Slight 2-Prime Submodules and Slight 2-Prime Modules

Authors Names	ABSTRACT
Maysoun A. Hamel ^a	In this study the notion of slight 2-Prime submodules of unitary
Inaam M. A. Hadi ^{,b*}	modules are introduced. Many properties related with this type of submodules are obtained. Beside this, we define a new class of modules
Publication data: 20 /5 /2025	namely slight 2-Prime modules, which is generalization of 2-Prime modules.
Keywords: 2-Prime ideal, 2-	Basic results of these modules are given.
Prime submodule, 2-Prime	
module, slight 2-Prime	
submodule, slight 2-Prime	
module.	

1. Introduction

In current research, we use the supposition R is a commutative ring with identity and that each R-module \mathcal{M} is a unitary right R-module. The notions $\mathbb{N} < \mathcal{M}(\mathbb{N} \leq \mathcal{M})$ stands for N is a submodule of \mathcal{M} . (N is a porper submodule of \mathcal{M} (Clearly every ideal I of R is a submodule of the R-module *R*). I < R is named prime ideal if $a.b \in I$, then $a \in I$ or $b \in I[7]$. For $\mathbb{N} < \mathcal{M}$, N is called a prime submodule if whenever $a \in R, x \in \mathcal{M}$, with $xa \in \mathbb{N}$, then $x \in \mathbb{N}$ or $a \in (\mathbb{N}_R^*\mathcal{M})$, where $(\mathbb{N}_R^*\mathcal{M}) = \{r \in R: \mathcal{M}r \subseteq \mathbb{N}\}$. [11]. Recently W. Messiridi & a.t.l in [10] introduced the concept 2-Prime ideal as a generalization of prime ideal, where if I < R, I is said to be 2-prime if $a.b \in I(a, b \in R)$, then $a^2 \in h$ or $b^2 \in h$.

Fatima and Alaa in [6] generalized this notion for submodules, as follows : $\mathbb{N} < \mathcal{M}$ is named a 2-Prime submodule if $ma \in \mathbb{N}$ with $(a \in R, m \in \mathcal{M})$, implies $m \in \mathbb{N}$ or $a^2 \in (\mathbb{N}_R^{:}\mathcal{M})$.

By [5, Proposition 2.3] every 2-Prime submodule \mathbb{N} of \mathcal{M} implies $(\mathbb{N}_R^{:}\mathcal{M})$ is 2-Prime ideal, but the converse may be not valid, see [5, Remark 2.4]. This motivate us to present a new concept namely slight2-Prime submodule, where $\mathbb{N} < \mathcal{M}$ is called a slight 2-Prime submodule(shortly S-2PS), if $\mathbb{N}_R^{:}\mathcal{M}$) is a 2-Prime ideal of R.

In S.2 of this paper many properties of this class of submodules are given. In S.3, we define a type of modules namely slight 2-Prime module as generalization of 2-prime module which is given in $\begin{bmatrix} 6 & e^{-1} \\ e^{-1} \end{bmatrix}$, where a module M is a 2- prime module if the zero submodule is a 2-Prime ideal. We say that M is a slight 2-Prime module(abbreviated S-2PM) if $< 0 > \le M$ is a S-2PS. Many fundamental results related with this concept are introduced, some of them are analogues to that of 2-prime modules. Note that we shall use these abbreviations (2-PI, 2-PS, S-2-PS, 2-PM, S-2-PM) for 2-Prime ideal, 2-Prime submdule, slight 2-Prime module, 2-Prime module, slight 2-Prime module.

^aMaysoun A. Hamel, Department of Mathematics, College of Education for Pure Sciences (Ibn Al – Haitham), University of Baghdad, Iraq, maysoon.a.h@ihcoedu.uobaghdad.edu.iq.

^bInaam M. A. Hadi Department of Mathematics, College of Education for Pure Sciences (Ibn Al – Haitham), University of Baghdad, Iraq, innam1976@yahoo.com

1. Slight 2-Prime Submodules.

1.1 Definition

Let $\mathbb{N} < \mathcal{M}$. \mathbb{N} is called slight 2-Prime submodule (bravely S-2-PS) if $(\mathbb{N}_R^:\mathcal{M})$ is a (2-PI).

1.2_Remark

By [5, Proposition 2.3] every (2-PS) $\mathbb{N}^:_R$ module $\mathcal M$ implies $(\mathbb{N}^:_R\mathcal M)$ is a (2PI), hence $\mathbb N$ is (S-2-PS) of $\mathcal M$.

The next example explains that the converse may be not true :

The submodule $\mathbb{N} = \langle \frac{1}{p} + \mathbb{Z} \rangle$ of the \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}}$ is (S2PSM), since $\left(N_{\mathbb{Z}}^{:}\mathbb{Z}_{p^{\infty}}\right) = (0)$ which is a prime ideal (So that is (2PI). On the hand \mathbb{N} is not (2-PSM) because $P\left(\frac{1}{p^{2}} + \mathbb{Z}\right) \in \mathbb{N}$ and $\left(\frac{1}{p^{2}} + \mathbb{Z}\right) \notin N$ and

 $P^2 \in \left(\mathbb{N}^:_{\mathbb{Z}} \mathbb{Z}_{p^\infty}\right) = 0.$

According to common knowledge, an R-module M is considered multiplication when all submodule N of \mathcal{M} ($\mathbb{N} \leq \mathcal{M}$), has an ideal of R where $\mathbb{N} = \mathcal{M}I$.

Likewise, if for every $\mathbb{N} \leq \mathcal{M}$ and $\mathbb{N} = \mathcal{M}(\mathbb{N}^{:}_{R}\mathcal{M})$, M is a multiplication module [2].

