

Journal of Iraqi Al-Khwarizmi Society (JIKhS)

Volume:2 Special issue of the first international scientific conference of Iraqi Al-Khawarizmi Society 28-29 March 2018

Intuitionistic fuzzy prime d-ideal of d-algebra

Ali Khalid Hasan

Directorate General of Education in Karbala province, Ministry of Education, Iraq

E-mail: almosaoy.ali@gmail.com

Keywords: d-algebra, d-ideal, prime ideal, intuitionistic fuzzy set, fuzzy set. MSC: 03E72, 03F55, 03625

ABSTRACT: In this paper we introduce the concept of intuitionistic fuzzy prime d-ideals of d-algebra, and we study several interesting properties and investigate some relation on intuitionistic fuzzy prime d-ideal and intuitionistic fuzzy prime BCK-ideal in d-algebra.

1. Introduction

BCK-algebra is a classe of abstract algebras introduced by Y. Imai and K. Iseki [5,12]. A d-algebra is a useful generalization of BCK-algebra was introduced by J. Negger and H. S. Kim [3]. J. Negger, Y. B. Jun and H. S. Kim [4] discussed ideal theory in d-algebra. After the introduction of intuitionistic fuzzy set by Atanassov in 1986 [6], there was a number of generalizations of this concept. This concept was generalizations for fuzzy set concept which was introduced by Zadeh in 1965 [7]. In [10] Y. B. Jun, J. Neggers and H. S. Kim apply the ideal theory in fuzzy d-ideals of d-algebras. Y. B. Jun, H. S. Kim and D.S. Yoo in [10] introduced the notion of intuitionistic fuzzy d-algebra. We introduce the notion of intuitionistic fuzzy d-ideals of d-algebra and some relation on intuitionistic fuzzy prime d-ideal and intuitionistic fuzzy prime BCK-ideal in d-algebra.

2. Background

Definition (2.1): [3] A d-algebra is any non-empty set X with a binary operation * and a constant 0 which satisfies that:

I. a * a = 0II. 0 * a = 0III. If a * b = b * a = 0 then a = b

 $\forall a, b \in X$. We will refer to a * b by ab, and it is said to be commutative if x(xy) = y(yx) for all $x, y \in X$, and y(yx) is denoted by $(x \land y)$. Every set X in the following is a d-algebra

Definition (2.2): [4] In a d-algebra X the set $\phi \neq A \subseteq X$ is called a d-subalgebra of X if $ab \in A$ whenever $a, b \in A$. And if $\phi \neq A \subseteq X$, then A is called a BCK-ideal of X if it satisfies: (D_0) $0 \in A$

 (D_1) $ab \in A$ and $b \in A$ implies $a \in A$.

Definition (2.3) :[4] In A d-algebra (X; *, 0), the $\phi \neq A \subseteq X$. A is called a d-ideal if it satisfies: (D_1) $ab \in A$ and $b \in A$ then $a \in A$. (D_2) $a \in A$ and $b \in X$ then $ab \in A$, i. e. $AX \subseteq A$.

Definition (2.4): [7] A fuzzy set η in a non-empty set X is a map from X into [0,1] of the real numbers. A *level subset* of a fuzzy set

 η in X, is the set $\eta_t = \{a \in X, \eta(a) \ge t\}$, for all $t \in [0,1]$.

Definition (2.5): [8] A fuzzy set η is called a fuzzy d-subalgebra if it satisfies $\eta(ab) \ge \min\{\eta(a), \eta(b)\}$, for all $a, b \in X$. And it's called a fuzzy BCK-ideal if it satisfies that :

1) $\eta(0) \ge \eta(a)$, for all $a \in X$ 2) $\eta(a) \ge \min\{\eta(ab), \eta(b)\}$, for all $a, b \in X$

Definition (2.6): [11] Let η be a fuzzy set, then η is called a fuzzy d-ideal of X if it satisfies: $(Fd_1) \eta(a) \ge \min\{\eta(ab), \eta(b)\}$, and $(Fd_2) \eta(ab) \ge \eta(a)$. for all $a, b \in X$.

