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Hybrid Machine Learning Approaches for Accurate Forecasting of
Total Dissolved Solids: Case Study of a Chinese River
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1. Introduction

Considering the vital role of water quality in managing river ecosystems, evaluating total dissolved
solids (TDS) remains a crucial task. Rivers, as major sources for domestic and industrial water use,
require continuous quality monitoring, particularly under conditions of drought and ongoing urban and
rural development. In this context, several recent studies have sought to enhance TDS prediction
accuracy using intelligent and hybrid modeling approaches. For example, Akhoni Pourhosseini et al.
(2023) examined the Babolrud River in Iran and applied several SVM-based hybrid models—SVM-
CA, SVM-HS, and SVM-TLBO—using monthly measurements of pH, Ca, Mg, HCOs, Na, SO., ClI,
and TDS. Their findings indicated that the SVM-TLBO model produced the most reliable predictions.
Similarly, Sayadi et al. (2024) employed the Grey Wolf Optimization algorithm combined with a
Kernel Extreme Learning Machine (GWO-KELM) to model TDS, achieving an R? of 0.974 and
RMSE of 60.13, outperforming SVM and ANN models. In another study, Jamshidzadeh et al. (2024)
exglored TDS and electrical conductivity (EC?] in coastal aquifers using CNNE, LOST, and GPRE
hybrid models. Their results revealed that the integrated CNNE-LSTM-GPR approach captured
corr&ple_x nonlinear relationships among water quality parameters and vyielded more accurate
predictions.

Memar et al. (2025) combined SVM with the COA algorithm to estimate pollution levels in Iran’s
Jajrud River using hadrochemical data from multiple stations, reporting that SVM-COA outperformed
LSSVM, especially at Sharifa bad. Likewise, Singh (2025) applied several machine learning models,
including Decision Tree, Logistic Regression, and SVM, to classify water quality in Telangana, India,
finding that hybrid approaches enhanced model accuracy. Mathaba (2023) evaluated SVM applications
for water treatment and resource management and emphasized the need for better data reliability and
practical validation of intelligent methods. Earlier, Khatibi et al. (2017) modeled Bear River flow in
the United States with ANN-based hybrid structures (MLP-LM and MLP-FFA), showing that MLP-
LM produced superior results. Furthermore, Barzegar et al. (2023) assessed groundwater quality in
Iran’s Yazd Province using ANFIS, SVM, and ANN trained with algorithms such as PSO, GWO,
CSO, and SA. Their findings, consistent with Ghorbani and Pamucar (2025), showed that hybrid
ANFIS models—especially ANFIS-MFO and ANFIS-CSO—offered the highest predictive accuracy.
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Finally, Gulati et al. (2025) investigated groundwater pollution in West Bengal, India, using SVMs,
ANNSs, and ANFIS, and concluded that ANN achieved the lowest error values (Yildirim et al., 2025).

The main objective of this study is to determine the water quality of the Kim Tin River in Hong Kong,
one of the major rivers in the basin. To determine TDS in this study, innovative and meta-heuristic
methods SVM-IWO and SVM-TLBO were used, utilizing monthly data on temperature, pH, salinity,
and turbidity for the years 2000-2023.

2. Materials and Methods
2.1 Study area and data required

The case study is Kam Tin River, it is located on the southeast coast of China. it is in the northwest of
the Hong Kong. Hong Kong location is on the east bank of pearl river, it is the best position for Kim
Tin River. (Goggins et al., 2012). The river basin is equal to 44.3 square kilometers and its length is 13
kilometers. (Liu et al., 2023). It is an important hub in east Asia, because of major cities such as
Guangzhou and Shanghai, as well as nearby Taiwan. The Kam-Tin River is one of the important rivers
of Hong Kong for water resource management in terms of irrigation and drinking water supply. And
Kam-Tin River is located 22.3193° N latitude, 114.1694° E longitude coordinated. See figurel.
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Figure 1 illustrates the geographical location of the Kim Tin River.

Data used in study were obtain monthly data including turbidity, temperature, pH, and salinity and
TDS from 2000 -2023. Data were gathered from the Hong Kong database (https://data.gov.hk/). After
deleted outlifted and noisy data, for estimate TDS, used input data including turbidity, temperature,
pH, and salinity. Metaheuristic SVM- IWO and SVM-TLBO were used for simulation. For monthly
TDS prediction, 70% of the data was allocated to model training and 30% to testing. all modeling and
prediction processes were used in MATLAB. Tablel.show statistical of water quality parameters in the
Kim-Tin River.
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. Tablel. Statistics of Water Quality Parameters in the Kim Tin River

Kam Tin

Statistical Max Mean Min STD
TDS (mg/L) 570 246.1 110 89.78
pH 9.9 7.3 4.7 0.36
Salinity 0.4 0.16 0 0.068

(psu)
Turb (NTU) 195.8 21.6 2.4 29.09
Temperature 333 2478 139 4.19

(C)

T=Teacherunew =T (1)

Xinew = Xi + 7 (new — Tf11)
TF=Teaching Factore {1,2}
Learning Phase

In this phase, knowledge is transferred through interaction between students. Figure2. SVM-TLBO
model structure.

