Authors Names	Abstract
Hassan Dawwas Kashash ¹	
Ihsan Jabbar Kadhim ²	This paper provides an overview of the relevant definitions and introduces the notion of Li-Yorke measurable sensitivity. It
Publication date: 1/6/2025 Keywords: Li-Yorke Sensitive, Li-Yorke measurable Sensitive, Constructing Lipshitz metrics.	investigates the sensitivity of Li-Yorke measures under group actions, leading to a result that is consistent with the conservative ergodic case. Additionally, the paper employs the Lipschitz metric to establish several results.

On Li-yorke Measurable Sensitivity of Topological Dynamics

Introduction:

Research three period¹ implies chaos in 1975 by Li-Yorke caused widespread interest in the dynamical system[1].In 2003, researchers Ethan -Akin and Sergil Kolyada presented a "Li-Yorke Sensitive" paper] 2]. In 2004, researcher S.F. Kolyada presented a paper entitled Li-Yorke Sensitive and other concepts of chaos [6]. In 2012, researchers Jared, Lucas Manuelli, and Cesar E. Saliva published a paper tidied Li-Yorke Hallett measurable Sensitive [4].In this paper, we review some preliminary definitions and introduce the concept of Li-Yorke measurable sensitive, examine Li-Yorke's measurable sensitivity to group action, resulting in a concordance that implies in the conservative ergodic case, and also use the Lipshatiz metric to prove some results.

2. Preliminaries

Definition (2. 1) [4]:

A nonsingular dynamical system (X, S, μ, T) where:

- 1- (X, S) is standard Borel space
- 2- μ is σ -finte nonatomic measure on *X*.
- 3- $T: X \to X$ is a nonsingular endomorphism, which means that for all

 $A \in S, T^{-1}(A) \in S$ and $\mu A = 0$ if and only if $\mu(T^{-1}(A)) = 0$.

Definition (2. 2) [4]:

Let $T: X \to X$ be endomorphism. Then the set A is invariant if $T^{-1}A = A$.

Definition(2.3)[4]:

T be conservative if $\forall A$ of positive measure $\exists n > 0$ such that, $\mu(T^{-n}(A) \cap A) > 0$.

Definition (2. 4) [4]: A transformation T is ergodic if whenever A is invariant set, then $\mu(A) = 0$ or $\mu(X - A) = 0$.

^aDepartment of Mathematics, College of Science University of Al-Qadisiyah, Diwaniyah Iraq, E-mail: hsndwshsndws343@gmail.com ^bDepartment of Mathematics, College of Science University of Al-Qadisiyah, Diwaniyah Iraq, E-mail: ihsa.kadhim@qu.edu.iq

Definition (2. 5) [3]:

We say a nonsingular dynamical system (X, μ, T) is measurable sensitive if every

Isomorphic *mod* 0 dynamical system (X_1 , μ_1 , T_1) and μ_1 - compatible metric d on X_1 , there exists $\delta > 0$ such that $\forall x \in X_1$ and $\varepsilon > 0$, there is an $n \in \mathbb{N}$ such that

$$\mu_1\{y \in B_{\varepsilon}(x): d(T_1^n(x), T_1^n(y) > \delta\} > 0.$$

Definition (2.6) [3]:

For a pseudo-metric d define

- a) a function $D^d: X \to \mathbb{R}$ by $D^d(x) = max \{ \epsilon \ge 0 : \mu (B^d(x, \epsilon)) = 0 \}$
- b) a sub set *Dis* (*d*) of *X* by *Dis* (*d*) = { $x \in X : D^d(x) > 0$ }.

Remark (2.7) [4]:

If *T* is conservative and A positively invariant, then *A* is invariant mod μ .

Definition (2.8) [4]:

Let (X, μ, T) be a nonsingular dynamical, system and let $d = \mu$ –compatible metric on X. We say that a pair (x, y) is a Li-Yorke pair if

 $\lim_{n\to\infty} \inf d(T^n x, T^n y) = 0 \text{ and } \lim_{n\to\infty} \sup d(T^n x, T^n y) > 0.$

We say (X, μ, T) is Li-Yorke measurably sensitive for the metric *d* if the set of Li-Yorke pairs $(x, y) \in X \times X$ has full measure. We say it is Li-Yorke measurably sensitive if it is Li-Yorke M-sensitive for all μ –compatible metrics.

