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Abstract:

This paper introduces a Multi-Order Fractional Optimal Control Problems in which the dynamic system involves integer and
fractional-order derivatives are introduced in the Caputo sense. We derive the necessary optimality conditions in terms of the
associated Hamiltonian, and we construct an approximation of the right Riemann—Liouville fractional derivatives and solve the
fractional boundary value problems by the spectral method. Numerical methods rely on the spectral method where Chebyshev
polynomials are used to approximate the unknown functions. Chebyshev polynomials are widely used in numerical computation to
solve the problems are presented.
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1. Introduction

A Fractional optimal control problems ( FOCPs) is an optimal control problem in which either the performance index or the
differential equations governing the dynamics of the system or both contain at least one fractional order derivative term. The
formulation and solution scheme for FOCPs was first by established by Agrawal where the applied Fractional Variational Calculus
(FVC) and presented a general formulation and solution scheme for FOCPs in the Riemann-Liouville (RL) sense that was based on
variational virtual work
coupled with the Lagrange multiplier technique. Since the Caputo Fractional Derivative (CFD) seems more natural and allows
incorporating the usual initial conditions, it becomes a popular choice for researchers. [10,16,7]

FOCPs are optimal control problems associated with fractional dynamic systems. The fractional optimal control theory is a very
new topic in mathematics. FOCPs may be defined in terms of different types of fractional derivatives. The Chebyshev polynomials
method was applied to solve FOCPs, Chebyshev polynomials T.(t), of degree n are important in approximation theory because the

roots of the Chebyshev polynomials of the first kind, which are also called Chebyshev nodes, are used as nodes in polynomial
interpolation. In Agrawal[1], Agrawal and Baleanu [2], the authors obtained necessary conditions for FOCPs with the Riemann-
Liouville derivative and were able to solve the problem numerically. Agrawal [3], presented a quadratic numerical scheme for a class
of fractional optimal control problems (FOCPs). In Agrawal [4], the FOCPs are formulated for a class of distributed systems where
the fractional derivative is defined in the Caputo sense, and a numerical technique for FOCPs presented. Baleanu et al. [8], used a
direct numerical scheme to find a solution of the FOCPs.

In [11],M. M. Khader and A. S. Hendy studied an efficient numerical scheme for solving fractional optimal control problems. In [8],
Dumitru Baleanu, Ozlem Defterli and Om P. Agrawal studied a central difference numerical scheme for fractional optimal control
problems.In [ 5],T. Akbarian and M. Keyanpour studied a new approach to the numerical solution of fractional order optimal control
Problems. In [15], N.H. Sweilam, T.M.Al-Ajmi and R.H.W. Hoppe studied numerical solution of some types of fractional optimal
control problems.

This paper is organized as follows: In Section 2 we present some basic notations and preliminaries as well as properties of the shifted
Chebyshev polynomials are introduced. In section 3 contains the necessary optimality conditions of multi-order fractional optimal
control problems model. In section 4 we present numerical approximations of the left CFD and the right RLFD using Chebyshev
polynomials .In section 5, we give numerical examples to solve FOCPs and show the accuracy of the presented method. Finally,
section 6, we conclude the paper.
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2. Basic Notations and Preliminaries.
In this section, we present some necessary definitions and mathematical preliminaries of the fractional calculus theory required for our
subsequent development.

2.1 Fractional Derivatives and Integrals.

Definition (2.1.1):

Let J =la.bl (- <a < b <o) be a finite interval of R. The left and right Riemann—Liouville fractional integrals

LDref(edand _D3*f(t) of order @ € R, are defined by
Dif(e) = ﬁf:{t — 0"t f(D)dr,  tza a=0 @.1)

Def(t) = ﬁfj{r— £t f(z)dr, t<bh a=0, (2.2)

where I'(-} is the Gamma function defined for any complex number z as

riz) = [, e~ ft*tdt, (2.3)

The left and right Riemann-Liouvillefractional derivatives D f(t)and Dif(t) of order & € R.. are defined by

DI = g e = Dot p(ar t>a (2.4)
Dif(e) = rl::_ﬂ{—ljr‘%f:{r -6 fxddr, t<b, (2.5)

In particular, when & = n € Ny, then

EICEEORYIO)
DO = D@ ad DA = (DO,

where £ (£) is the usual derivative of f(£) of order n,[7],[17].
Definition (2.1.2):

