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1.Introduction  

The concept of random dynamical systems is a comparatively recent development combining ideas and methods from the well 

developed areas of probability theory and dynamical systems. Due to our inaccurate knowledge of the particular model or due to 

computational or theoretical limitations (lack of sufficient computational power, in- efficient algorithms or insufficiently developed 

mathematical and physical theory, for example), the mathematical models never correspond exactly to the phenomenon they are 

meant to model. Moreover, when considering practical systems we cannot avoid ei- ther external noise or inaccuracy errors in 

measurements, so every realistic mathematical model should allow for small errors along orbits. To be able to cope with 

unavoidable uncertainty about the ”correct” parameter values, observed initial states and even the specific mathematical 

formulation involved, we let randomness be embedded within the model. Therefore, random dynamical systems arise naturally in 

the modeling of many phenomena in physics, biology, economics, climatology, etc. 

The concept of random dynamical systems was mainly developed by Arnold [1] and his ”Bremen group”, based on the research of 

Baxendale [2], Bismut [3], Elworthy [4], Gihman and Skorohod [5], Ikeda and Watanabe [6] and Kunita [7] on two-parameter 

stochastic flows generated by stochastic differential equations. 

Lyapunov’s first method was, however, filled with new life in 1968 when Oseledets [10] proved his celebrated multiplicative 

ergodic theorem. For (random) dynamical systems under an invariant measure this theorem establishes the existence of Lyapunov 

exponents as limits and can be used to conclude nonlinear stability from linear stability. A systematic account of the theory of 

nonlinear random dynamical systems based on Lyapunov’s first method through the multiplicative ergodic theorem is given by 

Arnold [1]. In contrast to his first method, Lyapunov’s second method turned out to be very successful from the beginning, in 

particular in numerous applied problems. Early systematic accounts in the West were given by the Springer Grundlehren volumes 

of Hahn [9] in 1967 and of Bhatia and Szegö [8] (developing Lyapunov’s second method for dynamical systems) in 1970, both of 

which are still classical references. 

D. T. Son  (2009)[11] studied the Lyapunov exponents for random dynamical systems. X. Yingchao (2010)[12] used the theory of 

random dynamical systems and stochastic analysis to research the existence of random attractors and also stochastic bifurcation 

behavior for stochastic Duffing-van der Pol equation with jumps under some assumptions. I.J.Kadhim and A.H. Khalil(2016)[13] 
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they define  the random dynamical system and random sets in uniform space are and proved some necessary properties of these 

two concepts. Also they sudy the expansivity of uniform random operator.  

The structure of this paper is as follows: In Section 2  we recall same basic definition and facts about random dynamical, study 

the definition of  Lyapunov function for random dynamical systems and theorem  Lyapunov  stability . In Section 3 we will  

study Lyapunov function for pullback attractor , existence of a pullback absorbing neighborhood system and theorem (Rate of 

pullback convergence). 

 

2. Lyapunov Functions for Random Dynamical Systems 

Definition2.1. A closed random set     is said to be  a semi-weak attractor ,if  a Tempered 

random variable  and  there is a sequence  in  

 as  

i. a semi –attractor , if 

 as 

 

ii. a weak attractor , if there is a tempered random variable    and for each   there is a 

sequence  in   such that   

iii. an attractor , if there is a tempered random variable  such that for each , 

 as  

iv. a uniform attractor , if there is a tempered random variable  such that for each , there is T = T ( )  such 

that   for each    

an equi attractor if it is an attractor and if there is such that for each  , and  , there exists  

tempered random variable   with whenever 

 

Definition2.2  (Lyapunov Functions) [1] . Let  be a random dynamical system in  and be a random compact set 

which is invariant under .  Function  is called Lyapunov Functions for A (under  if it is has the 

following properties : 
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i. is measurable for each , and   is continuous for each  

ii.  is uniformly unbounded , i.e.,   for all  

iii.  is positive-definite, i.e.,   for and  for  

iv.  is strictly decreasing along orbits of  i.e, for all  and 

       

Definition2.3 The derivative of the function  along the parametric  vector 

) is defined by  

.              (1) 

Theorem2.4 (Lyapunov stability theorem)[1] 

Let  has critical point at the origin. If there is function  such 

that 

i. The partial derivative   , i=1, 2,.,.,d exist and continuous . 

ii.  is positive –definite . 

iii.  is semi-positive –definite . 

Then the origin is stable critical point for the system. If (iii) above replaces by a stronger condition (iii*)  is negative –definite. 

Then the origin is asymptotical stabile critical point for the systems. If the function that satisfies the hypothesis (i), (ii) and (iii) 

from the above theorem is called weak Lyapunov function and if hypothesis (iii) is replaced by (iii*), then is called 

strong Lyapunov function.  

