

Asymptotic Sequences in Fuzzy Metric Space

⁽¹⁾Noori F. AL-Mayahi, ⁽²⁾Sarim H. Hadi ⁽¹⁾College of Computer Science and Mathematics, University of AL –Qadisiyah ⁽²⁾Collage of Education for Pure Science, University of Al-Basrah nfam60@yahoo.com & sarim.h2014@yahoo.com

Abstract:

On the aim and properties of asymptotic sequences, in this paper we introduce the concepts asymptotic sequences in fuzzy metric space. Also, we conclude a concept convergent in space and to study relationship between uniformly continuous and asymptotic sequences. Finally, other properties were investigate in the asymptotic sequences.

Keywords: Asymptotic sequences, relationship between uniformly continuous and asymptotic sequences, convergence asymptotic sequences.

2010 AMS Classification: 54 A40.

1. Introduction:

In 1965, the concept of fuzzy sets was introduced by Zadeh [5]. With the concept of fuzzy sets, the fuzzy metric space was introduced by I. Kramosil and J. Michalek [4] in 1975. Helpern [9] in 1981first proved a fixed point theorem for fuzzy functions. Also M. Grabiec [7] in 1988 proved the contraction principle in the setting of the fuzzy metric spaces. Moreover, A. George and P. Veeramani [2] in1994 modified the notion of fuzzy metric spaces with the help of t-norm, and fuzzy matric space are studied by more authors (see[8]).

In this paper we introduce the concepts asymptotic sequences in fuzzy metric space. Also, we conclude a concept convergent in space and to study relationship between uniformly continuous and asymptotic sequences. Finally, other properties were investigated in the asymptotic sequences.

2. Preliminaries:

Definition(2.1),[1]: Let X be an arbitrary set, a fuzzy set M on X is a function from X to I Let $I^X = \{M: X \to I\}$. i.e. $M \in I^X$.

Definition(2.2),[1]: A binary operation $*: [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous (t-norm) on the set [0,1], if * is satisfying the following conditions:

 $\begin{array}{l} (\text{TN-1}) \ a \ast b = b \ast a \ \text{for all } a, b \in [0,1] \quad (\text{ i.e. } \ast \text{ is commutative}). \\ (\text{TN-2}) \ a \ast (b \ast c) = (a \ast b) \ast c \ \text{for all } a, b, c \in [0,1], (\text{ i.e. } \ast \text{ is associative}). \\ (\text{TN-3}) \quad a \ast 1 = a \ \text{for all } a \in [0,1]. \\ (\text{TN-4}) \ \text{If } \ b, c \in [0,1] \ \text{such that } b \leq c, \ \text{then } a \ast b \leq a \ast c \ \text{for all } a \in [0,1] \ , (\text{ i.e. } \ast \text{ is monotone}). \end{array}$

Definition (2.3),[8]: Let X be a non-empty set, * be a continuous t-norm on[0,1].

A function $M: X \times X \times (0, \infty) \rightarrow [0, 1]$ is called a fuzzy metric function on X if it satisfies the following axioms: for all x, y, z \in X and for all t, s > 0

(FM-1)M(x, y, t) > 0.

(FM-2) $M(x, y, t) = 1 \Leftrightarrow x = y$.

(FM-3) M(x, y, t) = M(y, x, t).

(FM-4) $M(x, y, t + s) \ge M(x, z, t) * M(z, y, s).$

(FM-5) $M(x, y, \circ)$: $(0, \infty) \rightarrow [0, 1]$ is continuous.

Definition (2.4),[8]: Let (X, M,*) be a fuzzy metric space. Then

A sequence $\{x_n\}$ in X is said to be convergent to x in X if for each

 $r \in (0, 1)$ and each t > 0, there exist $k \in \mathbb{Z}^+$ such that $M(x_n, x, t) > 1 - r$ for all $n \ge k$ (or equivalent $\lim_{n \to \infty} M(x_n, x, t) = 1$).

A sequence $\{x_n\}$ in X is said to be Cauchy sequence if for each $r \in (0, 1)$ and each t > 0, there exist $k \in Z^+$ such that $M(x_n, x_m, t) > 1 - r$ for all $n, m \ge k$ (or equivalent $\lim_{n,m\to\infty} M(x_n, x_m, t) = 1$).

