

G-Projective Modules

Adel Salim Tayyah

Alaa Hussein Hammadi

College of Computer Science and Information Technology, University of Al-Qadisiyah

adel.tayh@qu.edu.iq

alaa.hammadi@qu.edu.iq

Key words: Strongly *G*-projective and *G*-projective modules, t-semisimple modules (rings), injective modules, Z_2 -torsion and nonsingular modules.

2010 Mathematics subject Classification: 16D10, 16D40, 16D80, 16D50.

Abstract. We introduce G-projective modules as a dualization of s-injective modules. Some new equivalent statements of t-semisimple modules are obtained by using the new concept.

1. Introduction

Throughout our paper every rings are associative with 1, and all modules are unitary right *R*-modules. By J(M) (resp., $Z(M_R)$, $Z_2(M_R)$, $soc(M_R)$, $S(M_R)$, $S = End(M_R)$) we indicate the Jacobson radical (resp., right singular, right second singular, right socle, sum of all right nonsingular simple, endomorphism ring) of *M*, and we denote $J = J(R_R)$. Also we use $(A \leq^{max} M, A \leq^{\oplus} M, A \ll M, A \leq^{tes} M)$ to express that *A* is (a maximal, a direct summand, a small, a t-essential, and an essential) submodule of *M*, respectively. For a right (resp., a left) ideal *K*, we denote $t_5(K) = \{\alpha \in S: \alpha K \subseteq Z_2(R_R)\}$ (resp., $t_R(K) = \{r \in R: Kr \subseteq Z_2(R_R)\}$.

In [1,2,3,4], we can recall the concepts as: " a module M is called t-semisimple (resp., t-extended) if $M = Z_2(M) \bigoplus M'$ where M' is a nonsingular semisimple (resp., a nonsingular extending) module; a module M is called s-N-injective if every homomorphism $f: K \to M$ extends to N, and M is said to be strongly s-injective if it is s-N-injective for every $N \in Mod-R$; a ring R is called right V-ring (resp., right SI-ring) if every simple (resp., singular) R-module is injective".

Sh. Asgari, A. Haghany and Y. Tolooei [1] introduced the concept t-semisimple module. A. R. Mehdi and A. S. Tayyah [8] gave some results on t-semisimple rings. In our paper, we obtain new equivalent statements of t-semisimple module by using new concept namely G-projective module. Also, we give examples to show that the G-projectivity and projectivity are distinct.

2. G-Projective Modules

Definition 2.1. Let M and N be R-modules. We call that the module M is G-N-projective if every R-epimorphism $g: N \to A$ where A is the image of $N/Z_2(N)$ and every R-homomorphism $f: M \to A$, there exists an R-homomorphism $h: M \to N$ such that gh = f. We say M G-projective (respectively, strongly G-projective) if it is G-R-projective (respectively, G-N-projective $\forall N \in Mod$ -R).

Example 2.2.

- (1) Every N-projective module is G-N-projective.
- (2) Every Z-module is G-Z₄-projective, since Z₂(Z₄) = Z₄. But the Z-module Z₄/<2> is not Z₄-projective because <2> is not direct summand of Z₄.

- (3) The projective modules are strongly G-projective, but this is not reversible. For instance, the ring Z₄ is Z₂-torsion, thus (Z₄/< 2>)_{Z₄} is G-projective, and so (Z₄/< 2>)_{Z₄} is strongly G-projective by Proposition 2.3(6) below. But obviously (Z₄/< 2>)_{Z₄} is not projective.
- (4) If a ring R is nonsingular or an R-module M is nonsingular, then M is projective iff M is strongly G-projective. For, since there is an R-epimorphism $g: R^{(I)} \to M$ for some index set I, the map g splits because $Z_2(R^{(I)}) = 0$ whenver $Z_2(R_R) = 0$ or $g(Z_2(R^{(I)})) \subseteq Z_2(M) = 0$ and since M is strongly G-projective. Therefore $M \cong R^{(I)}/\ker(g) \cong A \subseteq \mathbb{P} R^{(I)}$, and so M is projective.
- (5) For all finitely generated R-module M. If R or M is nonsingular, then M is G-projective iff M is projective (by (4) and Proposition 2.3(6)).
- (6) The Z-module Z₄ is not strongly G-projective, since Z₂(Z) = 0 and by using (4) (in particular, Z₄ is not G-projective by using (5)), but Z₄ is G-Z₄-projective by (2).

