

Journal of Iraqi Al-Khwarizmi Society (JIKhS)

Year 2018 pages: 205-219

Volume:2 Special issue of the first international scientific conference of Iraqi Al-Khawarizmi Society 28-29 March 2018

On Artin Cokernel of The Quaternion Group Q_{2m} When $m{=}2^h$,h any positive integers Number

Sahar Jaafar Mahmood
Department of Mathematics
College of Computer Science and Information
Technology
University of Al_Qadisiyah
Sahar.abu malah@qu.edu.iq

Nesir Rasool Mahmood

Department of Mathematics

College of Education for Girls

University of Kufa

naseer.mahmood@uokufa.edu.iq

key words: Artin cokernel, Quaternion group, cyclic decomposition, cyclic decomposition, Artin characters

Abstract

In this article we find the cyclic decomposition of the finite abelian factor group $AC(G) = \overline{R}(G)/T(G)$ where $G = Q_{2m}$ and $m = 2^h$, h any positive integers—and Q_{2m} is the Quaternion group of order 4m.

(the group of all Z-valued generalized characters of G over the group of induced unit characters from all cyclic subgroups of G).

We find that the cyclic decomposition $AC(Q_{2m})$ depends on the elementary divisor of m

If $m = 2^h$, hany positive integers, then:

$$AC(Q_{2m}) = \bigoplus_{i=1}^{h+1} C_2$$

Moreover, we have also found the general form of Artin characters $table\ Ar(Q_{2m})$ when m is an even number .

1. Introduction

Moreover, representation and characters theory provide applications, not only in other branches of mathematics but also in physics and chemistry.

Fore a finite group G, the factor group $\overline{R}(G)/T(G)$ is called the Artin cokernel of G denoted AC(G), $\overline{R}(G)$ denotes the abelian group generated by Z-valued characters of G under the operation of pointwise addition, T(G) is a subgroup of $\overline{R}(G)$ which is generated by Artin characters.

A well-known theorem which is due to Artin asserted that T(G) has a finite index in $\overline{R}(G)$ i.e, $[\overline{R}(G):T(G)]$ is finite so AC(G) is a finite abelian group.

The exponent of AC(G) is called Artin exponent of G and denoted by A(G).

Year 2018

pages: 205-219

In 1967, T.Y.Lam [12] proves a sharp form of Artin theorem and he determines the least positive integer A(G) such that $[\overline{R}(G):T(G)]=A(G)$.

In 1970, K. Yamacchi studies the 2 – part of A(G). In 1976, G. David [6] studies A(G) of arbitrary characters of cyclic subgroups.

In 1995, N. R. Mahmood [10] studied the cyclic decomposition of the factor group $cf(Q_{2m},Z)/\overline{R}(Q_{2m})$ and he found the rational valued characters table of the Quaternion group Q_{2m} .

In 1996, K. Knwabuez [9] studied A(G) of p-groups and in 2000, H. R. Yassein [7] found AC(G) for the group $\bigoplus_{i=1}^{n} \mathbb{Z}_{p}$.

In 2001 A. M. Ibraheem [3] studied A(G) of alternating group. In 2002, K. Sekieguchi [8] studied the irreducible Artin characters of p-group.

In 2006, A.S. Abed [1] found in her thesis the Artin characters table of dihedral group D_n when n is an odd number. In 2007, R.N. Mirza [12] found in her thesis Artin cokernel of the dihedral group D_n when n is an odd number.

In 2007 A.H. Mohammed [5] found in her thesis Artin cokernel of the dihedral group D_n when n is an even number and in 2008 A.H. Abdul-Mun'em [4] found in her thesis Artin cokernel of the quaternion group Q_{2m} when m is an odd number.

Proposition (1.1): [11]

If p is a prime number and s is a positive integer, then

$$M(C_{p^s}) = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & 1 & 1 & \dots & 1 \\ 0 & 0 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

which is of order $(s+1)\times(s+1)$.

Example (1.2):

Consider the matrix $M(C_{64})$, we can find it by proposition (1.1)

$$M(C_{64}) = M(C_{2^6}) = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

It is 7×7 square matrix.

Year 2018

pages: 205-219

Proposition (1.3): [11]

The general form of the matrices $P(C_{p^s})$ and $W(C_{p^s})$ are:

which is $(s+1)\times(s+1)$ square matrix.

