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Abstract:  

      This paper introduces a Multi-Order Fractional Optimal Control Problems in which the dynamic system involves integer and 

fractional-order derivatives are introduced in the Caputo sense. We derive the necessary optimality conditions in terms of the 

associated Hamiltonian, and we construct an approximation of the right Riemann−Liouville fractional derivatives and solve the 

fractional boundary value problems by the spectral method.  Numerical methods rely on the spectral method where Chebyshev 

polynomials are used to approximate the unknown functions. Chebyshev polynomials are widely used in numerical computation to 

solve the problems are presented. 
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1. Introduction 

A Fractional optimal control problems ( FOCPs) is an optimal control problem in which either the performance index or the 

differential equations governing the dynamics of the system or both contain at least one fractional order derivative term. The 

formulation and solution scheme for FOCPs was first by established by Agrawal where the applied Fractional Variational Calculus 

(FVC) and presented a general formulation and solution scheme for FOCPs in the Riemann-Liouville (RL) sense that was based on  

variational virtual work 

coupled with the Lagrange multiplier technique. Since the Caputo Fractional Derivative (CFD) seems more natural and allows 

incorporating the usual initial  conditions, it becomes a popular choice for researchers. [10,16,7] 

     FOCPs are optimal control problems associated with fractional dynamic systems. The fractional optimal control theory is a very 

new topic in mathematics. FOCPs may be defined in terms of different types of fractional derivatives. The Chebyshev polynomials 

method was applied to solve FOCPs, Chebyshev polynomials  , of degree n are important in approximation theory because the 

roots of the Chebyshev polynomials of the first kind, which are also called Chebyshev nodes, are used as nodes in polynomial 

interpolation. In Agrawal[1], Agrawal and Baleanu [2], the authors obtained  necessary conditions for FOCPs with the Riemann-

Liouville derivative and were able to solve the problem numerically. Agrawal [3], presented a quadratic numerical scheme for a class 

of fractional optimal control problems (FOCPs). In Agrawal [4], the FOCPs are formulated for a class of distributed systems where 

the fractional derivative is defined in the Caputo sense, and a numerical technique for FOCPs presented. Baleanu et al. [8], used a 

direct numerical scheme to find a solution of the FOCPs. 

In [11],M. M. Khader and A. S. Hendy studied  an efficient numerical scheme for solving fractional optimal control problems.  In [8], 

Dumitru  Baleanu, Ozlem Defterli and  Om P. Agrawal  studied  a central difference numerical scheme for fractional optimal control 

problems.In [ 5],T. Akbarian and M. Keyanpour  studied a new approach to the numerical solution of fractional order optimal control 

Problems. In [15], N.H. Sweilam, T.M.Al-Ajmi and R.H.W. Hoppe  studied numerical solution of some types of fractional optimal 

control problems. 

This paper is organized as follows: In Section 2 we present some basic notations and preliminaries as well as properties of the shifted 

Chebyshev polynomials are introduced. In section 3 contains the necessary optimality conditions of multi-order fractional optimal 

control problems model. In section 4 we present numerical approximations of the left CFD and the right RLFD using Chebyshev 

polynomials .In section 5, we give numerical examples to solve FOCPs and show the accuracy of the presented method. Finally, 

section 6, we conclude the paper. 
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2. Basic Notations and Preliminaries. 

In this section, we present some necessary definitions and mathematical preliminaries of the fractional calculus theory required for our 

subsequent development. 

 

2.1  Fractional Derivatives and Integrals. 

 

Definition (2.1.1): 

       Let J  be a finite interval of  . The left and right Riemann−Liouville fractional integrals 

and  of order  are defined by  

(2.1) 

             (2.2) 

where  is the Gamma function defined for any complex number z as 

 

                                                              (2.3) 

 

The left and right Riemann-Liouvillefractional derivatives and  of order  are defined by  

 

                                    (2.4) 

(2.5) 

 

In particular, when  then   

 

 

   and     

 

where    is the usual derivative of   of order ,[7],[17]. 