Definition (2.9) [3]:

We say a metric d, on X is μ –compatible if assigns a positive measure to non-empty d-balls

Remark (2.10)[4]:

The system is W – measurably sensitive if it is W- measurably sensitive with respect to each μ compatible metric d.

Lemma (2.11) [3]:

Let (X, S) be a standard Bore space with nonatomic measure μ . Let $U \subset X$ be a Borel subset of full measure and let d be a μ -compatible metric defined on U. Then the metric d can be extended to a μ compatible metric d_1 on all of X in such that d and d_1 agree on a set of full measure.

3.Li-yorke measurable sensitive

Definition (3.1):

A nonsingular dynamical system (X, μ, S, φ) is standard Boral space (X, S) with, σ -finte nonatomic measure μ and a nonsingular endomorphism $\varphi: Z \times X \to X$

[i.e., for all $A \in S$, $\varphi(-n, A) \in S$ and $\mu A = 0$ if and only if $\mu(\varphi(-n, A)) = 0$].

 φ be conservative if $\forall A$ of positive measure $\exists n > 0$ such that $\mu(\varphi(-n, A) \cap A) > 0$

Definition (3.2):

We say a nonsingular, dynamical system (X, μ, φ) is measurable sensitive if [every

isomorphism mod 0 dynamical system(X_1, μ_1, φ_1) and μ_1 -compatible metric d on X_1 there exists a $\delta > 0$ such that for all $x \in X_1$ and $\varepsilon > 0$ three is an $n \in \mathbb{N}$ such that

$$\mu_1\{y \in B_{\varepsilon}(x): d(\varphi_1(n, x), \varphi_1(n, y)) > \delta\} > 0)].$$

Definition (3.3):

Let (X, μ, S, φ) be nonsingular, dynamical system and d a μ -compatible metric

on X. We say the system is W-measurably sensitive with respect to d if there is a

 $\delta > 0$ Such that for each $x \in X$

 $\lim_{n\to\infty} Sup d(\varphi(n, x), \varphi(n, y)) > \delta \text{ for a.e } y \in X.$

Theorem(3.4):

Let (X, μ, S, φ) be a measurable sensitive dynamical system. If (X, μ, S, φ) is ergodic, then it is also conservative.

Proof:

Assume that (X, μ, S, φ) is a measurable sensitive and ergodic dynamical system. We need to show that for any set $A \in S$ with $\mu(A) > 0$, there exists an integer n > 0 such that $\mu(\varphi(-n, A) \cap A) > 0$. Suppose, to the contrary, that there exists a set $A \in S$ with $\mu(A) > 0$ such that for all integers n > 0 $\mu(\varphi(-n, A) \cap A) = 0$.

Since (X, μ, S, φ) is ergodic, by the Poincare recurrence theorem, for almost every point $x \in A$, there exists a subsequence of positive integers $\{n_k\}$ such that

$$\varphi(n_k, x) \to x \text{ as } k \to \infty.$$

Consider the sequence of sets $B_k = (\varphi_{-n_k}(A) \cap A)$. Since $\mu(\varphi(-n, A) \cap A) = 0$ for all n > 0, we have $\mu(B_k) = (\varphi(-n_k, A) \cap A) = 0$ for all k.

Now, let's define the set $B = \bigcup_k B_k$. Since μ is a σ -finite measure, we have

$$\mu(B) \leq \sum_{k} \mu(B_k) = 0.$$

However, since for almost every point $x \in A$. Therefore, $\mu(A \cap B) > 0$, which contradicts the fact that $\mu(B) = 0$. Therefore, for any $A \in S$ with $\mu(A) > 0$, there exists an integer n > 0 such that $\mu(\varphi(-n, A) \cap A) > 0$. This proves that (X, μ, S, φ) is conservative. Thus, we have shown that a measurable sensitive and ergodic dynamical system is conservative.

Proposition(3.5):

Suppose φ is a nonsingular transformation, if for almost every pair $(x, y) \in X \times X$ there exists $n \ge 0$ such that $d(\varphi(n, x), \varphi(n, y)) \ge \beta$, there for almost every pair $(x, y) \in X \times X$ we have

$$\lim_{n \to \infty} \sup d(\varphi(n, x), \varphi(n, y)) \ge \beta$$

Proof:

Assume that there is $\beta > 0$ such that $x \in X$ and for a.e. $y \in X$ and for every natural number m.