 $W(C_{p^s}) = I_{s+1}$, where I_{s+1} is an identity matrix and

$$D(C_{p^s}) = diag\{\underbrace{1,1,1,\ldots,1}_{S+1}\}.$$

Remarks (1.4): [2]

If $m = 2^h$, h is any positive integer, then we can write $M(C_m)$ as the following:

Which is (h+1)×(h+1) square matrix, $R_1(C_m)$ is the matrix obtained by omitting the last two rows $\{0,0,...,1,1\}$ and $\{0,0,...,0,0,1\}$ and the last two columns $\{1,1,...,1,0\}$ and $\{1,1,...,1,1\}$ from the matrix $M(C_{\gamma^k})$ in proposition (1.1).

Proposition (1.5): [10]

The general form of the rational valued character table of the Quaternion group Q_{2m} when $m=2^h$, h is any positive integer and it is given by:

$$= (Q_{2m}) = = (Q_{2\cdot 2^h}) =$$

Journal of Iraqi Al-Khwarizmi Society (JIKhS)

Year 2018 pages: 205-219

Volume:2 Special issue of the first international scientific conference of Iraqi Al-Khawarizmi Society 28-29 March 2018

Γ-CLA SSES	[1]	$\left[x^{2^{h}}\right]$	$\left[x^{2^{h-1}}\right]$	$\left[x^{2^{h-2}}\right]$	•••	$\left[\left[x^{2} \right] \right]$	[x]	[y]	[xy]
$\theta_{\scriptscriptstyle 1}$	2^h	-2^{h}	0	0	•••	0	0	0	0
θ_2	2^{h-1}	2^{h-1}	- 2 ^{h-1}	0	•••	0	0	0	0
θ_3	2^{h-2}	2^{h-2}	2^{h-2}	-2^{h-2}	•••	0	0	0	0
:	•••	•••	•••	:	•••	:	:	:	:
$ heta_{l-2}$	2	2	2	2	•••	-2	0	0	0
$ heta_{l-1}$	1	1	1	1	•••	1	-1	-1	1
θ_l	1	1	1	1	•••	1	1	-1	-1
θ_{l+1}	1	1	1	1	•••	1	-1	1	-1
$ heta_{l+2}$	1	1	1	1	• • •	1	1	1	1

Where 1 is the number of $\Gamma\text{-classes}$ of C_m .

Theorem (1.6): [9]

Let M be an n×n matrix with entries in a principal ideal domain R, then there exists matrices P and W such that:

- 1 P and W are invertible.
- 2 P M W = D .
- 3 D is a diagonal matrix .
- 4 -If we denote D $_{ii}$ by d $_i$ then there exists a natural number m; $0 \le m \le n$

such that j > m implies $d_j = 0$ and $j \le m$ implies $d_j \ne 0$ and $1 \le j \le m$ implies $d_j \mid d_{j+1}$.

2. The Main Results

$\underline{Theorem(2.1)}:$

The Artin characters table of the Quaternion $\ group\ Q_{2m}$ when $\ m$ is an even number is given as follows :

 $Ar(Q_{2m}) =$

Volume:2 Special issue of the first international scientific conference of Iraqi Al-Khawarizmi Society 28-29 March 2018

Year 2018

pages: 205-219

Γ		[y]	[xy]				
-CLASSES	[1]	$\left[x^{m} \right]$					
$ CL_{\alpha} $	1	1	2	2	2	m	M
$\left C_{Q_{2m}}(CL_{\alpha})\right $	4m	4m	2m	2m	2m	4	4
Φ_1	2Ar(C	_{2m})				0	0
Φ_2						0	0
:						::	:
Φ_l						0	0
Φ_{l+1}	M	m	0	0	0	2	0
Φ_{l+2}	M	m	0	0	0	0	2

where l is the number of Γ -classes of C_{2m} and Φ_j , $1 \le j \le l+2$ are the Artin characters of the quaternion group Q_{2m} .

