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Spectral compact operators play a crucial role in functional analysis, particularly in 

understanding the spectral behavior of linear operators on Banach spaces. These 

operators exhibit properties that make their spectra more manageable compared to 

general bounded operators. This paper explores key spectral properties of compact 

operators in Banach spaces, including the discreteness of the spectrum, the finite-

dimensionality of eigenspaces, the spectral radius formula, and perturbation properties. 

We also discuss applications of these operators in solving integral equations, 

differential equations, and data analysis. 

 

1. Introduction  

The study of compact operators in Banach spaces is a fundamental topic in functional analysis, bridging 

operator theory with applications in mathematical physics, differential equations, and numerical 

analysis. Compact operators generalize finite-dimensional matrices while retaining many useful spectral 

properties. The spectral theory of compact operators is well-developed, and such operators exhibit 

behaviors similar to matrices in terms of eigenvalues and spectral decomposition. 

In this paper, we explore various spectral properties of compact operators, emphasizing their spectral 

structure, eigenvalues, and perturbation results. We also provide applications that illustrate their 

significance in practical problems. 

 

2. Preliminaries 

The next section presents the fundamental concepts and definitions necessary for comprehending the 

spectral features of compact operators in Banach spaces. The preliminaries encompass the definition of 

compact operators, the spectrum of an operator, and essential conclusions from functional analysis.

  

Definition(2.1)[1] 

Suppose that 𝑋 denotes field 𝐹. A norm on 𝑋 is a function . : X   having the following properties. 

1.‖𝑥‖ ≥ 0 for all 𝑥 ∈ 𝑋 

2. ‖𝑥‖ = 0 iff 𝑥 = 0 

3. xx    for all 𝑥 ∈ 𝑋 and for all 𝜆 ∈ 𝐹 

4. yxyx   for all 𝑥, 𝑦 ∈ 𝑋 
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  The linear space 𝑋 over F, accompanied using the norm ‖. ‖, is referred to as a normed space and is 
represented as (𝑋, ‖. ‖) or merely 𝑋. 

  A norm ‖. ‖ on a linear space 𝑋 is defined as strictly convex if ‖𝑥 + 𝑦‖ = ‖𝑥‖ + ‖𝑦‖ holds 
exclusively when 𝑥 and 𝑦 are linearly independent.    

Special cases: 

1. Banach Spaces: Normed spaces that are complete with respect to the norm-induced metric. 

2.Hilbert Spaces: Complete normed spaces with a norm derived from an inner product. 

Definition(2.2)[5]  

A mathematical function An operator 𝑇: 𝑋 → 𝑌 is defined as a mapping from linear space 𝑋 to linear 

space 𝑌, provided that both spaces are over the same field 𝐹. A linear operator is defined as an operator 

that satisfies specific linearity conditions. 

( ) ( ) ( )T x y T x T y       for all 𝑥, 𝑦 ∈ 𝑋 and for all 𝛼, 𝛽 ∈ 𝐹. 
 

Definition(2.3)[4] 

Suppose both 𝑋 and 𝑌 denote normed spaces over the field 𝐹. A linear operator 𝑇: 𝑋 → 𝑌 is deemed 

bounded if ‖𝑇(𝑥)‖ ≤ 𝑘‖𝑋‖ for every 𝑥 ∈ 𝑋, where 𝑘 is a constant. 

The set of bounded linear operators from 𝑋 to 𝑌 is denoted as 𝐵(𝑋, 𝑌). It is clear that 𝐵(𝑋, 𝑌) is a normed 

space having regard to the norm provided by  

sup{ ( ) : , 1}T T x x X x    for all 𝑇 ∈ 𝐵(𝑋, 𝑌). 

 

Definition(2.4)[6] 

Suppose both 𝑋 as well as 𝑌 denote normed spaces. A linear operator 𝑇: 𝑋 → 𝑌 is termed a compact 

linear operator (or entirely continuous linear operator) if, for any bounded subset 𝐴 of 𝑋, the image 𝑇(𝐴) 

is relatively compact, meaning that the closure 𝑇(𝐴) is compact. 
 

