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1. Introduction 

In current research,  we use the supposition R is a commutative ring with identity and   that each  

R- module ℳ  is a unitary right R- module . The notions ℕ < ℳ( ℕ ≤ ℳ)  stands for ℕ is  a submodule 

of ℳ. (ℕ is a porper submodule of  ℳ   ( Clearly every ideal I of R  is a submodule of  the R- module  𝑅 ).  

𝐼 < 𝑅  is named prime ideal  if 𝑎. 𝑏 ∈ 𝐼, then  𝑎 ∈ 𝐼 𝑜𝑟 𝑏 ∈ 𝐼[ 7] .  For ℕ < ℳ , ℕ is called a prime  

submodule if whenever 𝑎 ∈ 𝑅, 𝑥 ∈ ℳ, with 𝑥𝑎 ∈ ℕ, then  𝑥 ∈ ℕ or 𝑎 ∈ (ℕ𝑅
: 𝑀), where (ℕ𝑅

: 𝑀) = {𝑟 ∈
𝑅: ℳ𝑟 ⊆ ℕ}. [11]. Recently W. Messiridi & a.t.l in [10] introduced the concept 2-Prime ideal as a 

generalization of prime ideal, where if  𝐼 < 𝑅, I is said to be 2-prime  if  𝑎. 𝑏 ∈ 𝐼 (𝑎, 𝑏 ∈ 𝑅), 𝑡ℎ𝑒𝑛  𝑎2 ∈
ℎ 𝑜𝑟 𝑏2 ∈ ℎ. 

 Fatima and Alaa in [6] generalized this notion for submodules, as follows : ℕ < ℳ is named a 2-

Prime submodule if 𝑚𝑎 ∈ ℕ with  (𝑎 ∈ 𝑅, 𝑚 ∈ ℳ) , implies 𝑚 ∈ ℕ or 𝑎2 ∈ (ℕ𝑅
: ℳ).  

By [5, Proposition 2.3]  every  2-Prime submodule ℕ  of ℳ   implies  (ℕ𝑅
: ℳ)  is 2-Prime ideal, but the 

converse may be not valid, see [5, Remark 2.4]. This motivate us to present a new concept namely slight2-

Prime submodule, where ℕ < ℳ  is called a slight 2-Prime submodule( shortly S-2PS), if  ℕ𝑅
: ℳ) is a 2-

Prime ideal of R.  

In S.2 of this paper many properties of this class of submodules are given. In S.3, we define a type 

of modules namely slight 2-Prime module as generalization of 2-prime module which is given in [6  الاء  ], 

where a module M  is a 2- prime module if the zero submodule is a 2-Prime ideal. We say that M is a 

slight 2-Prime module( abbreviated S-2PM) if < 0 >≤ 𝑀 is a S-2PS. Many fundamental results related 

with this concept are introduced, some of them are analogues to that of 2-prime modules. Note that we 

shall use these abbreviations (2-PI, 2-PS, S-2-PS, 2-PM, S-2-PM) for 2-Prime ideal, 2-Prime submdule, 

slight 2-Prime submodule, 2- Prime module, slight 2-Prime module. 
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1.  Slight 2-Prime Submodules. 

1.1 Definition  

 Let ℕ < ℳ . ℕ is called slight 2-Prime submodule ( bravely S-2-PS) if (ℕ𝑅
: ℳ) is a (2-PI). 

 

1.2  Remark  

By [5, Proposition  2.3] every( 2-PS ) ℕ𝑅
: module ℳ implies (ℕ𝑅

: ℳ) is a (2PI), hence ℕ is  (S-2-

PS) of ℳ   . 

The next example explains that the converse may be not true :  

The submodule ℕ =<
1

𝑝
+ ℤ > of the ℤ -module ℤ𝑝∞ is (S2PSM), since (𝑁ℤ

: ℤ𝑝∞) = (0) which is a prime 

ideal (So that is ( 2PI). On the hand  ℕ is not (2-PSM)  because 𝑃 (
1

𝑝2 + ℤ) ∈ ℕ and (
1

𝑝2 + ℤ) ∉ 𝑁 and 

 𝑃2 ∈ (ℕℤ
: ℤ𝑝∞) = 0. 

    According to common knowledge, an R-module M is considered multiplication when all submodule ℕ 

of ℳ (ℕ ≤ ℳ), has an ideal of R where ℕ = ℳ𝐼.  

Likewise, if for every ℕ ≤ ℳ 𝑎𝑛𝑑ℕ = ℳ(ℕ𝑅
: ℳ), M is a multiplication module [2]. 

1.3  Proposition  

Let ℕ < ℳ , in which ℳis a multiplication R-module  . Then ℕ  is (2-PSM) if and only if ℕ is a 

(S-2-PS).  