In the following we shall characterize the asymptotically random set in terms the lyapunov function . to this end we first sate and 

prove the following lemma.      

Lemma2.5 let the phase space X be arbitrary and  Let   be any continuous function defined on K 

such that  for all   and  Whenever 



            Journal of Iraqi Al-Khwarizmi Society (JIKhS)   Volume:3  Issue: Special    2019   pages: 26-41   

 

29 

 

 

.Then if some we have  

for every . 

Proof. Assume that . there are indeed sequence } and } in  such 

that ,  and   , z . We may assume by taking a subsequence that  

 for each ,Then clearly   as  

0 , 

and  

Thus proceeding to the limit we have continuity of  

This contradicts the original assumption and the limit is proved . 

Theorem2.6. A compact random set is asymptotically stable if and only if there exists a function 

where is a neighborhood of  such that 

2.6.1 is continuous  and   is measurable  

2.6.2 if and if  

2.6.3    For all and  for  and 

 

Proof. Assume that a function  as required is given. Choose  such that  and is compact of Let 

Then by 2.6.2 and continuity of . Set   

. Then  is indeed compact and because 2.2.3  is   positively invariant. This establishes that  is stable as 

 positively invariant neighborhood of. To see that  is an attractor, choose any compact positively invariant neighborhood   

  with   . Then for any and lemma 2.5 shows that   is constant on 

Thus  is attractor and consequently asymptotically stable. Now let  be asymptotically stable and 

 its region of attractor. For each define  
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Indeed is defined for each  b, because if  Then there is a  with    

 Thus  

 

As  is a continuous function of   is define. This has the properties:  for 

 for  and  for   This is clear when we remember that  is 

stable and hence positively invariant and that is invariant. Thus if is defined for any  it is defined for 

all  with . We further claim that this  is continuous in  Indeed stability of implies continuity of 

 on   . For  , set  and choose , such that  is 

compact subset of   is open , since    is uniform attractor , there is a  such that 

 for all  . Thus for   we have 

 -    

  

There fore  

 

The continuity axiom implies that the right hand side of the above inequality tends to zero as  for   is fixed for 

  .The function  is therefore continuous in  . However, the above function may not be strictly decreasing 

along parts of trajectories in  which are not in   and so may not satisfy 2.6.3. Such a function can be obtained by 

setting  

. 

That  is continuous and satisfies 2.6.2 in  is clear. To see that  satisfies 2.6.3, let 

 and . Then indeed     , holds because 

     holds. 
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To rule   , observe that in this case we must have 

   for all   

thus in particular, letting we get  

   By asymptotic stability of  implies that for 

  ,  is continuous. This shows that  =0. But as 

,  we must have   a contradiction . We have thus proved that  

for ,   and   the theorem is proved. 

3. Lyapunov function for pullback attractor 

A Lyapunov function characterizing pullback attraction and pullback attractors for a discrete –time process in will be 

constructed here. 

Consider a non-autonomous difference equation  

                                                                 (2) 

 On  where the    ,  are Lipschitz continuous mapping.  

This generates a process  through iteration by  

is Lipschitz continuous for all  the pullback attraction  is taken with respect to basin of attraction system, which is 

define as follows for a process. 

Definition 3.1 A basin of attraction system  consist of families  of non empty pounded random set 

of  with the property that if  and  

for all . 

Although somewhat complicated, the use of such a basin of attraction system allows both non-uniform and local attraction region, 

which are typical in non-autonomous system, to be handled. 

Definition 3.2 A -invariant family of nonempty compact  is called a pullback attractor with respect to a 

basin of attraction system   if it is pullback attracting  
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                          (3) 

For all  and all  

Obviously   

The construction of the Lyapunov function requires the existence of a pullback absorbing neighborhood family. 

Existence of a pullback absorbing neighborhood system   

The following lemma shows that three always exists such a pullback absorbing neighborhood system for any given 

pullback attractor. Lemma 3.3 if  is a pullback attractor with a basin of attraction system for a process, then there exists 

a pullback absorbing neighborhood system of  with random T.  moreover, B is  invariant  

 Proof. For each  pick  such that 

 such that 

, and define 

  

Obviously   

To show positive invariance the two-parameter semi group property will be used in where follows 

  

 

 

 

 

so 

  This and the two parameter semi group property again gives   
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The general positive invariance assertion then follows by induction. Now referring to the continuity of  

and the Compactness of the.set  is 

compact for each  and  . moreover, by pullback convergence , there exists an 

  such that  

B(  for each    Hence  

B(   

 

= , which is compact, so B(  is compact.  

To see that so constructed is pullback absorbing with respect to , let  . 

