

## On Compact Set Generated by T-open Sets

| <b>Authors Names</b>                                                                                                 | <b>ABSTRACT</b>                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Saad Mahdi Jaber<sup>a</sup></i><br><i>Marwah Yasir Mohsin<sup>b,*</sup></i>                                      | In this work, a novel definition of compactness in topological space, termed T-compact set, was introduced by relying on a new type of open set called T-open. A number of examples of the new concept were also given. Additionally, the conditions under which the concept of T-compact space were discussed. Finally, the propositions of the function through is transferred from one space to another were explained. |
| <b>Article History</b><br>Publication date: 31/12 /2025<br><b>Keywords:</b> T-open set, T-continuous, T-compact set. |                                                                                                                                                                                                                                                                                                                                                                                                                            |

### 1. Introduction

Jingcheng Tong(Jacksonville) [1] initiate the study of  $t$ -set in 1989. The concept of T-open set was defined J. M. Saad based on a foundational  $t$ -set collection, with subsequent show that the family of T-open sets forms a topological structure, this topology is distinguished by two properties: all closed sets and all  $t$ -sets in a space are T-open sets [2]. There are types of compact space known in ancient and modern times, such as: S-compact space which introduced by Travis Thompson in 1976 [3], and  $\theta$ -compact space which defined by Kohli and Das in 2006 [4].

In this paper, we discuss a new types called T-compact set and generalize the characterizations of this notion in light of new open sets. The interior points of  $A$  and closure set of  $A$  by  $A^\circ$ , ( $\overline{A}$ ) with respectively

**Definition 1.1 [1]:**  $A$  is called  $t$ -set of  $A^\circ = \overline{A}^\circ$ . The family of  $t$ -set denoted by  $ts$ .

**Definition 1.2 [2]:** Let  $(X, \tau)$  be a topological space,  $A \subseteq X$ . Then the T-closure set of  $A$  is defined by

$x \in \overline{A}^T$  if  $\forall U \in ts$ , such that  $U \cap A \neq \emptyset$ .

**Definition 1.3 [2]:** The set  $A \subseteq X$  is called  $T$ -closed if  $A = \overline{A}^T$ . The complement of  $T$ -closed is called  $T$ -open. The family of  $T$ -open ( $T$ -closed) set is denoted by  $TO(X)$ . ( $TC(X)$ ).

**Proposition 1.4 [2]:** A family of  $T$ -open set is topology.

**Definition 1.5 [2]:** Let  $A$  subset a space  $X$ , a point  $x \in A$  is called  $T$ -interior point of  $A$  if there exists an  $U \in ts$  such that  $x \in U \subseteq A$ , it is denoted  $A^{\circ T}$ .

<sup>a</sup>Department of Mathematics, Faculty of Education for Pure Science, University of Wasit, Wasit, Iraq, s.jaber@uowasit.edu.iq

<sup>b</sup>Department of Mathematics, Directorate-General of Education of Wasit, Wasit, Iraq, marwayasir91@gmail.com

**Proposition 1.6 [2]:** Let  $(X, \tau)$  be a topological space and  $A, B \subseteq X$ , then  $A$  is T-open set if and only if  $A = A^{\circ T}$ .

**Definition 1.7 [2]:** A function  $f: X \rightarrow Y$  is called T-continuous if the inverse image for any open set in  $X$  is T-open in  $Y$ .

**Note:** In fact, every open set in metrizable space is T-open.

**Definition 1.8[5]:** Let  $A$  be a subset of the topological space  $X$ . The open cover for  $A$  is a collection  $\lambda$  of open sets in  $X$ , whose union contains  $A$ .

**Definition 1.9[5]:** A topological space  $X$  is compact provided that every open cover of  $X$  has a finite subcover.

**Definition 1.10[5]:** A family  $A$  of subsets of a space  $X$  has the finite intersection property provided that every finite sub-collection of  $A$  has non-empty intersection.

## 2. T-Compact Spaces

**Definition 2.1:** Let  $A$  be a subset of the topological space  $X$ . The T-open cover for  $A$  is a collection  $\lambda$  of T-open sets whose union contains  $A$ . A subcover derived from the T-open cover  $\lambda$  is a subcollection  $\lambda'$  of  $\lambda$  whose union contains  $A$ .

**Example 2.2:** First of all, it is clear that every open set in any metrizable space is T-open set, therefore if  $A = [1,4]$  and consider the T-open cover  $\lambda = \{(z - 1, z + 1) | z \in \mathbb{Z}\}$ .

Consider the sub-cover  $\lambda' = \{(-1,1), (0,2), (1,3), (2,4), (3,5), (4,6)\}$  is a subcover of  $A$ , and happens to be the smallest subcover of  $\lambda$  that covers  $A$ .

**Definition 2.3:** A topological space  $X$  is T-compact provided that every T-open cover of  $X$  has a finite subcover.

This says that however we write  $X$  as a union of T-open sets, there is always a finite sub-collection  $\{O_i\}_{i=1}^n$  of these sets whose union is  $X$ . A subspace  $A$  of  $X$  is T-compact if  $A$  is a T-compact space in its subspace topology.

