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On Compact Set Generated by T-open Sets
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Article History

1. Introduction

Jingcheng Tong(Jacksonville) [1] initiate the study of t-set in 1989. The concept of T-open set was
defined J. M. Saad based on a foundational t-set collection, with subsequent show that the family of T-
open sets forms a topological structure, this topology is distinguished by two properties: all closed sets
and all t-sets in a space are T-open sets [2].There are types of compact space known in ancient and
modern times, such as: S-compact space which introduced by Travis Thompson in 1976 [3], and ©-
compact space which defined by Kohli and Das in 2006 [4].

In this paper, we discuss a new types called T-compact set and generalize the characterizations of this

notion in light of new open sets. The interior points of A and closure set of A by A", ( A) with

respectively

Definition 1.1 [1]:4 is called t-set of A° = A . The family of t-set denoted by ts.
Definition 1.2 [2]: Let (X, ) be a topological space, A S X. Then the T-closure set of A is defined by

—T
x €A ifvU e ts,suchthatU n 4 # Q.

Definition 1.3 [2]: The set A < X is called T-closed if A = a. The complement of T- closed is called
T-open. The family of T-open (T-closed) set is denoted by TO(X). (TC(X)].

Proposition 1.4 [2]:A family of T-open set is topology.

Definition 1.5 [2]: Let A subset a space X, a point x € A is called T-interior point of A if there exists

an U € ts such that x € U C 4, it is denoted A°" .
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Proposition 1.6 [2]: Let (X, t) be a topological space and A, B € X, then A is T-open set if and only if
A=4".

Definition 1.7 [2]: A function f: X — Y is called T-continuous if the inverse image for any open set in
XisT-openinY.

Note: In fact, every open set in metrizable space is T-open.

Definition 1.8[5]: Let A be a subset of the topological space X. The open cover for A is a collection A

of open sets in X, whose union contains A.

Definition 1.9[5]: A topological space X is compact provided that every open cover of X has a finite

subcover.

Definition 1.10[5]: A family A of subsets of a space X has the finite intersection property provided

that every finite sub-collection of A has non-empty intersection.

2. T-Compact Spaces
Definition 2.1: Let A be a subset of the topological space X. The T-open cover for A is a collection A
of T-open sets whose union contains A. A subcover derived from the T-open cover A is a subcollection

A" of 1 whose union contains A.

Example 2.2: First of all, it is clear that every open set in any metrizable space is T-open set, therefore
if A= [1,4] and consider the T-opencover A ={(z—1,z+ 1)| z € Z}.

Consider the sub-cover A = {(—1,1), (0,2), (1,3), (2,4), (3,5), (4,6)} is a subcover of A, and happens

to be the smallest subcover of 1 that covers A.

Definition 2.3: A topological space X is T-compact provided that every T-open cover of X has a finite

subcover.

This says that however we write X an a union of T-open sets, there is always a finite sub-collection
{0;}i-, of these sets whose union is X. A subspace A of X is T-compact if A is a T-compact space in

its subspace topology.

Since relatively T-open sets in the subspace topology are the intersections of T-open sets in X with the

subspace A, the definition of T-compactness for subspaces can be restated as follows.
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Alternate definition:

A subspace A of X is T-compact if and only if every T-open cover of A by T-open sets in X has a finite

subcover.
Examples 2.4:

Every discrete space consisting of a finite number of points is T-compact.
. The finite complement topology with real line R is T-compact.

1

2

3. Aninfinite set X with the discrete topology is not T-compact.

4. Any open interval (ry, 1) is not T-compact. 1 = {(rl + %,rz) | s =2, oo} is T-open cover
of (ry,1,). However, no finite sub-collection of these sets will cover (1, 7,).

5. R™ is not T-compact for any positive integer n, since A = {B(0,s) | s =1, ...., o} is T-open
cover with no finite sub-cover.

Proposition 2.5: A space X is T-compact if and only if every family of T-closed sets in X with the

finite intersection property has non-empty intersection.

This says that if F is a family of T-closed sets with the finite intersection property, then we must have
that N, C, # 9.

Proof: Assume that X is T-compact and let F = {C,|a € I} be a family of T-closed sets with the finite
intersection property. We want to show that the intersection is empty. Let A = {0, = X \C,|a € [} isa

collection of T-open sets in X. Then,
an - UX\Ca =X\ﬂCa —X\0 =X
a€l a€l a€l
Thus, A is T-open cover for X. Since X is T-compact, it must have a finite subcover; i.e.,
n n n
X = U 0ai = U(X\Cai) = X\ﬂ Cai
i=1 i=1 i=1

This means that N}, C,; must be empty, contradicting the fact that F has the finite intersection
property. Thus, if F has the finite intersection property, then the intersection of all numbers of F must

be non-empty.