Proof: Clearly  by [5, Corollary 3.10] 

1.4 Corollary  

For  ℕ < ℳ , where ℳ is a multiplication R-module over a Boolean ring 𝑅 (𝑖𝑒 𝑛2 = 𝑛, ∀𝑛 ∈ ℕ. The 

following concepts are equivalent: 

a )  S-2-PS. 

b ) 2-PS. 

c) Prime submodule. 

d) Primary submodule. 

The aforementioned statements are all equivalent. 

Proof : (a)↔(b): follows the Proposition 1.3 

           (b)↔(c): Let 𝑎𝑥 ∈ ℳ then either 𝑥 ∈ ℕ or 𝑎2 ∈ ( ℕ𝑅
: ℳ)  → . 

As R is Boolean ring, either 𝑥 ∈ ℕ or 𝑎 ∈ (ℕ𝑅
: ℳ). Thus ℕ  is considered a prime submodule. 

(c)↔(d) and  (c)↔(b) (are clear), 

 (d)↔(c): Let 𝑥𝑎 ∈ ℕ, where 𝑎 ∈ 𝑅, 𝑥 ∈ ℳ. Either 𝑥 ∈ ℕ 𝑜𝑟 𝑛𝑘 ∈ (ℕ: ℳ) for some 𝑘 ∈ 𝑍+, Since ℕ is 

defined as a primary submodule,. It is following that either 𝑥 ∈ ℕ 𝑜𝑟 𝑛 ∈ (ℕ: ℳ), when R is Boolean ring. 

Thus ℕ is a (PSM). 
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1.5 Proposition  

  Assume  ℳ1and ℳ2 be R-modules, 𝑓: ℳ1 → ℳ2 be a homomorphism, and ℕ ≤ ℳ1 with 𝐾𝑒𝑟𝑓 ⊆
ℕ. If ℕ is S-2-PS of ℳ1, then 𝑓(ℕ) is an S-2-PSof 𝑓(ℳ1) 

Proof: 

 Since 𝑁 ≨ ℳ and 𝐾𝑒𝑟𝑓 ⊆ ℕ, then 𝑓(ℕ) ≠ 𝑓(ℳ1). As ℕ  is S-2-PS of 𝑀1, (ℕ𝑅
: ℳ1) is a( 2PI) of R. 

obviously (ℕ𝑅
: ℳ1) = (𝑓(ℕ)𝑅

: 𝑓(ℳ1)), hence (𝑓(ℕ)𝑅
: 𝑓(ℳ1)) is a (2PI) of R. 

Thus 𝑓(ℕ) is S-2-PS  of 𝑓(ℳ1). 

1.6 Lemma  

 Let 𝑓: ℳ1 → ℳ2 be an R-homomorphism, 𝑊 ≤ 𝑓(ℳ1), then (𝑊𝑅
: 𝑓(ℳ1) = (𝑓−1(𝑊)𝑅

: ℳ1) 

Proof: 

    Let 𝑎 ∈ (𝑊𝑅: 𝑓(ℳ1). Then 𝑎𝑓(ℳ1) ⊆ 𝑊, so that 𝑓−1𝑓(𝑎ℳ1) ⊆ 𝑓−1(𝑊), but 𝑀1𝑎 ⊆ 𝑓−1𝑓(ℳ1𝑎), 

hence 𝑎𝑀1 ⊆ 𝑓−1(𝑊). Thus 𝑎 ∈ (𝑓−1(𝑊)𝑅: ℳ1) and so (𝑊𝑅: 𝑓(ℳ1) ⊆ (𝑓−1(𝑊)𝑅: ℳ1). The reverse 

inclusion is similarly. 

Note that if 𝑓 is an epimorphism, then (𝑊𝑅
: ℳ2) = (𝑓−1(𝑊)𝑅: ℳ1) 

Proposition 1.7 

 If  𝑓: ℳ1 → ℳ2 be an R- epimorphism, W is (S-2-PS) in ℳ2.  Then 𝑓−1(𝑊) is (S-2-PS) in ℳ1. 

Proof : Since W is a (S-2-PS) of 𝑀2 then 𝑊 ≠ ℳ2 and  

(𝑊:𝑅 ℳ2) is a (2-PI) of R. Hence  𝑓−1(𝑊) ≠ ℳ1 as 𝑓 is an epimorphism. Beside   this by lemma 2.6, 

(𝑊:𝑅 ℳ2) = (𝑓−1𝑊 :𝑅 ℳ1). Thus (𝑓−1(𝑊) :𝑅 ℳ1) is a (2PI)  of R and 𝑓−1(𝑊) is a (2-PS). 