Define set $W(m, x) = \{y \in X : \exists n > m, d(\varphi(n + m, x), \varphi(n, y)) \ge \beta\}.$

We at the present show that for every *m* and *X* the set W(m, X) has full measure. Consider the point $\varphi(n, x)$. Using our hypothesis for almost every $y \in X$, there exists n such that

$$d(\varphi(n,x),\varphi(n,y)) \geq \beta.$$

In other word the set $Z(m, X) = \{y \in X : \exists n > 0, d(\varphi(n + m, x), \varphi(n, y)) > \beta\}$

has full measure.

Note that $W(m, x) = \varphi(-m, Z(m, X)).$

Because φ be anon singular transformation, W(m, X) must as well have full measure.

Finally, if $W_x = \bigcap_{m=0}^{\infty} W(m, X)$. Cleary W_x has full measure . Furthermore, for all $y \in W_x$, there are infinitely many values of n such that $d(\varphi(n, x), \varphi(n, y)) > \beta$.

So

$$\lim_{n\to\infty} Sup d(\varphi(n,x),\varphi(n,y)) \ge \beta, \text{ for almost } y \in X.$$

Proposition(3.6):

Suppose φ is a non-singular transformation. If for almost every pair $(x, y) \in X \times X$ there exists $n \ge 0$ such that $d(\varphi(n, x), \varphi(n, y)) \le \beta$, then for almost every pair $(x, y) \in X \times X$ we have

$$\lim_{n\to\infty} \inf d\left(\varphi(n,x),\varphi(n,y)\right) \leq \beta.$$

Proof:

Assume that there is $\beta > 0$ such that $\forall x \in X$, for a.e. $y \in X$, $\exists n$ such that $d(\varphi(n, x), \varphi(n, y)) \leq \beta$. For each natural number \mathbb{N} and $x \in X$ describe

$$W(N, x) = \{y \in X : \exists n > N, d(\varphi(n, x), \varphi(n, y)) \le \beta\}$$

We now proof that for all \mathbb{N} and x the set $W(\mathbb{N}, x)$ has full measure. Consider the point $\varphi(n, x)$. Using our assumption, for almost every $y \in X$, there exists n such that $d(\varphi(n, x), \varphi(n, y)) \leq \beta$. Then The set

$$Z(\mathbb{N}, x) = \{ y \in X, \exists n > 0 : d(\varphi(n + \mathbb{N}, x), \varphi(n, y)) < \beta \}$$

has full measure. Not that $W(N, x) = \varphi(-N, Z(N, X))$. As φ is anon singular transformation, W(N, x) have to full measure.

Now, let $Wx = \cap W(N, x)$. Then Wx has full measure. Furthermore, $\forall y \in Wx$, there are infinity a lot of values of *n*, therefore

$$d(\varphi(n, x), \varphi(n, y)) \leq \beta$$
. So $\lim_{n \to \infty} \sup d(\varphi(n, x), \varphi(n, y)) \leq \beta$.

Proposition (3.7):

Suppose non-singular dynamical system (X, μ, φ) is Li-Yorke M-sensitive. Then any isomorphic system (Y, V, ρ) is also Li-Yorke M-sensitive.

Proof:

Suppose non singular dynamical system(X, μ, φ) is Li-Yorke measurable sensitive. To proof then any isomorphic system (Y, V, ρ) is also Li-Yorke M-sensitive. Suppose (Y, V, ρ) is not Li-Yorke M-Sensitive. Then \exists a V-Compatible metric d_y on Y for which (Y, V, ρ) is not Li-Yorke M-Sensitive. Since the system is isomorphic, there are Borel sets $U \subseteq X$ and $V \subseteq Y$ of full measure and a bijection

 $\pi: U \to V$ Such that $\pi o \varphi = \rho o \pi$. Define a μ -compatible metric d_U on U by $d_U(x, y) = d_y(\pi(x), \pi(y))$. By lemma 2.11 extends d_U to a μ -compatible metric d_X on X which agree with d_U on a set $X_0 \subset U \times U$ of full measure in $X \times X$.