Examples of Compact Operators [5] 

1. Finite-rank Operators: If 𝑇 has a finite-dimensional range, it is always compact. 

2. Integral Operators : Operators of the form ( )( ) ( , ) ( )
b

a
Tf x K x y f y dy   

3. Hilbert-Schmidt Operators: If 𝑇 on a Hilbert space  satisfies 
2

,

( ),i j

i j

T e e    

Since compact operators generalize finite-dimensional matrices while retaining many spectral 

properties, their study is crucial in infinite-dimensional analysis. 

 

3.The Spectrum of an Operator  

The spectrum of an operator T , denoted ( )T , plays a crucial role in understanding its properties. 

 
Definition(3.1) (Spectrum of an Operator) 

The spectrum of a bounded operator T  on a Banach space  X is the set 

( ) { :T T I      is not invertible }  

The spectrum can be divided into three parts: 
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1. Point Spectrum ( )p T : The set of eigenvalues, i.e., values of    for which T I  is not injective. 

2. Continuous Spectrum ( )c T : Values of   for which  T I  is injective but not surjective, and its 
range is dense but not closed. 

3. Residual Spectrum ( )r T : Values of   for which T I  is injective but has a non- dense range. 

For compact operators, the spectrum has a particularly simple structure, as we will discuss in later 
sections. 

Definition(3.1)[7] 

Suppose that 𝑋 denote a vector space over 𝐹, while consider 𝑇: 𝑋 →  𝑌 represent a linear transformation. 

1. A scalar 𝜆 ∈ 𝐹 is classified as an eigenvalue of 𝑇 in the event contains a non-zero vector 𝑥 such that 
𝑇(𝑥)  =  𝜆𝑥. 

A non-zero vector 𝑥 ∈ 𝑋 is termed an eigenvector of 𝑇 if there exists 𝜆 ∈ 𝐹 such that 𝑇(𝑥)  =  𝜆𝑥. 

ker( ) { : ( )( ) 0}T I x X T I x       

For compact operators, nonzero eigenvalues have particularly interesting properties: 

 

The eigenspace associated with any nonzero amplitude is finite-dimensional. 

 

If the spectrum of a compact operator is infinite, then the only possible accumulation point is zero. 

   From (1) and (2), we assert that is an eigenvector of 𝑇 corresponding to the eigenvalue 𝜆. 

Eigenvalues are occasionally referred to as characteristic values, appropriate values, or spectral values. 

Eigenvectors are often referred to as characteristic vectors, appropriate vectors, or spectral vectors. 

The set of each of the eigenvalues of 𝑇 is called the spectrum of 𝑇, represented as 𝜎(𝑇). 

Definition (3.2)[11] 

Let 𝑋 denote a complex Banach space as well as letting 𝑇 belong to 𝐵(𝑋). The spectral radius 𝑟𝜎(𝑇) of 

T is defined as the radius. 

( ) sup{ : ( )}r T T      

The smallest closed disc centred at its starting point of the complex 𝜆-plane that encompasses 𝜎(𝑇). 

Remark 

From the above theorem, we have  ( )r T T  . 

This result is particularly useful for compact operators because they often have a simple spectral 
structure. 

4. Spectral Properties of Compact Operators in Banach Spaces 

Spectral compact operators on Banach spaces exhibit several important properties that generalize results 
from finite-dimensional spectral theory to infinite-dimensional settings. Below are some key properties: 
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Spectral compact operators on Banach spaces have several significant properties that generalize classical 

spectral theory from finite-dimensional spaces to infinite-dimensional settings. Below are some key 

properties: 

Theorem(4.1) Spectral Discreteness 

Assume that 𝑋 be a Banach space as well as 𝑇: 𝑋 →  𝑌 be a compact linear operator; subsequently  

1. The spectrum 𝜎(𝑇) is at most countable with 0 as the only possible accumulation point. 

2. The spectrum consists of eigenvalues (point spectrum) and possibly 0. 

Theorem(4.2) Eigenvalues and Eigen spaces 

Consider 𝑋 to be an infinite-dimensional Banach space along with consider 𝑇: 𝑋 →  𝑌 be a compact 

linear operator. 