Remark 1.8 

The condition 𝑓 is an epimorphism is a necessary condition in proposition 2.7, for example: 

Consider ℤ8 and ℤ16 as ℤ -modules, 𝑓: ℤ8 → ℤ16 defined by 𝑓(0) = 𝑓(4)̅̅ ̅̅ = 0̅, 𝑓(1)̅̅̅ = 𝑓( 5)̅̅̅ =

( 4)̅̅ ̅, 𝑓( 2)̅̅̅ = 𝑓( 6)̅̅̅ = 8̅, 𝑓( 3)̅̅̅ = 𝑓( 7)̅̅̅ =  12̅̅̅̅  . Let 𝑊 = {  0̅, 4,̅ 8,̅ 12̅̅̅̅  } < ℤ16. Then (𝑊:𝑍 : ℤ16) = 4ℤ is a 

(2PSM)  of ℤ16 . But 𝑓−1(𝑊) = ℤ8 which is not (S-2-PS) of ℤ8. 

Proposition 1.9 

  Let ℕ be a (S-2-PS)  of an R-module ℳ. Then (ℕ𝑀
: 𝐼) is an S-2-PS for each idempotent ideal 𝐼 of R 

(𝑖. 𝑒 𝐼 = 𝐼2). 

Proof:  To provide (ℕ𝑀
: 𝐼) is a (S2PSM) of ℳ, ((ℕℳ

: 𝐼)𝑅
: ℳ) is a (2-PI) of R, that must prove . Let 𝑎. 𝑏 ∈

((ℕ𝑀
: 𝐼)𝑅

: ℳ), where 𝑎, 𝑏 ∈ 𝑅, that is ℳ𝑎𝑏 ⊆ (𝑁𝑅
: 𝐼). Hence ℳ𝑎𝑏𝐼 ⊆ ℕ and so 𝑎𝑏𝐼 ⊆ (ℕ𝑅

: ℳ) which is (2-

PI) of R, hence either 𝑎2(ℕ𝑅
: ℳ) 𝑜𝑟 𝑏2𝐼2 ⊆ (ℕ: ℳ). 

If 𝑎2(ℕ: ℳ), then ℳ𝑎2 ⊆ ℕ  and ℳ𝑎2𝐼 ⊆ ℕ𝐼 ⊆ ℕ that ℳ𝑎2 ⊆ (ℕ𝑀
: 𝐼). Therfore 𝑎2 ∈ ((ℕ𝑀

: 𝐼)𝑅
: ℳ). 
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If 𝑏2𝐼2 ⊆ (ℕℳ
: 𝐼), Then 𝑏2𝐼 ⊆ (ℕ𝑅

: ℳ), (since 𝐼2 = 𝐼). This implies ℳ𝑏2𝐼 ⊆ ℕ and so ℳ𝑏2 ⊆ (ℕ𝑀
: 𝐼). 

Thus 𝑏2 ∈ ((ℕℳ
: 𝐼)𝑅

: ℳ) 

Remark 1.10 

 The condition 𝐼 is an idempotent ideal can’t be dropped from Proposition 2.9, as  an illustrative 

example : 

Consider ℤ16  as  ℤ -module,  ℕ = { 0̅, 4,̅ 8,̅ 12̅̅̅̅ }. N is an (S-2-PS) of M. Let 𝐼 = 8ℤ. Clearly 𝐼 is not 

idempotent and (ℕ𝑍16

:  𝐼) = ℤ16 which is not (S-2-PS) of ℳ = ℤ16. 

Recalling a module ℳ  over R is named cancellation if for each 𝐼 , J ≤ 𝑅, ℳ𝐼 = 𝑀𝐽, [ 9 ] 

Proposition 1.11 

Letℳ be a cancellation R-module, let  𝐼 < 𝑅. Then ℳ𝐼 is a (S-2-PS) of ℳ only when 𝐼 is a (2-PI) 

of R. 

Proof : Clearly (ℳ𝐼𝑅
: ℳ) = 𝐼. Hence ℳI is a (S-2PS) only when I is a (2-PI) of R. 

Corollary 1.12 

Let M be a multiplication R-module that has been faithfully and finitely generated. The below 

statement are equivalent: 

1- ℳI is a (S-2-PS) 

2- I is a (2-PI) of R 

3- ℳ I is a (2-PS) 

Proof: 

 (1) ↔  (2) 𝑆, Since  ℳ is a multiplication R- module, 𝑅 − 𝑚𝑜𝑑𝑢𝑙𝑒, 𝑀 𝑖𝑠 𝑎 𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑢𝑙𝑒 by [2, 

Theorem 3.1]. hold by Proposition 2.11 (2)↔(3) It pursue by Proposition 2.3. 

If every submodule of module M is a finite intersection of its primary submodules, then M  is 

named  Laskerian  module.[4] 

Proposition 1.13 

Assume M be a Laskerian R-module with finite generators  and 𝜛 is a (S-2-PS) of ℳ. The rad 𝜛 

is a (S-2-PS) of ℳ, where rad 𝜛 is all the prime submodules intersections containing 𝜛. 