 

Definition (2.1.2): 

      Let    be a real number and let  for  for .If   then the Caputo fractional 

derivatives  and  exist almost everywhere on ,[14] 

i) If  and  are represented by  

 

                                                            (2.6) 

                                                                (2.7) 

ii) If  then  and  are represented by  

 

                and    
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            In particular,           

 

2.2 Basic Properties of Fractional Calculus of arbitrary order. 

 

      In The following some properties of fractional calculus are presented in details which will be needed later on:  

 

i) The relation between the RLFD  and the CFD,[7]: 

                 For    and  the Riemann-Liouville and  Caputo  fractional     

               derivatives  are  related  by the following formulas: 

                                                              (2.8) 

                                                             (2.9) 

ii) The fractional operators are linear,[12]: 

 

              where   is one of   or   and  are real           

              numbers. 

 

 

iii) The power function and constant function of  the Caputo’s derivative ,is: 

 

(2.10) 

        we use  to denote the smallest integer greater than or equal to  and      

             Recall that for [6]. 

                             (2.11) 

                 In particular ,                    and   .  

 

iv) For   we have  

                  

                   

                  

                   

where  and  if  

 

Therefore,  we obtain,[7] 
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         and  

                . 

Moreover,     

If   is a function such that  we have simpler formulas: 

                                                       (2.12) 

         and    

                                                    (2.13) 

 

2.3. Shifted Chebyshev Polynomials. 

        The Chebyshev polynomial  of the first kind is a polynomial in  of degree , defined by the relation  

  when                                                                              (2.14) 

where  , .  corresponds to  and   corresponds to . 

The Chebyshev polynomials can be expanded in power series as, [13]: 

,                                                                     (2.15) 

where  denotes the integral part of    with  

The Chebyshev polynomials  are orthogonal under integration over    with the weighting function  

  with orthogonally condition : 

                                                                   (2.16) 

In order to use these polynomials on the interval  we define the so called shiftedpseudo-spectral Chebyshev polynomials by 

introducing the change of variable      

 

The shifted Chebyshev polynomials are defined as,[7]: 

      where                                                (2.17) 

The analytic form of the shifted pseudo-spectral Chebyshev polynomial  of degree n is given by,[6]: 

,                                                           (2.18) 

Where, and   
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Let the shifted Chebyshev polynomials be denoted by , satisfying the orthogonality relation:  

,                                                                                           (2.19) 

 

with the weight function   for  

A function can be expressed in terms of shifted Chebyshev polynomials as: 

 

  

 

where the coefficients  are given by  

 

 (2.20)   

 

3. The necessary optimality conditions of multi-order fractional optimal control problems: 

          Let  be real numbers and  and let  be two differentiable functions.  

We consider a general  form of Multi-Order Fractional Optimal Control Problem: 

                     (3.1) 

subject to the fractional dynamic control system 

                                                                          (3.2)   

                                                                                        (3.3)                                                      

Where  is the end free time  are fixed real numbers. The dynamic control system (2.2) involving integer and 

multi-order fractional derivatives. 

Theorem (3.1):   

     Let  is a  of fractional optimal control problem (2.1), (2.2) and (2.3), then there exists a  function   that 

 satisfies the optimality conditions (i) and (ii): 

i)  

ii)  

    for all  (3.6) 

where the amiltonian  is defined by  

.                                                                            (3.7)           
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4. Numerical approximations of the fractional calculus. 

 

     We choose  the Chebyshev-Gauss Lobatto points associated with the interval  

 

                                                                                          (4.1) 

These grids can be written as      

Clenshaw and Curtis [9],  introduced an approximation of the function  as follows 

.                                                       (4.2)          

where the  on the summation means that the first and last terms are to be taken with a factor  

 

4.1. Approximation of the Left Caputo fractional derivative. 

Theorem (4.1.1),[7] 

    The fractional derivative of order in the Caputo sense for thefunction  at the point  is given by 

                                                                       (4.3) 

 

Such that  

,                               (4.4) 

 where                                                           

  with . 