Definition (2.5),[2]: Let (X, M, *) and (Y, M, *) be two fuzzy metric space. The function $f: X \to Y$ is said to be continuous at $x_0 \in X$ if for all $r \in (0,1)$ and t > 0 there exist $r_1 \in (0,1)$ and s > 0 such that for all $x \in X$

 $M(x, x_0, s) > 1 - r_1$ implies $M(f(x), f(x_0), t) > 1 - r$

The function f is called a continuous function if it is fuzzy continuous at every point.

Definition (2.6), [8]: A function f from fuzzy metric space $(X, M_1, *)$ to $(Y, M_2, *)$ is said to be uniformly continuous if for each 0 < r < 1 and t > 0 there exists $0 < r_1 < 1$ and s > 0 such that

 $M_2(f(x), f(y), t) > 1 - r$ whenever $M_1(x, y, s) > 1 - r_1$.

3. Main Result:

Definition(3.1): Two sequence $\{x_n\}$ and $\{y_n\}$ in fuzzy metric space (X, M, *) is said to be asymptotic sequences denoted by $(\{x_n\} = \{y_n\})$, if they satisfy the following condition: for all 0 < r < 1, t > 0 there exist $k \in Z^+$ such that

 $M(x_n, y_n, t) > 1 - r \quad \text{for all } n > k.$

Theorem(3.2): $\{x_n\}, \{y_n\}$ is asymptotic sequences in fuzzy metric space iff $\lim_{n \to \infty} M(x_n, y_n, t) = 1$

Proof: Suppose $\{x_n\} \cong \{y_n\}$

For a given 0 < r < 1, t > 0 there exists $k \in Z^+$ such that $M(x_n, y_n, t) > 1 - r$

Thus $1 - M(x_n, y_n, t) < r$ for all n > k

Therefore $\lim_{n\to\infty} M(x_n, y_n, t) = 1$

Conversely : If $\lim_{n\to\infty} M(x_n, y_n, t) = 1$

then for every 0 < r < 1, t > 0 there exists $k \in \mathbb{Z}^+$ such that

$$1 - M(x_n, y_n, t) < r$$
 for all $n > k$.

Thus $M(x_n, y_n, t) > 1 - r$ for all n > k

Hence $\{x_n\} \cong \{y_n\}$.

Example (3.3): Let $X = \{x_n : x_n \text{ is converge in } [0,1]\}$, let a * b = ab for all $a, b \in [0,1]$ and $M(x_n, y_n, t) = \frac{t}{t + |x_n - y_n|}$

For all 0 < r < 1, t > 0

Let $x_n = \{1 + \frac{1}{n}\}_{n \in \mathbb{Z}^+}$ and $y_n = \{1 + \frac{2}{n}\}_{n \in \mathbb{Z}^+}$ $\lim_{n \to \infty} M(x_n, y_n, t) = \frac{t}{t + \left|1 + \frac{1}{n} - 1 - \frac{2}{n}\right|} = 1$

Then
$$\{x_n\} \asymp \{y_n\}$$
.

Theorem (3.4): Let $f:(X, M_1, *) \to (Y, M_2, *)$ be a function between two fuzzy metric space, then the following are equivalent:

(1) f is uniformly continuous.

(2) If $\{x_n\}$ and $\{y_n\}$ are asymptotic sequence in X then $\{f(x_n)\}$ and $\{f(y_n)\}$ are asymptotic sequence in Y.

Proof: (1) \Rightarrow (2)

Let $\{x_n\}$ and $\{y_n\}$ are asymptotic sequence

For all 0 < r < 1, t > 0 there exist $0 < r_1 < 1$, s > 0 such that

 $M_2(f(x), f(y), t) > 1 - r$ Whenever $M_1(x, y, s) > 1 - r_1$

Since $\{x_n\} \cong \{y_n\}$, there exist $k \in \mathbb{Z}^+$ such that $M_1(x_n, y_n, s) > 1 - r_1$

$$\implies M_2(f(x_n), f(y_n), t) > 1 - r$$

Hence $\{f(x_n)\}$ and $\{f(y_n)\}$ are asymptotic sequence and therefore

$$\{f(x_n)\} \asymp \{f(y_n)\}.$$

$$(2) \Longrightarrow (1)$$

Suppose f is not uniformly continuous

There exist 0 < r < 1, t > 0 for all $0 < r_1 < 1$, s > 0 such that

 $M_1(x, y, s) > 1 - r_1$ but $M_2(f(x), f(y), t) \le 1 - r$

Since $\{x_n\} = \{y_n\}$ there exist $k \in \mathbb{Z}^+$ such that $M_1(x_n, y_n, s) > 1 - r_1$ for all n > k

