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In this work, a novel definition of compactness in topological space, termed T-

compact set, was introduced by relying on a new type of open set called T-open. 

A number of examples of the new concept were also given. Additionally, the 

conditions under which the concept of T-compact space were discussed. Finally, 

the propositions of the function through is transferred from one space to another 

were explained. 

 

1. Introduction  

Jingcheng Tong(Jacksonville) [1] initiate the study of  -set in 1989. The concept of T-open set was 

defined J. M. Saad based on a foundational t-set collection, with subsequent show that the family of T-

open sets forms a topological structure, this topology is distinguished by two properties: all closed sets 

and all t-sets in a space are T-open sets [2].There are types of compact space known in ancient and 

modern times, such as: S-compact space which introduced by Travis Thompson in 1976 [3], and -

compact space which defined by Kohli and Das in 2006 [4]. 

In this paper, we discuss a new types called T-compact set and generalize the characterizations of this 

notion in light of new open sets. The interior points of   and closure set of   by   , (    with 

respectively 

Definition 1.1 [1]:  is called t-set of     
 
. The family of t-set denoted by   .  

Definition 1.2 [2]: Let (     be a topological space,    . Then the  -closure set of   is defined by 

   
 
 if      , such that      .  

Definition 1.3 [2]: The set     is called  -closed if    
 
. The complement of   - closed is called 

 -open. The family of   -open ( -closed) set is denoted by   (   (  (   . 

Proposition 1.4 [2]:A family of  -open set is topology.  

Definition 1.5 [2]: Let   subset a space  , a point     is called  -interior point of   if there exists 

an      such that        it is denoted    .  
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Proposition 1.6 [2]: Let (     be a topological space and        then   is T-open set if and only if  

     . 

Definition 1.7 [2]: A function       is called T-continuous if the inverse image for any open set in 

  is T-open in  . 

Note: In fact, every open set in metrizable space is T-open. 

Definition 1.8[5]: Let   be a subset of the topological space  . The open cover for   is a collection   

of open sets in  , whose union contains  . 

Definition 1.9[5]: A topological space   is compact provided that every open cover of   has a finite 

subcover. 

Definition 1.10[5]: A family   of subsets of a space   has the finite intersection property provided 

that every finite sub-collection of   has non-empty intersection. 

2.  T-Compact Spaces  

Definition 2.1: Let   be a subset of the topological space  . The T-open cover for   is a collection   

of T-open sets whose union contains  . A subcover derived from the T-open cover   is a subcollection 

   of   whose union contains  .  

Example 2.2: First of all, it is clear that every open set in any metrizable space is T-open set, therefore 

if    [     and consider the T-open cover   {(             }. 

Consider the sub-cover   {(      (     (     (     (     (    } is a subcover of  , and happens 

to be the smallest subcover of    that covers  .  

Definition 2.3: A topological space   is T-compact provided that every T-open cover of   has a finite 

subcover.  

This says that however we write   an a union of T-open sets, there is always a finite sub-collection 

{  }   
  of these sets whose union is  . A subspace   of   is T-compact if   is a T-compact space in 

its subspace topology. 

Since relatively T-open sets in the subspace topology are the intersections of T-open sets in   with the 

subspace  , the definition of T-compactness for subspaces can be restated as follows.  
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Alternate definition:  

A subspace   of   is T-compact if and only if every T-open cover of   by T-open sets in   has a finite 

subcover.  

Examples 2.4:  

1. Every discrete space consisting of a finite number of points is T-compact. 

2. The finite complement topology with real line   is T-compact.  

3. An infinite set   with the discrete topology is not T-compact.  

4. Any open interval (       is not T-compact.   {(   
 

 
   )          } is T-open cover 

of  (      . However, no finite sub-collection of these sets will cover (      .  

5.    is not T-compact for any positive integer  , since   { (               } is T-open 

cover with no finite sub-cover.  

Proposition 2.5: A space   is T-compact if and only if every family of T-closed sets in   with the 

finite intersection property has non-empty intersection.  

This says that if   is a family of T-closed sets with the finite intersection property, then we must have 

that ⋂   
 
   .  

Proof: Assume that   is T-compact and let   {      } be a family of T-closed sets with the finite 

intersection property. We want to show that the intersection is empty. Let   {            } is a 

collection of T-open sets in  . Then,  

⋃  

 

   

 ⋃     

 

   

    ⋂  

 

   

       

Thus,   is T-open cover for  . Since   is T-compact, it must have a finite subcover; i.e., 

  ⋃   

  

   

 ⋃(     
)

 

   

   ⋂   

 

   

 

This means that ⋂    
 
    must be empty, contradicting the fact that   has the finite intersection 

property. Thus, if   has the finite intersection property, then the intersection of all numbers of   must 

be non-empty.  

