(a, b) = 0$ $D_n(a,b)\alpha G_n(b,c) = G_n(a,b)\alpha D_n(b,c) = 0$ Hence $D_n(a, b)\alpha G_n(b, c) + G_n(a, b)\alpha D_n(b, c) = 0$ **Proof: (ii)** Since D_n and G_n orthogonal, then By lemma(2.8) we get $d_n(a, b)\alpha G_n(b, c) = 0$ (1) $\sum d_i(a,b)\alpha G_i(b,c) = 0$ (2)Replace a by $w\beta a$ in (2) for all $w \in M$ and $\beta \in \Gamma$ we get $\sum_{i=1}^{n} d_i(w\beta a, b)\alpha G_i(b, c) = 0$ $\sum_{i=1}^{n} d_i(a,b)\beta d_i(w,b)\alpha G_i(b,c) = 0$ (3)Replace $d_i(w, b)$ by m in (3) for all m ϵ M we get $\sum_{i=1}^{n} d_i(a,b)\beta m\alpha G_i(b,c) = 0$ (4)From (i) we have $G_n(b,c)\alpha D_n(a,b) = 0$ $\sum_{i=1}^{n} G_i(b,c) \alpha D_i(a,b) = 0$ (5)Replace a by $a\beta w$ in (5) we get $\sum_{i=1}^{n} G_i(b,c)\alpha D_i(a\beta w,b) = 0$ $\Rightarrow \sum_{i=1}^{n} G_i(b,c) \alpha D_i(w,b) \beta d_i(a,b) = 0$ By lemma (2.3) we get $\sum_{i=1}^{n} G_i(b, c) \alpha d_i(a, b) = 0$ $G_n(b,c)\alpha d_n(a,b) = 0$ (6)In the equation $\sum_{i=1}^{n} G_i(b, c) \alpha d_i(a, b) = 0$ replace *a* by $a\beta w$ we get $\sum_{i=1}^{n} G_i(b,c) \alpha d_i(a\beta w,b) = 0$ $\sum_{i=1}^{n} G_{i}(b,c)\alpha d_{i}(w,b)\beta d_{i}(a,b) = 0$ (7)Replace $\alpha d_i(w, b)\beta$ by $\beta d_i(w, b)\alpha$ in (7) we get $\sum_{i=1}^{n} G_i(b,c)\beta d_i(w,b)\alpha d_i(a,b) = 0$ (8)Replace $d_i(w, b)$ by m in (8) for every m $\in M$, then $\sum_{i=1}^{n} G_i(b,c)\beta m\alpha d_i(a,b) = 0$ (9) From (4) and (9) we get d_n and G_n orthogonal From (1) and (6) we get $d_n(a, b)\alpha G_n(b, c) = G_n(b, c)\alpha d_n(a, b) = 0$

Proof: (iii) In the same way as used in proof (2)

Proof: (iv) From (i) we have $D_n(a,b)\alpha G_n(b,c) = 0$ $\sum_{i=1}^n D_i(a,b)\alpha G_i(b,c) = 0$

(1)