Since relatively T-open sets in the subspace topology are the intersections of T-open sets in  $X$  with the subspace  $A$ , the definition of T-compactness for subspaces can be restated as follows.

**Alternate definition:**

A subspace  $A$  of  $X$  is T-compact if and only if every T-open cover of  $A$  by T-open sets in  $X$  has a finite subcover.

**Examples 2.4:**

1. Every discrete space consisting of a finite number of points is T-compact.
2. The finite complement topology with real line  $\mathbb{R}$  is T-compact.
3. An infinite set  $X$  with the discrete topology is not T-compact.
4. Any open interval  $(r_1, r_2)$  is not T-compact.  $\lambda = \left\{ \left( r_1 + \frac{1}{s}, r_2 \right) \mid s = 2, \dots, \infty \right\}$  is T-open cover of  $(r_1, r_2)$ . However, no finite sub-collection of these sets will cover  $(r_1, r_2)$ .
5.  $\mathbb{R}^n$  is not T-compact for any positive integer  $n$ , since  $\lambda = \{B(0, s) \mid s = 1, \dots, \infty\}$  is T-open cover with no finite sub-cover.

**Proposition 2.5:** A space  $X$  is T-compact if and only if every family of T-closed sets in  $X$  with the finite intersection property has non-empty intersection.

This says that if  $F$  is a family of T-closed sets with the finite intersection property, then we must have that  $\bigcap_{\alpha} C_{\alpha} \neq \emptyset$ .

**Proof:** Assume that  $X$  is T-compact and let  $F = \{C_{\alpha} \mid \alpha \in I\}$  be a family of T-closed sets with the finite intersection property. We want to show that the intersection is empty. Let  $\lambda = \{O_{\alpha} = X \setminus C_{\alpha} \mid \alpha \in I\}$  is a collection of T-open sets in  $X$ . Then,

$$\bigcup_{\alpha \in I} O_{\alpha} = \bigcup_{\alpha \in I} X \setminus C_{\alpha} = X \setminus \bigcap_{\alpha \in I} C_{\alpha} = X \setminus \emptyset = X$$

Thus,  $\lambda$  is T-open cover for  $X$ . Since  $X$  is T-compact, it must have a finite subcover; i.e.,

$$X = \bigcup_{i=1}^n O_{\alpha_i} = \bigcup_{i=1}^n (X \setminus C_{\alpha_i}) = X \setminus \bigcap_{i=1}^n C_{\alpha_i}$$

This means that  $\bigcap_{i=1}^n C_{\alpha_i}$  must be empty, contradicting the fact that  $F$  has the finite intersection property. Thus, if  $F$  has the finite intersection property, then the intersection of all numbers of  $F$  must be non-empty.

**Proposition 2.6:** Let  $Y$  be a subspace of  $X$ . Then  $X$  is T-compact space if and only if  $Y$  is T-compact.

**Proof:** The proof begins by considering a family representing a T-open cover of  $Y$  space. Each set in this family is an intersection of  $Y$  with T-open set in  $X$  space. Therefore, the family of T-open cover will construct a T-open cover for  $X$  possessing a finite sub-cover. Consequently, the intersection of  $Y$  with this finite cover will be a finite cover of space  $Y$ . The opposite direction of the proof is almost direct direction.

**Proposition 2.7:** The union of two T-compact spaces is T-compact.

**Proof:** To evidence that  $A \cup B$  is T-compact, we will take T-open cover  $\{U_y | y \in A\}$  of it, clear that is T-open cover of  $A$  and  $B$ . So,  $\{U_y\}$  has finite sub-cover with respect a set  $A$  and  $B$ , thus the union of finite sub-cover is also. Hence  $A \cup B$  is T-compact.

**Definition 2.8:** A function  $f: X \rightarrow Y$  is called T-irresolute if the inverse image for any T-open set in  $Y$  is T-open in  $X$ .

**Definition 2.9:** A function  $f: X \rightarrow Y$  is called T-open if the image for any T-open set in  $X$  is T-open in  $Y$ .

**Proposition 2.10:** Let  $X$  be a T-compact space and  $f: X \rightarrow Y$  a T-irresolute function from  $X$  onto  $Y$ . Then  $Y$  is T-compact space.

**Proof:** We will outline this proof. Start with T-open cover for  $Y$ . Use the T-irresolution of  $f$  to pull it back to an T-open cover of  $X$ . Use T-compactness to extract a finite sub cover for  $X$ , and then use the fact that  $f$  is onto to reconstruct a finite subcover for  $Y$ .

**Corollary 2.11:** Let  $A$  be a T-compact set in a space  $X$  and  $f: X \rightarrow Y$  a T-irresolute function. The image  $f(A)$  in  $Y$  is a T-compact subset of  $Y$ .

**Corollary 2.12:** Let  $X$  be a compact space and  $f: X \rightarrow Y$  a T-continuous function from  $X$  onto metrizable space  $Y$ . Then  $Y$  is T-compact.