1.3_ Proposition

Let $\mathbb{N}<\mathcal{M}$, in which \mathcal{M} is a multiplication R-module $% \mathbb{N}$. Then \mathbb{N} is (2-PSM) if and only if \mathbb{N} is a (S-2-PS).

Proof: Clearly by [5, Corollary 3.10]

1.4 Corollary

For $\mathbb{N} < \mathcal{M}$, where \mathcal{M} is a multiplication R-module over a Boolean ring R (*ie* $n^2 = n, \forall n \in \mathbb{N}$. The following concepts are equivalent:

a) S-2-PS.

b) 2-PS.

c) Prime submodule.

d) Primary submodule.

The aforementioned statements are all equivalent.

<u>Proof : (a)</u> \leftrightarrow (b): follows the Proposition 1.3

(b) \leftrightarrow (c): Let $ax \in \mathcal{M}$ then either $x \in \mathbb{N}$ or $a^2 \in (\mathbb{N}^{:}_R \mathcal{M}) \rightarrow .$

As R is Boolean ring, either $x \in \mathbb{N}$ or $a \in (\mathbb{N}_R^{:}\mathcal{M})$. Thus \mathbb{N} is considered a prime submodule.

 $(c) \leftrightarrow (d)$ and $(c) \leftrightarrow (b)$ (are clear),

(d)↔(c): Let $xa \in \mathbb{N}$, where $a \in R, x \in \mathcal{M}$. Either $x \in \mathbb{N}$ or $n^k \in (\mathbb{N}: \mathcal{M})$ for some $k \in Z_+$, Since \mathbb{N} is defined as a primary submodule,. It is following that either $x \in \mathbb{N}$ or $n \in (\mathbb{N}: \mathcal{M})$, when R is Boolean ring. Thus \mathbb{N} is a (PSM).

1.5 Proposition

Assume \mathcal{M}_1 and \mathcal{M}_2 be R-modules, $f: \mathcal{M}_1 \to \mathcal{M}_2$ be a homomorphism, and $\mathbb{N} \leq \mathcal{M}_1$ with $Kerf \subseteq \mathbb{N}$. If \mathbb{N} is S-2-PS of \mathcal{M}_1 , then $f(\mathbb{N})$ is an S-2-PSof $f(\mathcal{M}_1)$

Proof:

Since $N \not\subseteq \mathcal{M}$ and $Kerf \subseteq \mathbb{N}$, then $f(\mathbb{N}) \neq f(\mathcal{M}_1)$. As \mathbb{N} is S-2-PS of M_1 , $(\mathbb{N}_R^: \mathcal{M}_1)$ is a(2PI) of R. obviously $(\mathbb{N}_R^: \mathcal{M}_1) = (f(\mathbb{N}_R^: f(\mathcal{M}_1))$, hence $(f(\mathbb{N}_R^: f(\mathcal{M}_1))$ is a (2PI) of R.

Thus $f(\mathbb{N})$ is S-2-PS of $f(\mathcal{M}_1)$.

1.6 Lemma

Let $f: \mathcal{M}_1 \to \mathcal{M}_2$ be an R-homomorphism, $W \leq f(\mathcal{M}_1)$, then $(W_R^{:}f(\mathcal{M}_1) = (f^{-1}(W)_R^{:}\mathcal{M}_1)$

Proof:

Let $a \in (WR: f(\mathcal{M}_1))$. Then $af(\mathcal{M}_1) \subseteq W$, so that $f^{-1}f(a\mathcal{M}_1) \subseteq f^{-1}(W)$, but $\mathcal{M}_1 a \subseteq f^{-1}f(\mathcal{M}_1 a)$, hence $a\mathcal{M}_1 \subseteq f^{-1}(W)$. Thus $a \in (f^{-1}(W)R:\mathcal{M}_1)$ and so $(WR: f(\mathcal{M}_1) \subseteq (f^{-1}(W)R:\mathcal{M}_1))$. The reverse inclusion is similarly.

Note that if f is an epimorphism, then $(W_R^{\cdot}\mathcal{M}_2) = (f^{-1}(W)R:\mathcal{M}_1)$

Proposition 1.7

If $f: \mathcal{M}_1 \to \mathcal{M}_2$ be an R- epimorphism, W is (S-2-PS) in \mathcal{M}_2 . Then $f^{-1}(W)$ is (S-2-PS) in \mathcal{M}_1 .

<u>Proof</u>: Since W is a (S-2-PS) of M_2 then $W \neq \mathcal{M}_2$ and

 $(W_{R} \mathcal{M}_{2})$ is a (2-PI) of R. Hence $f^{-1}(W) \neq \mathcal{M}_{1}$ as f is an epimorphism. Beside this by lemma 2.6, $(W_{R} \mathcal{M}_{2}) = (f^{-1}W_{R} \mathcal{M}_{1})$. Thus $(f^{-1}(W)_{R} \mathcal{M}_{1})$ is a (2PI) of R and $f^{-1}(W)$ is a (2-PS).

Remark 1.8

The condition f is an epimorphism is a necessary condition in proposition 2.7, for example:

Consider \mathbb{Z}_8 and \mathbb{Z}_{16} as \mathbb{Z} -modules, $f:\mathbb{Z}_8 \to \mathbb{Z}_{16}$ defined by $f(\underline{0}) = \overline{f(4)} = \overline{0}, f(\overline{1}) = \overline{f(5)} = (\overline{4}), f(\overline{2}) = f(\overline{6}) = \overline{8}, f(\overline{3}) = f(\overline{7}) = \overline{12}$. Let $W = \{\overline{0}, \overline{4}, \overline{8}, \overline{12}\} < \mathbb{Z}_{16}$. Then $(W_{:_Z}:\mathbb{Z}_{16}) = 4\mathbb{Z}$ is a (2PSM) of \mathbb{Z}_{16} . But $f^{-1}(W) = \mathbb{Z}_8$ which is not (S-2-PS) of \mathbb{Z}_8 .

