

Volume:2 Special issue of the first international scientific conference of Iraqi Al-Khawarizmi Society 28-29 March 2018

ENTROPY IN SIMPLE DYNAMIC

Alaa Hussein Hammadi Adel Salim Tayyah

College of Computer Science and Information Technology, University of Al-Qadisiyah alaa.hammadi@qu.edu.iq adel.tayh@qu.edu.iq

Abstract

In research we introduce new definition for entropy via n-block maps while the classical way adopts the definition for entropy via n-blocks

Preliminaries

Let (X,T,π) be a right topological transformation group, if T = Z where Z is the group integers then (X,T,π) is called discrete flow.

The alphabet we adopt is $\zeta = \{0,1\}$, and we define the n-block by the function $\beta_n : I_p^q \to \zeta$ where $I_p^q = \{i \in Z : p \le i \le q : p,q \in Z\}$ and let B_n be the set all n-blocks. and define the n-block map f that her $f:B_n \to \zeta$. And define the bi sequence as follows $\alpha: Z \to \zeta$ and let ζ^Z be space all the bi sequences. And is said for discrete flow (ζ^Z, σ) be a full shift if σ shift map. And is said for $(Y, \sigma | Y)$ that her sub shift if $Y \neq \phi, Y \subseteq \zeta^Z$ and Y invariant closed set under impact σ . Now we introduce classical definition for Entropy in dynamic system. if (X, σ_x) discrete flow ,we define the entropy of X as follows:

 $h(X) = \lim_{n \to \infty} \frac{1}{n} \log_2 |B_n(X)| \text{ where } |B_n(X)| \text{ : number of blocks by length } n.$

Definition (1): let X be shift space we define $h_1(X)$ as follows $h_1(X) = \lim_{n \to \infty} \frac{1}{r^n} \log r^{|B_n(X)|}$

such that: r the number simple (number elements ζ) $r^{|B_n(X)|}$ the number n-block maps in sub shift. **Proposition(2):** let X be shift space and for all $1 \le r \le 10$, $n \ge 2$, $|B_n(X)| > 1$ then $h_1 \le h$. Proof: from definition h, h_1

$$h(X) = \lim_{n \to \infty} \frac{1}{n} \log |B_n(X)|$$
$$h_1(X) = \lim_{n \to \infty} \frac{1}{r^n} \log r^{|B_n(X)|}$$

we will proof when $1 \le r \le 10$ the most researches depend on $n \ge 2$ and $|B_n(X)| > 1$

now when n = 2 $h(X) = \lim_{n \to \infty} \frac{1}{2} \log |B_2(X)|$ and $h_1(X) = \lim_{n \to \infty} \frac{1}{r^2} \log r^{|B_2(X)|}$

this table for several values r and $|B_2(X)|$ explain the relation between h and h_1

r	$ B_2(X) $	h	h ₁
1	1	0	0
2	2	0.150514	0.150514
3	2	0.106026	0.150514
10	2	0.02	0.150514
10	3	0.03	0.238560
10	9	0.09	0.477121

Volume:2 Special issue of the first international scientific conference of Iraqi Al-Khawarizmi Society 28-29 March 2018

we notice from through the table $h_1 \le h$ when n = 2 >

Now we suppose that the relation is correct when $\frac{\log r^{|B_k(X)|}}{r^k} \le \frac{\log |B_k(X)|}{k}$ we will prove that the relation is correct when n = k + 1and we will prove $\frac{\log r^{|B_{k+1}(X)|}}{r^{k+1}} \le \frac{\log |B_{k+1}(X)|}{k+1}$

and since $|B_{k+1}(X)| \le |B_k(X)| \cdot |B_1(X)|$(1). Now we will prove for all $k \ge 1$ that $\frac{\log r^{|B_k(X)|}}{r^k} \le \frac{\log |B_k(X)|}{k+1}$

Notice that relation is correct $1 \le r \le 10$ in case r = 1 $0 = \log 1 \le \frac{\log |B_k(X)|}{2}$ And in case $k \ge 1, r = 10$ then $\frac{\log 10^{|B_k(X)|}}{10^k} = \frac{\log 10^{|B_k(X)|} \cdot 1}{10^k} < \frac{1}{k+1} \le \frac{\log |B_k(X)|}{k+1}$

By result for all
$$k \ge 1, r \le 10$$
 then $\frac{\log r^{|B_k(X)|}}{r^k} \le \frac{\log |B_k(X)|}{k+1}$(2)
Since $|B_1(X)| \le r$ then $\frac{|B_1(X)|}{r} \cdot \frac{\log r^{|B_k(X)|}}{r^k} \le \frac{\log r^{|B_k(X)|}}{r^k}$(3)

From (2) and (3) we get on $\frac{|B_1(X)|}{r} \cdot \frac{\log r^{|B_k(X)|}}{r^k} \le \frac{\log |B_k(X)|}{k+1} \le \frac{\log |B_{k+1}(X)|}{k+1}$(4) From (1) and (4)

$$\frac{\log r^{|B_{k+1}(X)|}}{r^{k+1}} \le \frac{\log r^{|B_1(X)| \cdot |B_k(X)|}}{r^{k+1}} = \frac{\cdot |B_1(X)| \log r^{|B_{k+1}(X)|}}{r^{k+1}} \le \frac{\log |B_{k+1}(X)|}{k+1}$$

Example(3)[1]

Let *X* be the golden Mean Shift then h(X) = 0.20898, $h_1(X) = 0.186047227$

Volume:2 Special issue of the first international scientific conference of Iraqi Al-Khawarizmi Society 28-29 March 2018

Example(4)[1]

Let \overline{X} be the even shift space ,then h(X) = 0.20898, $h_1(X) = 0.186047227$ We notice the even shift and the golden mean shift have the same entropy. Now we notice the relation between h and h_1 through the follows table:

hı	h	X Shift space	No. example
0.186047227	0.20898	Golden mean shift	3
0.186047227	0.20898	Even shift space	4

REFRANCES

- 1- D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.
- 2- A. H. Hammadi, the block map and entropy in simple dynamic. College of Since, University of Kufa, Master Thesis (2008)
- 3- R. L. Adler, A. G. Konheim and M. H. Mc. Andrew, Topological entropy, Trans. Amer. Math. Soc. 114(1965)309-319.
- 4- R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153(1971), 401-414; Errata 181(1973), 509-510.
- 5- M. Nasu, Map in Symbolic Dynamics, Lecture Note of Tenth KAIST Mathematics Workshop (1995).
- 6-W. Gottschalk and G. A. Hedlund, Topological Dynamics American Mathematical Society Colloquium Publications. Vol. 36 Am. Math. So., Providence, R. I. (1955).