But $\{f(x_n)\}\$ and $\{f(y_n)\}\$ are not asymptotic sequence (which is contradiction). Hence f is uniformly continuous.

Theorem (3.5) : Let $\{x_n\}$ and $\{y_n\}$ be two convergent sequence in fuzzy metric space with the same limit iff $\{x_n\} = \{y_n\}$.

Proof: (\Rightarrow) Let $\{x_n\}$ and $\{y_n\}$ be a convergent sequence in (X, M, *)

For all 0 < r < 1 and > 0, there exist $0 < r_1 < 1$ such that $(1 - r_1) * (1 - r_1) > 1 - r_1$

Since $x_n \to x$, there exist $k_1 \in \mathbb{Z}^+$ such that

$$M\left(x_n, x, \frac{t}{2}\right) > 1 - r_1$$
 for all $n > k_1$

Since $y_n \to x$, there exist $k_2 \in Z^+$ such that $M\left(y_n, x, \frac{t}{2}\right) > 1 - r_1$ for all $n > k_2$

Taking $k = max\{k_1, k_2\}$

 $M(x_n, y_n, t) \ge M(x_n, x, \frac{t}{2}) * M(y_n, x, \frac{t}{2}) \ge (1 - r_1) * (1 - r_1) > 1 - r$ for all n > kNow : $\{x_n\} \cong \{y_n\}$. Hence **Conversely:** suppose $x_n \rightarrow x$. Let 0 < r < 1, t > 0, there exist $0 < r_1 < 1$ Such that $(1 - r_1) * (1 - r_1) > 1 - r_1$ Since $y_n \to y$, then for all $0 < r_1 < 1$, t > 0 such that $M\left(y_n, y, \frac{t}{2}\right) > 1 - r_1$ Now: $M(x_n, y, t) \ge M\left(x_n, y_n, \frac{t}{2}\right) * M(y_n, y, \frac{t}{2}) \ge (1 - r_1) * (1 - r_1) > 1 - r$ $\Rightarrow x_n \rightarrow y$ Which is contradiction because the converge is unique Hence x = y. **Theorem (3.6):** (Ξ) is an equivalence relation on X. **Proof:** Let $\{x_n\}, \{y_n\}, \{z_n\} \in X$ For all 0 < r < 1 there exist $k \in \mathbb{N}$ and for all n > k(i) Since $M(x_n, x_n, t) = 1 > 1 - r$ Therefore $\{x_n\} \asymp \{x_n\}$ (ii) If $\{x_n\} = \{y_n\}$ we have to prove $\{y_n\} = \{x_n\}$ Since $\{x_n\} \cong \{y_n\} \Longrightarrow M(x_n, y_n, t) > 1 - r$ But $M(x_n, y_n, t) = M(y_n, x_n, t)$ $\Rightarrow M(y_n, x_n, t) > 1 - r$ Hence $\{y_n\} \cong \{x_n\}$. (iii) Suppose $\{x_n\} \cong \{y_n\}$ and $\{y_n\} \cong \{z_n\}$ We have to prove $\{x_n\} \cong \{z_n\}$ Let 0 < r < 1, t > 0 there exist $0 < r_1 < 1$ such that $(1 - r_1) * (1 - r_1) > 1 - r$ Since $\{x_n\} \cong \{y_n\} \Longrightarrow M(x_n, y_n, t) > 1 - r_1$ But $\{y_n\} \cong \{z_n\} \Longrightarrow M(y_n, z_n, t) > 1 - r_1$ Now $M(x_n, z_n, t) \ge M(x_n, y_n, t) * M(y_n, z_n, t) \ge (1 - r_1) * (1 - r_1) > 1 - r$ Hence $\{x_n\} \cong \{z_n\}$

