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1.Introduction:

The concept of soft sets was first introduced by Molodtsov [7] in 1999 as a general mathematical tool for dealing with
uncertain objects. After presentation of the operations of soft sets [4] , [5] the properties and applications of soft set theory have been
studied increasingly [1] ,[6] , [12] and [13] and [9]. In 2011, Shabir and Naz [10] initiated the study of soft topological spaces. In 2014
Samanta S. et al. [11] introduced the concept of soft normed space on a soft linear spaces and soft Banach space. Recently, in 2015,
Thakur R. et al. [14] , initiated the study of soft Banach algebra. Applications of soft Banach algebra investigated by Petroudi S. et
al. [8]. In this paper we introduce and study the notions soft regularity and soft singularity and give basic definitions and theorems
about it.

2. Preliminaries:
Definition (2.1) [14]:

Let ¥ be an algebra over a scalar field R and let E be the parameter set and Fz be a soft set over V. Now, Fg is called soft
algebra (for short 54) of V over R(E") if F(e) is a sub algebra of V for all € € E. It is very easy to see that in a 54 the soft
elements satisfy the properties:

@ @ey)ze = 2 (5°2°),

(if) #e (e F29) = woyoFaeze . (pofze)ie = poxofzoqe,

(iii) @(#e7¢) = (@x®)i® = #°(@7°) , where for all £¢,7°,%2° € Fg and forany soft scalar &.

If Fg is also soft Banach space w.r.t. a soft norm that satisfies the inequality [|£%%%|| = |[Z¢||/||37%]| and Fg is contains the unitary

element ©° such that £51° = T°%® = & with ||| = 1, then is called soft Banach algebra (for short SBA).
3. Main Results:
Definition (3.1) [14 ]:
Let U is a (SBA) with ©%. Then ¥ € U is said to be soft regular, if % is invertible (i.e. there a soft element
#57 called the inverse of %% such that ¥%(&%)~1 = (£%)71%% = 1i* ). A non-soft regular element is called soft singular ( it’s not

invertible ).
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Remark (3.2) [14]:
Clearly, 1i¥ isinvertible. If X% is invertible, then the inverse is a unique. Further, if £° and ¥° are both invertible, then

9% isinvertible and (£599)~1 = (%)Y (x5) L.
Notation (3.3):
(i) Gg={&FEU: %°issoftregular }.
(if) Sg={#%°€E€ 9 : %°issoftsingular }.
Remarks (3.4) [14]:

It is clear that Gz is a soft group under the soft multiplication.
Theorem (3.5) [8]:

Let U bea (§BA) with ii®.

g e

Then every £ € 9 for ||1°=%[| = T is soft regular and £°* = T20,(fi°=%)",

Corollary (3.6):
1

. ~ =g =a—1|| =
Let U bea (§BA) with ©° . Then For X € 9 , then ”xE ” = P P
Proof: we know

— e P e — P — P 1
gl =B (@ =we) = ||#e | =B (@ x| E i llas e =

Definition (3.7)
A ($BA) U is a soft topological algebra (for short STA) | if U is a soft topological linear space , see [Samanta] and to every

#%,7% € 9 and every soft nbhd Nz (%) , there are soft nbhds Ng(%=) and Nz(#*) such that:
(@) #°Ng(7°) € Np(29°) .
(ii) Ng(2)7° € Ng(®°7°) .
Remark (3.8):
(i) 85 € Sg.
(ii) 1f Wisa (SBA) , then U is (STA).
Theorem (3.9) [14]:

Let % bea (§BA). Then G is soft open subset of U and therefore Sk is soft closed subset of .
Theorem (3.10):

Let A be a (SBA) . Then a soft mapping @ : Gz = Gz defined by: @(E)=%"7, for all € U is soft
homeomorphism.
Proof: To show that 5 is soft well define and soft injective.

Let #5,7°E G and #°= 7= & = 37"1= (&) = $(5%). Thus & is soft well defined.

g—1

And suppose that $(£) = ¢(#°) = 271 = §° 1= &% = % then @ is soft injective.
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Now, to show that @ is soft surjective. Let 7% & Gg , thereis 75 © & Gg with @(7° ) = 1)1 = #°. Hence @ , is soft

bijective. Finally to sow that t;g and 5'1 are soft continuous by using the commutative diagram:

id T-1

This implies that 5 is soft homeomorphism.
Definition (4.1) [8]:
Let A bea (SBA) with ii® and &° € 9[.
Then the soft set 8(%%) = { 1 € R(E) : (#°=1iif) is soft singular] is called soft spectrum of £° € U
Theorem (4.2):
A soft set (&%) is soft closed subset of R(E).
Proof:

o o

Let (4 )nem be a soft seq. in BR(E) such that 4, = 4. Since A, € 8(%%) for all n € N, then ¥¥=4,,1i* is soft singular. Also,
since A, = A, we have A,ii® = Afi°.
Define ® : R(E) 3 9 by ®(A) = #5=1,,ii" for all A € R(E). Clear that is soft continuous. Since Sz be a soft closed subset
of U, then:
(B): (1) ESg)
(E): #°~ius € 5;)
€ R(E) : #5=]iif is soft singular} = &(%*°).
Thus (&%) is soft closed subset of R{E).
Theorem (4.3):
it A€8(x%), || Z |z, (i.e. (Z=)is soft bounded subset of R(E))

Proof:

& II:rE'II oo

| i < 1= ||u — (uf':—}” =1,

I—'~|

Suppose that if possible |A| E [|£¢]l. ie. 4] = 251l = % Zi= |

-\.E v
This implies that (ﬁﬂf%} is soft regular. Hence 4 & &(%%), contradiction.
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8(%*) is soft compact subset of R(E).
Proof:
From soft Heine-Borel property and theorems (4.2) and (4.3) , we get the desired.
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