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Abstract

In this paper, a traveling wave solution has been constructed using the modified extended tanh method with Riccati equation
for time fractional nonlinear partial differential equation. We used the proposed method to obtain exact solution for time fractional
Zoomeron equation. The equation is converted to ordinary differential equation by using fractional complex transform and the
properties of modified Riemann-Liouville derivative. Our results have been plotted at different time levels.
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1. Introduction

Fractional differential equations which are a generalization of classical integer order differential equations have been used in the
modelling of many problems in different research areas. Specially in signal processing, dynamical system, mechanics, stochastic,
systems identification, plasma physics, electricity, electrochemistry, economics, control theory, and engineering. Finding exact and
numerical solutions to fractional differential equations is an important task. Several Powerful and reliable methods have been proposed
to obtain the exact solutions of fractional differential equations, for instance, modified extended tanh method [1], exp-function method
[2-6], first integral method [7-12], functional variable method [13-16], ansatz method [17-20], and Kudryashov method [21,22].

Solitary waves theory have attracted intensive interest from mathematicians and physicists. Recently, the area of fractional differential
equations has been studied by a number of researchers such as, M. Kaplan et al. [23], K. Hosseini et al. [24-25], and M. Eslami [26].
The aim of this paper is to find traveling wave solution of the time fractional Zoomeron equation which is importance in mathematical
physics.

This paper is organized as follows: In Sections 2, the modified Riemann— Liouville derivative is demonstrated. In Section 3, analysis of
the proposed method is given to illustrate how fractional differential equation is reduced into integer-order differential equation. In
Section 4, our method is applied to obtain the exact solution for the time fractional Zoomeron equation. Conclusions are introduced in
Section 5.

2. Jumarie's modified Riemann-Liouville derivative and its properties
The Jumarie's modified Riemann-Liouville derivative of order « the continuous function

f : R — Risdefined as follows [27]

Do f(x)= o) dX

(f(”)(x))(a Y.n<a<n+l n>1,

1 ij ft)- fO)dt, O<a<l,
0 1)
)

where F(X)isthe Gamma function which isdefined as
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T(x)=[e 't dt
0

Some useful properties of the Jumarie's modified Riemann-Liouville derivative are listed below.

Property 1.
D&x" :MXH". )
rl+r-a)
Property 2.
Dy (a f(x)+bg(x))=aDy f(x)+bDy g(x), @3)
where a and b are constants.
Property 3.
D; 1(£)="0¢ (&), @
X d§ X

where & = g(X).

For other properties, see [28].

3. Analysis of the method

Consider the following nonlinear partial differential equation:
H(u,D*u,D%u, DZu,D*u, D“D%*u,...),  0<a,a, <1, 5)
applying fractional complex transformation:
C

uxyt)=f() .  ¢= X—ky—mta —Xo»

where K and C are nonzero constantsand X, is arbitrary constant, converts (5)into an integer order nonlinear
ordinary differential equations as follows:

G(f,f' f" £",..)=0, (6)
where the derivatives are with respect to & . It is assumed that the solutions of (6) is presented as a finite series, say
f(&)=a0+ %l(an 8" (£)+by 7(), G
n=
where a,, bn , n=L2,...... , N are constants that can be computed and ¢n (f)satisfies the Riccati equation
¢ =b+4° ®)

where b is a constant, Eq. (8) has the following types of solutions:
(i)I1f b<0,then

$= —\/—_btanh(\/—_bf), or p=—J—b coth(\/—_bg)
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(i) 1f b>0, then
¢= \/Btan(\/Bf), or p=—/b cot(\/Bg)

(i) If b =0, then

-1
¢—§-

The value of N is usually determined by balancing the linear and nonlinear terms of highest orders in (6). Substituting
Eg. (7) and its necessary derivatives into (6) gives

P(¢(£))=0, ©)

where P(¢(§))is a polynomial in ¢(§) By equating the coefficient of each power of ¢(§) in (9) to zero, a system of algebraic
equations will be obtained whose solution yields the exact solutions of (5).

4. Application

Consider the following problem: Find a function U (X,t) satisfying time fractional Zoomeron equation in the form:

Ds* [U—Wj - [u—”] +2D¢(u?), =0, (10)

u u

applying the transformation:
u(xt)=f(£)  &=x-ky

Substituting (11) into (10), we have:

— X, (11)

—ke? [ij + k(fT] “2c(f2) =0 (12)

Integrating (12) twice with respectto &, we obtain the following nonlinear ordinary differential equation:
k(L—c?)f"—2cf®-Af =0 (13)

Where A is a nonzero integration constant, while the first integration constant is zero.
4.1. Exact solution of the time fractional Zoomeron equation using the modified extended tanh method

Balancing f” and f %in (13) results N +2 =3N , and so N =1. This offers a truncated series as the following form:

f(&)=a,+a,0&)+b o (&) (14)

by substituting (14) into (13) and equating the coefficient of each power of ¢(§)to zero, we derive a system of algebraic equations
as follows
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—2ca,’ —12ca,a,b, — Aa, =0,
2k(1-c?)a,b—6ca,’a, —6ca’b, — Aa, =0,
—6ca,a =0,
2k(1-c?)a, —2ca,’ =0,
2k(1-c?)bb —6ca,’b, —6chb’a, — Ab, =0,
—6ca,b =0,
2k(1-c?)b,b? —2cb,’=0,

Solving the above system yields.

