Some Results On S-pure Submodules

Authors Names	Abstract
Muna Jasime Mohammed Alir ^a Shireen O. Dakheel ^b Publication date: 1/8/2025 Keywords: . Pure Submodules, S-pure Submodules, S-pure submodule relative to submodules.	Let R be a commutative ring with identity, S a multiplicatively closed subset of R, and M be an R-module. The goal of this work is to stuy some properties of S-pure submodules and introduce the notion of S-pure submodules relative to submodules of M as a generalization of S-pure submodules of M and prove a number of results concerning of this class of modules.

1.Introduction

Let \dot{M} be a unitary module defined on commutative ring R with 1. A submodule of an R -module is called pure submodule if for every finitely generated ideal I of R[1,2], A subset V of R have been said a multiplicatively closed (m.c) subset of R if: $1 \in V$ and for any v_1, v_2 in $V, v_1v_2 \in V$. Let V be (m.c) of R and M is an R -module,

- (1) V^* a nonempty subset of M have been said V-closed if $vm \in V^{*}$ for every $v \in V$ and $m \in V^*$.
- (2) An V-closed subset V^{*} have been said saturated if the next provision is hold: where dm \in S^{*} for d \in R also m \in M, then d \in V and m \in V* [3]

In [2] We say that a submodule N of an R-module M is S-pure if there exists an $s \in S$, where S is (m.c) such that $s(N \cap IM) \subseteq IN$ for every ideal I of R. Let Z be the ring of integers, for a prime number p, one can see that the submodule pZ of the Z-module Z is not pure. Take the multiplicatively closed subset $S = \{p^n : n \in N \cup \{0\}\} \text{ of } Z$. Then for each $k \in N$, $p(pZ \cap (kZ)) \subseteq (pZ)(kZ)$ implies that pZ is an S-pure submodule of Z [4].

2. Main Results.

Theorem 2.1. [1] Let N and K be two submodules of an R-module M such that $N \subseteq K \subseteq M$. Then we have the following:

(1) If N is an S-pure submodule of K and K is an S-pure submodule of M, then N is an S-pure submodule of M.

^aUniversity of Baghdad, College of Science for women, Department of Mathematics, Baghdad, Iraq, E-Mail: munajm_math@csw.uobaghdad.edu.iq

^b University of Baghdad, College of Science for women, Department of Mathematics, Baghdad, Iraq, E-Mail: shireeno_math@csw.uobaghdad.edu.iq

- (2) If N is an S-pure submodule of M, then N is an S-pure submodule of K.
- (3) If K is an S-pure submodule of M, then K/N is an S-pure submodule of M/N. (d) If N is an S-pure submodule of M and K/N is an S-pure submodule of M/N, then K is an S-pure submodule of M.
- (4) If N is an S-pure submodule of M, then there is a bijection between the S-pure submodules of M containing N and the Spure submodules of M/N.

Proposition 2.2: Assume that M is module. Then X is S-pure submodule if and only if foreach finite sets $\{m_i\} \in M$, $\{n_i\} \in X$ with $\{r_{ij}\} \in R$ and $n_j = \sum_{i=1}^k r_{ij} m_i$, j = 1, 2, ..., l, there is $\{x_i\} \in X$ which is finite set, when $n_j - \sum_{i=1}^k r_{ij} x_i \in X \cap K$ for each submodule K.

Proof: Let $r_{ij} \in R$ $(1 \le j \le 1, 1 \le i \le k)$. Therefore $n_j \in M \cap X$. There is $x_i \in X$ when $n_j = \sum_{l=1}^k r_{lj} x_l + k$ where $k \in K$ also $k \in K$ also $k \in K$. The converse, take $k \in K$ and $k \in K$. Thus $k \in K$ and $k \in K$ and

Definition 2.3: Let M be a module, M is called have the S-pure submodule intersection property, if we have the intersection of two S-pure submodules is again S-pure submodule.

Proposition 2.4: Let M be a module.

- 1- If M has the S-pure submodule intersection property, then each S-pure submodule in M has the S-pure submodule intersection property.
- 2- Let X be an S-pure submodule in M. M has S-pure submodule intersection property, if and only if, $\frac{M}{X}$ has S-pure submodule intersection property.