Proposition 1.9

Let N be a (S-2-PS) of an R-module \mathcal{M} . Then $(\mathbb{N}_M^: I)$ is an S-2-PS for each idempotent ideal I of R $(i. e \ I = I^2)$.

Proof: To provide $(\mathbb{N}_{M}^{:}I)$ is a (S2PSM) of \mathcal{M} , $((\mathbb{N}_{M}^{:}I)_{R}^{:}\mathcal{M})$ is a (2-PI) of R, that must prove. Let $a, b \in ((\mathbb{N}_{M}^{:}I)_{R}^{:}\mathcal{M})$, where $a, b \in R$, that is $\mathcal{M}ab \subseteq (\mathbb{N}_{R}^{:}I)$. Hence $\mathcal{M}abI \subseteq \mathbb{N}$ and so $abI \subseteq (\mathbb{N}_{R}^{:}\mathcal{M})$ which is (2-PI) of R, hence either $a^{2}(\mathbb{N}_{R}^{:}\mathcal{M})$ or $b^{2}I^{2} \subseteq (\mathbb{N}:\mathcal{M})$.

If $a^2(\mathbb{N}:\mathcal{M})$, then $\mathcal{M}a^2 \subseteq \mathbb{N}$ and $\mathcal{M}a^2I \subseteq \mathbb{N}I \subseteq \mathbb{N}$ that $\mathcal{M}a^2 \subseteq (\mathbb{N}_M^:I)$. Therfore $a^2 \in ((\mathbb{N}_M^:I)_R^:\mathcal{M})$.

If $b^2 I^2 \subseteq (\mathbb{N}^:_{\mathcal{M}} I)$, Then $b^2 I \subseteq (\mathbb{N}^:_R \mathcal{M})$, (since $I^2 = I$). This implies $\mathcal{M} b^2 I \subseteq \mathbb{N}$ and so $\mathcal{M} b^2 \subseteq (\mathbb{N}^:_M I)$. Thus $b^2 \in ((\mathbb{N}^:_{\mathcal{M}} I)^:_R \mathcal{M})$

Remark 1.10

The condition *I* is an idempotent ideal can't be dropped from Proposition 2.9, as an illustrative example :

Consider \mathbb{Z}_{16} as \mathbb{Z} -module, $\mathbb{N} = \{\overline{0}, \overline{4}, \overline{8}, \overline{12}\}$. N is an (S-2-PS) of M. Let $I = 8\mathbb{Z}$. Clearly *I* is not idempotent and $(\mathbb{N}_{Z_{16}}^{:} I) = \mathbb{Z}_{16}$ which is not (S-2-PS) of $\mathcal{M} = \mathbb{Z}_{16}$.

Recalling a module \mathcal{M} over R is named cancellation if for each I, $J \leq R, \mathcal{M}I = MJ$, [9]

Proposition 1.11

Let \mathcal{M} be a cancellation R-module, let I < R. Then $\mathcal{M}I$ is a (S-2-PS) of \mathcal{M} only when I is a (2-PI) of R.

<u>Proof</u>: Clearly $(\mathcal{M}I_R^*\mathcal{M}) = I$. Hence $\mathcal{M}I$ is a (S-2PS) only when I is a (2-PI) of R.

Corollary 1.12

Let M be a multiplication R-module that has been faithfully and finitely generated. The below statement_are equivalent:

1- \mathcal{M} I is a (S-2-PS)

2- I is a (2-PI) of R

3- \mathcal{M} I is a (2-PS)

Proof:

(1) \leftrightarrow (2) *S*, Since \mathcal{M} is a multiplication R- module, R – module, M is a cancellation module by [2, Theorem 3.1]. hold by Proposition 2.11 (2) \leftrightarrow (3) It pursue by Proposition 2.3.

If every submodule of module M is a finite intersection of its primary submodules, then M is named Laskerian module.[4]

Proposition 1.13

Assume M be a Laskerian R-module with finite generators and ϖ is a (S-2-PS) of \mathcal{M} . The rad ϖ is a (S-2-PS) of \mathcal{M} , where rad ϖ is all the prime submodules intersections containing ϖ .

<u>Proof</u>: Since \mathcal{M} is finitely generated Laskerian R-module, then $\sqrt{(\overline{\omega}_R^{\dagger}\mathcal{M})} = (rad\overline{\omega}_R^{\dagger}\mathcal{M})$ by [8, Theorem 5]. But $\overline{\omega}$ is a S-2-PS of \mathcal{M} , that is $(\overline{\omega}_R^{\dagger}\mathcal{M})$ is a (2-PI) of R, which implies that $\sqrt{(\overline{\omega}_R^{\dagger}\mathcal{M})}$ is a prime ideal [10] and so (2PI).

Thus $(rad \varpi_R^{:} \mathcal{M} \text{ is a (2PI) of } \mathbb{R} \text{ and so rad } \varpi \text{ is a (S-2-PS) of } \mathcal{M}.$

A module \mathcal{M} of a ring R is known as Comultiplication if for every $\varpi < \mathcal{M}$, there exists $I \le R$ so that $\varpi = annI_{\mathcal{M}}$. Equivalently for each $\varpi \le \mathcal{M}$, $\varpi = (0_M^{\circ}ann \varpi)$ [1].