Replacing a by $a\beta w$ in (1) we get $\sum_{i=1}^{n} D_i(a\beta w, b)\alpha G_i(b, c) = 0$ $\sum D_i(w,b)\beta d_i(a,b)\alpha G_i(b,c) = 0$ (2)Replacing a by $s\gamma a$ and $G_i(b, c)$ by $g_i(b, c)$ in (2) for each s ϵM we get $\sum D_i(w,b)\beta d_i(s\gamma a,b)\alpha g_i(b,c)=0$ $\sum D_i(w,b)\beta d_i(a,b)\gamma d_i(s,b)\alpha g_i(b,c) = 0$ (3)Replace $d_i(s, b)$ by m in (3) for all $m \in M$ $\sum D_i(w,b)\beta d_i(a,b)\gamma m\alpha g_i(b,c) = 0$ (4)Left multiplication (4) by $d_i(a, b)\gamma m\alpha g_i(b, c)\delta$ for all $\delta \in \Gamma$ we get $\sum_{i=1}^{n} d_{i}(a, b) \gamma m \alpha g_{i}(b, c) \delta D_{i}(w, b) \beta d_{i}(a, b) \gamma m \alpha g_{i}(b, c) = 0$ Since M is semiprime then $\sum_{i=1}^{n} d_i(a, b) \gamma m \alpha g_i(b, c) = 0$ Thus $d_n(a, b) \Gamma M \Gamma g_n(b, c) = 0$ Similarly from (i) we have $G_n(b,c)\alpha D_n(a,b) = 0$ we get $g_n(b,c)\Gamma M\Gamma d_n(a,b) = 0$ Hence d_n and g_n orthogonal (hsrb-d). **Proof:** (v)From (ii) we have $d_n(a, b)\alpha G_n(b, c) = 0$ $d_n(d_n(a,b)\alpha G_n(b,c),m) = 0$ $\sum d_i(d_i(a,b)\alpha G_i(b,c),m) = 0$ (1)Replace a by $w\beta a$ in (1) for all $w \in M$ and $\beta \in \Gamma$ we get $\sum_{i=1}^{n} d_{i}(d_{i}(w\beta a, b)\alpha G_{i}(b, c), m) = 0$ $\sum_{\substack{i=1\\n}}^{n} d_i(d_i(a,b)\beta d_i(w,b)\alpha G_i(b,c),m) = 0$ $\sum_{i=1}^{n} d_i(G_i(b,c),m)\beta d_i(d_i(w,b),m)\alpha d_i(d_i(a,b),m) = 0$ (2)Replace $d_i(a, b)$ by $G_i(b, c)$ in (2) we get $\sum d_i(G_i(b,c),m)\beta d_i(d_i(w,b),m)\alpha d_i(G_i(b,c),m) = 0$ Since M is semiprime, then $\sum_{i=1}^{n} d_i(G_i(b, c), m) = 0$ Thus $d_n G_n = 0$ (3)And by (ii) $G_n(b,c)\alpha d_n(a,b) = 0$ G(G(h c)ad(a h) m) = 0

$$\sum_{i=1}^{n} G_i(G_i(b,c)\alpha d_i(a,b),m) = 0$$
(4)

Replace *a* by $a\delta w$ in (4) for all $\delta \in \Gamma$ we get

$$\begin{split} \sum_{i=1}^{n} G_{i}(G_{i}(b,c)\alpha d_{i}(a\delta w,b),m) &= 0 \\ \sum_{i=1}^{n} G_{i}(G_{i}(b,c)\alpha d_{i}(w,b)\delta d_{i}(a,b),m) &= 0 \\ \sum_{i=1}^{n} G_{i}(d_{i}(a,b),m)\alpha g_{i}(d_{i}(w,b),m)\delta g_{i}(G_{i}(b,c),m) &= 0 \\ \\ \text{Replace } g_{i}(G_{i}(b,c),m) \text{ by } G_{i}(d_{i}(a,b),m) \text{ in } (5) \text{ we get} \\ \sum_{i=1}^{n} G_{i}(d_{i}(a,b),m)\alpha g_{i}(d_{i}(w,b),m)\delta G_{i}(d_{i}(a,b),m) &= 0 \\ \\ \text{Since M is semiprime, then } \sum_{i=1}^{n} G_{i}(d_{i}(a,b),m) &= 0 \\ \\ \text{Thus } G_{n}d_{n} &= 0 \\ \text{For equations } (3) \text{ and } (6) \text{ we get } G_{n}d_{n} &= d_{n}G_{n} &= 0 \\ \\ \text{Proof: (vi)} \\ \\ \text{Since } D_{n} \text{ and } G_{n} \text{ orthogonal, then } D_{n}(a,b)\Gamma M \Gamma G_{n}(b,c) &= 0 \\ \\ D_{n}(D_{n}(a,b)\Gamma M \Gamma G_{n}(b,c),s) &= (0) \text{ for all } s \epsilon M \\ \\ \sum_{i=1}^{n} D_{i}(G_{i}(b,c),s)\alpha d_{i}(m,s)\beta d_{i}(D_{i}(a,b),s) &= 0 \\ \\ \text{Replace } d_{i}(D_{i}(a,b)\alpha m\beta G_{i}(b,c),s) &= 0 \\ \\ \sum_{i=1}^{n} D_{i}(G_{i}(b,c),s)\alpha d_{i}(m,s)\beta d_{i}(G_{i}(b,c),s) &= 0 \\ \\ \text{Note the same way we prove that } D_{n}g_{n} &= g_{n}D_{n} &= 0 \\ \\ \text{Proof: (vi)} \\ \\ \text{Since } D_{n} \text{ and } G_{n} \text{ orthogonal, then } D_{n}(a,b)\Gamma M \Gamma G_{n}(b,c) &= 0 \\ \\ D_{n}(D_{n}(a,b)\Gamma M \Gamma G_{n}(b,c),s) &= (0) \text{ for all } s \epsilon M \\ \\ \sum_{i=1}^{n} D_{i}(G_{i}(b,c),s)\alpha d_{i}(m,s)\beta d_{i}(D_{i}(a,b),s) &= 0 \\ \\ \text{Since M is semiprime we get } \sum_{i=1}^{n} D_{i}(G_{i}(b,c),s) &= 0 \\ \\ \text{Since M is semiprime we get } \sum_{i=1}^{n} D_{i}(G_{i}(b,c),s) = 0 \\ \\ \text{Since M is semiprime we get } \sum_{i=1}^{n} D_{i}(G_{i}(b,c),s) &= 0 \\ \\ \sum_{i=1}^{n} G_{i}(D_{i}(a,b),s)\alpha g_{i}(m,s)\beta g_{i}(G_{i}(b,c),s) &= 0 \\ \\ \sum_{i=1}^{n} G_{i}(D_{i}(a,b),s)\alpha g_{i}(m,s)\beta g_{i}(D_{i}(a,b),s) &= 0 \\ \\ \text{Since M is semiprime we get } \sum_{i=1}^{n} G_{i}(D_{i}(a,b),s) &= 0 \\ \\ \text{Since M is semiprime we get } \sum_{i=1}^{n} G_{i}(D_{i}(a,b),s) &= 0 \\ \\ \text{Since M is semiprime we get } \sum_{i=1}^{n} G_{i}(D_{i}(a,b),s) &= 0 \\ \\ \text{Since M is semiprime we get } \sum_{i=1}^{n} G_{i}(D_{i}(a,b),s) &= 0 \\ \\ \text{Since M is semiprime we get } \sum_{i=1}^{n} G_{i}(D_{i}(a,b),s) &= 0 \\ \\ \text{Since M is semiprime we get } \sum_{i=1}^{n} G_{i}(D_{i}(a,b),s) &=$$