By hypotheces is, φ is Li-Yorke measurable sensitive, so the set $L \subset X \times X$ of Li-Yorke pairs has full measure. It follows that for any *n*, there exists $(u, v) \in X_0 \cap L$ such that

$$(x, y) \in A = \cap \{\varphi(-n) \times \varphi(-n)(u, v) \colon (u, v) \in X_{\circ} \cap L\} = \cap \{\varphi(-n, u), \varphi(-n, v) \colon (u, v) \in X_{\circ} \cap L\}.$$

Now for all *n* there exists $(u, v) \in X_{\circ} \cap L$ such that $(x, y)(\varphi(-n, u), \varphi(-n, v))$

this implies that

$$x = \varphi(-n, u), y = (-n, v).$$

Then

$$u = \varphi(n, x), v = \varphi(n, y)$$

implies that

$$(\varphi(n, x), \varphi(n, y)) \in X_{\circ} \cap L \subseteq U \times U.$$

Since $\pi: U \to V$, we have

 $\pi \times \pi: U \times U \to V \times V$ we get $\pi(\varphi(n, x)), \pi(\varphi(n, y)) \in V$.

Since $A \subset U \times U$ and $(\pi \times \pi)(A) \subset V \times V \subset Y \times Y$, the set *A* has full measure.

Since $(x, y) \in A$ then

$$(\pi \times \pi)(x, y) \in (\pi \times \pi)(A)$$

and

$$(\pi(x),\pi(y)) \in (\pi \times \pi)(A) \subset Y \times Y$$

therefore

 $(\pi(x), \pi(y)) \in Y.$

We get

$$\rho(n,\pi(x)) = \pi(\varphi(n,x)).$$

Hence,

$$d_{y}(\rho(n,\pi(x)),\rho(n,\pi(y))) = d_{Y}(\pi(\varphi(n,x)),\pi(\varphi(n,y)))$$
$$= d_{X}(\varphi(n,x),\varphi(n,y)).$$

It follows, that all pairs in $(\pi \times \pi)(A)$ are Li-Yorke for d_y , a contradiction. Then any isomorphic system (Y, V, ρ) is also Li-Yorke M-sensitive.

4. Constructing 1-Lipshitz metrics

Remark(4.1):

We shall use the term 1-Lipshitz to denote metrics that satisfy the inequality $d(\varphi(n, x), \varphi(n, y)) \le d(x, y), \forall x, y \in X, n \in Z$.

Definition(4.2):

Let (X, μ, φ) be a non-singular dynamical system. And let *d* be a metric on $X, \forall x, y \in X$. define,

$$d_{\varphi}(x, y) = \sup_{n \ge 0} d(\varphi(n, x), \varphi(n, y)).$$

Lemma (4.3):

 d_{φ} is a metric on X (measurable and bounded). Moreover, it is a 1-Lipshitz metric.

Proof:

To show that d_{φ} is a metric on X, we need to verify the following properties:

- 1) Non-negativity: $d_{\varphi}(x, y) \ge 0$ for all $x, y \in X$ and $d_{\varphi}(x, y) = 0$ if and only if x = y.
- 2) Symmetry : $d_{\varphi}(x, y) = d_{\varphi}(y, x)$ for all $x, y \in X$.
- 3) Triangle inequality: $d_{\varphi}(x, y) \le d_{\varphi}(x, y) + d_{\varphi}(y, z)$ for all $x, y, z \in X$.

First, note that $d_{\varphi}(x, y)$ is non-negative since it is the supremum of the a set of non-negative values. Furthermore, $d_{\varphi}(x, y) = 0$ if and only if

$$d(\varphi(n, x), \varphi(n, y)) = 0$$
 for all $n \ge 0$,

Which implies that $\varphi(n, x) = \varphi(n, y)$ for all $n \ge 0$, and hence x = y by the non-singularity of the system.

To proof symmetry, observe that

$$\begin{aligned} d_{\varphi}(x,y) &= \sup_{n \ge 0} \left\{ d\big(\varphi(n,x),\varphi(n,y)\big) = \sup_{n \ge 0} \left\{ d\big(\varphi\big(-n,\varphi(n,x)\big),\varphi\big(-n,\varphi(n,y)\big) \right\} \\ &= \sup_{m \le 0} \left\{ d\big(\varphi(m,x),\varphi(m,y)\big) \right\} = d_{\varphi}(y,x), \end{aligned}$$

Where we used the fact that φ is invertible and preserves the metric .

To establish the triangle inequality, not that for any $n \ge 0$, we have

$$d(\varphi(n, y), \varphi(n, z)) \le d(\varphi(n, x), \varphi(n, y)) + d(\varphi(n, y), \varphi(n, z))$$

by the triangle inequality for d. Taking the supremum over all n, we get

$$d_{\varphi}(x,z) \le d_{\varphi}(x,y) + d_{\varphi}(y,z).$$

Finally, to show that d_{φ} is 1-Lipschitz metric note that for any $x, y \in X$, we have

 $d_{\varphi}(\varphi(t, x), \varphi(t, y)) \leq d_{\varphi}(x, y)$ for all $t \in Z$, by the definition of d_{φ} , and hence

$$d(\varphi(t, x), \varphi(t, y)) \le d_{\varphi}(x, y)$$
 for all $t \in Z$.