Proof: Since ℳ is finitely generated Laskerian R-module, then √(𝜛𝑅
: ℳ)  = (𝑟𝑎𝑑𝜛𝑅

: ℳ) by [8, Theorem 

5 ]. But 𝜛 is a S-2-PS of ℳ, that is(𝜛𝑅
: ℳ) is a (2-PI) of R, which implies that √(𝜛𝑅

: ℳ) is a prime ideal 

[10] and so (2PI). 

Thus (𝑟𝑎𝑑𝜛𝑅
: ℳ is a (2PI) of R and so rad 𝜛  is a (S-2-PS) of ℳ. 
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A module ℳ of a ring R is known as Comultiplication if    for every 𝜛 < ℳ, there exists 𝐼 ≤ 𝑅 so 

that    𝜛 = 𝑎𝑛𝑛𝐼ℳ . Equivalently for each  𝜛 ≤ ℳ, 𝜛 = (0𝑀
: 𝑎𝑛𝑛 𝜛) [1]. 

Proposition 1.14 

Assume ℕ < ℳ  ,where ℳ a Comultiplication R-module .Then ℕ will  be (2-PI) of R is 

idempotent (𝑖𝑒 𝐼² =  𝐼) and (0) is a (S-2-PS). Then every ℕ < ℳ  is a (S-2-PS) of M and (ℕ : ℳ ) is a 

prime ideal of R. 

Proof:  As  ℕ < ℳ and ℳ  is a comultiplication  R -module 

 Then ℕ = (0𝑀
: 𝐼) for some ideal I of R₂, I≠R. 

As (0) is a (S-2-PS) of ℳ  and I is an idempotent ideal, so that ℕ = (0𝑀
: 𝐼) is  a (S-2-PS) of ℳ by 

Proposition 2.9. 

Hence (ℕ𝑅
: ℳ) is a( 2-PI). As all ideal of R is idempotent, so that(ℕ𝑅

: ℳ) is a Prime ideal. 

Proposition 1.15 

Assume ℳ is considered as an R-module, let{𝐾𝑖}𝑒𝐼 is considered a chain of  (2-PSM)  of ℳ. Then  

⋂ 𝐾𝑖𝑖∈𝐼  is a (S2PSM) of ℳ. 

Proof: 

 It is clear that(  ⋂ 𝐾𝑖 :𝑅 𝑖∈𝐼 ℳ) ≠ 𝑅, (⋂ 𝐾𝑖 :𝑅 𝑖∈𝐼 ℳ) = ⋂ (𝐾𝑖 :𝑅 𝑖∈𝐼 ℳ) 

Let 𝑎, 𝑏 ∈ 𝑅such that 𝑎. 𝑏 ∈∩𝑖∈𝐼 (𝐾𝑖𝑅
: ℳ). Assume that there exist 𝑚, 𝑛 ∈ 𝐼 such that 𝑎2 ∉

(𝐾𝑚𝑅
: ℳ)and 𝑏2 ∉ (𝐾𝑛𝑅

: 𝑀) . Since {𝐾𝑖}𝑖∈𝐼 is a chain, so it could be assumed 𝐾𝑚 ⊆ 𝐾𝑛· Then (𝐾𝑚𝑅
: ℳ) ⊆

(𝐾𝑛𝑅
: ℳ). On the other hand 𝑎. 𝑏 ∈ (𝐾𝑚𝑅

: ℳ), So either 𝑎2 ∈ (𝐾𝑚𝑅
: ℳ) 𝑜𝑟𝑏2 ∈ (𝐾𝑚𝑅

: ℳ). However each 

case  implies contradiction. Thus either 𝑎2 ∈∩𝑖∈𝐼 (𝐾𝑖𝑅
: ℳ) or 𝑏2 ∈∩𝑖∈𝐼 (𝐾𝑖𝑅

: ℳ). 

Now we define the following: 

Definition 1.16 

Assume ℕ is a (S-2-PS) of the module ℳ , let ℂ ≤ ℳ. ℕ is called a minimal (S-2-PS) of K if  

there is no (S-2-PS ) ℧ of ℳ   such that ℂ ⊂ ℧ ⊂ ℕ. ℕ is  said to a minimal (S-2-PS) of ℳ if ℕ is a 

minimal (S-2-PS ) of (0). 