Proposition 1.14

Assume $\mathbb{N} < \mathcal{M}$, where \mathcal{M} a Comultiplication R-module .Then \mathbb{N} will be (2-PI) of R is idempotent (*ie* $l^2 = l$) and (0) is a (S-2-PS). Then every $\mathbb{N} < \mathcal{M}$ is a (S-2-PS) of M and ($\mathbb{N} : \mathcal{M}$) is a prime ideal of R.

<u>Proof</u>: As $\mathbb{N} < \mathcal{M}$ and \mathcal{M} is a comultiplication R -module

Then $\mathbb{N} = (0_M^{:}I)$ for some ideal I of \mathbb{R}_2 , $I \neq \mathbb{R}$.

As (0) is a (S-2-PS) of \mathcal{M} and I is an idempotent ideal, so that $\mathbb{N} = (0_M^: I)$ is a (S-2-PS) of \mathcal{M} by Proposition 2.9.

Hence $(\mathbb{N}_R^{\mathsf{i}}\mathcal{M})$ is a (2-PI). As all ideal of R is idempotent, so that $(\mathbb{N}_R^{\mathsf{i}}\mathcal{M})$ is a Prime ideal.

Proposition 1.15

Assume \mathcal{M} is considered as an R-module, let $\{K_i\}_{el}$ is considered a chain of (2-PSM) of \mathcal{M} . Then $\bigcap_{i \in I} K_i$ is a (S2PSM) of \mathcal{M} .

Proof:

It is clear that $(\bigcap_{i \in I} K_i :_R \mathcal{M}) \neq R$, $(\bigcap_{i \in I} K_i :_R \mathcal{M}) = \bigcap_{i \in I} (K_i :_R \mathcal{M})$

Let $a, b \in R$ such that $a, b \in \bigcap_{i \in I} (K_{i_R}^{:} \mathcal{M})$. Assume that there exist $m, n \in I$ such that $a^2 \notin (K_{m_R}^{:} \mathcal{M})$ and $b^2 \notin (K_{n_R}^{:} \mathcal{M})$. Since $\{K_i\}_{i \in I}$ is a chain, so it could be assumed $K_m \subseteq K_n$. Then $(K_{m_R}^{:} \mathcal{M}) \subseteq (K_{n_R}^{:} \mathcal{M})$. On the other hand $a, b \in (K_{m_R}^{:} \mathcal{M})$, So either $a^2 \in (K_{m_R}^{:} \mathcal{M})$ or $b^2 \in (K_{m_R}^{:} \mathcal{M})$. However each case implies contradiction. Thus either $a^2 \in \bigcap_{i \in I} (K_{i_R}^{:} \mathcal{M})$ or $b^2 \in \bigcap_{i \in I} (K_{i_R}^{:} \mathcal{M})$.

Now we define the following:

Definition 1.16

Assume N is a (S-2-PS) of the module \mathcal{M} , let $\mathbb{C} \leq \mathcal{M}$. N is called a minimal (S-2-PS) of K if there is no (S-2-PS) \mathcal{V} of \mathcal{M} such that $\mathbb{C} \subset \mathcal{V} \subset \mathbb{N}$. N is said to a minimal (S-2-PS) of \mathcal{M} if N is a minimal (S-2-PS) of (0).

Example 1.17

Assume \mathcal{M} be the \mathbb{Z} -module \mathbb{Z} , $\mathbb{N} = 4\mathbb{Z}$, $K = 8\mathbb{Z}$. Then \mathbb{N} is a minimal (S-2-PS) of K. But \mathbb{N} is not a minimal (S-2-PS) of \mathbb{Z} , Since (0) $\subseteq 8\mathbb{Z} \subseteq 4\mathbb{Z}$ and $8\mathbb{Z}$ is an (S-2-PS) of \mathbb{Z}

Proposition 1.18

Every S-2-PS of a module \mathcal{M} contains a minimal (S-2-PS) of \mathcal{M} .

Proof: Assume \mathbb{N} be a (S-2-PS) of a (S-2-PS) of \mathcal{M} and $F = \{K: K \text{ is a } (S-2-PS) \text{ of } \mathcal{M} \text{ and } K \subseteq \mathbb{N}\}$. $F \neq \phi$ since $N \in F$. Let $\{K_i\}_{i \in I}$ be a chain in F, then by Proposition 2.14, $\bigcap_{i \in I} K_i$ is a (S2PSM) and

 $\cap_{i \in I} K_i \subseteq \mathbb{N}$. Suppose there exists a ((S-2-PS) *T* of M such that (0) $\subseteq T \cap_{i \in I} K_i \subseteq \mathbb{N}$. Then $T \in F$ and $T = \bigcap_{i \in I} K_i$. Thus $\bigcap_{i \in I} K_i$ is a minimal (S-2-PS) and $\bigcap_{i \in I} K_i \subseteq \mathbb{N}$

Proposition 1.19

Assume N be a (S-2-PS) of a module \mathcal{M} , S is a multiplicative closed subset of R. Then $S^{-1}N$ is a (S-2-PS) of $S^{-1}R$ module $S^{-1}\mathcal{M}$. Provided \mathcal{M} is finitely generated.