Let & = 0 be areal number and let n =[a] + 1 for @ & Nyin = & for @ € Ny.If f(t) € AC" [a, b. then the Caputo fractional
derivatives -D?f(£) and “DZf(¢) exist almost everywhere on [a, 5] [14]

i) Ifae N, SDEf(E) and ED% F(t) are represented by

Eﬂff(t} = [-,::_ﬂ j;[(t - T} n_i_lf(ﬁ} (T}d‘r, (2.6)
D8 = 5 [ G - ot (2, @7

ii)If e =n € Ng. then Efo(t] and ':[Dgf(t] are represented by

pif(e) = f(e) and DEf(e) = (—1)"F (o).
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In particular, Eﬂf'f(t} = iﬂgf(t} = f(e).
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2.2 Basic Properties of Fractional Calculus of arbitrary order.

In The following some properties of fractional calculus are presented in details which will be needed later on:

i) The relation between the RLFD and the CFD,[7]:
For @ = 0 and n = [&] + 1, the Riemann-Liouville and Caputo fractional

derivatives are related by the following formulas:

DEF(H) = SDEF(D) + T ;rf'+:'ﬂ(r_g]i'-= 2.8)
z e nt1_f(8) -z
DEf() = “Ef(e) + Biz Vi & — 0 (2.9)

ii) The fractional operators are linear,[12]:

PLAF(e) +ug(e)] = APF() + u Pgle),
where Pisoneof . Df. .Dj. 'ZD[’ . ':[Di D% or  D7% and 4. u are real
numbers.

iii) The power function and constant function of the Caputo’s derivative ,is:

. o, for BENy; and g = [al,
Dt —a)f =1 rig+n)
g — T {y — )
arn &~ 9

2 for Be Ny andB = [al. (2.10)

we usele] to denote the smallest integer greater than or equal to « andNg = {0.1,2,...}
Recall that for = € N.[6].
EDEconst = 0, (2.11)

In particular , 'inl =0, and ':Dfs'l =0.

T

iv) For a > 0, we have
I g(®) - “p2p(e)at =
IWIORI YORES =] I ORI O
I7 908 - Spif(Dde =

L F© - Dig(e) de + Xt [(—1Jr‘+j RESFICE =D:_1_jf{tj]=

where Dig(t) = IT¥git)and Diglt) =  Iig(r)ifk=0.

Therefore, 0 < & < 1, we obtain,[7]
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[ 9@ - Dfpar = [TF() - Dig(Dat+[ i g() - F(OI2

and

L@ -Sp8f(de = [ () - Dig(Dde+[ i %g(e) - FOIE

Moreover,
If £ isa function such that f(a) = (b} = 0. we have simpler formulas:

I g - “pif(0dt = [ f(e) - Dig()at (2.12)
and

79 - SDEf(de = [ (&) - .Digle)at. (2.13)
2.3. Shifted Chebyshev Polynomials.
The Chebyshev polynomial T..(t) of the first kind is a polynomial in t of degree n, defined by the relation
Tn(t} = cos(nf) when t = cos(8). (2.14)
where € [-1.1] |6 € [0.n]. t = —1 corresponds to & =m and t = 1 corresponds to & = 0.
The Chebyshev polynomials can be expanded in power series as, [13]:

T,(t) = EEL“"”(—l} m omoL o pnetm (2.15)

m=0 (m(r—2m)!
where [n/2] denotes the integral part of n/2, with Tp(t) = 1,T;(t) = .

The Chebyshev polynomials T,,(t) (n=0.1,2,..) are orthogonal under integration over [—1.1] with the weighting function
wit) =1/41 - tZ, with orthogonally condition :

_ 0 if nEm,

L Ty lt)Tmlt _ T, _

f—lﬁ dt = ; if n=meN, (2.16)
m  if n=m= 0.