Example 1.17 

Assume ℳ  be the ℤ -module ℤ, ℕ = 4ℤ, 𝐾 = 8ℤ. Then ℕ is a minimal (S-2-PS) of K. But  ℕ is 

not a minimal (S-2-PS) of ℤ, Since (0) ⊆ 8ℤ ⊆ 4ℤ and 8ℤ is an (S-2-PS)of ℤ 

Proposition 1.18 

  Every S-2-PS of a module ℳ contains a minimal (S-2-PS) of ℳ. 
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Proof:   Assume ℕ be a (S-2-PS ) of a (S-2-PS) of  ℳ and 𝐹 = {K:K is a (S-2-PS) of ℳ and𝐾 ⊆ ℕ}. 𝐹 ≠
𝜙 since 𝑁 ∈ 𝐹. Let {𝐾𝑖}𝑖∈𝐼 be a chain in F, then by Proposition 2.14, ∩𝑖∈𝐼 𝐾𝑖 is a (S2PSM) and 

    ∩𝑖∈𝐼 𝐾𝑖 ⊆ ℕ. Suppose there exists a ((S-2-PS ) 𝑇 of M such that (0) ⊆ 𝑇 ∩𝑖∈𝐼 𝐾𝑖 ⊆ ℕ. Then 𝑇 ∈ 𝐹 and 

𝑇 =∩𝑖∈𝐼 𝐾𝑖 . Thus ∩𝑖∈𝐼 𝐾𝑖 is a minimal (S-2-PS) and  ∩𝑖∈𝐼 𝐾𝑖 ⊆ ℕ 

Proposition 1.19 

Assume ℕ  be a (S-2-PS) of a module ℳ, S is a multiplicative closed subset of R. Then 𝑆−1𝑁 is a 

(S-2-PS) of 𝑆−1R module  𝑆−1ℳ. Provided ℳ  is finitely generated. 

Proof: 

 Since ℕ  is a (S-2-PS  of ℳ, then (ℕ ∶𝑅  ℳ) is (2-PI) of R. Hence by [10, Proposition 1.3.2.], 

𝑆−1(ℕ ∶𝑅  ℳ) is a (2-PI) of R. But 𝑆−1(ℕ ∶𝑅  ℳ) = (𝑆−1ℕ ∶𝑆−1𝑅 𝑆−1 ℳ) because ℳ  is finitely 

generated, see [7, Proposition 3:14, P43]. Thus (𝑆−1N ∶𝑆−1𝑅 𝑆−1 ℳ) is a (2-PI) of R and so  is 𝑆−1ℕ is a 

(S-2PS) of 𝑆−1R-module  𝑆−1ℳ. 

Now, we focus on the direct sum of two (S-2-PS) for the corresponding modules ℳ1 and ℳ₂ 

respectively. 

Theorem 1.20 

Let ℕ1 < ℳ1 and ℕ2 < ℳ2 respectively. If ℕ1 ⊕ ℕ2 is an (S-2-PS) of ℳ = ℳ1⨁ℳ2. Then ℕ1 

and ℕ2 are (S-2-PS) of  ℳ1and  ℳ2 (respectively). The converse hold if R is a chained ring. 

Proof: 

 If  𝜌1: ℳ1⨁ℳ2 ⟶ ℳ1 be the natural projection. Then 𝑝1(ℕ1⨁ℕ2) = ℕ1 and 𝐾𝑒𝑟𝑓 𝜌1 =
(0)⨁ℕ2 ⊆ ℕ1⨁ℕ2. Hence Proposition 2.5, ℕ1 is an (S-2-PS) of ℳ1. Similary ℕ2 is a (S-2-PS) of M₂. 

Conversely: Since (ℕ1⨁𝑁2  ∶𝑅 ℳ1⨁ℳ2) = (ℕ1  ∶𝑅  ℳ1) ∩  (ℕ2  ∶𝑅  ℳ2) and R is a chained ring, then 

either (ℕ1  ∶𝑅  ℳ1) ⊆ (ℕ2  ∶𝑅  ℳ2) or ((ℕ2  ∶𝑅  ℳ2) ⊆ (ℕ1  ∶𝑅  ℳ1). Thus either (ℕ1⨁ℕ2𝑅
: ℳ1⨁ℳ2) =

(ℕ1𝑅
: ℳ1) which is a (2PI) of R (since a S-2-Pr-), or (ℕ1⨁ℕ2𝑅

: ℳ1⨁𝑀2) = (ℕ2𝑅
: ℳ2) which is a (2PI) of 

R (since N₂ is an ( S-2-PS) of  ℳ ₂). 

Remark 1.21 

  The condition R is a chained ring can't be dropped from Proposition 1.19, for example: 

Consider  ℤ16⨁ℤ as  ℤ -module let ℕ1 = { 0̅, 4̅ , 8̅, 12̅̅̅̅ },  ℕ2 = 3ℤ . Each ℕ₁ and  ℕ₂ are (S-2-PS) 

submodules  of ℤ16 and ℤ (respectively). But (ℕ1⨁ℕ2𝑍
: ℤ16⨁ℤ) = 12ℤ which is not a 2-Prime ideal of  

ℤ16⨁ℤ. Thus ℕ1⨁ℕ2 is not a (S-2-PS) of ℤ16⨁ℤ. 

