

Volume:2 Special issue of the first international scientific conference of Iraqi Al-Khawarizmi Society 28-29 March 2018

ENTROPY IN SIMPLE DYNAMIC

Alaa Hussein Hammadi Adel Salim Tayyah

College of Computer Science and Information Technology, University of Al-Qadisiyah alaa.hammadi@qu.edu.iq adel.tayh@qu.edu.iq

Abstract

In research we introduce new definition for entropy via n-block maps while the classical way adopts the definition for entropy via n-blocks

Preliminaries

Let (X, T, π) be a right topological transformation group, if $T = Z$ where Z is the group integers then (X, T, π) is called discrete flow.

The alphabet we adopt is $\zeta = \{0,1\}$, and we define the n-block by the function $\beta_n : I_n^q \to \zeta$ $I_p^q \to \zeta$ where $I_p^q = \{i \in \mathbb{Z} : p \leq i \leq q : p, q \in \mathbb{Z}\}\$ and let B_n be the set all n-blocks. and define the n-block map *f* that her $f: B_n \to \zeta$. And define the bi sequence as follows $\alpha: Z \to \zeta$ and let ζ^Z be space all the bi sequences. And is said for discrete flow (ζ^z, σ) be a full shift if σ shift map. And is said for $(Y, \sigma | Y)$ that her sub shift if $Y \neq \phi, Y \subseteq \zeta^Z$ and Y invariant closed set under impact σ . Now we introduce classical definition for Entropy in dynamic system. if (X,σ_{x}) discrete flow ,we define the entropy of X as follows:

 $h(X) = \lim_{n \to \infty} \frac{1}{n} \log_2 \left| B_n(X) \right|$ where $\left| B_n(X) \right|$: number of blocks by length n .

Definition (1): let X be shift space we define $h_1(X)$ as follows $h_1(X) = \lim_{n \to \infty} \frac{1}{n} \log r^{|B_n(X)|}$ $b_1(X) = \lim_{n \to \infty} \frac{1}{r^n} \log r^{|B_n(X)}$ $r^{|B_n}$ *r* $h_1(X) = \lim_{n \to \infty} \frac{1}{r^n} \log r^{|B_n(X)|}$

such that : r the number simple (number elements ζ) $r^{|B_n(X)|}$ the number n-block maps in sub shift. *Proposition(2):* let X be shift space and for all $1 \le r \le 10$, $n \ge 2$, $|B_n(X)| > 1$ then $h_1 \le h$. Proof : from definition h , h_1

$$
h(X) = \lim_{n \to \infty} \frac{1}{n} \log |B_n(X)|
$$

$$
h_1(X) = \lim_{n \to \infty} \frac{1}{r^n} \log r^{|B_n(X)|}
$$

we will proof when $1 \le r \le 10$ the most researches depend on $n \ge 2$ and $|B_n(X)| > 1$

now when $n = 2$ $h(X) = \lim_{n \to \infty} \frac{1}{2} \log |B_2(X)|$ and $h_1(X) = \lim_{n \to \infty} \frac{1}{n^2} \log r^{|B_2(X)|}$ $\lim_{n \to \infty} \frac{1}{r^2} \log r^{|B_2(X)}$ *r* $h_1(X) = \lim_{n \to \infty} \frac{1}{r^2} \log r^{\left|B_2(X)\right|}$

this table for several values r and $\left|B_2(X)\right|$ explain the relation between h and h_1

Volume:2 Special issue of the first international scientific conference of Iraqi Al-Khawarizmi Society 28-29 March 2018

we notice from through the table $h_1 \leq h$ when $n = 2$

Now we suppose that the relation is correct when $\frac{mg}{k} \leq \frac{m}{k}$ B_{k} $(X$ *r* $r^{|B_k(X)|} \supset \log B_k$ *k* $\log r^{|B_k(X)|}$ $\log B_k(X)$ \leq we will prove that the relation is correct when $n = k + 1$ and we will prove 1 $\log r^{|B_{k+1}(X)|} \supset \log \bigl| B_{k+1}(X) \bigr|$ 1 $_{1}(X)$ $\ddot{}$ $\leq \frac{\log|\mathbf{D}_{k+1}|}{2}$ $^{+}$ $\ddot{}$ *k* $B_{k+1}(X)$ *r* $r^{|B_{k+1}(X)|}$ $\log |B_k|$ *k* $B_{k+1}(X)$