Proof:

Since \mathbb{N} is a (S-2-PS of \mathcal{M} , then $(\mathbb{N} :_R \mathcal{M})$ is (2-PI) of R. Hence by [10, Proposition 1.3.2.], $S^{-1}(\mathbb{N} :_R \mathcal{M})$ is a (2-PI) of R. But $S^{-1}(\mathbb{N} :_R \mathcal{M}) = (S^{-1}\mathbb{N} :_{S^{-1}R} S^{-1} \mathcal{M})$ because \mathcal{M} is finitely generated, see [7, Proposition 3:14, P43]. Thus $(S^{-1}\mathbb{N} :_{S^{-1}R} S^{-1} \mathcal{M})$ is a (2-PI) of R and so is $S^{-1}\mathbb{N}$ is a (S-2PS) of $S^{-1}\mathbb{R}$ -module $S^{-1}\mathcal{M}$.

Now, we focus on the direct sum of two (S-2-PS) for the corresponding modules \mathcal{M}_1 and \mathcal{M}_2 respectively.

Theorem 1.20

Let $\mathbb{N}_1 < \mathcal{M}_1$ and $\mathbb{N}_2 < \mathcal{M}_2$ respectively. If $\mathbb{N}_1 \bigoplus \mathbb{N}_2$ is an (S-2-PS) of $\mathcal{M} = \mathcal{M}_1 \bigoplus \mathcal{M}_2$. Then \mathbb{N}_1 and \mathbb{N}_2 are (S-2-PS) of \mathcal{M}_1 and \mathcal{M}_2 (respectively). The converse hold if R is a chained ring.

Proof:

If $\rho_1: \mathcal{M}_1 \oplus \mathcal{M}_2 \to \mathcal{M}_1$ be the natural projection. Then $p_1(\mathbb{N}_1 \oplus \mathbb{N}_2) = \mathbb{N}_1$ and $Kerf \rho_1 = (0) \oplus \mathbb{N}_2 \subseteq \mathbb{N}_1 \oplus \mathbb{N}_2$. Hence Proposition 2.5, \mathbb{N}_1 is an (S-2-PS) of \mathcal{M}_1 . Similarly \mathbb{N}_2 is a (S-2-PS) of \mathbb{M}_2 .

Conversely: Since $(\mathbb{N}_1 \oplus \mathbb{N}_2 :_R \mathcal{M}_1 \oplus \mathcal{M}_2) = (\mathbb{N}_1 :_R \mathcal{M}_1) \cap (\mathbb{N}_2 :_R \mathcal{M}_2)$ and R is a chained ring, then either $(\mathbb{N}_1 :_R \mathcal{M}_1) \subseteq (\mathbb{N}_2 :_R \mathcal{M}_2)$ or $((\mathbb{N}_2 :_R \mathcal{M}_2) \subseteq (\mathbb{N}_1 :_R \mathcal{M}_1)$. Thus either $(\mathbb{N}_1 \oplus \mathbb{N}_{2_R}^{:} \mathcal{M}_1 \oplus \mathcal{M}_2) = (\mathbb{N}_{1_R}^{:} \mathcal{M}_1)$ which is a (2PI) of R (since a S-2-Pr-), or $(\mathbb{N}_1 \oplus \mathbb{N}_{2_R}^{:} \mathcal{M}_1 \oplus \mathcal{M}_2) = (\mathbb{N}_{2_R}^{:} \mathcal{M}_2)$ which is a (2PI) of R (since a S-2-Pr-), or $(\mathbb{N}_1 \oplus \mathbb{N}_{2_R}^{:} \mathcal{M}_1 \oplus \mathcal{M}_2) = (\mathbb{N}_{2_R}^{:} \mathcal{M}_2)$ which is a (2PI) of R (since \mathbb{N}_2 is an (S-2-PS) of \mathcal{M}_2).

Remark 1.21

The condition R is a chained ring can't be dropped from Proposition 1.19, for example:

Consider $\mathbb{Z}_{16} \oplus \mathbb{Z}$ as \mathbb{Z} -module let $\mathbb{N}_1 = \{\overline{0}, \overline{4}, \overline{8}, \overline{12}\}, \mathbb{N}_2 = 3\mathbb{Z}$. Each \mathbb{N}_1 and \mathbb{N}_2 are (S-2-PS) submodules of \mathbb{Z}_{16} and \mathbb{Z} (respectively). But $(\mathbb{N}_1 \oplus \mathbb{N}_{2Z} \mathbb{Z}_{16} \oplus \mathbb{Z}) = 12\mathbb{Z}$ which is not a 2-Prime ideal of $\mathbb{Z}_{16} \oplus \mathbb{Z}$. Thus $\mathbb{N}_1 \oplus \mathbb{N}_2$ is not a (S-2-PS) of $\mathbb{Z}_{16} \oplus \mathbb{Z}$.

Proposition 1.22

Let \mathcal{M}_1 and \mathcal{M}_2 be modules, let $\mathbb{N}_1 < \mathcal{M}_1$ and $\mathbb{N}_1 < \mathcal{M}_2$ respectively. Then:

- 1) If \mathbb{N}_1 is (S-2-PS) of \mathcal{M}_2 , it leads to $\mathbb{N}_1 \oplus \mathcal{M}_2$ is (S2PSM) of $\mathcal{M}_1 \oplus \mathcal{M}_2$
- 2) If \mathbb{N}_2 is a (S-2-PS) of \mathbb{M}_2 , it leads to $M_1 \oplus \mathbb{N}_2$ is a (S2PSM) of $\mathcal{M}_1 \oplus \mathcal{M}_2$

Proof: It is easy.

Recall that if \mathcal{M}_i is an R_i -module, i = 1, 2, and R be the ring $R_1 \times R_2$, so that $\mathcal{M} = \mathcal{M}_1 \times \mathcal{M}_2$ is module where $(m_1, m_2)(r_1, r_2) = (m_1r_1, m_2r_2), \forall (m_1, m_2) \in \mathcal{M}, (r_1, r_2) \in R$.