Proposition 2.3. The next statements hold:

- (1) If N any R-module, then the class of all G-N-projective R-modules is closed under isomorphisms, direct sums and summands.
- (2) If $N_1 \cong N_2$, then M is $G N_1$ -projective iff M is $G N_2$ -projective.
- (3) If $A \hookrightarrow B$, then M is G-B/A-projective whenever M is G-B-projective.
- (4) Let $\{N_i\}_{i=1}^n$ be the collection of *R*-modules. Then *M* is $G \oplus_{i=1}^n N_i$ projective iff *M* is $G \cdot N_i$ -projective for all *i*.
- (5) Let {N_i}_{i∈I} be the collection of *R*-modules and *M* a finitely generated *R*-module. Then *M* is *G*-⊕_{i∈I} N_i-projective iff *M* is *G*-N_i-projective for all *i* ∈ *I*.
- (6) Every finitely generated G-projective R-module is strongly G-projective.

Proof. (1) and (2) understandably.

(3) Consider below diagram

$$\begin{array}{c} M \\ f \\ B \xrightarrow{\pi} B/A \xrightarrow{g} K \longrightarrow 0 \end{array}$$

Where K is an image of $(B/A)/(Z_2(B/A))$. Define $\alpha: (B/A)/\pi(Z_2(B)) \to (B/A)/Z_2(B/A)$ by $\alpha(x + \pi(Z_2(B)) = x + Z_2(B/A)$, so α is an R-epimorphism and $\alpha \pi' = \pi''$ where π' (respectively, π'') is the canonical from B/A to $(B/A)/\pi(Z_2(B))$ (respectively, B/A to $(B/A)/Z_2(B/A)$). Since K is an image $(B/A)/Z_2(B/A)$, we can define R -epimorpism $g': (B/A)/Z_2(B/A) \to K$ by $g'(y + Z_2(B/A) = g(y)$ where $g = g'\pi''$, and so $g'\alpha \pi' = g'\pi'' = g$. Therefore, $g'\alpha \pi'\pi = g\pi$. Since $\pi'\pi(Z_2(B)) = 0$, K is an image of $B/Z_2(B)$. Now by hypothesis, there is $\beta: M \to B$ with $\beta\pi g = f$, so f can be lifted to $\beta\pi$, and hence M is G-B/A-projective.

(4) Let $g: N_1 \oplus N_2 \to (N_1 \oplus N_2)/K$ be the canonical map such that $Z_2(N_1 \oplus N_2) \subseteq K$. By using the similar argument of [5, 18.2(2)] and by (3), we can obtain this property.

(5) Using the similar argument of [5, 18.2(3)] and by (3).

(6) Let M is G-projective R-module. For all R-module N, there is an R-epimorphism $f: \mathbb{R}^{(1)} \to N$. By (5), M is $G \cdot \mathbb{R}^{(1)}$ -projective. Thus (3) leads to M is $G \cdot \mathbb{R}^{-N}$ -projective, and hence M is strongly G-projective.

From the concept of G-projectivity, several properties of t-semisimple modules will be given.

Theorem 2.4. The following statements are equivalent:

- (1) Every R-module is G-A-projective.
- (2) Every quotient of A is G-A-projective.
- (3) A is t-semisimple R-module.

Proof. (2) \Rightarrow (3) Let $Z_2(A) \hookrightarrow B \hookrightarrow A$. Since A/B is *G*-*A*-projective, then the canonical map $\pi: A \to A/B$ is split and hence $B \subseteq \oplus A$. Therefore by [1, Theorem 2.3], *A* is t-semisimple.

 $(3) \Rightarrow (1)$ Since A is t-semisimple module, then $A = Z_2(A) \bigoplus A'$ where A' is a semisimple and nonsingular submodule. Now, let $g: A' \to B$ any R-epimorphism and $f: M \to B$ any R-homomorphism. Since $\ker(g) \subseteq \bigoplus A'$, thus g splits, and there is an R-homomorphism $g': B \to A'$ with $gg' = I_B$. Consider the R-homomorphism $h =: g'f: M \to A'$. Thus $gh = gg'f = I_Bf = f$. Therefore M is G-A'-projective. Obviously, M is $G-Z_2(A)$ -projective, by Definition 2.1, so Proposition 2.3(4) implies that M is $G-(Z_2(A) \bigoplus A')$ -projective, and hence M is G-A-projective.

Theorem 2.5. The following statements are equivalent:

- (1) Every R-module is strongly G-projective.
- (2) Every R-module is G-projective.
- (3) Every simple \mathbb{R} -module is G-projective.
- (4) Every nonsingular \mathbb{R} -module is quasi-continuous.
- (5) R is a right t-semisimple ring.

Proof. (1)⇔(5) By Theorem 2.4 and [1, Theorem 3.2 (2)].

(2) \Leftrightarrow (5) and (5) \Rightarrow (3) By Theorem 2.4.

 $(3) \Rightarrow (5)$ Let $Z_2(R) \hookrightarrow I \subseteq {}^{max} R$. Since R/I is *G*-projective, then the canonical map $\pi: R \to R/I$ is split and hence $I \subseteq {}^{\oplus} R$. So by [1, Theorem 3.8], *R* is t-semisimple.