Theorem (3.2):

Let M be a 2-tfsp Γ -ring. If D_n and G_n are two (ghsrb-d) associated with two (hsrb-d) d_n and g_n respectively for each $n \in \mathbb{N}$. Then the following relations are equivalent for every $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. i. D_n and G_n orthogonal.

ii. $D_n(a,b)\alpha G_n(b,c) + G_n(b,c)\alpha D_n(a,b) = 0.$ iii. $d_n(a,b)\alpha G_n(b,c) + g_n(b,c)\alpha D_n(a,b) = 0.$ **Proof:** (i) \Leftrightarrow (ii) Assume that D_n and G_n orthogonal By theorem(3.1) (*i*) we have $D_n(a, b)\alpha G_n(b, c) = G_n(b, c)\alpha D_n(a, b) = 0$ Hence $D_n(a, b)\alpha G_n(b, c) + G_n(b, c)\alpha D_n(a, b) = 0$ Conversely, let $D_n(a, b)\alpha G_n(b, c) + G_n(b, c)\alpha D_n(a, b) = 0$ By lemma(2.6) we get D_n and G_n orthogonal

Proof: $(i) \Leftrightarrow (iii)$ Let D_n and G_n orthogonal Then, by lemma(2.8) we get $d_n(a, b)\alpha G_n(b, c) = 0$ (1)Since D_n and G_n orthogonal, then $G_n(b,c)\Gamma M\Gamma D_n(a,b) = 0$ $\sum G_i(b,c)\alpha m\beta D_i(a,b) = 0$ (2)By lemma (2.3) we get $\sum_{i=1}^{n} G_i(b,c) \alpha D_i(a,b) = 0$ (3)Replace $G_i(b, c)$ by $g_i(b, c)$ in (3) we get $\sum_{i=1}^{n} g_i(b,c) \alpha D_i(a,b) = 0$ Thus $g_n(b,c)\alpha D_n(a,b) = 0$ (4)From (1) and (4) we get $d_n(a,b)\alpha G_n(b,c) + g_n(b,c)\alpha D_n(a,b) = 0$ Conversely, suppose that $d_n(a,b)\alpha G_n(b,c) + g_n(b,c)\alpha D_n(a,b) = 0$ $\sum_{i=1}^{n} d_i(a,b) \alpha G_i(b,c) + g_i(b,c) \alpha D_i(a,b) = 0$ (5)Replacing $a by t\gamma a$ in (5) we get $\sum_{i=1}^{n} d_i(t\gamma a, b) \alpha G_i(b, c) + g_i(b, c) \alpha D_i(t\gamma a, b) = 0$ $\sum d_i(a,b)\gamma d_i(t,b)\alpha G_i(b,c) + g_i(b,c)\alpha D_i(a,b)\gamma d_i(t,b) = 0$ (6) Replace $d_i(a, b)$ by $D_i(a, b)$ and $g_i(b, c)$ by $G_i(b, c)$ in (6) we get $\sum_{i=1}^{n} D_i(a,b)\gamma d_i(t,b)\alpha G_i(b,c) + G_i(b,c)\alpha D_i(a,b)\gamma d_i(t,b) = 0$ (7)Replacing $\alpha D_i(a, b)\gamma d_i(t, b)$ by $\gamma d_i(t, b)\alpha D_i(a, b)$ in (7) we get $\sum_{i=1}^{n} D_i(a,b)\gamma d_i(t,b)\alpha G_i(b,c) + G_i(b,c)\gamma d_i(t,b)\alpha D_i(a,b) = 0$ (8)By Lemma (2.4) we get $\sum_{i=1}^{n} D_i(a,b)\gamma d_i(t,b)\alpha G_i(b,c) = \sum_{i=1}^{n} G_i(b,c)\gamma d_i(t,b)\alpha D_i(a,b) = 0$ Hence $D_n(a, b)\Gamma M\Gamma G_n(b, c) = (0) = G_n(b, c)\Gamma M\Gamma D_n(a, b)$ Hence D_n and G_n orthogonal