Proof: 1- It is obvious

2- Assume that $\frac{N}{X}$, $\frac{K}{X}$ are two S-pure submodules in $\frac{M}{X}$. Let S be (m.c) Want to show that $s[\left(\frac{N}{X}\cap \frac{K}{X}\right)\cap I\left(\frac{M}{X}\right)]\subseteq I\left(\frac{N}{X}\cap \frac{K}{X}\right)$ for each ideal I of R and for some $s\in S$. We claim that each one is S-pure submodule. To prove this matter, let $c\in s(N\cap IM)$. Since $\frac{N}{X}$ is S-pure submodule in $\frac{M}{X}$, hence $s(\frac{N}{X}\cap I(\frac{M}{X}))\subseteq I(\frac{N}{X})$, therefore $s(\frac{N}{X}\cap \frac{IM+X}{X})\subseteq \frac{IN+X}{X}$, then $s(\frac{N\cap (IM+X)}{X})\subseteq \frac{IN+X}{X}$ thus, $\frac{s(N\cap IM)+X}{X}\subseteq \frac{IN+X}{X}$

 $\frac{IN+X}{X}$, hence $s(N\cap IM)+X=IN+X$, and therefore $s(N\cap IM)\subseteq IN$. Since $c\in s(N\cap IM)\subseteq s(N\cap IM)+X$, thus $c\in IN+X$. Let t+w=c, $t\in IN$ and $w\in X$. Now consider $w=c-t\in s(X\cap IM)\subseteq IX\subseteq IN$ and therefore N is S-pure submodule. But M have the S-pure intersection property, therefore N \cap K is S-pure submodule in M. Thus $s[(N\cap K)\cap IM]\subseteq I(N\cap K)$. Now, let $c\in s[\left(\frac{N}{X}\cap\frac{K}{X}\right)\cap I\left(\frac{M}{X}\right)]$, therfore t+X=c, $t\in IM$ and t=x+X=y+X, when t=x=x, t=x=x, therefore t=x=x is t=x=x, then t=x=x is t=x=x. Thus, t=x=x is S-pure, suppose that X is a -submodule of L and X be a submodule in F, thus t=x=x is S-pure submodule in M. Thus t=x=x is S-pure submodule in M.

Theorem 2.6: A module M owns the S-pure intersection property if and only if $s(IN \cap IK) = s[I(N \cap K)]$ for each ideal $I \in R$ and for all S-pure submodules N, K in M, where S is (m.c).

Proof: Put M have the S-pure submodule intersection property then, $N \cap K$ is S-pure submodules. Put $I \in R$, therefore $s[(N \cap K) \cap IM] \subseteq I(N \cap K)$ for some $s \in S$. Clearly that $s[I(N \cap K)] \subseteq s(IN \cap IK)$. But $s(IN \cap IK) \subseteq s[N \cap (K \cap IM)] \subseteq s[(N \cap K) \cap IM] \subseteq s[I(N \cap K])$. Then $s[IN \cap IK] \subseteq s[I(N \cap K)]$. On the other side, put $I \in R$, and put $I \in R$, an

Theorem 2-7:- Let S be (m.c) and M be a module. M have the S-pure submodule intersection property, if and only if , for each s-pure submodules, Z and X of a module M with for each homorphism $g:(Z\cap X)\to M$ when $s(\operatorname{Im} g\cap Z)+s((\operatorname{Im} g+X)\cap\operatorname{IM})=\{0\}$ for some $s\in S$ and $\operatorname{Im} g+Z$ is S-pure submodule in module M and $\ker g$ is S-pure submodule in module M.

Proof: Let S be (m.c) and M have the S-pure subhypermodule intersection property. Let N, T be S-pure submodules with $g: N \cap T \to M$ is homomorphism where $N \cap Img = 0$ and also $Im \ g + T$ which is S-pure submodule in module M. Put $W = \{g(c) + c \mid c \in N \cap T\}$. W is a submodule. To show that W is S-pure submodule. Put $I \in R$ and $t = \sum_{i=1}^{n} r_i m_i \in s(W \cap IM)$, $s \in S$, $r_i \in R$, $m_i \in M$. Hence $t = \sum_{i=1}^{n} r_i m_i = m + g(m)$ for some $m \in (N \cap T)$. So $t = \sum_{i=0}^{n} r_i m_i = m + g(m) \in N \cap (Img + T) \subseteq R$