(5) \Rightarrow (4) Since every injective *R*-module is quasi-continuous and by [1, Theorem 3.2(4)].

 $(4) \Rightarrow (5)$ Let K be a submodule of $R/Z_2(R_R)$, Since $R/Z_2(R_R)$ is nonsingular, then $K \oplus (R/Z_2(R_R))$ is quasi-continuous, thus by [6, Corollary 2.14], K is $R/Z_2(R_R)$ -injective and hence $K \subseteq \bigoplus (R/Z_2(R_R))$. This implies that $R/Z_2(R_R)$ is semisimple, so R is t-semisimple ring.

Proposition 2.6. A ring R is right t-semisimple iff the below conditions hold:

- (1) $I = t_R(t_s(I))$, for every right ideal I contains $Z_2(R_R)$.
- (2) If $A = a_1 R \oplus a_2 R$ where $a_2 R$ is nonsingular, then A is G-A-projective.

Proof. (\Rightarrow) By Theorem 2.5(1) and [1, Proposition 2.19].

(\Leftarrow) Let *K* be a nonsingular cyclic *R*-module, there exists epimprphism $f: R \to K$. By hypothesis, $R \oplus K$ is $G \cdot (R \oplus K)$ -projective. Define $\alpha = f\pi_R: R \oplus K \to K$ by $\alpha(\alpha + b) = f(\alpha)$ for all $\alpha \in R, b \in K$ where π_R is the projection map. Since *K* is nonsingular; i.e., $Z_2(R_R) \subseteq \ker(f)$, and so $Z_2(R \oplus K) = Z_2(R_R) \oplus Z_2(K) \subseteq \ker(\alpha)$. Therefore there exists $\beta: R \oplus K \to R \oplus K$ such that $\alpha\beta = \pi_K$ where π_K is the projection map, since $R \oplus K$ is $G \cdot (R \oplus K)$ -projective. Define $\delta: K \to R$ by $\delta(b) = \pi_R \beta \eta(b)$ for all $b \in K$, where η is the injection map from *K* to $R \oplus K$. Therefore, $f\delta = f\pi_R\beta\eta = \alpha\beta\eta = \pi_K\eta = I_K$, where I_K is the identity map, and hence $\ker(f) \subseteq^{\oplus} R$. Thus $K \cong R/\ker(f) \cong B \subseteq^{\oplus} R$, and this leads to *K* is projective. Now, let *N* any t-closed in *R*. Thus [2,

Proposition 2.6] leads to R/N is cyclic nonsingular R-module, so R/N is projective, that is $N \subseteq R$. Therefore R is t-extended, so by using (1) and applying [1, Proposition 2.19] we conclude that R is right t-semisimple.

Recall that a ring R is said to be SP-ring (resp., mininjective) if $Soc(R_R)$ is projective (resp., if $Soc(R_R) \cap J = 0$ (see [7]).

Proposition 2.7. The next conditions are corresponding for any ring R:

- (1) R is right t-semisimple universally mininjective.
- (2) R is right t-semisimple SP-ring.
- (3) **R** is right t-semisimple and Soc(R_R) is projective with respect to every exact sequence $A \xrightarrow{g} B \to 0$ where the image of $A/Z_2(A)$ is proper in **B**.
- (4) $R = Z_2(R_R) \oplus \operatorname{Soc}(R_R)$.
- (5) $\operatorname{Soc}(R_R)$ is injective and $\operatorname{Soc}(R_R) \subseteq^{tess} R$.

Proof. $(4) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3)$ Understandable.

(3) \Rightarrow (2) By hypothesis and Theorem 2.5.

 $(2) \Rightarrow (4)$ Let K be a simple right ideal, then K is projective, and henceforth K is nonsingular. Therefore $Soc(R_R) = S(R)$, and consequently $R = Z_2(R_R) \oplus Soc(R_R)$.

 $(1) \Rightarrow (5)$ By [1, Proposition 1.1], $Soc(R_R) \subseteq^{tess} R$. In other hand, the correspondence between (1) and (4) indicates that $Soc(R_R)$ is nonsingular. Thus [1, Theorem 3.2] is leads to $Soc(R_R)$ is injective.

 $(5) \Rightarrow (1)$ By supposition, $R = A \bigoplus \text{Soc}(R_R)$, so I = J(A). Thus $I \cap \text{Soc}(R_R) = 0$ and this indicates that R is universally mininjective. Since $\text{Soc}(R_R) \subseteq ^{tess} R$, hence by [1, Proposition 1.1] A is Z_2 -torsion, so $Z_2(R_R) = A \bigoplus (Z_2(R_R) \cap \text{Soc}(R_R))$. But $\text{Soc}(R_R) = (Z_2(R_R) \cap \text{Soc}(R_R)) \bigoplus B$ where B is injective. Thus

 $R = A \oplus \text{Soc}(R_R) = A \oplus ((Z_2(R_R) \cap \text{Soc}(R_R)) \oplus B) = Z_2(R_R) \oplus B \text{ where } B \text{ is injective. Hence } R \text{ is t-semisimple by [1, Theorem 3.2].}$

Proposition 2.8. The next conditions are corresponding:

- (1) R is a right SI-ring, right V-ring and right noetherian.
- (2) If every R-module is G-A-projective, then A is injective.
- (3) Every t-semisimple \mathbb{R} -module is injective.