The T-compactness is not hereditary, because  $(0,1)$  is not a T-compact subset of the T-compact space  $[0,1]$ . It is closed hereditary.

**Proposition 2.13:** Each T-closed subset of a T-compact space is T-compact (i.e. A T-compactness is weak hereditary property).

**Proof:** Let  $A$  be T-closed subset of the T-compact space  $X$  and let  $\lambda$  be an T-open cover of  $A$  by T-open sets in  $X$ . Since  $A$  is T-closed, then  $X \setminus A$  is T-open and  $\lambda^* = \lambda \cup \{X \setminus A\}$  is T-open cover of  $X$ .

Since  $X$  is T-compact, it has a finite subcover, containing only finitely many members  $O_1, \dots, O_n$  of  $\lambda$  and may contain  $X \setminus A$ .

Since  $X = (X \setminus A) \cup \bigcup_{i=1}^n O_i$

It follows that  $A \subset \bigcup_{i=1}^n O_i$  and  $A$  has a finite subcover.

Is the opposite implication true? Is every T-compact subset of a space is T-closed? Not necessarily. The following though is true.

**Definition 2.14:** A topological space  $X$  is said to be T-Hausdorff provided that every pair of distinct points of  $X$ , there exists two disjoint T-open sets each one contains one point but not the other.

**Proposition 2.15:** Each T-compact subset of T-Hausdorff  $X$  is T-closed.

**Proof:** To evidence that  $A$  is T-closed., we will evidence that its complement is T-open. Let  $x \in X \setminus A$ . Then for each  $y \in A$  there are disjoint sets  $U_y$  and  $V_y$  with  $x \in V_y$  and  $y \in U_y$ . The collection of T-open sets  $\{U_y | y \in A\}$  forms an T-open cover of  $A$ . Since  $A$  is T-compact, this T-open cover has a finite sub-cover,  $\{U_{y_i} | i = 1, \dots, n\}$ . Let

$$U = \bigcup_{i=1}^n U_{y_i} \quad V = \bigcap_{i=1}^n V_{y_i}$$

Now, any  $U_{y_i}$  and  $V_{y_i}$  are disjoint, we have  $U$  and  $V$  are disjoint. Also,  $A \subset U$  and  $x \in V$ . Thus, for each point  $x \in X \setminus A$  we have found T-open set,  $V$  containing  $x$  which is disjoint from  $A$ . Thus,  $X \setminus A$  is T-open, and  $A$  is T-closed .

**Corollary 2.16:** A subset  $A$  of any T-compact T-Hausdorff is T-compact if and only if it is T-closed.

**Proposition 2.17:** Let  $X$  be T-compact space and  $Y$  be T-Hausdorff. Then T-irresolute function  $f: X \rightarrow Y$  is T-closed.

**Proof:** Clear from Corollary 2.11.

**Proposition 2.18:** If  $A$  and  $B$  are disjoint T-compact subsets of T-Hausdorff  $X$ , then there exist disjoint T-open sets  $U$  and  $V$  in  $X$  such that  $A \subseteq U$  and  $B \subseteq V$ .

**Proof:** Assume  $A$  and  $B$  are  $T$ -compact sets in  $X$  such that  $A \cap B = \emptyset$ , that is  $A \subseteq X \setminus B$  and  $B \subseteq X \setminus A$ . Since  $X$  is  $T$ -Hausdorff, then  $A$  and  $B$  are  $T$ -closed sets due to Proposition 2.15, so  $X \setminus B$  and  $X \setminus A$  are  $T$ -open sets.

**Corollary 2.19:** If  $A$  and  $B$  are disjoint  $T$ -closed subsets of a  $T$ -compact and  $T$ -Hausdorff  $X$ , then there exist disjoint  $T$ -open sets  $U$  and  $V$  in  $X$  such that  $A \subseteq U$  and  $B \subseteq V$ .

This concludes the work. In the future, a new concept, namely Compactly  $T$ -closed, will be presented, based on the concept of  $T$ -compact set.

### Conclusions and future studies

The work in this research paper was focused on generalizing the concepts of compact sets according to a new concept called  $T$ -open, and in the future the concept of compactly  $T$ -closed will be discussed according to this new set.

### ACKNOWLEDGMENT

We should like to thank all those who participated in one way or another in the achievement of this work.

### REFERENCES

- [1] Jingcheng Tong (Jacks-onville). On Decomposition of continuity in topological spaces. 1989
- [2] M. J., Saad, “On  $T$ -continuous map,” Wasit Journal for Pure sciences, Vol. 3 No. 1, pp. 38-41, 2024.
- [3] Thompson T., S-closed spaces, Proc. Amer. Math. Soc., 60, 335-338. 1976.
- [4] Kohli, J. K. and Das A. K., Class of Spaces Containing all Generalized Absolutely Closed (Almost Compact Spaces). Applied General Topology, 7(2), 233-244, 2006.
- [5] Willard, Stephen. General topology. Reading, Mass.: Addison-Wesley Pub. Co. ISBN 0-486-43479-6. (1970).