Proposition 2.6: Let Y be a subspace of X. Then X is T-compact space if and only if Y is T-compact.
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Proof: The proof begins by considering a family representing a T-open cover of Y space. Each set in
this family is an intersection of Y with T-open set in X space. Therefore, the family of T-open cover
will construct a T-open cover for X possessing a finite sub-cover. Consequently, the intersection of Y
with this finite cover will be a finite cover of space Y. The opposite direction of the proof is almost

direct direction.
Proposition 2.7: The union of two T-compact spaces is T-compact.

Proof: To evidence that A U B is T-compact, we will take T-open cover {Uy|y € A} of it, clear that is
T-open cover of A and B. So, {Uy} has finite sub-cover with respect a set A and B, thus the union of

finite sub-cover is also. Hence A U B is T-compact.

Definition 2.8: A function f: X — Y is called T-irresolute if the inverse image for any T-open set in Y

is T-openin X.

Definition 2.9: A function f: X — Y is called T-open if the image for any T-open set in X is T-open in
Y.

Proposition 2.10: Let X be a T-compact space and f: X — Y a T-irresolute function from X onto Y.
Then 'Y is T-compac space.

Proof: We will outline this proof. Start with T-open cover for Y.Use the T-irresolution of f to pull it
back to an T-open cover of X. Use T-compactness to extract a finite sub cover for X, and then use the

fact that f is onto to reconstruct a finite subcover for Y.

Corollary 2.11: Let A be a T-compact set in a space X and f: X — Y a T-irresolute function. The

image f(A) inY is a T-compact subset of Y.

Corollary 2.12: Let X be a compact space and f: X — Y a T-continuous function from X onto
metrizable space Y. Then Y is T-compact.
The T-compactness is not hereditary, because (0,1) is not a T-compact subset of the T-compact space

[0,1]. It is closed hereditary.

Proposition 2.13: Each T-closed subset of a T-compact space is T-compact (i.e. A T-compactness is
weak hereditary property).

Proof: Let A be T-closed subset of the T-compact space X and let A be an T-open cover of A by T-
open sets in X. Since A is T-closed, then X\A4 is T-open and A* = 1 U {X\A} is T-open cover of X.
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Since X is T-compact, it has a finite subcover, containing only finitely many members 04, ..., 0,, of 4

and may contain X\A.
Since X = (X\4) U U™, 0;
It follows that A ¢ Uj~, O; and A has a finite subcover.

Is the opposite implication true? Is every T-compact subset of a space is T-closed? Not necessarily.

The following though is true.

Definition 2.14: A topological space X is said to be T-Hausdorff provided that every pair of distinct

points of X, there exists two disjoint T-open sets each one contains one point but not the other.

Proposition 2.15: Each T-compact subset of T-Hausdorff X is T-closed.
Proof: To evidence that A is T-closed., we will evidence that its complement is T-open. Let x € X\A.

Then for each y € A there are disjoint sets U,, and 1, with x € V, and y € U,,. The collection of T-
open sets {Uy|y € A} forms an T-open cover of A. Since A is T-compact, this T-open cover has a finite

sub-cover, {Uy; = |i = 1, ...,n}. Let
n n
U= U in V= ﬂ Vyi
i=1 i=1

Now, any U,,; and V,,; are disjoint, we have U and V are disjoint. Also, A ¢ U and x € V. Thus, for
each point x € X\ A we have found T-open set, VV containing x which is disjoint from A. Thus, X\A is

T-open, and A is T-closed .
Corollary 2.16: A subset A of any T-compact T-Hausdorff is T-compact if and only if it is T-closed.

Proposition 2.17: Let X be T-compact space and Y be T-Hausdorff. Then T-irresolute function
f:X =Y is T-closed.

Proof: Clear from Corollary 2.11.

Proposition 2.18: If A and B are disjoint T-compact subsets of T-Hausdorff X, then there exist
disjoint T-open sets U and VV in X suchthat Ac Uand B € V.
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Proof: Assume A and B are T-compact sets in X suchthat An B = @, thatis A € X\B and B € X\A.
Since X is T-Hausdorff, then A and B are T-closed sets due to Proposition 2.15, so X\B and X\A are

T-open sets.

Corollary 2.19: If A and B are disjoint T-closed subsets of a T-compact and T-Hausdorff X, then there
exist disjoint T-open sets U and V in X suchthat A< Uand B € V.

This concludes the work. In the future, a new concept, namely Compactly T-closed, will be

presented, based on the concept of T-compact set.

Conclusions and future studies

The work in this research paper was focused on generalizing the concepts of compact sets according to
a new concept called T-open, and in the future the concept of compactly T-closed will be discussed
according to this new set.
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