Proof:-

Let $g \in Q_{2m}$

Case (I):

If H is a subgroup of C_{2m} =<x>, $1 \le j \le l$ and φ the principal character of H , then by using theorem (2.1.5)

$$\Phi_{j}(g) = \begin{cases} \frac{\left|C_{-G}(g)\right|}{\left|C_{H}(g)\right|} \sum_{i=1}^{n} \varphi(h_{i}) & \text{if} \quad h_{i} \in H \cap CL(g) \\ 0 & \text{if} \quad H \cap CL(g) = \phi \end{cases}$$

(i) If g = 1

$$\Phi_{j}(1) = \frac{\left| C_{Q_{2m}}(1) \right|}{\left| C_{H}(1) \right|} \cdot \varphi(1) = \frac{4m}{\left| C_{H}(1) \right|} \cdot 1 = \frac{2 \cdot 2m}{\left| C_{H}(1) \right|} \cdot 1 = \frac{2 \left| C_{C_{2m}}(1) \right|}{\left| C_{H}(1) \right|} \cdot 1 = 2 \cdot \varphi'_{j} \left(1 \right)$$

$$= 2\varphi'_{j} \left(1 \right) \quad \text{since } \mathbf{H} \cap \mathbf{CL}(1) = \{1\}$$

and $arphi_{}^{}$ is the principal character where $\,arphi_{j}^{\prime}\,$ is the Artin characters of C_{2m} .

(ii) If
$$g = x^m$$
 and $g \in H$

Year 2018 pages: 205-219

Volume:2 Special issue of the first international scientific conference of Iraqi Al-Khawarizmi Society 28-29 March 2018

$$\Phi_{j}(g) = \frac{\left|C_{\varrho_{2m}}(g)\right|}{\left|C_{H}(g)\right|} \cdot \varphi(g) = \frac{4m}{\left|C_{H}(g)\right|} \cdot 1 \quad \text{since } H \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1$$

$$= \frac{2 \cdot 2m}{\left|C_{H}(g)\right|} \cdot \varphi(g) = \frac{2\left|C_{C_{2m}}(g)\right|}{\left|C_{H}(g)\right|} \cdot \varphi(g) = 2 \cdot \varphi'_{j}(g)$$

(iii) If $g \neq \chi^m$ and $g \in H$

$$\Phi_{j}(g) = \frac{|C_{Q_{2m}}(g)|}{|C_{H}(g)|} (\varphi(g) + \varphi(g^{-1}))$$

$$= \frac{2m}{|C_{H}(g)|} (1+1) \qquad \text{since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{1}) = 1$$

$$= \frac{2|C_{C_{2m}}(g)|}{|C_{H}(g)|} = 2.\varphi'_{j}(g)$$

(iv) If $g \notin H$

$$\Phi_{j}(g)=2.0=2.\varphi'_{j}(g)$$
 since $H \cap CL(g)=\phi$

Case (II):

If
$$H = \langle y \rangle = \{1, y, y^2, y^3\}$$

(i) If g = 1

$$\Phi_{l+1}(1) = \frac{\left| C_{Q_{2m}}(1) \right|}{\left| C_H(1) \right|} \cdot \varphi(1) = \frac{4m}{4} \cdot 1 = m \qquad \text{since } H \cap CL(1) = \{1\}$$

(ii) If $g = x^m = y^2$ and $g \in H$

$$\Phi_{l+1}(g) = \frac{\left|C_{Q_{2m}}(g)\right|}{\left|C_{H}(g)\right|} \cdot \varphi(g) = \frac{4m}{4} \cdot 1 = m \quad \text{since } H \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1$$

(iii) If $g \neq x^m$ and $g \in H$, i.e. $\{g = y \text{ or } g = y^3\}$

Year 2018

pages: 205-219

$$\Phi_{l+1}(g) = \frac{|C_{Q_{2m}}(g)|}{|C_H(g)|} (\varphi(g) + \varphi(g^{-1}))$$

$$= \frac{4}{4} (1+1) = 2 \quad \text{since} \quad H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1$$

Otherwise

$$\Phi_{l+1}(g) = 0$$
 since $H \cap CL(g) = \phi$

Case (III):

If
$$H = \langle xy \rangle = \{1, xy, (xy)^2 = y^2 = x^m, (xy)^3 = xy^3\}$$

(i) If
$$g = 1$$

$$\Phi_{l+2}(g) = \frac{\left|C_{Q_{2m}}(1)\right|}{\left|C_{H}(1)\right|} \cdot \varphi(1) = \frac{4m}{4} \cdot 1 = m \quad \text{since } H \cap CL(1) = \{1\}$$

(ii) If
$$g = (xy)^2 = y^2 = x^m$$
 and $g \in H$

$$\Phi_{l+2}(g) = \frac{\left|C_{Q_{2m}}(g)\right|}{\left|C_{H}(g)\right|} \cdot \varphi(g) = \text{ since } H \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1$$