Theorem(3.3):

Let M be a 2-tfsp Γ -ring. If D_n and G_n are two (ghsrb-d) associated with two (hsrb-d) d_n and g_n respectively for all $n \in \mathbb{N}$. Then D_n and G_n orthogonal iff $D_n(a, b) \alpha G_n(b, c) = 0$ and $d_n G_n = d_n g_n = 0$ for all $a, b, c \in \mathbb{M}$ and $\alpha, \beta \in \Gamma$.

Proof:

Assume that D_n and G_n orthogonal By lemma (2.7) we get $D_n(a,b)\alpha G_n(b,c) = 0$ (1) And by Theorem (3.1) (*ii*) we get $G_n(b,c)\alpha d_n(a,b) = 0$ $d_n(G_n(b,c)\alpha d_n(a,b),m) = 0$ for all $m \in M$ $\sum_{i=1}^n d_i(G_i(b,c)\alpha d_i(a,b),m) = 0$ (2) Replace $a \ by \ a\beta t$ in (2) for all $t \in M$ we get $\sum_{i=1}^n d_i(G_i(b,c)\alpha d_i(a\beta t,b),m) = 0$ $\sum d_i(d_i(a,b),m)\alpha d_i(d_i(t,b),m)\beta d_i(G_i(b,c),m) = 0$ (3)Replace $d_i(a, b)$ by $G_i(b, c)$ in (3) we get \sum $d_i(G_i(b,c),m)\alpha d_i(d_i(t,b),m)\beta d_i(G_i(b,c),m) = 0$ Since M is semiprime we get $\sum_{i=1}^{n} d_i(G_i(b,c),m) = 0$ Thus $d_n G_n = 0$ (4) Also, by Theorem (3.1) (*iv*) we get $g_n(b,c)\Gamma M\Gamma d_n(a,b) = 0$ $d_n(g_n(b,c)\Gamma M\Gamma d_n(a,b),m_1) = 0$ for all $m_1 \epsilon M$ $\sum_{i=1}^{n} d_i(g_i(b,c)\alpha m\beta d_i(a,b),m_1) = 0 \text{ for all } m_1 \epsilon M$ $\sum_{i=1}^{n} d_i(d_i(a,b), m_1) \alpha d_i(m, m_1) \beta d_i(g_i(b,c), m_1) = 0$ (5)Replace $d_i(a, b)$ by $g_i(b, c)$ in (5) we get $\sum_{i=1}^{n} d_i(g_i(b,c), m_1) \alpha d_i(m, m_1) \beta d_i(g_i(b,c), m_1) = 0$ Since M is semiprime, then $\sum_{i=1}^{n} d_i(g_i(b, c), m_1) = 0$ Thus $d_n g_n = 0$ (6)From (1), (4) and (6) we get $D_n(a, b) \alpha G_n(b, c) = (0)$ and $d_n G_n = d_n g_n = 0$ Conversely, suppose that $D_n(a, b)\alpha G_n(b, c) = 0$ (7)And $d_n G_n = 0$ $(d_n G_n)(b\alpha a, c) = 0$ $\sum_{i=1}^{n} d_i(G_i(b\alpha a, c), m) = 0$ for all $m \in M$ $\sum d_i(G_i(a,c)\alpha g_i(b,c),m) = 0$ $\sum_{i=1}^{\infty} d_i(g_i(b,c),m) \alpha d_i(G_i(a,c),m) = 0$ (8)Replace $d_i(g_i(b,c),m)$ by $d_i(a,b)$ and $d_i(G_i(a,c),m)$ by $G_i(b,c)$ in (8) we get $\sum d_i(a,b)\alpha G_i(b,c) = 0$ Hence $d_n(a, b)\alpha G_n(b, c) = 0$ (9) From (7) and (9) we get $D_n(a, b)\alpha G_n(b, c) = d_n(a, b)\alpha G_n(b, c) = 0$ By lemma(2.9) we get D_n and G_n orthogonal.