This implies that

$$d(x, y) \le d_{\varphi}(x, y)$$
 for all $x, y \in X$.

Which implies that d_{φ} is a 1-Lipschitz metric.

Lemma (4.4):

Let (X, μ, φ) be a non-singular dynamical system, and d be a metric on X. If d is 1-Lipshitz then,

$$D^d \geq D^d \circ \varphi \quad on X.$$

Proof:

Let $\varphi^* d$ mean the metric $\varphi^* d(x, y) = d(\varphi(x), \varphi(y))$. First, we observe

$$\varphi(-n, B(\varphi(x), \varepsilon)) = \{ y \in X : d(\varphi(x), \varphi(y)) \le \varepsilon \} = B^{\varphi * d}(x, \varepsilon).$$

Since φ is non-singular, $\mu(B^{\varphi*d}(x,\varepsilon) = 0 \iff \mu(B^d(\varphi(x),\varepsilon)) = 0.$

It follows that

$$D^{\varphi * d}(x) = D^{d}(\varphi(x))$$
 for all $x \in X$.

Since φ is 1-Lipshitz, $d(x, y) \ge d(\varphi(x), \varphi(y))$, which implies

 $D^d(x) \ge D^{\varphi * d}(x)$ for all *x*. Completing the proof.

Lemma (4.5):

Let (X, μ, φ) be a non-singular dynamical system that is conservative and ergodic. Allow *d* to $a\mu$ -compatible metric on *X*.Let's assume that φ it's *W*-measurable sensitive to *d*.Then, if X_1 is a positively invariant measurable set of full measure(i.e. $X_1 \subset \varphi(-n, X_1)$) and $\mu(X - X_1) = 0$), then d_{φ} is a μ -compatible metric for the system (X_1, μ, φ) , where μ and φ are the restrictions to X_1 of the original measure and transformation, respectively.

Proof:

Let *d* be a μ -compatible metric on *X*, and let *X*₁ be a positively invariant measurable set of full measure with respect to μ such that *X* - *X*₁ has measure zero. We want to show that d_{φ} is a μ -compatible metric on *X*₁.

First, we show that d_{φ} is a μ -measurable. Let $x, y \in X_1$ and let $\varepsilon > 0$.

Since φ is conservative, there exists *N* such that

$$\mu(\varphi(-N,A) \cap A > 0$$

for any set A of positive measure. Thus, we can find sets A and B of positive measure such that $x, y \in A$ and

$$d(\varphi(n,x),\varphi(n,y)) > d_{\varphi}(x,y) - \varepsilon \text{ for all } n \leq N \text{ and } \varphi(n,x),\varphi(n,y) \in B.$$

Then,

$$\begin{aligned} d_{\varphi}(x,y) &\leq d\big(\varphi(N,x),\varphi(N,y)\big) + d_{\varphi}\big(\varphi(N,x),\varphi(N,y)\big) \\ &\leq d\big(\varphi(N,x),\varphi(N,y)\big) + d\big(\varphi(N+1,x),\varphi(N+1,y)\big) + \dots + d_{\varphi}\big(\varphi(0,x),\varphi(0,y)\big). \end{aligned}$$

Where the last inequality follows from the definition of d_{φ} . There fore, we have

$$\begin{split} \mu\big(\big\{z \in X_1: d_{\varphi}(z, y) > d_{\varphi}(x, y) - \varepsilon\big\}\big) \\ & \leq \mu\big(\big\{z \in X_1: d\big(\varphi(n, z), \varphi(n, y)\big) > \varepsilon, n \leq N, \varphi(n, z), \varphi(n, y) \in B\big\}\big), \end{split}$$

Which is measurable since B has positive measure.

Next, we show that d_{φ} is bounded. Let $x, y \in X_1$, and let *M* be such that

$$d(\varphi(n, x), \varphi(n, y)) \le M$$
 for all $n \in Z$.

Then,

Journal of Iraqi Al-Khwarizmi (JIKh) Volume 9: Issue:1 Year: 2025 pages: 99-112

$$d_{\varphi}(x,y) \leq d\big(\varphi(0,x),\varphi(0,y)\big) + d\big(\varphi(1,x),\varphi(1,y)\big) + \dots \leq M(1+M+M^2+\dots)$$

which is a convergent geometric series since M > 0. Thus, d_{φ} is bounded.