1. Every nonzero eigenvalue of 𝑇 has finite multiplicity. 

2. If 𝜆 ≠ 0is an eigenvalue of 𝑇, then the corresponding eigenspace ker( )T I  is finite dimensional. 

The set of eigenvalues (point spectrum) forms the dominant part of the spectrum, except for 0  

Proof:  

𝐸𝜆Step 1: Definition of eigenvalue and eigenspace 

An eigenvalue 𝜆 of 𝑇 exists such that there is a nonzero vector 𝑥 in 𝑋 satisfying 

𝑇𝑥 = 𝜆𝑥. 

= ker(𝑇 − 𝜆Ι) = {𝑥𝜖𝑋|(𝑇 − 𝜆Ι)𝑥 = 0} 

Step 2: 𝑇 − 𝜆Ι is compact 

Since 𝑇 is compact and 𝜆 ≠ 0, 

𝑇 − 𝜆Ι = 𝜆 (
𝑇

𝜆
− Ι). 

Step 3: show that 𝐸𝜆 is finite-dimensional 

Suppose contradiction, that 𝐸𝜆 is infinite-dimensional. 

We can then take a linearly indepent sequence 𝑥𝑛 ⊂ 𝐸𝜆.  

Since 𝑇 is compact, it maps any bounded sequence to a relatively compact set. 

However, 𝑥𝑛 is an independent sequence, then 𝑇𝑥𝑛 = 𝜆𝑥𝑛  cannot have a convergent subsequence.This 

contradiction the compactness of 𝑇.Thus 𝐸𝜆 must be finite-dimensional. 

Step 4: Show that eigenvalues have finite multiplicity 

The multiplicity of an eigenvalue refers to the frequency with which it occurs as a root of the operator's 

characteristic equation. 

Given that the eigenspace 𝐸𝜆 is finite-dimensional, the quantity of linearly independent eigenvectors 

associated with 𝜆 is limited. 

This means that (𝑇 − 𝜆Ι) cannot have an infinite number of independent eigenvectors. 

Hence, the algebraic multiplicity of any eigenvalue 𝜆 ≠ 0  is finite.e-dimensional. 
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Theorem(4.3) Spectral Radius Property 

Suppose that 𝑋 be a Banach space as well as consider 𝑇: 𝑋 →  𝑋 be a bounded linear operator; 
consequently  

1.
1

( ) lim n n

n
r T T


  

2. If 𝑇 is compact, then either 𝑟(𝑇) = 0 or  𝑇 has at least one nonzero eigenvalue. 

Proof: 

Definition of the spectral radius  

The spectral radius of the operator 𝑇 is given as follows: 

𝑟(𝑇) = sup {|𝜆|: 𝜆 𝜖 𝜎(𝑇)}  

We show that    𝑟(𝑇) ≤ limsup
𝑛→∞

|𝑇𝑛 |
1
𝑛  

Take any complex number 𝜆 such that 𝜆 ∉ 𝜎(𝑇) ,that is (𝜆Ι − 𝑇) exists and is bounded. BY the 

definition of the spectrum,we have 

∥ (𝜆𝛪 − 𝑇)−1 ∥< ∞. We show that    𝑟(𝑇) ≥ lim inf
𝑛→∞

|𝑇𝑛 |
1
𝑛 

By Gelfand's Formula,  

𝑟(𝑇) = lim
𝑛→∞

∥ 𝑇𝑛 ∥
1
𝑛. 

If T is a compact operator, its spectrum 𝜊(𝑇) either consists only of zero or contains nonzero eigenvalues 

that accumulate at zero. Therefore, either 𝑟(𝑇) = 0 or 𝑇 has at least one nonzero eigenvalue. 

Theorem(4.4)  Fredholm Alternative 

Consider 𝑋 to be a Banach space with 𝜆 ≠  0. If 𝑇: 𝑋 →  𝑋 is a compact linear operator, then either 

(𝑇 −  𝜆𝐼) is invertible, or (𝑇 −  𝜆𝐼) is not invertible, indicating that 𝜆 is an eigenvalue. 