Theorem(3.4):

Let D_n be a (ghsrb-d) associated with (hsrb-d) d_n of a 2-tfsp Γ -ring M for all $n \in \mathbb{N}$. If $D_n(a, b) \alpha D_n(b, c) = 0$ then $D_n = d_n = 0$ for all $a, b, c \in \mathbb{M}$ and $\alpha, \beta \in \Gamma$.

Proof:

By assumption $D_n(a, b)\alpha D_n(b, c) = \sum_{i=1}^n D_i(a, b)\alpha D_i(b, c) = 0$ (1) Right multiplication (1) by $\delta D_i(a, b)$ we get

$$\sum_{i=1} D_i(a,b) \alpha D_i(b,c) \delta D_i(a,b) = 0$$

Since M is semiprime we get $\sum_{i=1}^{n} D_i(a, b) = 0$ (2)Then $D_n = 0$ Replace a by $t\beta a$ in (1) for every $t\in M$, then $\sum_{i=1}^{n} D_i(t\beta a, b)\alpha D_i(b, c) = 0 \Longrightarrow \sum_{i=1}^{n} D_i(a, b)\beta d_i(t, b)\alpha D_i(b, c) = 0$ (3)Replace $d_i(t, b)\alpha D_i(b, c)$ by $D_i(b, c)\alpha d_i(t, b)$ in (3) we get $\sum D_i(a,b)\beta D_i(b,c)\alpha d_i(t,b) = 0$ By Lemma (2.3) we get $\sum_{i=1}^{n} D_i(a, b)\beta d_i(t, b) = 0$ (4)Left multiplication (4) by $d_i(t, b)\delta$ for all $\delta\epsilon\Gamma$ we get $\sum d_i(t,b)\delta D_i(a,b)\beta d_i(t,b) = 0$ Since M is semiprime, then $\sum_{i=1}^{n} d_i(t, b) = 0$ Thus $d_n = 0$ (5)From (2) and (5) we get $D_n = d_n = 0$

Theorem(3.5)

If M be a 2-tfsp Γ - ring. Let D_n and G_n are two(ghsrb-d) associated with two (hsrb-d) d_n and g_n respectively for all $n \in \mathbb{N}$. Then D_n and g_n as well as G_n and d_n orthogonal iff $D_n = d_n = 0$ or $G_n = g_n = 0$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$.

Proof:

Suppose that D_n and g_n as well as G_n and d_n are orthogonal By theorem (3.1)(*iii*) we have got $D_n(a, b)\alpha g_n(b, c) = 0$ $\sum_{i=1}^{n} D_i(a, b) \alpha g_i(b, c) = 0$ (1)Right multiplication (1) by $\beta D_i(a, b)$ for all $\beta \in \Gamma$ we get $\sum_{i=1}^{n} D_i(a,b) \alpha g_i(b,c) \beta D_i(a,b) = 0$ Since M is semiprime we get $\sum_{i=1}^{n} D_i(a, b) = 0$ Hence $D_n = 0$ (2)And by theorem (3.1)(*ii*) we get $d_n(a, b)\alpha G_n(b, c) = 0$ $\sum_{i=1}^{n} d_i(a, b) \alpha G_i(b, c) = 0$ (3)Right multiplication (3) by $\beta d_i(a, b)$ we get $\sum_{i=1}^{n} d_i(a,b) \alpha G_i(b,c) \beta d_i(a,b) = 0$ Since M is semiprime we get $\sum_{i=1}^{n} d_i(a, b) = 0$ Thus $d_n = 0$ (4)Now, also by theorem (3.1)(*iii*) we get $g_n(b,c)\alpha D_n(a,b) = 0$ $\sum_{i=1}^{n} g_i(b,c) \alpha D_i(a,b) = 0$ (5)Right multiplication (5) by $\beta g_i(b, c)$ we get $\sum_{i=1}^{n} g_i(b,c) \alpha D_i(a,b) \beta g_i(b,c) = 0$ Since M is semiprime, then $\sum_{i=1}^{n} g_i(b, c) = 0$ (6)Hence $g_n=0$ And by theorem (3.1)(*ii*) we have got $G_n(b, c)\alpha d_n(a, b) = 0$ $\sum_{i=1}^{n} G_i(b,c) \alpha d_i(a,b) = 0$ (7)Right multiplication (7) by $\beta G_i(b, c)$ we get $\sum_{i=1}^{n} G_i(b,c) \alpha d_i(a,b) \beta G_i(b,c) = 0$