(iii) If
$$g \ne (xy)^2 = y^2 = x^m$$
 and $g \in H$, i.e. $\{g = xy \text{ or } g = (xy)^3\}$

$$\Phi_{l+2}(g) = \frac{\left|C_{Q_{2m}}(g)\right|}{\left|C_{H}(g)\right|} \left(\varphi(g) + \varphi(g^{-1})\right)$$

$$=\frac{4}{4}(1+1) = 2$$
 since $H \cap CL(g) = \{g, g^{-1}\}$ and $\varphi(g) = \varphi(g^{-1}) = 1$

Otherwise

$$\Phi_{l+2}(g) = 0$$
 since $H \cap CL(g) = \phi$

Example (2.2):

To construct $Ar(Q_{256})$ by using theorem (2.1) we get the following table:

$$Ar(Q_{256}) = Ar(Q_{2^8}) =$$

Year 2018

pages: 205-219

Γ-CLASSES	[1]	$[x^{128}]$	[X 64]	$[x^{32}]$	$[x^{16}]$	$[x^8]$	$[x^4]$	$[x^2]$	[X]	[у]	[xy]
$ CL_{\alpha} $	1	1	2	2	2	2	2	2	2	128	128
$ C_{Q_{2m}}(CL_a) $	512	512	256	256	256	256	256	256	256	4	4
Φ_1	512	0	0	0	0	0	0	0	0	0	0
Φ_2	256	256	0	0	0	0	0	0	0	0	0
Φ_3	128	128	128	0	0	0	0	0	0	0	0
Φ_4	64	64	64	64	0	0	0	0	0	0	0
Φ_5	32	32	32	32	32	0	0	0	0	0	0
Φ_6	16	16	16	16	16	16	0	0	0	0	0
Φ ₇	8	8	8	8	8	8	8	0	0	0	0
Φ_8	4	4	4	4	4	4	4	4	0	0	0
Φ9	2	2	2	2	2	2	2	2	2	0	0
Φ_{10}	128	128	0	0	0	0	0	0	0	2	0
Φ ₁₁	128	128	0	0	0	0	0	0	0	0	2

Proposition (2.3):

If $m=2^h$, have positive integers, then the matrix $M(Q_{2m})$ of the quaternion group Q_{2m} is:

Which is (h+4)× (h+4) square matrix, $R_1(C_{2m})$ is similar to the matrix in remarks (1.4).

Proof:

Year 2018

pages: 205-219

By theorem (2.1) we obtain the Artin characters table $Ar(Q_{2m})$ of the quaternion group, and from the proposition (1.5) we get the rational valued characters ($\equiv (Q_{2m})$) table of the quaternion group .

Thus , by the definition of $\ M(G)\ \ we \ can\ \ find the matrix \ M(Q_{2m})$.

$$M(Q_{2m}) = Ar(Q_{2m}). (\equiv (Q_{2m}))^{-1}$$

$$=\begin{bmatrix} 2 & 2 & 2 & \cdots & \cdots & 2 & 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & \cdots & \cdots & 2 & 1 & 1 & 1 & 1 \\ 0 & 0 & 2 & \cdots & \cdots & 2 & 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & & \vdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 2 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & \cdots & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & \cdots & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Which is $(h+4)\times (h+4)$ square matrix.

Example (2.4):

Consider the quaternion group $\;\;Q_{256}\;\;$, we can find the matrix $\;\;M(Q_{256})\;$

by using two ways:

First: by the definition of M(G)

Year 2018

pages: 205-219

$$M(Q_{256}) = M(Q_{2^8}) = Ar(Q_{2^8}) \cdot (\equiv (Q_{2^8}))^{-1}$$

$$\frac{1}{256} \quad \frac{1}{384} \quad \frac{1}{384} \quad \frac{1}{384} \quad \frac{1}{384} \quad \frac{1}{384} \\
\frac{1}{256} \quad \frac{1}{384} \quad \frac{1}{384} \quad \frac{1}{384} \quad \frac{1}{384} \\
\frac{1}{128} \quad \frac{1}{192} \quad \frac{1}{192} \quad \frac{1}{192} \quad \frac{1}{192} \\
\frac{1}{164} \quad \frac{1}{96} \quad \frac{1}{96} \quad \frac{1}{96} \quad \frac{1}{96} \quad \frac{1}{96} \\
\frac{1}{32} \quad \frac{1}{48} \quad \frac{1}{48} \quad \frac{1}{48} \quad \frac{1}{48} \quad \frac{1}{48} \\
\frac{1}{16} \quad \frac{1}{24} \quad \frac{1}{24} \quad \frac{1}{24} \quad \frac{1}{24} \quad \frac{1}{24} \\
\frac{1}{8} \quad \frac{1}{12} \quad \frac{1}{12} \quad \frac{1}{12} \quad \frac{1}{12} \quad \frac{1}{12} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{3} \quad \frac{1}{6} \\
0 \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{3} \quad \frac{1}{6} \quad \frac{1}{6}$$