Case 1.
A A
a,=a,=0, b=— " p=F—"
. 2k(@-c®)" " 2 ek(—c?)

hence, the solution is formed as:

u, (x,t)= i;cot(\/gtf), b>0

2/ckb(1-c?)

A
,(xt)=t——= tan(vb¢&), b>0
s 0eh 2./ckb(1-c?) (be).b>
A
Jxt)=+ tanh(v—b &), b <0
() 2+/—b4Jck(1-c?) b b
A
Jx )=+ th(W=b &), b<0
U () 2\/—bw/ck(1—cz)c0 (7be).bs
where
c « _ A
i P L IO
Case 2.
8 =b, =0, b=— A __ 4 -5 Ka=C)
2k(L-c?) c

thus, the solution is formed as:
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uy(x,t)= ka(l ¢ )tan(x/_é) b>0
ug(x,t)= iw’@ cot(+vb&) , b>0

U, (x,t)=+v/-b k(1+c2) tanh(~/=b&),b <0

ug(x,t)=+vJ=b ka; ¢’) coth(v=b&) ,b <0

c A
=x-k ——ta—X,bI—
- y rl+a) T 2k(@-c?)

4 —0 a - Jek(1-c?) AW/ck(l c? A
0~ -

L o= Ack(1— c) T ak(-c?)

Case 3.

therefore, the solution is formed as:

ug(x,t)z——“Ck(l_Cz)\/Btan(\/Bf) Alek-c) (\/_f)b>0

Ack (1- )f
\/ck(l c? Ayck(1-c?
o (x,t)= YR o cot(ybe)- P )\/_t an(vbe)b >0
w/ck(l c’ Ay/ck(1-c?
u,,(x \/_t nh(\/_(f) ack(L_c )\/_ (\/_§)b<0
w/ck(l c? Ayck(@-c?)
n(x,t)= YR T coth(Vbe)- pEwTi ﬁtanhh(JTbg),b<0
Where
o_ ___ A
s=x- y_F(1+a)t %, b= 4k(1—c?)
Case 4.
40 _,/ck(l—cz) 0 _ AJck(-c?) b A
°TT ¢ Y 4ck(@-c?) T 4k(-c?)

hence, the solution is formed as:
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t)z—“cm_cz)\/gtan(\/gf)—A—W (\/_§)b>0

4ck(1—c2)vb
,/ck(l c? Ayck(1-c?
una(x,t)= YR o cot(vbe)+ P N_t an(vbe)b >0
B w/ck(l—cz) A\ck(1-c
u15(x,t)_—f\/—_btanh(\/—_b§) P )\/_coth(\/_f)b<0
_ yck(d-c?) Ayck(1-c?
o x,t)= — === V=D coth{=bg )+ P J_ tanhh(y=b&}b <0
Where
C  jo_ ___ A
ég_x_ky_ram)t %, b= 4k(1—-c?)
Case 5.
a, =0, a - YKA=C) | AVkE-c) A
c 8ck(1—c?) 8k(1-c?)

hence, the solution is formed as:

U, (x,t)= - “Ck(l <) \/_t (\/_5) Ayckd—c’ (\/_§)b>0

8ck (1— )J_
\/ck(l c? Ayck(1-c?
o (x,t)= YHATC) o cot(e)- T ) tan(ybe)b >0
w/ck(l ¢’ Ay/ck(1-c?
Uye (X, t \/_tanh(\/_ef) = )\/_ oth(\/_éj)b<0
_w/ck(l—cz) Ayck(1-c
uzo(x,t)—fx/—_bcoth(\/—_bf) Sk C )\/_tanh(\/_é)b<0
Where
c « _ A
eZ_X_ky_r(lm)t %o b_8k(1—cz)
Case 6.
2, =0, a1:’/Ck(1_C2) bl:_A ck(1—c?) o A

c 8ck(l—c?) ' 8k(l-c?)

thus, the solution is formed as:
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w/ck(l c?) \/_t (\/_é) A\/ck(1-c?) (\/_g)b>0

u21

8ck(1—c )J_
\/ck(l c? Ayck(1-c?
Uy, (X,t)= - «/_ («/_é) Bk (L_c )J_ («/_é)b>0
~ w/ck(l—cz) A\/ck(1-c
u23(x,t)_——«/—_btanh(\/—_b§) Bk (" )\/_coth(\/_cf)b<0
w/ck(l c’ Ayck(1-c®
o ()=~ YLD T coth(Vbe )+ c )J_ anh(v=b¢)b <0
Where
. A

E=x—-Kky- t“ —X,, b=——
r'(l+a) ° 8k(L—c?)
Plotting these solutions at different time levels and different values of ¢r , shows the motion of solitary waves as shown in figures 1 and

alpha=0.25 alpha=0.5

0 10 20 30 0 10 20 30
X X

alpha=0.75
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Figure 1. Analytic solutions for the time fractional Zoomeron equation with A=k =-1, c=2, 0< X,y <50, X, =25, at
different time levels and & = 0.25,0.5,0.75, 1.
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Figure 2. Analytic solutions for the time fractional Zoomeron equation with A=k =—-1, c=2, 0<x <200, y =25, X, =50,
at different time levels and ¢ = 0.5,0.75, 1.

5. Conclusion

In this paper, time fractional Zoomeron equation has been successfully solved by using modified extended tanh method with
Riccati equation. Based on fractional complex transformation, original equation reduced into integer order ordinary differential
equation. The proposed method was utilized to establish the exact solution of the resulted equation. Our approach is an efficient and
concise technique to handle a wide range of linear and nonlinear fractional differential equations.

-
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