Definition (2.7) [10]: If $r \in [0,1]$ and a fuzzy set v in a non empty set of X, the set $U(v,r) = \{a : v(a) \ge r\}$ is called an upper r-level cut of v, and the set $L(v(a), r) = \{a : v(a) \le r\}$ is called a lower r-level cut of v.

Definition (2.8) [6]: An IFS " intuitionistic fuzzy set " A in a set X is an object having the form $A = \{ < a, \alpha_A(a), \beta_A(a) >: a \in X \}$, such that $\alpha_A: X \to [0,1]$ and $\beta_A: X \to [0,1]$ denoted the degree of membership (namely $\alpha_A(a)$) and the degree of non membership (namely $\beta_A(a)$) for any elements $a \in X$ to the set A, and $0 \le \alpha_A(a) + \beta_A(a) \le 1$, for all $a \in X$.

To simplicity, we shall use $A = \langle \alpha_A, \beta_A \rangle$ instead of $A = \{\langle \alpha, \alpha_A(\alpha), \beta_A(\alpha) \rangle : \alpha \in X\}$.

Definition (2.9) [9]: If A is an *IFS* from non empty set X, we define

(i) $\Box A = \{ < a, \alpha_A(a) : a \in X > \} = \{ < a, \alpha_A(a), 1 - \alpha_A(a) : a \in X > \} = \{ < a, \alpha_A(a), \overline{\alpha_A}(a) > \}$

 $\text{(ii)} \diamond A = \{ < a, 1 - \beta_A(a) > : a \in X \} = \{ < a, 1 - \beta_A(a), \beta_A(a) : a \in X \} = \{ < a, \overline{\beta_A}(a), \beta_A(a) > \}$

Definition (2.10) [10] : Let X be a d-algebra. An *IFS* $A = \langle \alpha_A, \beta_A \rangle$ in X is called an intuitionistic fuzzy d-algebra if satisfies $\alpha_A(ab) \geq \min\{\alpha_A(a), \alpha_A(b)\}$ and $\beta_A(ab) \leq \max\{\beta_A(a), \beta_A(b)\}$, for all $a, b \in X$.

Proposition(2.11) [10]: Every *IFS* d-algebra $A = \langle \alpha_A, \beta_A \rangle$ of X satisfies $\alpha_A(0) \geq \alpha_A(a)$ and $\beta_A(0) \leq \beta_A(a) \forall a \in X$.

Definition (2.12) [10]: An *IFS* $A = \langle \alpha_A, \beta_A \rangle$ in *X* is called an intuitionistic fuzzy BCK-ideal of *X* if it satisfies that:

- (i) $\alpha_A(0) \ge \alpha_A(a)$, $\beta_A(0) \le \beta_A(a)$
- (ii) $\alpha_A(a) \ge \min\{\alpha_A(ab), \alpha_A(b)\}$
- (iii) $\beta_A(a) \le \max\{\beta_A(ab), \beta_A(b)\}$, for all $a, b \in X$

Definition(2.13): [1] An intuitionistic fuzzy d-ideal of X " shortly IFd - ideal " is the *IFS* $A = \langle \alpha_A, \beta_A \rangle$ in X with the following inequalities :

 $\begin{aligned} (IFd_1) \ \alpha_A(a) &\geq \min\{\alpha_A(ab), \alpha_A(b)\}\\ (IFd_2) \ \beta_A(a) &\leq \max\{\beta_A(ab), \beta_A(b)\}\\ (IFd_3) \ \alpha_A(ab) &\geq \alpha_A(a) \end{aligned}$

 $(IFd_4) \ \beta_A(ab) \le \beta_A(a)$, for all $a, b \in X$

Lemma (2.14): [1] An IFS $A = \langle \alpha_A, \beta_A \rangle$ is an IFd - ideal of X if and only if α_A and $\overline{\beta_A}$ are a fuzzy d-ideals.