Proposition 1.22 

Let ℳ1𝑎𝑛𝑑 ℳ2  be  modules , let ℕ1 < ℳ1 and ℕ1 < ℳ2 respectively. Then:  

1) If ℕ1 is (S-2-PS)of ℳ2, it leads to ℕ1⨁ℳ2 is (S2PSM) of ℳ1⨁𝑀2 

2) If ℕ2 is a (S-2-PS) of M₂, it leads to 𝑀1⨁ℕ2 is a (S2PSM) of ℳ1⨁ℳ2 
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Proof: It is easy. 

Recall that if ℳ𝑖 is an 𝑅𝑖-module, 𝑖 = 1,2, and R be the ring 𝑅1 × 𝑅2, so that ℳ = ℳ1 × ℳ2 is  module 

where (𝑚1, 𝑚2)(𝑟1, 𝑟2) = (𝑚1𝑟1, 𝑚2𝑟2), ∀(𝑚1, 𝑚2) ∈ ℳ, (𝑟1, 𝑟2) ∈ 𝑅. 

Theorem 1.23 

Let 𝑅 = 𝑅1𝑥𝑅2, ℳ = ℳ1𝑥ℳ2 be R-module. When ℕ and W are proper ℳ1 𝑎𝑛𝑑 ℳ2 submodules, 

respectively. So that 

1) N is a (S-2-PS) of ℳ1, if and only if ℕ × ℳ2 is a (S2PSM) of ℳ. 

2) W is a (S-2-PS) of 𝑀2, if and only if  ℳ1 × 𝑊 is a (S2PSM) of ℳ. 

Proof: First 

(𝑁 × ℳ2 :𝑅1×𝑅2
 ℳ1 × ℳ2) = (ℕ  :𝑅1

ℳ1) × ( ℳ2 ∶𝑅1
ℳ2) = (ℕ  :𝑅1

ℳ1) × 𝑅2   

Let (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝑅1 × 𝑅 such that (𝑎, 𝑏). (𝑐, 𝑑) ∈ (ℕ  :𝑅1
ℳ1).   

Hence (𝑎𝑐, 𝑏𝑑) ∈ (ℕ  :𝑅1
ℳ1) × 𝑅2 and so that 𝑎𝑐 ∈ (ℕ  :𝑅1

ℳ1) and 𝑏𝑑 ∈ 𝑅2. As N is (S2PSM) of ℳ1, 

(ℕ  :𝑅1
ℳ1) is a (2PI) of 𝑅1 It follows that either 𝑎2 ∈ (ℕ  :𝑅1

𝑀1) 𝑜𝑟 𝑐2 ∈ (ℕ  :𝑅1
𝑀1). Then clearly 

(𝑎2, 𝑏2) ∈ (ℕ  :𝑅1
ℳ1) × 𝑅2 𝑜𝑟 (𝑐2, 𝑑2) ∈ (ℕ  :𝑅1

ℳ1) × 𝑅2 , 𝑖𝑒 (𝑎, 𝑏)2 ∈ (ℕ  :𝑅1
ℳ1) × 𝑅2 . Thus 

(ℕ  :𝑅1
ℳ1) × 𝑅2  is a (2PI) of 𝑀1. 

To prove ℕ is (S-2-PS) of ℳ1. 

Let 𝑎, 𝑏 ∈ 𝑅1 such that 𝑎. 𝑏 ∈ (ℕ  :𝑅1
ℳ1), hence for each 𝑐, 𝑑 ∈ 𝑅2 , (𝑎𝑏, 𝑐𝑑) ∈ (ℕ  :𝑅1

ℳ1) × 𝑅2 =

(ℕ × ℳ2𝑅1×𝑅2

: ℳ1 × ℳ2). That is (𝑎, 𝑐). (𝑏, 𝑑) ∈ (ℕ × ℳ2𝑅1×𝑅2

: ℳ1 × 𝑀2) which is a (2PI) of 𝑅1 × 𝑅2. 

Hence either (𝑎, 𝑐)2 ∈ (ℳ1 × ℳ2 :𝑅1×𝑅2
 ℳ1 × ℳ2) or (𝑏, 𝑑)2 ∈ (ℕ × ℳ2 :𝑅1×𝑅2

 ℳ1 × ℳ2). It follows 

that either (𝑎2 ∈ (ℕ  :𝑅1
ℳ1)𝑎𝑛𝑑 𝑐2 ∈ 𝑅2) or (𝑏2 ∈ (ℕ  :𝑅1

ℳ1)𝑎𝑛𝑑 𝑑2 ∈ 𝑅2). Thus either 𝑎2 ∈

(ℕ  :𝑅1
ℳ1) or 𝑏2 ∈ (ℕ  :𝑅1

ℳ1). So that ℕ  is a (2PSM) of ℳ1. 