In order to use these polynomials on the interval [0.L] we define the so called shiftedpseudo-spectral Chebyshev polynomials by

introducing the change of variable =z = ?r -1

The shifted Chebyshev polynomials are defined as,[7]:
) =1, (F-1). where T =1TiO=T-1. 2.17)

The analytic form of the shifted pseudo-spectral Chebyshev ponnomiaI!"-E'[t]I of degree n is given by,[6]:

p 2 (k-] g

i) = n B (-0 g ptt n=12. (2.18)

Where, TE(0) = (—1)", and TE(L) = 1.
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2
Let the shifted Chebyshev polynomials T, (—[ — l)be denoted byT%(t), satisfying the orthogonality relation:

L

Iy TE(OTE (Dw? (£) dt = 5m, (2.19)

. . . 1 5
with the weight function w#(t) = —=.8m = ?kmb[;. =2,by=1forkz1.
VIT-T

A function x (£} € L2([0, L])i. e. (square integrable in[0, L]} can be expressed in terms of shifted Chebyshev polynomials as:
x(t) = Ej-';n € T;" (£,

where the coefficients ¢, are given by

qziﬁﬂﬂﬁEMWﬂﬂ n=01,. (2.20)

3. The necessary optimality conditions of multi-order fractional optimal control problems:
Let . 8 be real numbers and @ £ € (0.1).and let L. f: [, oo % B* — R be two differentiable functions.
We consider a general form of Multi-Order Fractional Optimal Control Problem:
minimize J(x,u, T) = f:l{t,.r{t:],u{ﬂ}dt, (3.1)

subject to the fractional dynamic control system

ASDEx(t) + B EDr'?x(t:l = flt.x(®), ul®)), (3.2)
xla) = x, x(T) = x5, (3.3)

Where A.BE = LT is the end free time .x; and xr are fixed real numbers. The dynamic control system (2.2) involving integer and
multi-order fractional derivatives.

Theorem (3.1):

Let (xu T) is a minimizer of fractional optimal control problem (2.1), (2.2) and (2.3), then there exists a function A(£} that
(= u, T) satisfies the optimality conditions (i) and (ii):

4 DR +8 DI = (620, u(0). 1) (3.4)
"4 “DEx(e) + B DEx(e) = = (6.x(D.u().2(9) (3.5)
i) == (6. x(8), u(8), A) = 0

forall t e [a T (3.6)

where the HamiltonianH (. x, u, 1) is defined by

Hit, x,u, ) = Lt x,w) + Af (¢, x, 0. (3.7
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4. Numerical approximations of the fractional calculus.

We choose the Chebyshev-Gauss Lobatto points associated with the interval [0, L],

L L g
t, = >3 u:u:us{:ll—.j, r=0,1..N. 4.1)
These grids can be writtenas L = xpy < %y 3. < 3y < x,= 0

Clenshaw and Curtis [9], introduced an approximation of the functionx (£}, as follows

xy(8) = Ty " @, TE(0). ey = =T, "x(t)TE(t,). 4.2)

where the (") on the summation means that the first and last terms are to be taken with a factor {1/2).

4.1. Approximation of the Left Caputo fractional derivative.
Theorem (4.1.1),[7]
The fractional derivative of order ain the Caputo sense for thefunction x(t) at the point £, is given by

2Dfx () = B, al? «(t,), a0, (4.3)

Such that
49r 8y (1) mpr—1 [‘fu 2+—}""D':r} T_‘f.":t,}

;L rfa+z}ur.-k}. Tik—a—j+1) Tl k—atj+1)’

Yl Lo Difad S

(4.4)
where

sr=0,12...N with 8, = 8y =% B, =1vi=12..N—-1,

Theorem (4.1.2),[7]
Let ED?:T (£)be the approximation of the fractional derivative EDfof the function x(t)as given by (4.3). Then it holds

1
Lra e rlt!':‘f'""I| ""‘E::l;
”DD:I@ D x (f}” < Y=o 8, 0, ﬁ . (4.5)
where
(-0 % 2n(ni-1) T{k- z+1}

ﬂn =Eu fz], (L F{k+ }Ir K T k= E—J+1}F'k 2+J+1:| (46)
{x, x) () o dxy)
FI:_:(: Vi Vas e J-’n:] = {J"‘l:’ .1'::' {J"‘l’:yl} . {J"‘:I.J:J'?i'!} )
(yni x) (ym: y1) - (ym: ym)
4.2 Approximation of the right the Riemann-Liouville fractional derivative.
Let0 <& < land f(t) € AC [a bl
e a _ _ a
DEF ) = s [ (e = 7o (D, (4.7)