Theorem (4.1.2),[7] 

      Let be the approximation of the fractional derivative of the function as given by (4.3). Then it holds 

(4.5) 

where  

(4.6) 

 
 

4.2  Approximation of the right the Riemann-Liouville  fractional derivative. 

  Let  and  

(4.7)  

The relation between the Riemann-Liouville and  Caputo  fractional derivatives when   we have 
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(4.8)   

We can written (4.8) as  

(4.9)   

Use (4.7)   in (4.9)  to  obtain  

(4.10)   

 Let   be a sufficiently smooth function in  and let   be defined  as follows          

                           (4.11)   

Substitution (4.11)  in(4.10) we deduce  

                                                   (4.12)   

We approximate  by a sum of shifted Chebyshev polynomials  according to  

   (4.13)   

where 

 and obtain    

    (4.14)   

Lemma(4.2.1),[7] 

     Let   be the polynomial of degree   as given by (4.13), Then there exists a polynomial  of degree  such that  

.                           (4.15) 

Proof.  

      Let   be expanded in a Taylor series at   

.  

Then,  

                 

                                     . 

The assertion follows, if we choose  

with an arbitrary constant  
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In view of  (4.15) we have  

             (4.16) 

Moreover,   can be approximated by means of  

   (4.17)        

We express  in  (4.16) by a sum of Chebyshev polynomials and provide the recurrence relation satisfied by the Chebyshev 

coefficients. Differentiating both sided of  (4.15) with respect to  yields  

 

 

when  

                (4.18) 

To evaluate  in (4.16). we expand  in terms of the shifted chebyshev polynomials                  

(4.19) 

where the  on the summation means that the first term is to be taken with a factor  

               (4.20) 

where  On the other hand , we have  

 

By using the relation  and from (4.19), it follows that  

(4.21)       

Such that   

Let (4.22) 

Inserting   and  as given (4.20) and (4.21) into (4.18) and taking  (4.22) into account, we get  

                                (4.23) 

The Chebyshev coefficients   of  as given by (4.22) can be evaluated by integrating and comparing it with (4.13): 

(4.24) 

With starting values   where  are the Chebyshev coefficients of  
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5. Illustrative Example: 

    In  this section, we developed the  algorithm for  the constraint of the general problem into multi fractional derivative 

 and  in the optimal control problem.We consider the following  linear-quadratic optimal control problem: 

                                                                                   (5.1) 

subject to the multi-fractional dynamical system 

                                       (5.2) 

      and the boundary conditions  

                             .                                                                      (5.3) 

The exact solution for  is given by: 

                                                                   (5.4) 

 

Now, we develop algorithm for the solution (5.1),(5.2) and (5.3). It is based on the necessary optimality conditions of  multi-order 

fractional optimal control from Theorem (3.1) as the following steps: 

 

Step 1.    Compute the amiltonian function   

                              (5.5) 

Step 2.    Derive the Necessary Optimality Conditions of  multi-order fractional optimal   

               control problems from Theorem (3.1): 

                         (5.6) 

                  (5.7) 

Suppose that  , and   then ,   , equations(5.6) and (5.6) become   

(5.8) 

                                        (5.9) 

(5.10) 

   thus,   (5.11) 

Use (5.11) in (5.8) we get  
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                                                                                              (5.12) 

 

Now, from equation (5.11),we get  

,                 thus,  (5.13) 

Also, we substitute (5.13) in (5.9)  

                                                (5.14) 

Step 3.  The coupled system for  and , we have from (5.12) and (5.14) 

 

Step 4.   Using  Chebyshev expansion, get an approximate solution of the coupled system under the boundary conditions(5.3), as 

follows: 

i) solve approximate of  and , by approximation of the Riemann-Liouville  fractional derivatives 

(4.17). 

                                       (5.16) 

               Hence,  

                      (5.17)                     

ii) solve approximate  of  by theorem(4.2) of the Caputo fractional derivative.  

We use (4.2) to approximate .A collocation scheme is defined by substituting (4.2), (4.3) andthe computed  into and 

evaluating the results at the shifted Gauss-Lobattonodes . This results in: 

  (5.18) where    and   are defined in (4.4) of theorem(4.1.1). 

 

Step 5. Evaluating the results at the shifted Gauss-Lobatto nodes from (4.1), 

            and let  and   

Let  we have: 
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Step 6.   Compute approximated  and  by (4.2) and (5.2) respectively. 