Theorem 1.24 

Let 𝑅 = 𝑅₁ ×  𝑅₂, ℳ = ℳ1 × ℳ2 be R-module. When ℕ = ℕ₁ ×  ℕ₂ is an (S-2-PS) of  ℳ  Then 

either 

1) ℕ is a (S-2-PS) of ℳ₁ and ℕ2 = ℳ2, or 

2) ℕ1 = ℳ1 and ℕ2 is a (S-2-PS) of  ℳ2, or  

3) ℕ1 and ℕ2 are (S-2-PS) of both ℳ1 and ℳ2. 

Proof: Since 𝑁1 ×  𝑁2  <of ℳ1 × ℳ2. Then there are 3 states: 

1) ℕ₁ ≤ ℳ1 so that ℕ2 = ℳ2 

2) ℕ1 = ℳ1 so that ℕ2 ≨ ℳ2 

3) ℕ1 ≨ ℳ1 so that ℕ2 ≨ ℳ2 
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State  (1):  implies that ℕ =  ℕ₁ ×  ℳ₂, and  byTheorem 1.22  ℕ₁ is S2Pr- submodule of  ℳ1 

of M₁ 

State (2): implies that ℕ = ℳ1 × ℕ2 and Theorem 2.22 yields that  , ℕ2  is an (S-2-PS)  of  ℳ ₂ 

State (3): ℕ1 ≨ ℳ1 and 𝑁1 ≨ ℳ1 imply (ℕ1 :𝑅1 
ℳ1) ≨ 𝑅1 and (ℕ2 :𝑅2 

ℳ₂) ≨ 𝑅2. To prove  ℕ1 and ℕ2 

are (S-2-PS)  of ℳ1 and ℳ₂, respectively. 

we must show that : (ℕ1 :𝑅1 
ℳ1) and (ℕ2 :𝑅2 

ℳ₂) are (2-PI) of R₁ and R₂, respectively. 

Let 𝑎, 𝑏 ∈ 𝑅 and 𝑐, 𝑑 ∈ 𝑅2 such that 𝑎. 𝑏 ∈ (ℕ1 :𝑅1 
ℳ1) and . 𝑑 ∈ (𝑁2 :𝑅2 

ℳ2); that is (𝑎𝑏, 𝑐𝑑) ∈

((ℕ1 :𝑅1 
ℳ1) × (ℕ2 :𝑅2 

ℳ2) = (  (ℕ1 × ℕ2 :𝑅1×𝑅2   ℳ1 × ℳ2). 

Hence  (𝑎, 𝑐). (𝑏, 𝑑) ∈ ((ℕ1 × ℕ2 :𝑅1×𝑅2   ℳ1 × ℳ2). 

 But ℕ = (ℕ1 × ℕ2 is a (S-2-PS)  of ℳ1 × ℳ2). 

, so that ((ℕ1 × ℕ2𝑅1×𝑅2

: ℳ1 × ℳ2). 

 is a 2Pr- ideal of 𝑅 = 𝑅1 × 𝑅. It follows that either 

 (𝑎, 𝑐)2 ∈ ((ℕ1 × 𝑁2 :𝑅1×𝑅2   ℳ1 × ℳ2). 

 or (𝑏, 𝑑)2 ∈ ((ℕ1 × ℕ2 :𝑅1×𝑅2   ℳ1 ×  ℳ2). ) This implies either 

I) (𝑎2, 𝑐2) ∈ ((ℕ1 :𝑅1 
ℳ1) × (𝑁2 :𝑅2 

ℳ2), and so 𝑎2 ∈ ((ℕ1 :𝑅1 
ℳ1) and 𝑐2 ∈ (𝑁2 :𝑅2 

𝑀2). or 

II) (𝑏2, 𝑑2) ∈ ((ℕ1 × ℕ2 :𝑅1×𝑅2   ℳ1 × ℳ2).This implies 𝑏2 ∈ ((ℕ1 :𝑅1 
ℳ1) and 𝑑2 ∈ (𝑁2 :𝑅2 

ℳ2) 

Thus each case ((I) or (II)) implies ((ℕ1 :𝑅1 
ℳ1) and (𝑁2 :𝑅2 

ℳ2) are (2-PI) of 𝑅1 and 𝑅2 (respectively). 

Therefore ℕ1 and ℕ2 are (S-2-PS) of ℳ1 and ℳ2 (respectively). 

2. Slight2-Prime Modules  

The current section introduced a new class of modules namely slight2-Prime module  (S-2-PM) as 

a generalization of 2-Prime modules(2PM). The requisite properties of this type of modules are presented. 

Definition 2.1 

  A module ℳ over 𝑅 is named is slight2-Prime module( briefly S-2-PM)  if (0) is (S-2-PS). In other 

words  ℳ is (S-2-PM) if (0𝑅
: 𝑀) = 𝑎𝑛𝑛𝑅ℳ is a (29PI) of R. 

Example and Remarks 2.2 

1) All 2-prime module(2-PM) is (S-2-PM) , however, it is not conversely. 