The relation between the Riemann-Liouville and Caputo fractional derivatives when 0 << & = 1, (thatis n = 1} we have
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: (s}
DE) = D5 - ) o (4.8)
We can written (4.8) as
ey _ c
Difls) = ) (b—s)—*+ Difls) (4.9)
Use (4.7) in (4.9) to obtain
z ) B 1 e N_ag
D3f(s) = 5 (b —s) 0+ m_ﬂf: (t — 5)~2F (H)at (4.10)
Let f be a sufficiently smooth function in [0.5] and let J(s: £) be defined as follows
JGs:f) = [5Gt — )2 F (0de0 < 5 < b, (4.12)
Substitution (4.11) in(4.10) we deduce
z _ 8 o g, Is0
I'Dﬁf(s} - [":1—:} {B 5} + [":1—:} ' (4'12)

i
We approximate f{£).0 < ¢ < b, by a sum of shifted Chebyshev polynomials T;-{TE — 1) according to

FO = py® =T¥ f @ TG - 1o = 2Z0 ) TGl - 1), (413)
where

t: = 5 —Zcos {:—J); = 0,...... N, and obtain

JGs: F) & Jlsipg) = JC oy (0 (6 — 5)~%d. (4.14)
Lemma(4.2.1),[7]

Let p,, be the polynomial of degree IV as given by (4.13), Then there exists a polynomial Fy_; of degree N — 1 such that

Loy @ = py ] — s)%d = [Fy_y (x) - Fy_y ()] (x = )=, (4.15)
Proof.
Let p,'(£) — p,'(s) be expanded in a Taylor series at t = s
by () =, () = TV 4, () (e — 9"
Then,

f: [p‘"(ﬂ B p—"'lfs}](t —s)~%dt = B As) J?":t — s)* "t

[{ jl_azv_lakis?ir—s)‘f]x
il =l pger g

. . r_q Aplsde-g)*
The assertion follows, if we choose Fy_; (x) = E::[}*—H
K—a

with an arbitrary constant Agls).
59



Journal of Iragi Al-Khwarizmi Society (JIKhS) Year 2018  pages: 53-68

Volume:2 Special issue of the first international scientific conference of Iragi Al-Khawarizmi Society 28-29 March 2018
In view of (4.15) we have

p;\-r':.?:'

1-a

Jlsipy) = prh,’{ﬂ{r — 5%t = +[F_ () —Fy_y (]| —5)+-® (4.16)

Moreover,  .Dif(s) can be approximated by means of

FiE) Hsz,)

I b=
;D;;f(s} B fii-a) fli-a)

We express Fy_1(t) in (4.16) by a sum of Chebyshev polynomials and provide the recurrence relation satisfied by the Chebyshev
coefficients. Differentiating both sided of (4.15) with respect to x yields

[7'7."."('7‘-jl - p_'.;l(s}](-r - Sj_:' =

Fy_t ((x = )72 + [Py (x) = F_1 ()11 - &) (x = 5) =,

(b-s)"+ (4.17)

when

py (2) = py'(5) = Fyy (@) (x — 8) + [Fy_y (2) — Fy_1 ()11 — ). (4.18)

To evaluate Fy_i{s) in (4.16). we expand F_‘-,'_1I(-r} in terms of the shifted chebyshev polynomials
Fy_y () = X8 BTy (E - 1), 0<x<h, (4.19)

where the () on the summation means that the first term is to be taken with a factor {1,/2).

Fyos(0) = Fy_y () =2 %';f%(n. Z-1)-1:(3- 1)) (4.20)

where by_y = by = 0. On the other hand , we have

5-1)-G-2)l

By using the relation Tj41 (1) + T;_y () = 20T, () and from (4.19), it follows that

(= s)Fy_y (x) = gF:f-il":I}

] b 1_q Iz Ix
(= Pyt ) =228 (b - 2 (5 - 1) b+ iy ) T (5 - 1), (4.21)
Such that b_y = by.
1 r_ ) 2
Let p, () = SV T (—I— 1] (4.22)
Inserting Fy_1(x) — Fy_4(s) and (x - S}Fi-_ilfx} as given (4.20) and (4.21) into (4.18) and taking (4.22) into account, we get
l-z 2z l-z 4
(1-5) b -2(5-1) bt (1+5) bes =500 15k (423)
The Chebyshev coefficients c; of p_,ll.'(_r} as given by (4.22) can be evaluated by integrating and comparing it with (4.13):
4k
|'.','|'__-_1 == Ci‘+1 + ?ﬂ-,‘__—, k = f'lur, f'lur —_ 1, ...,1, (424)

With starting values ex = cy,1 = 0, where a; are the Chebyshev coefficients of p,, (x).
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5. Mlustrative Example:
In this section, we developed the algorithm for the constraint of the general problem into multi fractional derivative