Fix since  is pullback attracting , there exists an  such that 

 for all  

but  and    , 

so 

  for all   

Hence  is pullback absorbing as required . 

Necessary and sufficient conditions 

The main result is the construction of a Lyapunov function that characterizes this pullback attraction  



            Journal of Iraqi Al-Khwarizmi Society (JIKhS)   Volume:3  Issue: Special    2019   pages: 26-41   

 

34 

 

 

Theorem. 3.4. Let  be uniformly of Lyapunov continuous on for each  and let  be the process that they 

generate. In addition, let  be a  –invariant family of nonempty compact random sets that is pullback attracting with respect to 

 with a basin of attraction system   . Then there exists a Lipschitz continuous function , such that   

Property 1 (upper bound): for all  and   

),                                                                  (4) 

Property 2 (lower bound): for each   there exists a function with and 

 for all  which is monotonically increasing in  such that 

  For all                       (5) 

Property 3 (Lipschitz condition): for   and   ,  , 

,                                      (6) 

Property 4(pullback convergence): for all  and any  

 (7) 

In addition, 

Property 5 (forwards convergence) : there exists  , which is positively invariant under  and consists of nonempty 

compact random sets   with  for each  such that 

                          (8) 

For all  and hence 

  for all   

                                                                                                 (9)                                                                                                      
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Proof. The aim is to construct a Lyapunov function 

 for all   and   

 where  . 

With  Here  where is the uniform Lipschitz constant  on   , 

and , that is the positive part of a real number . 

Note 4   and  for   . 

Proof 1 

Since  for all  and  

Is monotonically increasing from .  

Proof 2 

If ,then                

 the supremum  involves  the 

product of an exponentially quantity bounded below by zero and a bounded increasing function , since the set 

 are a nested family of compact random sets decreasing to  with increasing  . 

In particular,   for all . Hence there exists an 

 such that 

   

 .For all , but not . There, from above, 

 

Define 
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Now  

∞ For  with  and   is non 

decreasing with . To see this note that by the triangle rule 

. 

Also by pullback convergence there exists an  such that 

 . For all . Hence for 

 and ,  

That is . 

Obviously . 

Finally, define .                                      (10) 

Note that there is no guarantee here (with further assumption) that  dose not converge to 0 for fixed    

as . 

Proof 3 

  

 

≤
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Since  

  for any  and nonempty compact random subset of  

. 

Proof 4 

Assume the opposite. Then there exists an , a sequence  in    and points 

 such that  for all  since  and  is 

pullback absorbing , there exists an   such that 

 for all N. 

Hence, for all  such that  , it holds   , which is a compact random set , so there exists a convergent 

subsequence  . but also  

     

And   

And the definition of a pullback attractor. Hence  

And . But   is Lipschitz continuous in its second variable by property 3, 

so , which contradicts the 

convergence . Hence, property 4 must hold. 

Proof 5 

Define   , 

Where  is bounded because  is random compact 

and  is locally compact, so  is bounded. It is also closed, hence compact, since 
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  is continuous and  is compact. Now and 

so . In addition    

 , so  is positive invariant. 

It remains to establish the exponential decay inequality (40). This needs the following Lipschitz condition on    

: . 

For all  .it follows from this that  

  

From the definition of   ,  

 

Since  when . Hence re-indexing and then using the 

two-parameter semi group property and the Lipschitz condition on . 

 

 

 

≤  

Now , so  

 

 

, Which is the desired inequality. Moreover, since 

,the proof continues inductively to 
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give , for all . This completes the proof of theorem 

3.4. 

Definition. 3.5. A family random sets    is called past-tempered with respect to if  

 .For all , or equivalently if 

 for all , . 

Proposition3.6. For past-tempered family random sets,   it follows that 

 

Proof  

 as . Hence  

 

 as .  

Since  is fixed in the lower expression, this implies the pullback convergence  

 

Theorem3.7. (Rate of pullback convergence) 

If  is pullback absorbing neighborhood system, then for all  and   there exists an 

   such that  

  

Proof  
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 .For every  

Where the positive invariance of  was used the last line. Hence 

. 

For every       and   or equivalently  

 .For 

every  and  . 

This means that for any    the supremum in     

,  

Need only be consider over . Hence   

 

 

     

Since and 

 

Thus  . 

For every  and  

Corollary3.8. We can be assumed that the mapping   
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If monotonic increasing in  (by taking a large    if necessary, and is hence invertible. Let the inverse of 

. Then  

  

 

For every   . 

 Usually   . This expression can be hold for every  by replacing  by  defined 

for every  and introducing a constant  to account for the behavior over the finite time 

set ,for every ,thisgives  
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