Proof:  
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Let ℳ be a (2-PM). Then (0) is a (2-PS), hence (0𝑅
: ℳ) = 𝑎𝑛𝑛ℳ is a (2-PI) of R. Thus ℳ is (S-

2PM). 

Assume the ℤ-module ℚ. It is (S-2PM) since 𝑎𝑛𝑛𝑍ℚ = (0) which a prime ideal of ℤ , hence (2-PI). But ℚ 

is not (2-PM) . 

2) The ℤ -module ℤ4 is (S-2-PM) since It is (2-PM), the ℤ -module ℤ6 is not (S-2-PM) since 

𝑎𝑛𝑛𝑍ℤ16 = 6ℤ which is not (2-PI) in ℤ, where2.3 ∈ 6ℤ, but 22 ∈ 6ℤ and 32 ∉ 6ℤ. 

3) Not every nonzero submodule of (S-2-PM), for instance : Assume ℳ be the ℤ -module  ℤ⨁ℤ6 as ℤ 

-module  

subsequently  𝑎𝑛𝑛𝑍ℳ = (0) which is (2-PI). 

If 𝑁 = (0)⨁ℤ6, then 𝑎𝑛𝑛ℤℕ = 6ℤ which is not 2-Pl of ℤ, hence ℕ is not (S-2-PM). 

Notice that ℕis a direct summand of ℳ, hence a direct summand of (S-2-PM) is not necessarily (S-2-PM). 

4- The homomorphic image of (S-2-PM) is not necessarily (S-2-PM), for example: Let 𝜌: ℤ⨁ℤ6 ⟶ ℤ6 be 

the natural epimorphism, 𝜌(ℤ⨁ℤ6) = ℤ6 which is (S-2-PM). (see part (3)). 

  The concepts (2-PM) and (S-2-PM) are equivalent under the category of multiplication modules. 

Proposition 2.3 

For  a multiplication module ℳ . thereafter, ℳ is (S-2-PM) if and only if ℳ is (2-PM). 

Proof : (⇐) It is easy  

(⇒)If ℳ is (S-2-PM), then (0) is (S-2-PS), 𝑖𝑒 ((0)𝑅
: ℳ) is (2-PI), hence (0) is (2-PS) of ℳ by Proposition 

1.3. Thus ℳ is (2-PM). 

 Corollary 2.4 

Assume ℳ is considered as a cyclic R-module. So that ℳ is a (S-2-PM) if and only if ℳ is (2-

PM). 

Proposition 2.5 

 Let ℳ be faithful module. It leads to the statements below being equivalent: 

1) ℳ is a (S-2-PM). 

2) R is 2-Prime  ring 

3) R is S-Prime ring. 

Proof  

 (1)⇒(2): Since ℳ is an (S-2-PM),  𝑎𝑛𝑛ℳ is a (2-PI). But 𝑎𝑛𝑛ℳ = 0, since ℳ is faithful, so (0) 

is a prime ideal of R. Thus R is a 2Prime ring. 

(2)⇒(1) is similarly. 
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(2)⇔(3) it follows by Corollary 2.4. 

Corollary 2.6 

Assume ℳ is considered as a faithful module, in which R is an integral domain. So that ℳ be (S-

2-PM). 

Proof: 

  Since R is an integral domain, R is a prime ring, hence R is a 2-Prime ring. But ℳ is faithful,  so 

that ℳ is a (S-2-PM) by Proposition 2.5. 

Proposition 2.7 

  Let R be a chained ring, ℳ1and ℳ2 be (S-2-PM). Then ℳ1⨁ℳ2 is a (S-2-PM). 

Proof: 

Since ℳ1 and ℳ2 are (S-2-PM), 𝑎𝑛𝑛𝑅ℳ1 and 𝑎𝑛𝑛𝑅ℳ2 are (2-PI). Also 𝑎𝑛𝑛𝑅(ℳ1⨁ℳ2) =
𝑎𝑛𝑛𝑅ℳ1⋂𝑎𝑛𝑛𝑅ℳ2. But R is a chained ring, so that 𝑎𝑛𝑛𝑅(ℳ1⨁ℳ2) = 𝑎𝑛𝑛𝑅ℳ1 or 

𝑎𝑛𝑛𝑅(ℳ1⨁ℳ𝑀2) = 𝑎𝑛𝑛𝑅ℳ2. Thus ℳ1⨁ℳ2 is (S-2-PM). 

Next we have the following: 

Proposition 2.8 

Let ℳ be a finitely generated (S-2-PM) module, S is a multiplicative subset of R. Then 𝑆−1ℳ is 

an (S-2-PM) 𝑆−1R-module. 

Proof: 

 Since ℳ  is a   (S2PM), then (0) as a (S2PM) of ℳ . Then by Proposition 1.18, 𝑆−1(0) is an( S-2-

PM) of 𝑆−1ℳ Thus 𝑆−1ℳ is an (S2PM) 𝑆−1R-module. 
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