Finally, we show that d_{φ} is 1-Lipschitz. Let $x, y, z \in X_1$, then

$$\begin{aligned} d_{\varphi}(x,z) &\leq d(\varphi(n,x),\varphi(n,z) + d_{\varphi}\big(\varphi(n,x),\varphi(n,z)\big) \\ &\leq d\big(\varphi(n,x),\varphi(n,y)\big) + d\big(\varphi(n,y),\varphi(n,z)\big) + d_{\varphi}(x,y) + d_{\varphi}(y,z) \text{ for all } n \in Z, \end{aligned}$$

By the triangle inequality and the definition of d_{φ} . Dividing both sides by |n| and taking the limit as $|n| \to \infty$, we get

$$d_{\varphi}(x,z) \le 2d_{\varphi}(x,y) + 2d_{\varphi}(y,z).$$

Therefore, d_{φ} is 1-Lipschitz. Thus, we have shown that d_{φ} is a μ -compatible metric on X_1 .

Lemma (4.6):

Let (X, μ, φ) be anon-singular dynamical system that is conservative and ergodic. The $\mu - a.e.$ point of X is transitive. If d is a μ -compatible metric on X.

Proof:

Let x be a $\mu - a.e$ point of X. We want to show that x is transitive. Suppose not. Then there exist open set U and V such that $x \in U$ and $\varphi(n, x) \notin V$ for all $n \in Z$.

Let $A = U^c$ and B = V. Then, A and B are both closed and φ –invarint. Moreover, since $x \in U$ and x is $\mu - a.e$ we have $\mu(A) = 0$.

Since φ is conservative, there exists m > 0 such that $\mu(-m, A) \cap A > 0$.

Since A is closed and φ –invarint, we have $\varphi(-m, A) \subset A$. Therefore, $\mu(\varphi(-m, A)) > 0$, which contradicts $\mu(A) = 0$. Thus, x must be transitive.

Now, we will show that *d* is transitive. Let $x, y, z \in X$. Since *x* is transitive, there exists an integer *n* such that $\varphi(n, x)$ is arbitrarily close to *y*. Similarly, since *y* is transitive, there exists an integer *m* such that $\varphi(m, y)$ is arbitrarily close to *z*. Then, for any $\varepsilon > 0$, there exist integer *n* and *m* such that $d(\varphi(m, z) < \varepsilon/2$.

Let k = n + m. Then, we have

$$d(\varphi(k,x),z) \le d(\varphi(k,x),\varphi(m,y)) + d(\varphi(m,y),z) \le d(\varphi(n,x),y) + d(\varphi(m,y),z) < \varepsilon.$$

This, *d* is transitive, and we have shown that if (X, μ, φ) is non-singlar dynmical system that is conservative and ergodic, and *d* is a μ –compatible metric on *X*, then *d* is transitive.

Proposition (4.7):

Let (X, d) be a metric space, and let the 1-Lipschitz transformation be the $\varphi : X \times Z \to X$. It is a uniformly rigid minimal isometry. If φ is transitive.

Proof:

To prove the proposition, we need to show that:

(1) φ is an isometry, i.e., $d(\varphi(x, n), \varphi(y, n)) = d(x, y)$, for all $x, y \in X$ and $n \in Z$.

(2) φ is minimal, i.e., for any $x \in X$, the orbit { $\varphi(x, n): n \in Z$ } is dense in X.

(3) φ is uniformly rigid, i.e., there exists a constant $\varepsilon > 0$ such that for any $x, y \in X$ and $n \in Z$, if $d(\varphi(x, n), \varphi(y, n)) < \varepsilon$, then $d(x, y) < \varepsilon$.

Proof (1):

Since φ is 1-Lipschitz, we have

 $d(\varphi(n, x), \varphi(n, y)) \le d((n, x), (n, y)) = d(x, y), \text{ for all } x, y \in X \text{ and } n \in Z.$

On the other hand, for any $\varepsilon > 0$, there exists a k such that $\frac{1}{k} < \varepsilon$, and then

 $d(x, y) = d(\varphi(x, k), \varphi(y, k)) \le kd(\varphi(n, x), \varphi(n, y) \text{ for all } n \in \mathbb{Z}.$

Letting $n \to \pm \infty$, we obtain d(x, y) = 0, which implies x = y. Therefore, φ is an isometry.