                 Let      and  such that  

i) We  find  from equation (5.17), we get  

                                            (5.19) 

                    and , from equation(4.16), to get  

                  (5.20) 

                   (5.21)   

 

Use (4.22) to compute , as follows: 

  

                                   

                                                                                                                           (5.22) 

         

and   then , and  

                                         (5.23) 

where  . are the Chebyshev coefficients of  We can find it from (4.13): 

where   

 

 

 

and      
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   (5.24)                                              

 

 

         (5.25) 

Substitution (5.24) and (5.25) in (5.23), We obtain : 

         and         

Substitute   and  in equation(5.22), we get  

 

Now, we calculate  from (4.20), to get  

                                      (5.26) 

After Substitution above equations in (5.17) 

Then, we have   

To solve approximation of  from (5.18) ,when   and  we get   

 

                                                                                        (5.27) 

under the boundary conditions , and use (4.4) to evaluating the results of    and  , 

which is shown in Table (1), as follows: 

Table (1).  

Shows results of Caputo fractional derivative when  and   in case (1) and  in case (2).   

 

   

      

1 0 1 0 0 0.6274 0.7183 0 0.8154 

1 1 1 0 0 0 0 0 0 

1 2 1 0 0 0.0287 0.0478 0 0.0572 

2 0 1 0.6274 0.7183 -0.6274 -0.7183 0.8154 -0.8154 

2 1 1 0 0 0 0 0 0 

2 2 1 0.0287 0.0478 -0.0287 -0.0478 0.0572 -0.0572 

2 0 2 -0.5210 -0.6385 0.5210 0.6385 -0.7720 0.7720 

2 1 2 0 0 0 0 0 0 

2 2 2 0.0620 0.0517 -0.0620 -0.0547 0.0396 -0.0396 
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0.1971 0.1823 0.459 0.5838 0.1402 0.7324 

 

0.3942 0.3646 0.459 0.5838 0.2804 0.7324 

 

when 

 

Case 1: 

When  and   

Substitute the value of  Table (1) and boundary conditions above in (5.27), we get  

 

 

Now, we have: 

 

 

 

Substitute in(4.2) to find the approximation solution of  

 

Then the approximation solution of  is         

We can use and substitute in the constraint of the problem (5.2) to compute the control  

 

 

Case 2: 

When    

Substitute the value of  Table (1) and boundary conditions above in (5.27), we get   

 

 

In the same case ,we have : 
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and  

. 

Table (2).  

     Shows numerical results of the exact and approximate state  and control function  for  . 

t  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 0 0 0 

0.1 -0.0989 0.0018 0.0020 -0.6463 0.0054 0.0020 

0.2 -0.1475 0.0164 0.0141 -0.7536 0.0142 0.014 

0.3 -0.1456 0.0437 0.0439 -0.6860 0.0437 0.0439 

0.4 -0.0934 0.0838 0.0983 -0.5070 0.0982 0.0983 

0.5 0.0092 0.1366 0.1835 -0.2512 0.1863 0.1835 

0.6 0.1622 0.2022 0.3058 0.0583 0.3184 0.3058 

0.7 0.3656 0.2804 0.4708 0.4036 0.4283 0.4708 

0.8 0.6193 0.3715 0.6843 0.7706 0.5155 0.6843 

0.9 0.9235 0.4754 0.9516 0.1469 0.9652 0.9516 

1 1.2780 0.5918 1.2782 1.5222 1.2020 1.2782 

 

Figure 1:  

 

(a) Exact solution of  for (  and   

(b) Approximate solutions of  for (  and   and . 
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(c) Exact solution of for (  and   

(d)  Approximate solutions of  for (  and   and .  

Figure 2:  

 

(a) Exact solution of for (  and   

(b) Approximate solutions of  for (  and   

 

6. Conclusions.  
    In this paper, we have presented algorithm for the numerical solution of a class of multi- order fractional optimal control 

problems, in two cases one when  and , and the other one when  In both cases, the solution is 

approximated by Chebyshev series. Numerical results for illustrative example show that the algorithm converge from the 

exact solution when  and we note that the convergent to the exact solution is dependent on increasing of the 

fractional order of derivative. 
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