Proposition 2.6: Let   be a subspace of  . Then   is T-compact space if and only if   is T-compact. 
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Proof: The proof begins by considering a family representing a T-open cover of    space. Each set in 

this family is an intersection of    with T-open set in   space. Therefore, the family of T-open cover 

will construct a T-open cover for   possessing a finite sub-cover. Consequently, the intersection of   

with this finite cover will be a finite cover of space  . The opposite direction of the proof is almost 

direct direction.  

Proposition 2.7: The union of two T-compact spaces is T-compact. 

Proof: To evidence that  ⋃  is T-compact, we will take T-open cover {      } of it, clear that is 

T-open cover of   and  . So, {  } has finite sub-cover with respect a set   and  , thus the union of 

finite sub-cover is also. Hence  ⋃  is T-compact.   

Definition 2.8: A function       is called T-irresolute if the inverse image for any T-open set in   

is T-open in  . 

Definition 2.9: A function       is called T-open if the image for any T-open set in   is T-open in 

 . 

Proposition 2.10: Let   be a T-compact space and       a T-irresolute function from   onto  . 

Then   is T-compac space.  

Proof: We will outline this proof. Start with T-open cover for  .Use the T-irresolution of   to pull it 

back to an T-open cover of  . Use T-compactness to extract a finite sub cover for  , and then use the 

fact that   is onto to reconstruct a finite subcover for  .  

Corollary 2.11: Let   be a T-compact set in a space   and       a T-irresolute function. The 

image  (   in   is a T-compact subset of   .  

Corollary 2.12: Let   be a compact space and       a T-continuous function from   onto 

metrizable space  . Then   is T-compact.  

The T-compactness is not hereditary, because (     is not a T-compact subset of the T-compact space 

[    . It is closed hereditary.  

Proposition 2.13: Each T-closed subset of a T-compact space is T-compact (i.e. A T-compactness is 

weak hereditary property).  

Proof: Let   be T-closed subset of the T-compact space   and let   be an T-open cover of   by T-

open sets in  . Since   is T-closed, then     is T-open and      {   } is T-open cover of  . 
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Since   is T-compact, it has a finite subcover, containing only finitely many members         of   

and may contain    .  

Since    (     ⋃   
 
    

It follows that   ⋃   
 
    and   has a finite subcover.  

Is the opposite implication true? Is every T-compact subset of a space is T-closed? Not necessarily. 

The following though is true.  

Definition 2.14: A topological space   is said to be T-Hausdorff provided that every pair of distinct 

points of  , there exists two disjoint T-open sets each one contains one point but not the other. 

Proposition 2.15: Each T-compact subset of T-Hausdorff   is T-closed.  

Proof: To evidence that   is T-closed., we will evidence that its complement is T-open. Let      . 

Then for each     there are disjoint sets    and    with      and     . The collection of T-

open sets {      } forms an T-open cover of  . Since   is T-compact, this T-open cover has a finite 

sub-cover, {            }. Let  

  ⋃   

 

   

                     ⋂   

 

   

 

Now, any     and     are disjoint, we have   and   are disjoint. Also,     and    . Thus, for 

each point       we have found T-open set,   containing   which is disjoint from  . Thus,     is 

T-open, and   is T-closed .  

Corollary 2.16: A subset   of any T-compact T-Hausdorff is T-compact if and only if it is T-closed.  

Proposition 2.17: Let   be T-compact space and   be T-Hausdorff. Then T-irresolute function 

       is T-closed. 

Proof: Clear from Corollary 2.11.  

Proposition 2.18: If   and   are disjoint T-compact subsets of T-Hausdorff   , then there exist 

disjoint T-open sets   and   in   such that     and    .  
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Proof: Assume A and B are T-compact sets in   such that      , that is       and      . 

Since   is T-Hausdorff, then   and   are T-closed sets due to Proposition 2.15, so     and     are 

T-open sets. 

Corollary 2.19: If   and   are disjoint T-closed subsets of a T-compact and T-Hausdorff  , then there 

exist disjoint T-open sets   and   in   such that     and    .  

     This concludes the work. In the future, a new concept, namely Compactly T-closed, will be 

presented, based on the concept of T-compact set. 

Conclusions and future studies   

The work in this research paper was focused on generalizing the concepts of compact sets according to 

a new concept called T-open, and in the future the concept of compactly T-closed will be discussed 

according to this new set.  
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