Theorem 1.23

Let $R = R_1 x R_2$, $\mathcal{M} = \mathcal{M}_1 x \mathcal{M}_2$ be R-module. When N and W are proper \mathcal{M}_1 and \mathcal{M}_2 submodules, respectively. So that

1) N is a (S-2-PS) of \mathcal{M}_1 , if and only if $\mathbb{N} \times \mathcal{M}_2$ is a (S2PSM) of \mathcal{M} .

2) W is a (S-2-PS) of M_2 , if and only if $\mathcal{M}_1 \times W$ is a (S2PSM) of \mathcal{M} .

Proof: First

 $\left(N \times \mathcal{M}_2 :_{R_1 \times R_2} \mathcal{M}_1 \times \mathcal{M}_2\right) = \left(\mathbb{N} :_{R_1} \mathcal{M}_1\right) \times \left(\mathcal{M}_2 :_{R_1} \mathcal{M}_2\right) = \left(\mathbb{N} :_{R_1} \mathcal{M}_1\right) \times R_2$

Let $(a, b), (c, d) \in R_1 \times R$ such that $(a, b), (c, d) \in (\mathbb{N} :_{R_1} \mathcal{M}_1)$.

Hence $(ac, bd) \in (\mathbb{N} :_{R_1} \mathcal{M}_1) \times R_2$ and so that $ac \in (\mathbb{N} :_{R_1} \mathcal{M}_1)$ and $bd \in R_2$. As N is (S2PSM) of \mathcal{M}_1 , $(\mathbb{N} :_{R_1} \mathcal{M}_1)$ is a (2PI) of R_1 It follows that either $a^2 \in (\mathbb{N} :_{R_1} \mathcal{M}_1)$ or $c^2 \in (\mathbb{N} :_{R_1} \mathcal{M}_1)$. Then clearly $(a^2, b^2) \in (\mathbb{N} :_{R_1} \mathcal{M}_1) \times R_2$ or $(c^2, d^2) \in (\mathbb{N} :_{R_1} \mathcal{M}_1) \times R_2$, ie $(a, b)^2 \in (\mathbb{N} :_{R_1} \mathcal{M}_1) \times R_2$. Thus $(\mathbb{N} :_{R_1} \mathcal{M}_1) \times R_2$ is a (2PI) of \mathcal{M}_1 .

To prove \mathbb{N} is (S-2-PS) of \mathcal{M}_1 .

Let $a, b \in R_1$ such that $a, b \in (\mathbb{N} :_{R_1} \mathcal{M}_1)$, hence for each $c, d \in R_2$, $(ab, cd) \in (\mathbb{N} :_{R_1} \mathcal{M}_1) \times R_2 = (\mathbb{N} \times \mathcal{M}_{2R_1 \times R_2}^: \mathcal{M}_1 \times \mathcal{M}_2)$. That is (a, c). $(b, d) \in (\mathbb{N} \times \mathcal{M}_{2R_1 \times R_2}^: \mathcal{M}_1 \times \mathcal{M}_2)$ which is a (2PI) of $R_1 \times R_2$. Hence either $(a, c)^2 \in (\mathcal{M}_1 \times \mathcal{M}_2 :_{R_1 \times R_2} \mathcal{M}_1 \times \mathcal{M}_2)$ or $(b, d)^2 \in (\mathbb{N} \times \mathcal{M}_2 :_{R_1 \times R_2} \mathcal{M}_1 \times \mathcal{M}_2)$. It follows that either $(a^2 \in (\mathbb{N} :_{R_1} \mathcal{M}_1)$ and $c^2 \in R_2)$ or $(b^2 \in (\mathbb{N} :_{R_1} \mathcal{M}_1)$ and $d^2 \in R_2)$. Thus either $a^2 \in (\mathbb{N} :_{R_1} \mathcal{M}_1)$ or $b^2 \in (\mathbb{N} :_{R_1} \mathcal{M}_1)$. So that \mathbb{N} is a (2PSM) of \mathcal{M}_1 .

Theorem 1.24

Let $R = R_1 \times R_2$, $\mathcal{M} = \mathcal{M}_1 \times \mathcal{M}_2$ be R-module. When $\mathbb{N} = \mathbb{N}_1 \times \mathbb{N}_2$ is an (S-2-PS) of \mathcal{M} Then either

- 1) \mathbb{N} is a (S-2-PS) of \mathcal{M}_1 and $\mathbb{N}_2 = \mathcal{M}_2$, or
- 2) $\mathbb{N}_1 = \mathcal{M}_1$ and \mathbb{N}_2 is a (S-2-PS) of \mathcal{M}_2 , or
- 3) \mathbb{N}_1 and \mathbb{N}_2 are (S-2-PS) of both \mathcal{M}_1 and \mathcal{M}_2 .