Theorem (2.15): [1] Let $A = \langle \alpha_A, \beta_A \rangle$ be an *IFS* in *X*. Then $A = \langle \alpha_A, \beta_A \rangle$ is an *IFd* – *ideal* of *X* if and only if $\Box A = \{\langle \alpha_A, \overline{\alpha_A} \rangle\}$ and $\Diamond A = \{\langle \overline{\beta_A}, \beta_A \rangle\}$ are *IFd* – *ideal* of *X*.

Theorem (2.16): [1] " An IFS $A = \langle \alpha_A, \beta_A \rangle$ is an *IFd* – *ideal* of X if and only if for all $s, t \in [0,1]$ the sets $U(\alpha_A, t)$ and $L(\beta_A, s)$ are either empty or d-ideal of X. "

Theorem (2.17): [1] " If an *IFS* $A = \langle \alpha_A, \beta_A \rangle$ is an *IFd* -ideal of X, then the sets $X_{\alpha} = \{x \in X : \alpha_A(x) = \alpha_A(0)\}$ and $X_{\beta} = \{x \in X : \beta_A(x) = \beta_A(0)\}$ are d-ideal of X."

3. Intuitionistic fuzzy prime d-ideal

Definition(3.1): In a commutative d-algebra X, a d-ideal I is said to be prime if $a \land b \in I$ implies $a \in I$ or $b \in I$, for all $a, b \in X$.

Example (3.2): Let $X = \{0, m, n, \hat{r}, \hat{s}\}$ be a d-algebra with the following table

*	0	ŋ	η	ŕ	Ś
0	0	0	0	0	0
ŋ	ŋ	0	ŋ	0	ŋ
η	η	η	0	ŕ	0
ŕ	ŕ	ŕ	η	0	η
Ś	ŕ	ŕ	ŋ	ŋ	0

We can take $I = \{0, m\}$, which is a prime d-ideal

Definition(3.3): An *IFd* – *ideal* $A = < \alpha_A, \beta_A > \text{of } X$ is an intuitionistic fuzzy prime d-ideal " shortly *IFPd* – *ideal* " in X if the *IFS* in X with the following inequalities :

 $(IFPd_1) \alpha_A(a \wedge b) \le \max\{\alpha_A(a), \alpha_A(b)\}$

 $(IFPd_2) \ \beta_A(a \land b) \ge \min\{\beta_A(a), \beta_A(b)\}, \text{ for all } a, b \in X$

Example (3.4) : Let $X = \{0, p, q\}$ with the following table

*	0	р	q
0	0	0	0
р	q	0	q
q	р	р	0

Note that if $\alpha_A(a) = \begin{cases} 0.9 & ifa = 0\\ 0.01 & ifa = p,q \end{cases}$, $\beta_A(a) = \begin{cases} 0.1 & ifa = 0\\ 0.5 & ifa = p,q \end{cases}$, so $A = \langle \alpha_A, \beta_A \rangle$ is IFd - ideal by [1], and it is clear that $A = \langle \alpha_A, \beta_A \rangle$ is an IFPd - ideal. Remark (3.5): It is easy to show that every IFPd - ideal is an IFP - BCK - ideal.

The converse of this remark cannot be true in general, and the next example showing that

Example (3.6) : Let $X = \{0, m, \eta, \rho, \}$ with the following table

*	0	ŋ	η	ρ
0	0	0	0	0
ŋ	ŋ	0	0	0
η	η	ŋ	0	0
ρ	ρ	η	ŋ	0

Let $A = \langle \alpha_A, \beta_A \rangle$ be an IFS in X, define $\alpha_A(0) = 1$, $\alpha_A(m) = 0.9$, $\alpha_A(n) = 0.5$, $\alpha_A(p) = 0$

 $\beta_A(0) = 0$, $\beta_A(m) = 0.1$, $\beta_A(n) = 0.5$, $\beta_A(p) = 1$, Then $A = \langle \alpha_A, \beta_A \rangle$ in X is an IFP - BCK - ideal of X but it is not an IFP - ideal (in fact it is not IFd - ideal), where $\alpha_A(n) = 0.5 \geq \min\{\alpha_A(nm), \alpha_A(m)\} = 0.9$.