Img + N and Im g + N is S-pure submodule in module M. Thus $c = \sum_{i=0}^n r_i \ m_i \in s[(Img+N) \cap IM] = s[I(Img+N) \cap IM]$. Therefore $\sum_{i=0}^n r_i \ m_i = \sum_{i=0}^n r_i (z_i + t_i) + v \ , \beta_i \ z_i \in N, \ t_i \in Img, \ for each \ i = 1,, n.$ where $v \in s((Img+N) \cap IM)$. Therefore $c = \sum_{i=0}^n m_i = \sum_{i=0}^n r_i \ z_i + \sum_{i=0}^n r_i \ t_i + v, \ hence \ c - \sum_{i=0}^n r_i \ m_i = \sum_{i=0}^n r_i \ t_i - g(c) + v \in s(Img \cap N) + s((Img+N) \cap IM) = 0$. Thus $c = r_i t_i \in s[(N \cap T) \cap IN]$. While $(N \cap T)$ is S-pure submodule in module M, thus it is S-pure submodule in N. Therefore $s[(N \cap T) \cap IN] = s[I(N \cap T)]$ by theorem (2.6). Hence $m \in s[I(N \cap T)]$. Let $c = r_i \sum_{i=0}^n w_i + h, \ w_i \in (N \cap T), \ h \in s((N \cap T) \cap IT)$. Then $g(c) = \sum_{i=1}^n r_i g(w_i) + g(h)$. Now $t = c + g(c) = \sum_{i=0}^n r_i \ w_i + \sum_{i=0}^n r_i g(w_i) + g(h) = \sum_{i=0}^n r_i \ (w_i + g(w_i)) + g(h) \in IW$. Thus $s(W \cap IM) \subseteq IW$ and W is S-pure submodule in a module M. Now we want to prove, $s(x) = (N \cap T) \cap W$. Suppose that $c \in kerg$, thus $c \in (N \cap T)$ also g(c) = 0. Therefore $c \in W$, Now let $c \in (N \cap T) \cap W$, thus c = t + g(t), $t \in (N \cap T)$, then $c - t = g(t) \in s(N \cap Img) \subseteq s(N \cap Img) + s[(N \cap Img) \cap zM)] = 0$. Therefore g(c) = g(t) = 0 so $c \in kerg$. Since M has the S-pure submodule intersection property, then $s(M \cap T) \cap W = kerg$ is S-pure in M. Reciprocally, let X, Y be two S-pure submodules in M. We define $s(M \cap T) \cap W = kerg$ is S-pure in M. Reciprocally, let X, Y be two S-pure submodules in M. We define $s(M \cap T) \cap W = kerg$ is S-pure submodule in M, thus $s(M \cap T) \cap M \cap M$.

Theorem 2.8: Let S be (m.c) and a module M have the S-pure submodule intersection property, if and only if, for each S-pure submodules W , a submodule X in module M, and for all homomorphism $g:(W\cap X)\to T$, where T is a submodule in M for this reason $s(W\cap T)+s(W+(T\cap IM))=0$ and W+T are S-pure and T is S-pure submodule .

Proof: The proof by the same of proof of the previous theorem.

3- S-Pure submodules relative to submodule.

Definition 3.1: Let S be (m.c) and M be a module also L is a submodule of M. A submodule X of M is said to be S-pure relative to submodule L (resp. S-L-pure), if there is $s \in S$ and for each $I \in R$, $s(X \cap IM) \subseteq IX + (L \cap s(X \cap IM))$.

Remark 3.2: Let S be (m.c) and M be a module also L is submodule of M

1. Let X be an S-L-pure submodule of M. If W is an S-L-pure submodule of X, then W is S-L-pure submodule in M.

- **2.** Let X be a S-L-pure module of M. if W is a S-pure submodule of M containing X, then X is a S-L-pure in W
- **3.** Let X be an S-L-pure submodule of M. If W is a submodule of X and so W is submodule of L, then X/W is S-L/W -pure submodule of M/W.
- **4.** Let X and W be submodule of M, If W is S-L-pure submodule of M and X/W is S-L/W-pure submodule of M/W, then X is S-L-pure submodule of M.

Proof(1):

Put $I \in R$, because X is S-L-pure of M also W is S-L-pure in X, therefore $s(X \cap IM) \subseteq IX + (L \cap s(X \cap IM))$ and $s(W \cap IX) \subseteq IW + (L \cap s(W \cap IX))$ but W is submodule of M, therefore $s(W \cap IM) \subseteq s(X \cap IM) \subseteq IX + (L \cap s(X \cap IM))$ and hence $s(W \cap IM) \subseteq W \cap [IX + (L \cap s(X \cap IM))] \subseteq IX + [W \cap (L \cap s(X \cap IM))] \subseteq IX + [L \cap s(W \cap IM)]$ and since $W \subseteq X$, therefore $s(W \cap IM) \subseteq IW + [L \cap s(W \cap IM)]$. Hence $s(W \cap IM) \subseteq IW + [L \cap s(W \cap IM)]$