This ensures that the range of  (𝑇 − 𝜆Ι)is closed. 

 

Proof: 

Suppose 𝑇 − 𝜆Ι is not invertible. By the Riesz-Schauder theory, 𝜆 𝜖 𝜎𝑝(𝑇). If 𝜆 ∉ 𝜎𝑝(𝑇), then 𝑇 − 𝜆Ι is 

injective but not surjective (𝑇 − 𝜆Ι)𝑥 = 0 ⟹ 𝑥 = 0. 

Ker(𝑇 − 𝜆Ι) = {0} 

Ran (𝑇 − 𝜆Ι) ≠ 𝑋. However, compactness implies ran (𝑇 − 𝜆Ι) is closed and dim ker (𝑇 − 𝜆Ι)Ι = codim 

ran(𝑇 − 𝜆Ι), then 𝜆𝜖𝜎𝑝(𝑇). Is a hance 𝜆 is an eigenvalue. 

 

Theorem(4.5)  Spectral Mapping Theorem for Polynomials  

Suppose that 𝑋 denote a Banach space, and let 𝑇: 𝑋 →  𝑋 represent a compact linear operator. If 𝑝(𝜆) 

is a polynomial, then 𝜎(𝑝(𝑇))  = 𝑝(𝜎(𝑇)). 

 

Proof: 

⇒ 𝑝(𝜎(𝑇)) ⊆ 𝜎(𝑝(𝑇))   

We show that every element in 𝑝(𝜎(𝑇)) is also in 𝜎(𝑝(𝑇)). 
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Take 𝜆𝜖𝜎(𝑇). Since 𝑝(𝜆) is a polynomial,we show that 𝑝(𝜆)𝜖𝜎(𝑝(𝑇)). 

Suppose for contradiction, that 𝑝(𝜆) ∉ 𝜎(𝑝(𝑇)). Then operator 𝑝(𝑇) − 𝑃(𝜆)Ι is invertible in Banach 

space 𝑋, there exists an operator B such that 

(𝑝(𝑇) − 𝑃(𝜆)Ι)𝐵 = 𝐵(𝑝(𝑇) − 𝑃(𝜆)Ι) = Ι.  

𝑝(𝑇) − 𝑝(𝜆)Ι = ∑ 𝑎𝑘(𝑇𝑘𝑛
𝑘=0 − 𝜆𝑘𝛪).  

This contradiction that 𝑝(𝜆) ∉ 𝜎(𝑝(𝑇)), prove that 𝑝(𝜆)𝜖𝜎(𝑝(𝑇)), is a hence  

𝑝(𝜎(𝑇)) ⊆ 𝜎(𝑝(𝑇)).  

⇐  𝜎(𝑝(𝑇)) ⊆ 𝑝(𝜎(𝑇))  

We take 𝜇 𝜖 𝜎(𝑝(𝑇)) and show that there exists 𝜆 ∈ 𝜎(𝑇) with 𝜇 = 𝑝(𝜆). 

If 𝑝(𝑇) − 𝜇Ι is not invertible, then there exists a nonzero vector 𝑥 𝜖 𝑋 such that 

(𝑝(𝑇) − 𝜇Ι)𝑥 = 0 . 

∑ 𝑎𝑘𝑇𝐾𝑛
𝑘=0 𝑥 = 𝜇𝑥.  

Using elementary algebraic properties of polynomials, there exist an eigenvalue 𝜆 of 𝑇 such that 𝜇 =

𝑝(𝜆). 

Then, 𝜇 𝜖 𝑝(𝜎(𝑇)) is a hence 𝜎(𝑝(𝑇)) ⊆ 𝑝(𝜎(𝑇)). 

The hence 𝜎(𝑝(𝑇)) = 𝑃(𝜎(𝑇)).  