€
Eﬂfx{t} and Dﬂfx(t} in the optimal control problem.We consider the following linear-quadratic optimal control problem:

minJCe.u) = [ (ul®) — () dt, (5.1)
subject to the multi-fractional dynamical system
“DEr() + DEx(t) = wle) — x(8) + —— 1842 4 51842 (5.2)
ot ot Tra+3) Tif+3 ! '

and the boundary conditions

]

x(0) =0,x(1) = v (5.3)
The exact solution for @ = & = 1 is given by:

— — greHi=T

) =ult) = IS (5.4)

Now, we develop algorithm for the solution (5.1),(5.2) and (5.3). It is based on the necessary optimality conditions of multi-order
fractional optimal control from Theorem (3.1) as the following steps:

Step 1. Compute the Hamiltonian function H(t,x,u, 1)

H = () — x(©)" + 20 (u®) — x() + = =+7 4 —£_s5+2), (5.5)

Tle+3) Ti8+3)

Step 2. Derive the Necessary Optimality Conditions of multi-order fractional optimal

control problems from Theorem (3.1):

A DFAO+B DEAD =T = -2(u@® - () - 20, (5.6)
ASDEx(E) + BIDfx() = 37 = ule) — x(0) + 7 t547 4 o eF0 (5.7)
Suppose that A=E =1 and t € (0.1) then a =0,T =1 | equations(5.6) and (5.6) become
DE + DIl = —2(ulD) — x(8)) - A0, (5.8)
“DEx(e) + DEx(t) = ule) — x(2) + ettt (5.9)
2(u@) —x(#)) 4+ 4 = 0. (5.10)
2(ul®) —x()) = -2 thus, ul®) —x&) = —>1(), (5.11)

Use (5.11) in (5.8) we get

Df(e) +  Dia(d) = -2 (—%A{t})— ale),
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D) + D) =o. (5.12)

Now, from equation (5.11),we get

2ult) = 2x(8) — A(). thus, u() = x(5) — 22 (5.13)

Also, we substitute (5.13) in (5.9)

'_[} _E' o+ &
2 Jrrliz+3]|t +r'iﬂ+3}

“pEx(e) + ;D’fx(t} =— t8+2, (5.14)

Step 3. The coupled system for x(t) and A(t), we have from (5.12) and (5.14)

D) + D=0, (5.15a)
Ay & pe2 6

C e Cof ) —
D £ n £l = — — & r———
oPEx(8) + (D x(0) 2 "Tat3)’ (g3

2, (5.15)

Step 4. Using Chebyshev expansion, get an approximate solution of the coupled system under the boundary conditions(5.3), as

follows:

i) solve approximate {5.15a)of ,Dii(t) and [D’fj{(t}, by approximation of the Riemann-Liouville fractional derivatives

(4.17).
alL) _g  Jsr,) Al -z Neswy,)
g )T *rog (1-¢) s =0 (5.16)
Hence,
i _ - i _ —-F Heepna) | Ilesbya) _
A [0 - ) + g - ) 4 e Lt g (5.17)

i) solve approximate (3.15&) of x(£) by theorem(4.2) of the Caputo fractional derivative.
We use (4.2) to approximate x(t).A collocation scheme is defined by substituting (4.2), (4.3) andthe computed (£} into (3.155)and

evaluating the results at the shifted Gauss-Lobattonodest;. s = 1. 2,...,N — 1. This results in:

W [ N (5 Al gemT g ST () (£ . .
Nod:F xle )+ Bl pd x(t) = ~ 3 titen t men (6:18) where d:+ and d;5 are defined in (4.4) of theorem(4.1.1).

Step 5. Evaluating the results at the shifted Gauss-Lobatto nodes t..from (4.1),
s=12...N —1,andlet N =2and «f = (0.1).