Theorem (3.7): If $\{x_n\}, \{y_n\}$ be asymptotic sequence in fuzzy metric space and let $\{x_{n_k}\}, \{y_{n_k}\}$ are two subsequence of $\{x_n\}, \{y_n\}$, then $\{x_{n_k}\} \equiv \{y_{n_k}\}$

Proof: Let $\{x_{n_k}\}$, $\{y_{n_k}\}$ are two subsequences of $\{x_n\}$, $\{y_n\}$

We have to prove $\{x_{n_k}\} \equiv \{y_{n_k}\}$

Let 0 < r < 1, t > 0 there exist $0 < r_1 < 1$ such that

 $(1 - r_1) * (1 - r_1) * (1 - r_1) > 1 - r$

Since $\{x_n\} \cong \{y_n\} \Longrightarrow M(x_n, y_n, t) > 1 - r_1$ for all n > k

Now: $M(x_{n_k}, y_{n_k}, t) \ge M(x_{n_k}, x_{n'\frac{1}{3}}) * M(x_n, y_n, \frac{t}{3}) * M(y_n, y_{n_k}, \frac{t}{3})$

$$\geq (1 - r_1) * (1 - r_1) * (1 - r_1) > 1 - r$$
 for all $n_k > k$

Thus $\{x_{n_k}\} \asymp \{y_{n_k}\}$

Theorem (3.8) : In fuzzy metric space if $\{x_n\} = \{y_n\}$ and $\{w_n\} = \{z_n\}$, then $\{x_nw_n\} = \{y_nz_n\}$.

Proof : For all 0 < r < 1 and t > 0, there exist $0 < r_1 < 1$ such that $(1 - r_1) * (1 - r_1) > 1 - r$

Since $\{x_n\} = \{y_n\}$, then there exist $k_1 \in Z^+$

implies $M\left(x_n, y_n, \frac{t}{2}\right) > 1 - r_1$ for all $n > k_1$

Since $\{w_n\} \cong \{z_n\} \Longrightarrow$ there exist $k_2 \in \mathbb{Z}^+$

such that $M\left(w_n, z_n, \frac{t}{2}\right) > 1 - r_1$ for all $n > k_2$

Taking $k = \max\{k_1, k_2\}$

Now: $M(x_n w_n, y_n z_n, t) \ge M(x_n, y_n, \frac{t}{2}) * M(w_n, z_n, \frac{t}{2})$ $\ge (1 - r_1) * (1 - r_1) > 1 - r \text{ for all } n > k.$

الملخص

حول فكرة وخصائص المتتابعات المتناقلة، في هذا البحث قدمنا مفهوم المتتابعات المتناقلة في الفضاء المتري الضبابي اضافة الى ذلك قدمنا مفهوم التقارب للمتتابعات المتناقلة في هذا الفضاء و العلاقة بين المتتابعات المتناقلة والاستمر ارية المنتظمة و بالأخير تم طرح خصائص اخرى للمتتابعات المتناقلة

References

[1] A. George and P. Veramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64, (1994), 395-399.

[2] A. Sapena, A contribution to the study of fuzzy metric space ,Applied General Topology, V. 2, No.1 ,63-75,(2001).

[3] I. H. Radhi, Some Problems Related to Fuzzy Metric Space, Master Thesis, University of AL- Qadissiya, (2012).

[4] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11, (1975), 326-334.

[5] L.A. Zadeh , Fuzzy sets , Inform. Control 8 ,(1965), 338-353.

[6] M. Aphane, On Some Results of Analysis in Metric Spaces and Fuzzy Metric Spaces, **Master Thesis**, University of South Africa, (2009).

[7] M. Grabiec, Fixed points in fuzzy metric space, Fuzzy Sets and Systems, 27, (1988), 385-389.

[8] S. H. Hadi and Noori F. almayahi," Some New result of Compact sets in fuzzy metric space", Journal of alQadisiyah for computer science and mathematics, Vol. 6, No. 2, (2014), pp. 77-82.

[9] S. Heipern, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl. 83, (1981), 566-569.