 

Theorem(4.6)  Compact Perturbation and Essential Spectrum 

Suppose that 𝑋 be a Banach space along with letting 𝑇: 𝑋 →  𝑋 be a bounded linear operator. If 𝑆: 𝑋 →

 𝑋 is a compact linear operator, subsequently the essential spectrum (the set of accumulation points and 

continuous spectrum) is invariant under compact perturbations 

( ) ( )ess essT S T    

 

Theorem(4.7) Schauder’s Theorem 

Suppose that 𝑋 be a Banach space and let 𝑇: 𝑋 →  𝑋 represent a compact linear operator, then it’s a 

djoint T   in the dual space X   is also compact. 

This is useful for studying duality in spectral problems. 

 

Proof: 

Step 1:Take a bounded sequence in 𝑋∗ 

Letting  𝑓𝑛 ⊂ 𝑋∗ be a bounded sequence in the dual space 𝑋∗, there exists an identity constant 𝐶 > 0  

∥ 𝑓𝑛 ∥≤ 𝐶            ∀𝑛  

Step 2: we show that 𝑇∗(𝑓𝑛𝑘) has a norm-convergent subsequence   

For any 𝑥 ∈ 𝑋, since 𝑓𝑛𝑘 converges weak to 𝑓, then  

〈𝑓𝑛𝑘 ,   𝑇𝑥〉 → 〈𝑓 , 𝑇𝑥〉.  

Step 3: show that  𝑇∗(𝑓𝑛𝑘) is compact  in 𝑋∗  

By definition, we have  

𝑇∗𝑓𝑛𝑘(𝑥) = 〈𝑓𝑛𝑘 ,𝑇𝑥〉 . 

Given that every bounded sequence in 𝑋∗ possesses a norm-convergent subsequence, 𝑇∗ is compact. 
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Theorem(4.8) Existence of Spectral Decomposition for Self-Adjoint Compact Operators  

Consider 𝑋 to be a Hilbert space along with letting 𝑇: 𝑋 →  𝑋 be a compact, self-adjoint linear operator. 

Then, there exists an orthonormal basis composed of eigenvectors of 𝑇, corresponding to a discrete 

spectrum. 

This generalizes the spectral theorem to compact operators. 

These properties make compact operators particularly useful in integral equations, functional analysis, 

and operator theory.  
 

Comparison with General Bounded Operators 

Property General Bounded Operators Compact Operators 

Spectrum Can be uncountable At most countable 

Eigenvalues May have infinite dimensional eigenspaces Finite dimensional eigenspaces 

Spectral 
accumulation 

Can accumulate anywhere Only at 0 (if infinite) 

Essential spectrum Can be complex 
Invariant under compact 
perturbation 

  

These properties make compact operators a fundamental class of operators in functional analysis, 

particularly in applications to integral equations and spectral theory. 
 

Conclusion of the Preliminaries 

In this section, we introduced compact operators and their spectral properties. We defined key concepts 

such as the spectrum, eigenvalues, spectral radius, and perturbation results. These fundamental results 

set the stage for an in-depth study of the spectral properties of compact operators in Banach spaces. 

 

5. Applications of Spectral Compact Operators 

1. Integral Equations : Compact operators frequently appear in integral equations of the form  

( ) ( , ) ( ) ( ), ( )( ) ( , ) ( )
b b

a a
x K x y y dy f x T x K x y y dy        

2. Differential Equations: Compact operators also appear in boundary value problems for differential 

equations, particularly when using Green's functions and spectral decomposition methods. 

3. Data Analysis and Machine Learning: In high-dimensional data analysis, compact operators are used 

in Principal Component Analysis (PCA), where eigenvalues of a covariance matrix (which is often 

modeled as a compact operator) help in dimensionality reduction. 

 

6. Conclusion 

   In this paper, we discussed the fundamental spectral properties of compact operators in Banach spaces. 

We established that their spectra are at most countable, their eigenvalues have finite multiplicity, and 

they exhibit useful perturbation properties. These results have important applications in integral 

equations, differential equations, and modern data science. Future research could explore spectral 

properties of more general classes of operators, such as compact normal operators or compact 

quasinilpotent operators. 
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