Which is 11×11 square matrix .

Second: By proposition (2.3)

Year 2018

pages: 205-219

$$R_{1}(C_{2^{8}}) = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Which is 7×7 square matrix .

Then

Which is 11×11 square matrix .

Proposition (2.5):

If $m=2^h$, h any positive integers then the matrices $P(Q_{2m})$ and $W(Q_{2m})$ are taking the forms :

Year 2018

pages: 205-219

And

Where I_{h+1} is the identity matrix, they are (h+4)× (h+4) square matrix

Proof:

By using theorem (1.6) and taking the matrix $M(Q_{2m})$ from proposition (2.3) and the above forms of $P(Q_{2m})$ and $W(Q_{2m})$ then we have :

 $P(Q_{2m}) . M(Q_{2m}) . W(Q_{2m}) =$

Year 2018

pages: 205-219

$$\begin{bmatrix} 2 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= D(Q_{2m}) = diag\{2,2,...,2,1,1,1\}$$

Which is $(h+4)\times (h+4)$ square matrix.

Example (2.7):

Consider the quaternion group Q_{512} ,by proposition (2.3) we can find the matrix $M(Q_{512})$ and from proposition (2.5) , we find the matrices $P(Q_{512})$ and $W(Q_{512})$:

Where $Q_{512} = Q_{2^9}$

$$P(Q_{2^9}) . M(Q_{2^9}) . W(Q_{2^9}) =$$

_											_	,	_											_	
1	-1	0	0	0	0	0	0	0	0	0	0		2	2	2	2	2	2	2	2	1	1	1	1	
0	1	-1	0	0	0	0	0	0	0	0	0		0	2	2	2	2	2	2	2	1	1	1	1	
0	0	1	-1	0	0	0	0	0	0	0	0		0	0	2	2	2	2	2	2	1	1	1	1	
0	0	0	1	-1	0	0	0	0	0	0	0		0	0	0	2	2	2	2	2	1	1	1	1	
0	0	0	0	1	-1	0	0	0	0	0	0		0	0	0	0	2	2	2	2	1	1	1	1	
0	0	0	0	0	1	-1	0	0	0	0	0		0	0	0	0	0	2	2	2	1	1	1	1	
0	0	0	0	0	0	1	-1	0	0	0	0		0	0	0	0	0	0	2	2	1	1	1	1	
0	0	0	0	0	0	0	1	-1	0	0	0		0	0	0	0	0	0	0	2	1	1	1	1	
0	0	0	0	0	0	0	0	1	-1	-1	1		0	0	0	0	0	0	0	0	1	1	1	1	
0	0	0	0	0	0	0	0	0	1	0	-1		0	0	0	0	0	0	0	0	0	1	0	1	
0	0	0	0	0	0	0	0	0	0	1	-1		0	1	1	1	1	1	1	1	0	0	1	1	
0	0	0	0	0	0	0	0	0	0	0	1_		0	1	1	1	1	1	1	1	1	0	0	1	

Journal of Iraqi Al-Khwarizmi Society (JIKhS)

Year 2018 pag

pages: 205-219

Volume:2 Special issue of the first international scientific conference of Iraqi Al-Khawarizmi Society 28-29 March 2018

 $= diag\{2,2,2,2,2,2,2,2,1,1,1\}$

Which is 12×12 square matrix .