Proof: Since $N_1 \times N_2 < of \mathcal{M}_1 \times \mathcal{M}_2$. Then there are 3 states:

- N₁ ≤ M₁ so that N₂ = M₂
 N₁ = M₁ so that N₂ ≨ M₂
- 3) $\mathbb{N}_1 \leqq \mathcal{M}_1$ so that $\mathbb{N}_2 \gneqq \mathcal{M}_2$

State (1): implies that $\mathbb{N} = \mathbb{N}_1 \times \mathcal{M}_2$, and by Theorem 1.22 \mathbb{N}_1 is S2Pr- submodule of \mathcal{M}_1 of \mathbb{M}_1

State (2): implies that $\mathbb{N} = \mathcal{M}_1 \times \mathbb{N}_2$ and Theorem 2.22 yields that \mathbb{N}_2 is an (S-2-PS) of \mathcal{M}_2

State (3): $\mathbb{N}_1 \neq \mathcal{M}_1$ and $N_1 \neq \mathcal{M}_1$ imply $(\mathbb{N}_1 :_{R_1} \mathcal{M}_1) \neq R_1$ and $(\mathbb{N}_2 :_{R_2} \mathcal{M}_2) \neq R_2$. To prove \mathbb{N}_1 and \mathbb{N}_2 are (S-2-PS) of \mathcal{M}_1 and \mathcal{M}_2 , respectively.

we must show that : $(\mathbb{N}_1 :_{R_1} \mathcal{M}_1)$ and $(\mathbb{N}_2 :_{R_2} \mathcal{M}_2)$ are (2-PI) of \mathbb{R}_1 and \mathbb{R}_2 , respectively.

Let $a, b \in R$ and $c, d \in R_2$ such that $a, b \in (\mathbb{N}_1 :_{R_1} \mathcal{M}_1)$ and $d \in (N_2 :_{R_2} \mathcal{M}_2)$; that is $(ab, cd) \in ((\mathbb{N}_1 :_{R_1} \mathcal{M}_1) \times (\mathbb{N}_2 :_{R_2} \mathcal{M}_2) = ((\mathbb{N}_1 \times \mathbb{N}_2 :_{R_1 \times R_2} \mathcal{M}_1 \times \mathcal{M}_2).$

Hence (a, c). $(b, d) \in ((\mathbb{N}_1 \times \mathbb{N}_2 :_{R_1 \times R_2} \mathcal{M}_1 \times \mathcal{M}_2).$

But $\mathbb{N} = (\mathbb{N}_1 \times \mathbb{N}_2 \text{ is a (S-2-PS) of } \mathcal{M}_1 \times \mathcal{M}_2).$

, so that $((\mathbb{N}_1 \times \mathbb{N}_{2_{R_1} \times R_2}^{:} \mathcal{M}_1 \times \mathcal{M}_2).$

is a 2Pr- ideal of $R = R_1 \times R$. It follows that either

$$(a,c)^2 \in ((\mathbb{N}_1 \times N_2 :_{R_1 \times R_2} \mathcal{M}_1 \times \mathcal{M}_2).$$

or $(b, d)^2 \in ((\mathbb{N}_1 \times \mathbb{N}_2 :_{R_1 \times R_2} \mathcal{M}_1 \times \mathcal{M}_2))$. This implies either

I) $(a^2, c^2) \in ((\mathbb{N}_1 :_{R_1} \mathcal{M}_1) \times (N_2 :_{R_2} \mathcal{M}_2), \text{ and so } a^2 \in ((\mathbb{N}_1 :_{R_1} \mathcal{M}_1) \text{ and } c^2 \in (N_2 :_{R_2} \mathcal{M}_2). \text{ or}$ II) $(b^2, d^2) \in ((\mathbb{N}_1 \times \mathbb{N}_2 :_{R_1 \times R_2} \mathcal{M}_1 \times \mathcal{M}_2). \text{ This implies } b^2 \in ((\mathbb{N}_1 :_{R_1} \mathcal{M}_1) \text{ and } d^2 \in (N_2 :_{R_2} \mathcal{M}_2)$

Thus each case ((I) or (II)) implies $((\mathbb{N}_1 :_{R_1} \mathcal{M}_1) \text{ and } (N_2 :_{R_2} \mathcal{M}_2)$ are (2-PI) of R_1 and R_2 (respectively).

Therefore \mathbb{N}_1 and \mathbb{N}_2 are (S-2-PS) of \mathcal{M}_1 and \mathcal{M}_2 (respectively).

2. Slight2-Prime Modules

The current section introduced a new class of modules namely slight2-Prime module (S-2-PM) as a generalization of 2-Prime modules(2PM). The requisite properties of this type of modules are presented.

Definition 2.1

A module \mathcal{M} over R is named is slight2-Prime module(briefly S-2-PM) if (0) is (S-2-PS). In other words \mathcal{M} is (S-2-PM) if $(0_R^{\circ}M) = ann_R \mathcal{M}$ is a (29PI) of R.

Example and Remarks 2.2

1) All 2-prime module(2-PM) is (S-2-PM), however, it is not conversely.

Proof:

Let \mathcal{M} be a (2-PM). Then (0) is a (2-PS), hence $(0_R^:\mathcal{M}) = ann\mathcal{M}$ is a (2-PI) of R. Thus \mathcal{M} is (S-2PM).

Assume the \mathbb{Z} -module \mathbb{Q} . It is (S-2PM) since $ann_Z \mathbb{Q} = (0)$ which a prime ideal of \mathbb{Z} , hence (2-PI). But \mathbb{Q} is not (2-PM).

- The Z -module Z₄ is (S-2-PM) since It is (2-PM), the Z -module Z₆ is not (S-2-PM) since ann_ZZ₁₆ = 6Z which is not (2-PI) in Z, where 2.3 ∈ 6Z, but 2² ∈ 6Z and 3² ∉ 6Z.
- 3) Not every nonzero submodule of (S-2-PM), for instance : Assume \mathcal{M} be the \mathbb{Z} -module $\mathbb{Z} \oplus \mathbb{Z}_6$ as \mathbb{Z} -module

subsequently $ann_Z \mathcal{M} = (0)$ which is (2-PI).

If $N = (0) \oplus \mathbb{Z}_6$, then $ann_{\mathbb{Z}} \mathbb{N} = 6\mathbb{Z}$ which is not 2-Pl of \mathbb{Z} , hence \mathbb{N} is not (S-2-PM).