Let N =2—==5=1, we have:

L L w 1 1 T
t:=t1=;—;t‘,l:|5{¥:] — =;—;EDS{;:] =t =03
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Step 6. Compute approximated x (£} and w( £} by (4.2) and (5.2) respectively.
Let & =03 and £ = 0.5such that & 8 € (0.1).
i) We find A(t;) from equation (5.17), we get
AQ)[1.7464] +0.7704 [t py, ) +0.5642 [t py ) = 0, (5.19)

JCt: pye ) and J(ts: gy ), from equation(4.16), to get

JCt e ) —[”‘ LU (R _, ) - _1{0.5]]]{0.5]“-*, (5.20)

JCtsipya) —[”‘ T A, - _1{0.5]]]{0.5]“'5. (5.21)

Use (4.22) to compute p,,'(;), as follows:

py'(6) =, (0.5) = T eiTi (52 ~ 1) =070 (0) + 474 (0)

1

I:'D{l:] + I'-'-'j_{ 1:]

=1

(SR

Co = €1 (5.22)
I'--"l._ l_ck+1+ u-k.llri:—lnir_llnlr 1 1_.

and cy =cyyy = O thenk =21 andcy = ¢3 = 0.

B
when k = 2.5 E3+Iﬂ-2 = ¢y =0+ 8ay = ¢y = 8an,

: (5.23)
when k& =165 = +I|:e.1 =g =0+ 4a; = cp = 4ay.

where a; = a;.a;. are the Chebyshev coefficients of p,, (x). We can find it from (4.13):

BB 0y
where £ = - ——ms(—], = 0,12
ere 4 2 2 N I

and

ay :éj{(tu}ﬂ (?—1)+1(t1}1”1 (21 1)+ A(rz}rl(? 1),
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ey = 5 ATy (=1) + ATy (0) +5 2T, (0,

-3 1
a; = ?a(rﬁ.} —alz) +5.1(r2}, (5.24)
2 2tq

ay = éﬂ(fn}rz (% - 1) + At (% - 1) + %f{(fz}rz (T - 1),

2 = 5 MEITo(-1) + 2E)T(0) + 5 AT (D),

o = gﬂ(tu} +ale) + %A(tz}. (5.25)

Substitution (5.24) and (5.25) in (5.23), We obtain :

co = —62tg) —#A(t) +220t2)  4ng ¢ = 68alte) +84(e) + 4A(t).

Substitute £p and ¢y in equation(5.22), we get

py (0.5) = =714(¢p) — 104 (¢, ) — 34(t,).

Now, we calculate [Fy_; (1) — Fy_1(0.5)]. from (4.20), to get

[Fy_i (1) — Fy_,(0.5)] = 1.3333 (684 (¢,) + 84t ) + 44(t)). (5.26)
After Substitution above equations in (5.17)

Then, we have A(t,) = 0.

To solve approximation of x(t}) from (5.18) ,when + = 0.1,2 and s = 1, we get

(0.3) (0.5}

(02) 0D 1) + a5V x(1) + a2 2(0) + d % x(2y)

dig x(0) +dy,

6 (05022 glosl®s
riz.3) riz.s) '

+d%¥ (1) = (5.27)

. (0.3 (0.3 (05 (0.5
and use (4.4) to evaluating the results of d; }, dy; },dl_l ! and dj; },

under the boundary conditions x (0} = 0,x(1) = - <
[e+f+3)

which is shown in Table (1), as follows:

Table (2).

Shows results of Caputo fractional derivative when & = 0.3 and § = 0.5 incase (1) and @ = f = (L7 in case (2).

n j k ary” ary ary” a5 ary” ai”

1 0 1 0 0 0.6274 0.7183 0 0.8154
1 1 1 0 0 0 0 0 0

1 2 1 0 0 0.0287 0.0478 0 0.0572
2 0 1 0.6274 0.7183 -0.6274 -0.7183 0.8154 -0.8154
2 1 1 0 0 0 0 0 0

2 2 1 0.0287 0.0478 -0.0287 -0.0478 0.0572 -0.0572
2 0 2 -0.5210 -0.6385 0.5210 0.6385 -0.7720 0.7720
2 1 2 0 0 0 0 0 0

2 2 2 0.0620 0.0517 -0.0620 -0.0547 0.0396 -0.0396
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sum 0.1971 0.1823 0.459 0.5838 0.1402 0.7324
dly = 48, /N.sum 0.3942 0.3646 0.459 0.5838 0.2804 0.7324
when
48, 4(1) 48, 4(0.5)
r=l =y = 72 r=2 =y T 71
Case 1:

Whenea =03and § =05

Substitute the value of Table (1) and boundary conditions above in (5.27), we get

dE_E[I::]}(U} 4+ (0.3942) (¢, ) + (0.459)(1.2782) + di_%ﬂ([]}

+(0.3646) x(¢,) + (0.5838) (1.2782) = 3.7732,
Now, we have:

x(t,) = x(0) =0,

x(t,) = x(0.5) = 0.0185,

x(t,) = =(1) =1.2781.

