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Abstract 

In research we introduce   new definition for entropy via n-block maps while the classical  way adopts the  definition for entropy via  

n-blocks 

 

Preliminaries 

 Let ),,( TX  be a right topological transformation group , if ZT       where Z  is the group integers then ),,( TX  is called 

discrete flow. 

The alphabet we adopt is }1,0{ , and we define the n-block by  the function   q

pn I:  where  

Z}qp,: :{  qipZiI q

p  and let nB    be the set all n-blocks. and define the n-block map f that her 

nB: ƒ . And define the bi sequence as follows  Z:  and let 
Z  be space all the bi sequences. And is said for discrete 

flow ),(  Z
 be a full shift if   shift map. And is said for )|,( YY   that her sub shift if  

ZYY   ,  and Y invariant 

closed set under impact  . Now we introduce classical  definition for Entropy in dynamic system. if  xX ,  discrete flow ,we 

define the entropy of X  as follows: 

)(loglim)( 2
1 XBXh nn

n 
  where )(XBn  : number of blocks by length n . 

 

Definition (1): let  X  be shift space we define )(1 Xh  as follows   
)(

1 log
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XB

nn

nr
r

Xh
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such that : r  the number simple (number elements  )  
(X)Bnr   the number n-block  maps in sub shift. 

Proposition(2): let X  be shift space and for all 101  r  , 2n , 1)( XBn  then   hh 1 . 

Proof : from definition h , 1h    
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we will proof when 101  r  the most researches depend on 2n  and 1)( XBn   

now when 2n  (X)Bh(X)
n

22
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  and 
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 this table  for several values r and )(2 XB  explain the relation between h   and 1h   
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h1 h |B2(X)| r 

0 0 1 1 

0.150514 0.150514 2 2 

0.150514 0.106026 2 3 

0.150514 0.02 2 10 

0.238560 0.03 3 10 

0.477121 0.09 9 10 

 

we notice from through the table hh 1  when 2n > 

Now we suppose that the relation is correct  when 
k
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 we will prove that the relation is correct when 1 kn   

and  we will prove        
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and  since )1......()()()( 11 XBXBXB kk   .    

Now we will prove for all 1k  that 
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Notice that relation is correct 101  r  in case  1r          
2
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And in case 10r , 1 k  then   
1

)(log

1

1

10

110log

10

10log
)(










k

XB

k

k

k

(X)B

k

XB kk

 

 

By result for all 10r , 1 k  then )2......(
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 From (2) and (3) we get on )4.......(
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From (1) and (4) 
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Example(3)[1]   
 

 Let X  be the golden Mean Shift then h(X) = 0.20898, h1(X) = 0.186047227 
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Example(4)[1] 

Let X  be the even shift space ,then  h(X) = 0.20898, h1(X) = 0.186047227 

We notice the even shift and the golden mean shift have the same entropy. 

Now we notice the relation between h  and 1h  through the follows table: 

 

No. example X Shift space h h1 

3 Golden mean shift 0.20898 0.186047227 

4 Even shift space 0.20898 0.186047227 
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