- (2) Put $I \in R$, because X is S-L-pure in M, thus $s(X \cap IM) \subseteq IX + (L \cap s(X \cap IM))$. But W submodule of M, therefore, $s(X \cap IW) \subseteq s(X \cap IM) \subseteq IX + (L \cap s(X \cap IM))$ and hence $s(X \cap IW) \subseteq W \cap [IX + (L \cap s(X \cap IM))] \subseteq IX + [W \cap (L \cap s(X \cap IM))] \subseteq IX + [X \cap (L \cap s(W \cap IM))]$, since W is S-pure submodule of M, thus $IX + [X \cap (L \cap s(W \cap IM))] \subseteq IX + [L \cap (X \cap s(W \cap IM))] \subseteq IX + [L \cap s(X \cap IW)]$, hence $s(X \cap IW) \subseteq IX + [L \cap s(X \cap IW)]$. Thus $X \cap IW \subseteq IX + [L \cap s(X \cap IW)]$.
- 3. Let $I \in R$, because X is S-L-pure submodule in M, therefore $s(X \cap IM) \subseteq IX + (L \cap s(X \cap IM))$. We want to show that's $\left[\frac{X}{W} \cap I(\frac{M}{W})\right] \subseteq I(\frac{X}{W}) + \left[\left(\frac{L}{W}\right) \cap s(\frac{X}{W} \cap Z(\frac{M}{W}))\right]$,

$$s[\frac{x}{w} \cap I(\frac{M}{w})] \subseteq s[\frac{x+w}{w} \cap \frac{IM+W}{w}] \subseteq \frac{s[(x+w)\cap(IM+w)]}{w} \subseteq \frac{s(x\cap zM)+w}{w} \subseteq \frac{[x+(L\cap s(x\cap zM))]+w}{w} \subseteq \frac{x+w}{w} + \frac{[L\cap s(x\cap IM)+w]}{w} \subseteq \frac{x+w}{w} + \left[\frac{L+w}{w} \cap \frac{s(x\cap IM)+w}{w}\right] \subseteq I\left(\frac{x}{w}\right) + \left[\left(\frac{L}{w}\right) \cap s\left(\frac{x}{w} \cap I\left(\frac{M}{w}\right)\right)\right]$$

4. Clear.

Proposition 3.3: Let S satisfying the maximal multiple condition and M be an R-module. Then we have the following.

(1) If $\{N_{\lambda}\}_{{\lambda}\in\Lambda}$ is a chain of S-L--pure submodules of M, then $\sum_{{\lambda}\in\Lambda}N_{\lambda}$ is an S-L-pure submodule of M.

Journal of Iraqi Al-Khwarizmi (JIKh) Volume:9 Issue:2 Year: 2025 pages: 1-6

(2) If N is a submodule of M, then there is a submodule K of M maximal with respect to $K \subseteq N$ and K

has S-L-pure.

Proof:

(1) Let I be an ideal of R. Then there exists an $s \in S$ such that $s(N_{\lambda} \cap IM) \subseteq IN_{\lambda}$ for each $\lambda \in \Lambda$. This

implies that $s(\sum_{\lambda \in \Lambda} N_{\lambda} \cap IM) = s \sum_{\lambda \in \Lambda} (N_{\lambda} \cap IM) \subseteq I \sum_{\lambda \in \Lambda} N_{\lambda}$, Since $\{N_{\lambda}\}_{{\lambda} \in \Lambda}$ is a chain.

(2) Let $\Sigma = \{H \le N | H \text{ is a S- L- pure submodule of M} \}$. P Then $0 \in \Sigma \in \emptyset$. Let $\{N_{\lambda}\}_{{\lambda} \in \Lambda}$ be a totally

ordered subset of Σ . Then $\sum_{\lambda \in \Lambda} N_{\lambda} \subseteq N$ and by part (a), $\sum_{\lambda \in \Lambda} N_{\lambda}$ is an S-pure submodule of M. Thus

by using Zorn's Lemma, one can see that Σ has a maximal element, K say, as needed.

Definition 3.4: A module M is called have S-pure relative to submodule L intersection property (resp.

S-L-PIP) if we have the intersection of any two S-L-pure submodule is again S-L-pure.

Proposition 3.5: Let S be (m.c) andM be a module.

1. If M have the S-L-P IP, then all S-L-pure submodule of M owns the S-L-P IP.

2. Let X be s-L-pure subhypermodule of M also X is submodule of L. M have S-L-P IP if and only if

M/X have S-L/X-P IP.

Proof: It is evident.

References

[1] Mehdi, S. Abbas. 2013. Purity and Projectivity Relative to Submodule, Iraqi J. Statistic. Sci.(25): 49-63.

[2] Ali, M. J. M. and Al Hassani, U. S. 2013. A Note on Pure Submodules Relative to Submodule, Journal of Al-

Nahrain University Science. 16(4): 220-224.

[3] S. Visweswaran, Some remarks on multiplicatively closed sets, Arab J Math, pp 1-17, (2013).

[4] F. Farshadifar, A Generalization of Pure Submodules, Journal of Algebra and Related Topics Vol. 8, No 2,

(2020), pp 1-8.

6