Xinew = Xi +17(Xj — x; ) 2)

Xinew = X; +7(x; — x;) A3)
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Figure2. SVM-TLBO model structure
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2.2 SVM-IWO Model

The SVM-IWO (Support Vector Machine — Invasive Weed Optimization) model is a hybrid approach
for predictive modeling. SVM is used for regression and classification. population produces seeds
based on its fitness. From a minimum to a maximum, a plant's capacity to produce seeds varies
linearly, and weeds with greater fitness yield more seeds. The production of seeds can be described
as:

©)

f = fu
Seedn =7 (Smax - Smin) + Smin

fmax - fmin

where S_max and S_min indicate the lowest and maximum number of seeds that can be produced, f is
the current fitness, f min and f max reflect the minimum and maximum fitness in the current
population, and ISeed) _n is the number of seeds produced. In the process of spatial dispersal, seeds
are dispersed at random throughout the multidimensional search space. As the dissemination proceeds
normally, seeds are kept near their parent plants. Over iterations, the standard deviation falls from
o_initial to ¢_final, which is defined as:

__ (iterpax—iter)™

Oiter = (iteTmax)™ (Uinitial - Gfinal) + Ofinal (4)
The standard deviation at the current iteration is denoted by 0j¢,,-, the maximum number of iterations is
indicated by iter;,4,, and n is a nonlinear modulation index.

Finally, competitive exclusion removes weaker seeds when the total colony size reaches its maximum
(Pmax)- This ensures that the population evolves toward better fitness.

To assess the models' effectiveness, two widely used statistical metrics, the coefficient of
determination (R?) and the root mean square error (RMSE), were taken into account. The formulas for
these indexes are shown below. According to these metrics, the model that performs the best is the
one with the highest Rz and the lowest RMSE.

. (5)
Iy (a =0y =)

i - 2 Z 00— 97

R = §

(6)

SE jziil(xi — )2
N
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where x;denotes the observed values, y; refers to the computed (or estimated) values, and xthe
represents the arithmetic mean of the observed data.

3. Result

Following the elimination of outliers to enhance the accuracy of the modeling process, the dataset was
normalized. Thereafter, hybrid support vector machine approaches (SVM-TLBO and SVM-IWO) were
employed for modeling, incorporating pH, turbidity, salinity and temperature as input variables for the
Kim Tin River. The optimized parameters for the metaheuristic-SVM models are presented in Table 2.
The outcomes of these models are summarized in Table 3. According to the evaluation metrics, the
SVM-IWO was determined to be the most effective model. As shown in Figure 3, the optimal SVM-
IWO model not only captures the variations between the observed and simulated data with high
accuracy, but also clearly demonstrates the distribution and magnitude of the residual errors across the
study area. As shown in Figure 4, the simulation variations of the SVM-TLBO model are clearly
observable.

Table 2. Description of Parameters Applied in the Hybrid Metaheuristic-SVM Models the

Kim Tin River
Kernel Function polynomial Kernel Function RBF
KernelScale 8.8683 Kernel Scale 15.9051
Box Constraint 1.2040e+03 box Constraint 368.1100
Epsilon 11.6385 Epsilon 88.5487

Table 3. Evaluation and Validation of Metaheuristic Models for the Kim Tin River

Test
model Input parameters
R? RMSE(mg/l)
pH, turbidity,
SVM-IWO salinity, 0.74 63
temperature
H, turbidity
SVM- P, UrbIcity,
TLBO salinity, 0.71 65
temperature
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Figure 3. Prediction Results and Validation Accuracy of SVM-IWO in Kim Tin River
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Figure 4. Prediction Results and Validation Accuracy of SVM-TLBO in Kim Tin River

As presented in Tables 3, the selection of the optimal solution and their comparison revealed that all
two models were able to simulate the total dissolved solids (TDS) in the Kam Tin River with
satisfactory accuracy and relatively low error. According to Table 3, Both models demonstrated
satisfactory simulation performance, with only minor differences observed between them. Figures 3
and 4 present the same procedure, indicating that both models achieved satisfactory simulation
performance.

4. Conclusions

This study systematically assessed the capability of hybrid SVM models for estimating total dissolved
solids (TDS) in the Kam Tin River. The findings highlight that metaheuristic-optimized SVM
approaches not only achieve higher predictive accuracy but also offer greater reliability compared to
conventional modeling techniques. The present study evaluated the effectiveness of SVM-IWO and
SVM-TLBO models in estimating total dissolved solids (TDS) in the Kam Tin River, a critical water
quality parameter whose measurement is both costly and time-consuming. Monthly pH, turbidity,
salinity and temperature data were employed as input variables. The results indicate that, during both
training and validation phases, the SVM-IWO and SVM-TLBO models consistently outperformed the
other approaches. These findings suggest that metaheuristic-based SVM models, due to their superior

52



Journal of Iragi Al-Khwarizmi (JIKh) Volume:9 Issue:2 Year: 2025 pages: 46-54

predictive accuracy and reliability, can serve as a more effective and practical alternative to LS-SVM
for the estimation of water quality parameters in riverine environments.
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