Proof (2):

Let $x \in X$ and $\varepsilon > 0$. Since φ is transitive, there exists $y \in X$ and $n \in Z$ such that

$$d(\varphi(n,x),y) < \varepsilon/2.$$

Since φ is an isometry, we have

$$d(\varphi(x, n+k), \varphi(y, k)) = d(x, y)$$
 for all $k \in \mathbb{Z}$.

Therefore, for any $z \in X$, there exists $k \in Z$ such that

$$d(\varphi(y,k),z) < \frac{\varepsilon}{2}$$
, and then $d(\varphi(x,n+k),z) < \varepsilon$.

This shows that the orbit $\{\varphi(n, x) : n \in Z\}$ is dense in X, and hence φ is minimal.

Proof (3):

Assume, for contradiction, that φ is not uniformly rigid. Then there exist $x, y \in X$.

And a sequence of integers $\{n_k\}$ such that $d(\varphi(n_k, x), \varphi(n_k, y)) < \frac{1}{k}$ for all $k \in \mathbb{N}$.

But d(x, y) = 1. By passing to a subsequence if necessary, we may assume that $\lim_{k\to\infty} n_k = \infty$. Let $z_k = \varphi(n_k, x)$ and $w_k = \varphi(n_k, y)$ for all $k \in \mathbb{N}$.

Since φ is an isometry, we have

$$d(z_k, w_k) < \frac{1}{k}$$
 for all $k \in \mathbb{N}$.

And hence the sequence $\{z_k\}$ and $\{w_k\}$ are Cauchy. Let z and w be their respective limits. Then d(z,w) = 0, which implies that z = w by the fact that φ is an isometry. Therefore, x = y, which contradicts the assumption that d(x, y) = 1. This prove that φ is uniformly rigid.

Remark (4.8):

Let $C_d: X \to X$ be the continuous maps on the space X, with the metric

$$d(S, S_1) = \sup_{x \in X} \{ d(Sx, S_1x) \}.$$

We also define a subset

$$\beta = \{ S \in C_d(X, X) \colon S \circ \varphi = \varphi \circ S \}.$$

This is a sub-semigroup of $C_d(X, X)$ under composition.

Theorem (4.9):

Let φ be a transitive and 1-Lipshitz transform and (X, d) be a metric space. The evaluation map ev_x : $\beta \to X$ defined by $S \mapsto Sx$ is an isometry for each $x \in X$. The space β is also the closure of the sequence $\{id, \varphi, \varphi \circ \varphi, \ldots\}$ in $C_d(X, X)$. The evaluation mappings ev_x an invertible isometry. If the metric space (X, d) is also complete. The semigroup β is then a group, so $\varphi \in \beta$ must be invertible.

Proof:

Let $x \in X$ be fix a point and allow *S* and $S_1 \in \beta$. Now, we need evidence that the map ev_x is isometric. Considering *S* and S_1 both trip with φ , and φ is 1-Lipshitz, for all *m*,

$$d\left(S(\varphi(m,x)),S_1(\varphi(m,x))\right) \le d(Sx,S_1x).$$

Given that *S* and S_1 are both continuous and $S, S_1 \in \beta$ and

$$\beta = \{ S \in C_d(X, X) : S \circ \varphi = \varphi \circ S \}$$

And $C_d(X, X)$ is continuous map, the set $\{\varphi(m, x)\}$ is dense for all $y \in X$,

$$d(Sy, S_1y) \le d(Sx, S_1x)$$

and there four ev_x is an isometry, since

$$d_X(S,S_1) = \sup_{y \in X} d_X(Sy,S_1y) = d_X(Sx,S_1x)d_X(ev_xS,ev_xS_1)$$

The subset β is closed in $C_d(X, X)$. Fix a few $S \in \beta$ and $x \in X$.since x is transitive point and φ is minimum, there is sequence $\{n_j\}$ such that $\lim_{j\to\infty} \varphi(n_j, x) = Sx$. To put it another way, $\lim_{j\to\infty} ev_x \varphi(n_j, x) = Sx$ in X. This means that $\lim_{j\to\infty} \varphi(n_j) = S$ in $C_d(X, X)$, because ev_x is an isometry. Assuming that the space (X, d) is complete, the space $C_d(X, X)$ is also complete. We proof that ev_x is surjective for all $x \in X$.

