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Abstract  

       In this paper,  a traveling wave solution has been constructed using the modified extended tanh method with Riccati equation 

for time fractional nonlinear partial differential equation. We used the proposed method to obtain exact solution for time fractional 

Zoomeron equation. The equation is converted to ordinary differential equation by using fractional complex transform and the 

properties of modified Riemann-Liouville derivative. Our results have been plotted at different time levels. 
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1.  Introduction 

       Fractional differential equations which are a generalization of classical integer order differential equations have been used in the 

modelling of many problems in different research areas. Specially in signal processing, dynamical system, mechanics, stochastic, 

systems identification, plasma physics, electricity, electrochemistry, economics, control theory, and engineering. Finding exact and 

numerical solutions to fractional differential equations is an important task. Several Powerful and reliable methods have been proposed 

to obtain the exact solutions of fractional differential equations, for instance, modified extended tanh method [1],  exp-function method 

[2-6], first integral method [7-12], functional variable method [13-16], ansatz method [17-20], and Kudryashov method [21,22].  

Solitary waves theory have attracted intensive interest from mathematicians and physicists. Recently, the area of fractional differential 

equations has been studied by a number of researchers such as, M. Kaplan et al. [23], K. Hosseini et al. [24-25], and M. Eslami [26].   

The aim of this paper is to find traveling wave solution of the time fractional Zoomeron equation which is importance in mathematical 

physics.  

This paper is organized as follows: In Sections 2, the modified Riemann– Liouville derivative is demonstrated. In Section 3, analysis of 

the proposed method is given to illustrate how fractional differential equation is reduced into integer-order differential equation.  In 

Section 4, our method is applied to obtain the exact solution for the time fractional Zoomeron equation. Conclusions are introduced in 

Section 5.  

 

2.  Jumarie's  modified Riemann-Liouville derivative and its properties 

           The Jumarie's   modified Riemann-Liouville derivative of order  the continuous function 

    RRf : is defined as follows [27] 
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where  x is the Gamma function which  is defined as 
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Some useful properties of the Jumarie's modified Riemann-Liouville derivative are listed below. 

Property 1.  
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Property 2. 
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where a and b are constants. 

Property 3. 
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where  xg . 

For other properties, see [28]. 

 

3. Analysis of the method 

    Consider the following nonlinear partial differential equation: 
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   applying fractional complex transformation: 
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where  k  and  c  are  nonzero  constants and 0x  is arbitrary constant,  converts  (5) into  an  integer  order  nonlinear  

ordinary differential equations as follows: 

,0),,,,(  ffffG                                                  (6) 

where the derivatives are with respect to . It is assumed that the solutions of (6) is presented as a finite series, say  

      ,
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where nn ba , , Nn ,,2,1  are constants that can be computed  and   n
satisfies the Riccati equation 

2  b                                                                  (8) 

where  b is a constant, Eq. (8) has the following types of solutions:  

( i ) If 0b , then 

  bb  tanh , or   bb  coth  
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( ii ) If 0b , then 

  bb tan , or   bb cot  

( iii ) If 0b , then  

.
1





  

The value of N  is usually determined by balancing the linear and nonlinear terms of highest orders in (6). Substituting 

Eq. (7) and its necessary derivatives into (6) gives 

   ,0P                                                                       (9) 

where   P is a polynomial in   . By equating the coefficient of each power of    in (9) to zero,  a system of algebraic 

equations will be obtained whose solution yields the exact solutions of (5). 

 

 

4. Application 

           Consider the following problem: Find a function ),( txu  satisfying time fractional Zoomeron equation in the form:  
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applying the transformation: 
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Substituting (11) into (10), we have: 

  02 22 
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Integrating (12) twice with respect to , we obtain the following nonlinear ordinary differential equation: 

  021 32  Affcfck                                                                                                  (13) 

Where A is a nonzero integration constant, while the first integration constant is zero. 

4.1. Exact solution of the time fractional Zoomeron equation using the modified extended tanh method 

     Balancing f  and
3f in (13) results NN 32  , and so 1N . This offers a truncated series as the  following form: 

      1

110

 baaf                                                               (14) 

by substituting (14) into (13) and equating the coefficient of each power of   to zero, we derive a system of algebraic equations 

as follows 
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Solving the above system yields. 
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hence, the solution is formed as: 
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             thus, the solution is formed as: 
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therefore, the solution is formed as: 
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hence, the solution is formed as: 
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Case 5. 
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hence, the solution is formed as: 
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Case 6. 

)1(8
,

)1(8

)1(
,

)1(
,0

22

2

1

2

10
ck

A
b

cck

cckA
b

c

cck
aa










  

thus, the solution is formed as: 
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Plotting these solutions at different time levels and different values of , shows the motion of solitary waves as shown in figures 1 and 

2.                                               
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Figure 1.  Analytic solutions for the time fractional Zoomeron equation with ,2,1  ckA 25,50,0 0  xyx , at 

different time levels and 1,75.0,5.0,25.0 . 

 

  

 

Figure 2.  Analytic solutions for the time fractional Zoomeron equation with ,2,1  ckA 50,25,2000 0  xyx , 

at different time levels and 1,75.0,5.0 . 

 

5. Conclusion 

       In this paper, time fractional Zoomeron equation has been successfully solved by using modified extended tanh method with 

Riccati equation. Based on fractional complex transformation, original equation reduced into integer order ordinary differential 

equation. The proposed method was utilized to establish the exact solution of the resulted equation. Our approach is an efficient and 

concise technique to handle a wide range of linear and nonlinear fractional differential equations. 

 

الخلاصة      

غير خطية وذات رتبة كسرية في  في هذا البحث تم بناء حل الموجة المتنقلة باستخدام طريقة      modified extended tanh method      ةحل معادلة تفاضلية جزئيل

المعادلة تم تحويلها الى معادلة تفاضلية اعتيادية باستخادام التحويل الكسري المركب   zoomeronالزمن. تم استخدام الطريقة المقترحة للحصول على الحل المضبوط لمعادلة 

 ليوفيل المحسنة. النتائج تم رسمها بيانيا عند مستويات زمنية مختلفة.-ريمانوخواص مشتقات 
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