Theorem (2.8):

If $m = 2^h$, h any positive integers then the cyclic decomposition of $AC(Q_{2m})$ is :

$$AC(Q_{2m}) = \bigoplus_{i=1}^{h+1} C_2$$

Proof:

By using proposition(4.2.4) we find $M(Q_{2m})$ and by proposition(4.2.6) we have $P(Q_{2m})$ and $W(Q_{2m})$

Hence

$$P(Q_{2m}) . M(Q_{2m}) . W(Q_{2m}) = diag\{2,2,...,2,2,1,1,1\}$$

$$=\!diag\{d_1,\,d_2,\,d_3,\ldots,\,d_h,\,d_{h+1},\,d_{h+2},\,d_{h+3},\,d_{h+4}\}$$

Then by theorem(3.4.10) we have

$$AC(Q_{2m}) = \bigoplus_{i=1}^{h+1} C_2$$

Example(2.9):

Consider the groups Q_{32768} , Q_{131072} , $Q_{1048576}$, $Q_{67108869}$, $Q_{268435456}$,then :

Year 2018 pages: 205-219

Volume: 2 Special issue of the first international scientific conference of Iraqi Al-Khawarizmi Society 28-29 March 2018

1-
$$AC(Q_{32768}) = AC(Q_{2^{15}}) = \bigoplus_{i=1}^{15} C_2$$

2-
$$AC(Q_{131072}) = AC(Q_{2^{17}}) = \bigoplus_{i=1}^{17} C_2$$

3-
$$AC(Q_{1048576}) = AC(Q_{2^{20}}) = \bigoplus_{i=1}^{20} C_2$$

$$4 - AC(Q_{67108869}) = AC(Q_{2^{26}}) = \bigoplus_{i=1}^{26} C_2$$

5-
$$AC(Q_{268435456}) = AC(Q_{2^{28}}) = \bigoplus_{i=1}^{28} C_2$$

في هذا البحث قمنا بايجاد التجزئة الدائرية للزمرة الابيلية الكسرية المنتهية \overline{R} (G)/T(G) عندما \overline{R} و \overline{R} عدد زوجي ، الزمرة الرباعية العمومية ذات الرُّتبة 4m (زمرة كل الشواخص العمومية ذات القيم الصحيحة للزمرة G على زمرة الشواخص المحتثة من الشواخص الاحادية للزمرة الجزئية الدائرية).

وجدنا ان التجزئة الدائرية للزمرة $AC(Q_{2m})$ تعتمد على القواسم الاولية للعدد m حيث وجدنا انه :

اذا كان
$$m=2^h$$
 عدد صحيح موجب فان $AC(Q_{2m})=\bigoplus_{i=1}^{h+1}C_2$ كذلك وجدنا الصيغة العامة لجدول شواخص ارتن $Ar(Q_{2m})=Ar(Q_{2m})$ عندما $Ar(Q_{2m})=Ar(Q_{2m})$

References

- [1] A.H. Abdul-Mun'em , "On Artin Cokernel Of The Quaternion Group Q_{2m} When m is An Odd Number ", M.Sc. thesis , University of Kufa, 2008.
- [2] A.H. Mohammed, "On Artin Cokernel Of finite Groups", M.Sc. thesis, M.Sc. thesis, University of Kufa, 2007.
- [3] A.M. Basheer, "Representation Theory of Finite Groups", AIMS, South Africa, 2006.
- [4] A.M. Ibraheem, "On Another Definition of Artin Exponent", M.Sc. thesis, University of AL-Mustansiriya, 2001.
- [5] A.S. Abid, "Artin's Characters Table Of Dihedral Group For Odd Number", M.Sc. thesis, M.Sc. thesis, University of Kufa, 2006.
- [6] C.Curits and I.Reiner, "Methods of Representation Theory with Application to Finite Groups And Order", John wily& sons, New York, 1981.
- [7] H.R. Yassien, "On Artin Cokernel of Finite Groups", M.Sc. thesis, University of Babylon, 2000.
- [8] K. Knwabusz, "Some Definitions of Artin's Exponent of Finite Group", USA, National foundation Math, GR, 1996.
- [9] K. Sekigvchi, "Extensions And The Irreducibilities of The Induced Characters of Cyclic p-Group ", Hiroshima math Journal, p 165-178, 2002.
- [10] N. R. Mahamood "The Cyclic Decomposition of the Factor Group $cf(Q_{2m},Z)/\overline{R}(Q_{2m})$ ", M.Sc. thesis, University of Technology,
- [11] R.N. Mirza, "On Artin Cokernel of Dihedral Group D_n When n is An Odd Number ",M.Sc. thesis, University of Kufa, 2007
- [12] T.U. Lam, "Artin Exponent of Finite Group", University of Columbia, Journal of Algebra, 9,94-119, New York, 1968.