Notice that N is a direct summand of \mathcal{M} , hence a direct summand of (S-2-PM) is not necessarily (S-2-PM).

4- The homomorphic image of (S-2-PM) is not necessarily (S-2-PM), for example: Let $\rho: \mathbb{Z} \oplus \mathbb{Z}_6 \to \mathbb{Z}_6$ be the natural epimorphism, $\rho(\mathbb{Z} \oplus \mathbb{Z}_6) = \mathbb{Z}_6$ which is (S-2-PM). (see part (3)).

The concepts (2-PM) and (S-2-PM) are equivalent under the category of multiplication modules.

Proposition 2.3

For a multiplication module \mathcal{M} , thereafter, \mathcal{M} is (S-2-PM) if and only if \mathcal{M} is (2-PM).

Proof : (\Leftarrow) It is easy

(⇒)If \mathcal{M} is (S-2-PM), then (0) is (S-2-PS), *ie* ((0)[:]_R \mathcal{M}) is (2-PI), hence (0) is (2-PS) of \mathcal{M} by Proposition 1.3. Thus \mathcal{M} is (2-PM).

Corollary 2.4

Assume \mathcal{M} is considered as a cyclic R-module. So that \mathcal{M} is a (S-2-PM) if and only if \mathcal{M} is (2-PM).

Proposition 2.5

Let \mathcal{M} be faithful module. It leads to the statements below being equivalent:

- 1) \mathcal{M} is a (S-2-PM).
- 2) R is 2-Prime ring
- 3) R is S-Prime ring.

Proof

(1)⇒(2): Since \mathcal{M} is an (S-2-PM), *ann* \mathcal{M} is a (2-PI). But *ann* \mathcal{M} = 0, since \mathcal{M} is faithful, so (0) is a prime ideal of R. Thus R is a 2Prime ring.

 $(2) \Rightarrow (1)$ is similarly.

 $(2) \Leftrightarrow (3)$ it follows by Corollary 2.4.

Corollary 2.6

Assume \mathcal{M} is considered as a faithful module, in which R is an integral domain. So that \mathcal{M} be (S-2-PM).

Proof:

Since R is an integral domain, R is a prime ring, hence R is a 2-Prime ring. But \mathcal{M} is faithful, so that \mathcal{M} is a (S-2-PM) by Proposition 2.5.

Proposition 2.7

Let R be a chained ring, \mathcal{M}_1 and \mathcal{M}_2 be (S-2-PM). Then $\mathcal{M}_1 \oplus \mathcal{M}_2$ is a (S-2-PM).

Proof:

Since \mathcal{M}_1 and \mathcal{M}_2 are (S-2-PM), $ann_R \mathcal{M}_1$ and $ann_R \mathcal{M}_2$ are (2-PI). Also $ann_R (\mathcal{M}_1 \oplus \mathcal{M}_2) = ann_R \mathcal{M}_1 \cap ann_R \mathcal{M}_2$. But R is a chained ring, so that $ann_R (\mathcal{M}_1 \oplus \mathcal{M}_2) = ann_R \mathcal{M}_1$ or $ann_R (\mathcal{M}_1 \oplus \mathcal{M}_2) = ann_R \mathcal{M}_2$. Thus $\mathcal{M}_1 \oplus \mathcal{M}_2$ is (S-2-PM).

Next we have the following:

Proposition 2.8

Let \mathcal{M} be a finitely generated (S-2-PM) module, S is a multiplicative subset of R. Then $S^{-1}\mathcal{M}$ is an (S-2-PM) S^{-1} R-module.

Proof:

Since \mathcal{M} is a (S2PM), then (0) as a (S2PM) of \mathcal{M} . Then by Proposition 1.18, $S^{-1}(0)$ is an (S2-PM) of $S^{-1}\mathcal{M}$ Thus $S^{-1}\mathcal{M}$ is an (S2PM) S^{-1} R-module.

References

[1] H. Ansari and Farshadifar "The dual notion of multiplication modules, Taiwanese J.Math. 11(4)(2007),1189-1201.

[2] Z.A.EL. Bast and P.F. Smith, Multiplication Modules, Comm. In Algebra 16(1988),755-779.

[3] J.Dauns, Prime Modules and one sided ideals in Ring Theory and Algebra, Proceeding of Third Oklaham Confrence, B.R. McDonald (editor), Dekker, New York,(1980) ,301-433.

[4] W.Heinzer and D.Lantz), The Laskerian Property in Commutative Rings, J.Algebra ,72 (1981),101-114.

[5] F.D. Jasim and A.A. Elewi, 2-Prime submodule of modules, Iraqi Journal of Science, 63(8) (2022),3605-3611,

[6]. F.D. Jasim, 2-Quasi-Prime Submodules and 2-Quasi-Prime Modules, Ms.C. Thesis, university of Baghdad,(2022).

[7] M.D. Larsen & P.J. Mccarlthy, Multiplicative Theory of Ideals, Academic, Press, New York. ,(1981)
[8] C.P. Lu)," M-radical of Submodules of Modules", Math. Japan,34(2)(1989),211-219.

[9] A.S. Mijbass, On Cancellation Modules, Ms.C Thesis, University of Baghdad,(1992).
[10] W. Messirdi and C.Beddani) ,2-Prime ideals and their multiplications, Journal of Algebra, Taibah Univ. Dep. of Math. Madinah Kingdom of Saudi-Arabia, No.6806/1436,(2015)
[11] S.A. Saymach, on Prime submodules, Univ. Noc. Tucmare Ser.A.29 (1979),121-136.