Theorem (3.7) : If $\{A_i, i \in \Lambda\}$ is an arbitrary family of *IFPd* – *ideal*, then $\bigcap A_i$ is an *IFPd* – *ideal*, when $\bigcap A_i = \{ \langle a, \Lambda \alpha_{A_i}(a), \vee \beta_{A_i}(a) | a \in X \}$

Proof: Since $\alpha_A(a \wedge b) \leq \max\{\alpha_A(a), \alpha_A(b)\}$ and $\beta_A(a \wedge b) \geq \min\{\beta_A(a), \beta_A(b)\} \forall a, b \in X$. Now for all $i \in \Lambda \land \alpha_{A_i}(a \wedge b) \leq \Lambda\{\max\{\alpha_{A_i}(a), \alpha_{A_i}(b)\}\} \leq \{\max\{\wedge \alpha_{A_i}(a), \wedge \alpha_{A_i}(b)\}\}$, and

 $\forall \beta_{A_i}(a \land b) \ge \forall \{\min\{\beta_{A_i}(a), \beta_{A_i}(b)\}\} \ge \{\min\{\forall \beta_{A_i}(a), \forall \beta_{A_i}(b)\}\}$

Hence $\bigcap A_i = \{ \langle a, \land \alpha_{A_i}(a) , \lor \beta_{A_i}(a) | a \in X \}$ is an *IFPd* - *ideal*.

Lemma (3.8): An IFS $A = \langle \alpha_A, \beta_A \rangle$ is an IFP d - ideal of X if and only if α_A and $\overline{\beta_A}$ are a fuzzy prime d-ideals.

proof: Suppose that $A = \langle \alpha_A, \beta_A \rangle$ an *IFPd* – *ideal* of X. Since $A = \langle \alpha_A, \beta_A \rangle$ is an *IFd* – *ideal* (by Theorem (3.5)), so (by Lemma (2.14)) α_A and $\overline{\beta_A}$ are a fuzzy d-ideals. Now for all $a, b \in X$ we get $\alpha_A(a \wedge b) \leq \max\{\alpha_A(a), \alpha_A(b)\}$ and $\beta_A(a \wedge b) \geq \min\{\beta_A(a), \beta_A(b)\}$,

Now $\overline{\beta_A}(a \wedge b) = 1 - \beta_A(a \wedge b) \ge 1 - \min\{\beta_A(a), \beta_A(b)\}$ = $\max\{1 - \beta_A(a), 1 - \beta_A(b)\}$ = $\max\{\overline{\beta_A}(a), \overline{\beta_A}(b)\}$

Hence α_A and $\overline{\beta_A}$ are a fuzzy prime d-ideals . The converse is clear.

Theorem (3.9): Let $A = \langle \alpha_A, \beta_A \rangle$ be an *IFPd* – *ideal* of X, then $\Box A = \{\langle \alpha_A, \overline{\alpha_A} \rangle\}$ and $\langle A = \{\langle \overline{\beta_A}, \beta_A \rangle\}$ are *IFPd* – *ideals* of X.

proof : Since $A = \langle \alpha_A, \beta_A \rangle$ is an *IFPd* – *ideal*, we get that $\Box A = \{\langle \alpha_A, \overline{\alpha_A} \rangle\}$ and $\langle A = \{\langle \overline{\beta_A}, \beta_A \rangle\}$ are *IFd* – *ideals* (by Theorem (2.15)). So for all $a, b \in X$ we get $\alpha_A(a \wedge b) \leq \max\{\alpha_A(a), \alpha_A(b)\}$, then $1 - \alpha_A(a \wedge b) \geq 1 - \max\{\alpha_A(a), \alpha_A(b)\}$

$$\geq \min\{1 - \alpha_A(a), 1 - \alpha_A(b)\}$$
$$\geq \min\{\overline{\alpha_A}(a), \overline{\alpha_A}(b)\}$$

Hence $\Box A = \{ < \alpha_A, \overline{\alpha_A} > \}$ is an *IFPd* - *ideal* of X.