Since M is semiprime, then $\sum_{i=1}^{n} G_i(b, c) = 0$ Hence $G_n = 0$ (8)From (2), (4), (6) and (8) we get $D_n = d_n = 0$ or $G_n = g_n = 0$ Conversely, assume that $D_n = d_n = 0$ or $G_n = g_n = 0$ $D_n(c\alpha a, b) = 0$ for all $\alpha \in \Gamma$ $g_n(D_n(c\alpha a, b), m) = 0$ for all $m \in M$ $\sum_{i=1}^{n} g_i(D_i(c\alpha a, b), m) = 0$ $\sum_{i=1} g_i(D_i(a,b)\alpha d_i(c,b),m) = 0$ $\sum_{i=1}^{n} g_i(d_i(c,b),m) \alpha g_i(D_i(a,b),m) = 0$ (9) Replace $g_i(d_i(c, b), m)$ by $D_i(a, b)$ and $g_i(D_i(a, b), m)$ by $g_i(b, c)$ in (9) we get $\sum D_i(a,b)\alpha g_i(b,c) = 0$ $D_n(a, b)\alpha g_n(b, c) = 0$ By theorem(3.1) (iii) we get D_n and g_n are orthogonal Similarly, if $G_n = g_n = 0$ we get G_n and d_n are orthogonal.

Reference

[1] A.H.Majeed and S.M.Salih, Jordan Generalized Higher Derivations on Prime Γ-Rings, Education College Conference, 16th, Al-Mustansiriya Univ., 2009.

[2] Ashraf M. and Jamal M.R., Orthogonal Derivation in Γ-rings, Advance in Algebra, Vol.3, No.1, PP.1-6,2010.

[3] Barnes, W.E. 1966. On The Γ-Rings of Nobusawa. Pacific J. Math. 18:411-422.

[4] C. Jaya Subba Reddy, Symmetric Reverse Bi-Derivations on Prime Rings, Research J. Pharm. and Tech, 9(9)(2016) 1496-1500.

[5] Ceven, Y. and M.A. Ozturk, M.A 2004. On Jordan Generalized Derivations In Gamma Rings. Hacettepe J. of Mathematics and Statistic, 33:11-14.

[6] Jing, F.J. 1987. On Derivations of Γ-Rings. QUFU Shi Fan Daxue Xuebeo Ziran Kexue Ban, 13(4):159-161.

[7] Kyuno, S. 1978. On Prime Gamma Rings. Pacific J. Math. 75: 185-190.

[8] Marir, A. M. and Salih, S.M. 2016. Higher Bi-Derivations on Prime Gamma Rings. M.SC. Thesis Education College, AL-Mustansiriya University.

[9] Majeed A.H. and Salih S.M., Jordan Generalized Higher Derivations on Prime Γ -ring , Education College Conference ,16th, AL-Mustansiriya University ,2009.

[10] Majeed A.H. and Suliman N.N., On Orthogonal Generalized Derivations of Semiprime Gamma Ring, International Journal of Computational Science and Mathematics, Vol.4, No.2, PP.113-122,2012

[11] Nobusawa, N. 1964. On Generalization of the Rings Theory. Osaka J. Math. 1: 81-89.

[12] Ozturk M.A., Sapanci M., Soyturk M. and Kim K.H., Symmetric Bi-Derivation on Prime Gamma Rings, Scientiae mathematics ,Vol.3,No.2, PP.273-281,2000.

[13] Salih S.M. and Aneed J.S., Orthogonal Generalized Higher Symmetric Revers Bi-Derivations and Generalized Higher Symmetric Bi-Derivations on Semiprime Γ – Rings, Education College Conference, 15th, AL-Mustansiriya University, 2023.