Substitutex (t5), x(¢, Jand x(¢,)in(4.2) to find the approximation solution of x;(t)

Nu
2
0@ =2 ) )T,
: n=0 r=0
Then the approximation solution of x,{t) is x,(t) = 2.5102# — 1.2412¢,

We can use xz{t)and substitute in the constraint of the problem (5.2) to compute the control u(£).

o+ 6 g+2

6
a+3)° T(B+3)

ult) = SDFx(®) + SDFx(®) + x(H) —

il

ult) = 3.2618+% — 13660407 + 3.7002¢%% — 1.4005 %% 4+ 2.5102¢% — 1.2412¢ — 2.2350+%F — 1.8054+%%,
Case 2:

When & =g =07

Substitute the value of Table (1) and boundary conditions above in (5.27), we get

a2 x(0) + a5 x(e) + a5 (1) + s x(0) + doy x(,)

(0.7) {]_6{0.5]:-7‘ 6(0.5)27
td,, xl1} = rG.7) + TG

In the same case ,we have :

x,(t) = 0.6372¢% — 0.0454¢.
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and

ult) = 21846 %% — 01012+ + 0.6372¢% — 0.0454¢ — 2.8772+%7,

Table (2).
Shows numerical results of the exact and approximate state x (£} and control function u(t) for = 2,
t x(¢) x(¢) x(t) u(g) ult) ult)
o =03 e = 0.7 =1 o =03 a = 0.7 =1
g =105 g =07 g=1 g =105 g =07 g=1
0 0 0 0 0 0 0
0.1 -0.0989 0.0018 0.0020 -0.6463 0.0054 0.0020
0.2 -0.1475 0.0164 0.0141 -0.7536 0.0142 0.014
0.3 -0.1456 0.0437 0.0439 -0.6860 0.0437 0.0439
0.4 -0.0934 0.0838 0.0983 -0.5070 0.0982 0.0983
0.5 0.0092 0.1366 0.1835 -0.2512 0.1863 0.1835
0.6 0.1622 0.2022 0.3058 0.0583 0.3184 0.3058
0.7 0.3656 0.2804 0.4708 0.4036 0.4283 0.4708
0.8 0.6193 0.3715 0.6843 0.7706 0.5155 0.6843
0.9 0.9235 0.4754 0.9516 0.1469 0.9652 0.9516
1 1.2780 0.5918 1.2782 1.5222 1.2020 1.2782
Figure 1:
14 ‘ (a) IExact Isolutic?n of xl(t) ordler 2 i 14 (I:')) Approxim?te so!ution Pf x(t) ‘order ‘2

t t

(@) Exactsolutionof x(t)} for(W=2)and =8 =1
(b) Approximate solutions of x(t} for (N =2) and « = 0.3 and 8 = 0.5.
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(c) Exact solution of u(t) order 2 (d) Approximate solution of u(t) order 2

081

08 06

S 06 4 b S 04F

ok
04 0

02F
-0.2

o 04"

0.2 L L L L L L L L L 06
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t t

(c) Exact solution of ult)for (W =2)and o =g = 1.
(d)  Approximate solutions of u(t} for (W =2)and &« = 0.3 and § = 0.5.

Figure 2:
09 (a) Exact solutions of x(t) when N=2, a==0.7 09 (b) Approximation solutions of x(t) when N=2, a=B=0.7

T T T T T T T T T T T T T T T T T T
08 08
07t »,: g 07t
06 4 E 06
05 1 05
x 04F V4 1 x 04f
03F P 4 ’ 1 03
02f & E 02F
0.1 ‘”'": 1 01}
0 L ™ 1 of

-0.1 . . . . . . . . . -0.1 . . . - - . . . .

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

t t

(@) Exact solution of x(t)for (N =2)and & = § = 0.7.
(b)  Approximate solutions of x(t) for (W =2)and @ = § = 0.7.

6. Conclusions.

In this paper, we have presented algorithm for the numerical solution of a class of multi- order fractional optimal control
problems, in two cases one when & = 0.3 and & = (L3, and the other one when « = & = 0.7. In both cases, the solution is
approximated by Chebyshev series. Numerical results for illustrative example show that the algorithm converge from the
exact solution when & = § = 1, and we note that the convergent to the exact solution is dependent on increasing of the
fractional order of derivative.
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