And
$$\beta_A(a \wedge b) \ge \min\{\beta_A(a), \beta_A(b)\}$$
,
Now $\overline{\beta_A}(a \wedge b) = 1 - \beta_A(a \wedge b) \le 1 - \min\{\beta_A(a), \beta_A(b)\} \le \max\{1 - \beta_A(a), 1 - \beta_A(b)\}$
 $\le \max\{\overline{\beta_A}(a), \overline{\beta_A}(b)\}$

Hence $\diamond A = \{ \langle \overline{\beta_A}, \beta_A \rangle \}$ is an *IFPd* - *ideal* of X.

Theorem (3.10): $A = \langle \alpha_A, \beta_A \rangle$ is an *IFPd* – *ideal* if and only if for all $s, t \in [0,1]$ the sets $U(\alpha_A, t)$ and $L(\beta_A, s)$ are prim d-ideals.

proof: Let $A = \langle \alpha_A, \beta_A \rangle$ be an *IFPd* - *ideal* of *X*, so it is an *IFd* - *ideal*, and let $U(\alpha_A, t), L(\beta_A, s)$ non empty set for any $s, t \in [0,1]$. So (by Theorem (2.16)), $U(\alpha_A, t), L(\beta_A, s)$ are d-ideal. Now let $a, b \in X$ such that $a \wedge b \in U(\alpha_A, t)$ this implies $\alpha_A(a \wedge b) \geq t$, and $\alpha_A(b) \geq t$ then $\alpha_A(a \wedge b) \leq \max\{\alpha_A(a), \alpha_A(b)\}$, and hence $\max\{\alpha_A(a), \alpha_A(b)\} \geq \alpha_A(a \wedge b) \geq t$. Then $\alpha_A(a) \geq t$ or $\alpha_A(b) \geq t$ so that $a \in U(\alpha_A, t)$ or $b \in U(\alpha_A, t)$. Hence $U(\alpha_A, t)$ is a prime d-ideal in *X*. In the same way we can find that $L(\beta_A, s)$ is a prime d-ideal in *X*.

Conversely, suppose that for all $s, t \in [0,1]$, the set $U(\alpha_A, t)$ and $L(\beta_A, s)$ are prime d-ideals. Then $U(\alpha_A, t)$ and $L(\beta_A, s)$ are d-ideals of X. Since $A = \langle \alpha_A, \beta_A \rangle IFd - ideal$ by (theorem 2.16). If $A = \langle \alpha_A, \beta_A \rangle$ is not IFPd - ideal of X, then there exist $a, b \in X$ such that $\alpha_A(a \wedge b) > \max\{\alpha_A(a), \alpha_A(b)\}$. Let $t = \frac{1}{2}[(\alpha_A(a \wedge b) + \max\{\alpha_A(a), \alpha_A(b)\}]$, this implies $(\alpha_A(a \wedge b) > t > \max\{\alpha_A(a), \alpha_A(b)\}$. we get that $a \wedge b \in U(\alpha_A, t)$, but $a \notin U(\alpha_A, t)$ and $b \notin U(\alpha_A, t)$ which is a contradiction. Hence $A = \langle \alpha_A, \beta_A \rangle$ is an IFPd - ideal of X.

Theorem (3.11): If an *IFS* $A = \langle \alpha_A, \beta_A \rangle$ is an *IFPd* -ideal, then the sets $X_{\alpha} = \{a \in X : \alpha_A(a) = \alpha_A(0)\}$ and $X_{\beta} = \{a \in X : \beta_A(a) = \beta_A(0)\}$ are prime d-ideals.

proof: Let $a \wedge b \in X_{\alpha}$, so $\alpha_A(a \wedge b) = \alpha_A(0)$. Since $A = \langle \alpha_A, \beta_A \rangle$ is an *IFPd* -ideal, then $\alpha_A(a \wedge b) \leq \max\{\alpha_A(a), \alpha_A(b)\}$, but $\alpha_A(0) \geq \alpha_A(a)$, so $\alpha_A(0) = \max\{\alpha_A(a), \alpha_A(b)\}$. Now either $\alpha_A(a) = \alpha_A(0)$ and this implies $a \in X_{\alpha}$, or $\alpha_A(b) = \alpha_A(0)$ and hence $b \in X_{\alpha}$. Thus X_{α} is a prime d-ideal.