Proof. (1) \Rightarrow (3) Let *K* be t-semisimple *R*-module, then $K = Z_2(K) \oplus S(K)$. By [3, Proposition 3.12], S(K) is injective. However, $Z_2(K)$ is strongly s-injective by [4, Theorem 1(2), p. 29]. Therefore by [4, Proposition 3(4), p. 27], *K* is injective.

 $(3) \Rightarrow (1)$ By [3, Proposition 3.12], \mathbb{R} is right V-ring right noetherian. Now, let K any \mathbb{R} -module, $\mathbb{Z}_2(K) \oplus S(K)$ is injective, and hence $\mathbb{Z}_2(K)$ is injective. By [4, Proposition 3, p. 27], K is strongly s-injective, so [4, Theorem 1, p. 29] leads to the ring \mathbb{R} is right SI-ring.

(2) \Leftrightarrow (3) By Theorem 2.4.

Proposition 2.9. If *M* is strongly *G*-projective *R*-module and $M/Z_2(M)$ has projective cover, then $M = P \oplus A$, where *P* is projective and *A* is Z_2 -torsion.

Proof. If $Z_2(M) \neq M$, and consider the canonical map $\pi_1: M \to M/Z_2(M)$ and the projective cover $\pi_2: K \to M/Z_2(M)$ with $\ker(\pi_2) \ll K$ (see [5, Definition 19.4]). By hypothesis, we can find $h: M \to K$ satisfying $\pi_1 = \pi_2 h$. Let $x \in K$,

 $\pi_2(x) = m + Z_2(M) = \pi_1(m) = \pi_2h(m) , \text{ for some } m \in M , \text{ so } \pi_2(x - h(m)) = 0 , \text{ that is } x - h(m) \in \ker(\pi_2) , \text{ but } x = x - h(m) + h(m) \in \ker(\pi_2) + h(M), \text{ this means that } K = \ker(\pi_2) + h(M). \text{ Since } \ker(\pi_2) \ll K, K = h(M), \text{ so } M/\ker(h) \text{ is projective, and } \ker(h) \subseteq^{\oplus} M. \text{ Since } \pi_1(\ker(h)) = \pi_2(h(\ker(h))) = 0, \text{ so } \ker(h) \subseteq Z_2(M). \text{ Therefore } M = P \oplus \ker(h) \text{ with } A \text{ is projective and } \ker(h) \text{ is } Z_2\text{-torsion.}$

Remarks 2.10.

- The reverse of above proposition is not correct, since the Z-module Z₄ = 0 ⊕ Z₄ with Z₂(Z₄) = Z₄, but Z₄ is not strongly G-projective by Example 2.2(6).
- (2) Consider M is strongly G-projective and $M/Z_2(M)$ has projective cover, then the following hold:
 - (i) If $Z_2(M) \ll M$, then M is projective.
 - (ii) $P \subseteq^{tess} M$ for some projective module P (by Proposition 2.9 and [1, Proposition 1.1]).

الخلاصة

نحن قدمنا المقاسات الأسقاطية من النمط G كمفهوم رديف للمقاسات الأغمارية من النمط s. بعض العبارات المكافئة الجديدة للمقاسات شبه البسيطة من النمط t استنتجت بواسطة استخدام هذا المفهوم الجديد.

References

- [1] Sh. Asgari, A. Haghany and Y. Tolooei, T-semisimple modules and T-semisimple rings, Comm. Algebra 41 (2013), 1882-1902.
- [2] Sh. Asgari and A. Haghany, t-Extending Modules and t-Baer Modules, Comm. Algebra 39 (2011), 1605-1623.
- [3] I. Amin, M. Yousif and N. Zeyada, Soc-injective rings and modules, Comm. Algebra 33 (2005), 4229-4250.
- [4] N. Zeyada, S-injective modules and rings, Advances in Pure Math. 4 (2014), 25-33.
- [5] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, 1991.
- [6] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, Cambridge University Press, Cambridge, 1990.
- [7] W. K. Nicholson and M. F. Yousif, Mininjective rings, J. Algebra 187 (1997), 548-578.
- [8] A. R. Mehdi and A. S. Tayyah, SS-Injective Modules and Rings, Journal of AL-Qadisiyah for Computer Science and Mathematics 9(2017), 57-70.