and since $|B_{k+1}(X)| \leq |B_{k}(X)| \cdot |B_{1}(X)| \cdot \ldots \cdot (1)$. Now we will prove for all $k \ge 1$ that $\frac{\log r}{r^k} \le \frac{\log |b_k|}{k+1}$ $\log r^{|B_k(X)|} \supset \log B_k(X)$ $\overline{+}$ \leq *k* B_{k} $(X$ *r* $r^{|B_k(X)|} \supset \log B_k$ *k B^k X*

Notice that relation is correct $1 \le r \le 10$ in case $r = 1$ 2 $log B_k(X)$ $0 = \log 1 \leq \frac{\log |B_k(X)|}{\epsilon}$ And in case $k \ge 1$, $r = 10$ then $\frac{\log 10}{10^k} = \frac{\log 10}{10^k} < \frac{1}{k+1} \le \frac{\log |b_k|}{k+1}$ $log B_k(X)$ 1 1 10 $\log 10^{|B_k(X)|} \cdot 1$ 10 $\log10^{|B_k(X)|}$ $\ddot{}$ \leq $\ddot{}$ $=\frac{\log 10^{|B_k(X)|}\cdot 1}{\log k}<$ *k* $B_{k}(X)$ *k k k* $B_k(X)$ *k* $B_k(X)$ $100B_k$

By result for all
$$
k \ge 1
$$
, $r \le 10$ then
$$
\frac{\log r^{|B_k(X)|}}{r^k} \le \frac{\log |B_k(X)|}{k+1} \dots (2)
$$

Since $|B_1(X)| \le r$ then
$$
\frac{|B_1(X)|}{r} \cdot \frac{\log r^{|B_k(X)|}}{r^k} \le \frac{\log r^{|B_k(X)|}}{r^k} \dots (3)
$$

From (2) and (3) we get on
$$
\frac{|B_1(X)|}{r} \cdot \frac{\log r^{|B_k(X)|}}{r^k} \le \frac{\log |B_k(X)|}{k+1} \le \frac{\log |B_{k+1}(X)|}{k+1} \dots (4)
$$
From (1) and (4)

$$
\frac{\log r^{|B_{k+1}(X)|}}{r^{k+1}} \le \frac{\log r^{|B_1(X)| |B_k(X)|}}{r^{k+1}} = \frac{\cdot |B_1(X)| \log r^{|B_{k+1}(X)|}}{r^{k+1}} \le \frac{\log |B_{k+1}(X)|}{k+1}
$$

Example(3)[1]

Let *X* be the golden Mean Shift then $h(X) = 0.20898$, $h_1(X) = 0.186047227$

.

Volume:2 Special issue of the first international scientific conference of Iraqi Al-Khawarizmi Society 28-29 March 2018

Example(4)[1]

Let *X* be the even shift space ,then $h(X) = 0.20898$, $h_1(X) = 0.186047227$ We notice the even shift and the golden mean shift have the same entropy. Now we notice the relation between h and h_1 through the follows table:

REFRANCES

- 1- D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
- 2- A. H. Hammadi, the block map and entropy in simple dynamic. College of Since, University of Kufa, Master Thesis (2008)
- 3- R. L. Adler, A. G. Konheim and M. H. Mc. Andrew, Topological entropy, Trans. Amer. Math. Soc. 114(1965)309-319.
- 4- R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153(1971), 401-414; Errata 181(1973), 509-510.
- 5- M. Nasu, Map in Symbolic Dynamics, Lecture Note of Tenth KAIST Mathematics Workshop (1995).
- 6- W. Gottschalk and G. A. Hedlund, Topological Dynamics American Mathematical Society Colloquium Publications. Vol. 36 Am. Math. So., Providence, R. I. (1955).