Now let $a \wedge b \in X_{\beta}$. Then $\beta_A(a \wedge b) = \beta_A(0)$, so $\beta_A(a \wedge b) = \beta_A(0) \ge \min\{\beta_A(a), \beta_A(b)\}$ (since $A = \langle \alpha_A, \beta_A \rangle$ is an *IFPd* - *ideal*), but $\beta_A(0) \le \beta_A(a)$, so either $\beta_A(a) = \beta_A(0)$ then $a \in X_{\beta}$, or $\beta_A(b) = \beta_A(0)$ then $b \in X_{\beta}$. Thus X_{β} is a prime d-ideal.

The proof of the next tow propositions is clear.

Proposition (3.12): Let $A = \langle \alpha_A, \beta_A \rangle$ be an *IFPd* – *ideal*, then the sets $P_1 = \{a \in X : \alpha_A(a) = 0\}$ and $P_2 = \{a \in X : \beta_A(a) = 0\}$ either empty or prime d-ideals.

Proposition (3.13) : Let $A = \langle \alpha_A, \beta_A \rangle$ be an *IFPd* – *ideal*, then the sets $I_1 = \{a \in X : \alpha_A(a) = 1\}$ and $I_2 = \{a \in X : \beta_A(a) = 1\}$ are either empty or prime d-ideals.

ا**لخلاصة :** قدمنا في هذا البحث مفهوم مثالي d الأولي الضبابي البديهي وتطرقنا إلى العديد من الخصائص المهمة حول هذا المفهوم وبعض ارتباطاته بالإضافة إلى دراسة بعض العلاقات على مثالي d البديهي الأولى ومقارنته بمثالي BCK البديهي الأولى في جبر d .

REFERENCES

- A. K. Hasan, "On Intuitionistic fuzzy d-ideal of d-algebra", Journal University of Kerbala, Vol. 15 No.1 Scientific. 2017 161-169
- [2] D. Coker, "An introduction to intuitionistic fuzzy topological spaces", Fuzzy Sets and Systems 88 (1997), 81–89.
- [3] J. Neggers and H. S. Kim, " on d-algebra ", Math. Slovaca . 49(1999) No.1, 19-26.
- [4] J. Neggers; Y. B. Jun; H. S. Kim, " On d-ideals in d-algebras ", Mathematica Slovaca. 49 (1999), No. 3, 243--251
- [5] K. Iseki, " An algebra Relation with Propositional Calculus " Proc. Japan Acad, 42 (1966) 26-29.
- [6] K. T. Atanassov,"Intuitionistic fuzzy sets", Fuzzy sets and Systems 35 (1986), 87–96.
- [7] L. A. Zadeh, "Fuzzy set ",Inform. And Control. 8(1965), 338-353.
- [8] M. Akram K. H. Dar " On Fuzzy d-algebras ", Journal of Mathematics 37(2005), 61-76
- [9] P. A.Ejegwa, S.O. Akowe, P.M. Otene, J.M. Ikyule, "An Overview On Intuitionistic Fuzzy Sets "International Journal of scientific & technology research, 3(2014), 3, 2277-8616
- [10] Y. B. Jun, H. S. Kim and D.S. Yoo, "Intuitionistic fuzzy d-algebra", Scientiae Mathematicae Japonicae Online, e-(2006), 1289–1297.
- [11] Y. B. Jun, J. Neggers, and H. S. Kim, "Fuzzy d-ideals of d-algebras", J. Fuzzy Math. 8(2000), No. 1, 123–130.
- [12] Y. Iami and K. Iseki, " On Axiom System of Propositional Calculi XIV " Proc. Japan Acad, 42 (1966) 19-20.