Choose $y \in X$. There is a sequence of n_j such that $\varphi(n_j, x) \to y$. The sequence $ev_x(\varphi(n_j))$ in particular is Cauchy. The sequence $\varphi(n_j)$ is Cauchy in $C_d(X, X)$ because ev_x is an isometry. since β is closed, it has a limit $S \in \beta$, since $ev_x S = y$ then ev_x is surjective.

Let $S \in \beta$ be arbitrary. Because the map ev_x is surjective then,

$$S_1(Sx) = ev_x SS_1 = x.$$

Given that ev_x is injective and $ev_xSS_1 = (S_1S)x$, S_1S_1 is the identity, and $S_1 = S^{-1}$. Thus, every maps in β are invertible.

Theorem(4.10):

Let (X, μ, φ) be a conservative and ergodic nonsingular dynamical system. Then φ is sensitive to Wmeasurable or φ is isomorphic mod 0 to minimally invertible uniformly rigid isometry in a polished space.

Proof:

Let (X, μ, φ) be a conservative and ergodic non-singular dynamical system. To proof φ is either Wmeasurably sensitive or φ is isomorphic mod 0 to invertible minimal uniformly rigid isometry on a polish space. Assume that φ is not W-measurably sensitive. Then, by Lemma (4.5), there exists a positive invariant set X_1 of full measure such that d_{φ} is μ -compatible for the system (X_1, μ_1, φ_1) , where μ_1 is restriction of μ on X_1 and φ_1 the restriction of φ to X_1 . By lemma(4.6), φ_1 is transitive with appreciate to d_{φ} . Since φ_1 is 1-Lipshitz with appreciate to d_{φ} by proportion(4.7), φ_1 is a uniformly rigid minimal isometry on (X_1, d_{φ}) .

Now let (X_2, d_2) be the topological completion of the metric space (X_1, d_{φ}) . Since d_{φ} is separable, so d_2 is also separable, then (X_2, d_2) is polish space. We extend the measure μ_1 to X_2 by defining a set $S \subset X_2$ to be measurable if $S \cap X_1$ is measurable with $\mu_2(S) = \mu_1(S \cap X)$. Since φ_1 is an isometry, it's continuous on (X_1, d_{φ}) , so there's a unique way to extend it to a continuous transform φ_2 on (X_2, d_2) . So that φ_2 must also be an isometry with respect to d_2 . According to theorem(4.9), it is invertible. Then the dynamical system (X_2, μ_2, φ_2) , is measurably isomorphic to (X, μ, φ) .

Proposition (4.11):

Let (X, μ, φ) be a conservative ergodic and non-singular dynamical system. If it is Li-Yorke measurable sensitive, then it is W-measurable sensitive.

Proof:

Let (X, μ, φ) be a conservative ergodic and non-singular dynamical system. Suppose it is Li-Yorke measurable sensitive. To proof it is W-measurable sensitive.

We show the contra positive. If φ is not W-measurably sensitive, then by theorem(4.10), it is isomorphic mod 0 to an isometry. But then the isomorphic system is both Li-Yorke measurable sensitive and an isometry for a μ -compatible metric, which is impossible. Then it is W-measurably sensitive.

Reference:

[1] T. Y. Li and J. A. Yorke,"Period three implies chaos", the A Mercian Mathematical Monthly, vol. 82, no, pp. 985-992, 1975.

[2] E. Akin and S. Kolyada, "Li-Yorke sensitivity", Nonlinearity, vol 16, no. 4, pp. 1421-1433, 2003.

[3]Ilya Grigoricv, Nathanicl Incc, Catalin M. Iordan, Amos Lubin, and Cesar E. Silva. On μ -compatible metrics and measurable sensitivity. Colloq. Math. , 126(1):53-72, 2012.

[4] Jared Hallett, Lucas Manuelli, Cesar Seliva,Li- Yorke measures sensitive, proceedings of the American Mathematical Society 143 (6), 2411-2426, 2015.

[5] Francois Blanchard, Eli Glasner, Sergii Kolyada, on Li Yorke pairs, Alejandro Maass Walter de Gruyter GmbH& Co. KG, 2002 (547), 51-68, 2002.

[6]Sergii Kolyada, Li – Yorke sensitive and other concepts of chaos, Ukrainian Mathematical Journal 56(8), 2004.

[7] Jennifer James, Thomas Koberda, Kathryn Lindsey, Cesar E Seliva, Peter Speh, On ergodic transformations that are both weakly mixing and uniformly rigid, asXiv Preprint arXiv: 0809.4406, 2008.