

On fuzzy soft normed space

Noori F. Al-Mayahi and Donia SH. Farhood

Department of Mathematics

College of computer Science and Information Technology

University of AL-Qadisiyah , Diwanyah-Iraq

E-mail:nafm60@yahoo.com

Abstract :

In this paper , we have introduced the definition of fuzzy soft normed space and obtained some new properties of these space by studying the open and closed balls. Moreover , we studied the continuity and the convergences in fuzzy soft normed space .

Keywords: fuzzy soft norme , fuzzy soft set . fuzzy soft continuity

1. Introduction:

In 2002 , Maji et.al gave a new concept called fuzzy soft set , After the rontier work of Maji, many investigator have extended this concept in various branches of mathematics and Kharal and Ahmad in [2] introduced new theories like new properties of fuzzy soft set and then in [3] defined the concept of mapping on fuzzy soft classes and studies of fuzzy soft in topological introduced by Tanay and Kandemir [4].Mahanta and Das [5] continued studier .In all of the above –mentioned works , the researchers used a fuzzy soft vector space or soft vector space ,while in this worke we used a vector space . In this work we introduce Fuzzy soft normed space and discussed the continuity and convergence and bounded

2.Preliminaries

In this work we use the simples X , E , $P(x)$ to denote for an initial universe, a set of parameters and the collection of all subsets of X , respectively .

Definition (2.1): [1] A fuzzy set A in X is characterized by a function with domain as X and value in I. The collection of all fuzzy sets in X is denoted by I^X

Definition (2.2) [15] : Let X be a universe set and E be a set of parameters , $P(X)$ the power set of X and $A \subseteq E$. pair (F, A) is called soft set over X with recepect to A and F is a mapping given by $F: A \to P(X)$, $(F, A) = {F(e) \in P(X): e \in A}$

Definition 2.3 [1] : Let A be a subset of E. A pair (F,A) is called a fuzzy soft set over (X, E) , if F: $A \rightarrow I^X$ is a mapping from A into I^X . The collection of all fuzzy soft sets over (X, E) is denoted by $F(X, E)$

Definition (2.4)[1]: A Fuzzy soft set (F,A) over (X,E) is said to be absolute fuzzy soft set, if for all $e \in A$, $F(e)$ is a fuzzy universal set $\tilde{\mathbf{1}}$ over X and denoted it by \tilde{E}

Definition(2.5)[1]: A fuzzy soft set (F,A) over (X, E) is said to be null fuzzy soft set, if for all $e \in A$, F(e) is the null fuzzy set $\overline{0}$ over X .we denoted it by $\overline{\Phi}$

Definition(2.6)[41] Let X be a non-empty set, $*$ be a continuous t-norm on $I = [0, 1]$. A function $\overline{N}: X \times (0, \infty) \to [0, 1]$ is called a fuzzy norm function on X if it satisfies the following axioms: for all $x, y \in X$, $t, s > 0$;

 $N(x, t) > 0.$ 1)

 $N(x,t) = 1 \Leftrightarrow x = 0.$ 2)

3)
$$
N(\alpha x, t) = N\left(x, \frac{t}{|\alpha|}\right)
$$
 for all $\alpha \in \mathbb{F}/\{0\}$.

4)
$$
N(x,t) * N(y,s) \le N(x+y,t+s)
$$
.

- 5) $N(x, \cdot): (0, \infty) \rightarrow [0, 1]$ is continuous.
- 6) Lim $lim_{t\to\infty} N(x, t) = 1$.

 $(X, N, *)$ is called a fuzzy normed space.

Definition(2.7): Let X be a vector space .Then a mapping $||.|| : X \to R(E)^*$ is said to be a soft norm on X if $||.||$ satisfies the following conditions :

- 1) $||x|| \geq 0$ for all $x \in X$
- 2) $||x|| = 0 \leftrightarrow x = 0$
- 3) $||r x|| = |r| ||x||$ for all $x \in X$ and for every soft scalar r
- 4) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$

The vector space X with a soft norm $\|\cdot\|$ on X is said to be soft normed space and denoted by $(X, \|\cdot\|)$

3.Main result

Definition(3.1) :Let X be a vector space over the scalar filed K, suppose $*$ is continuous t-norm, and. A fuzzy sub set Γ on \overline{X} x $(0, \infty)$ is called fuzzy soft norm on \tilde{X} if and only if for $x_e, y_e \in X$ and $k \in K$ the following condition hold

- 1) $E(x_e, t) = 0 \quad \nabla t \leq 0$
- 2) $E(x_e, t) = 1 \nabla t \ge U$ if and only if $x_e =$

3)
$$
E(k x_e, t) = E(x_e, \frac{t}{|k|})
$$
 if $k \neq 0 \forall t > 0$

- 4) $E(x_e \oplus x_e, t \oplus s) \geq E(x_e, t) * E(y_e, s) \nabla t$, $S > 0$ and x_e, y_e
- 5) $E(x_e, .)$ is continuous function and

The triple $(X, E, ||, ||)$ will be referred to a fuzzy soft normed space

Definition(3.2): let (X, E, $\|\cdot\|$) be a fuzzy soft normed space and $t > 0$ we define an open ball, a closed ball and sphere with center at x_e and radius α as follows

 $B(x_{e1}, r, t) = \{y_{e2} \in X: E(x_{e1} - y_{e2}, t) > 1 - r\}$ $\bar{B}_{(x_{e1}, r_{e1}) = \{y_{e2} \in X: E(x_{e1} - y_{e2}, t) \geq 1 - r_{e1}\}$ $S(x_{e1}, r, t) = \{y_{e2} \in X: E(x_{e1} - y_{e2}, t) = 1 - r\}$

 $SFS(B(x_{e1}, r, t))$, $SFS(B(x_{e1}, r, t))$ and $SFS(S(x_{e1}, r, t))$ are called fuzzy soft open ball, fussy soft closed ball , fuzzy soft sphere respectively with center x_e and radius

Definition(3.3):A mapping Δ : $X \times X \times (0, \infty) \rightarrow (0, 1)$ is said to be fuzzy soft metric on X if Δ satisfies the following condition

- 1) $\Delta(x_{\text{el}}, y_{\text{e}2}, t) = 0$ for all $t \leq 0$
- **2**) $\Delta(x_{e1}, y_{e2}, t) = 1$ for all $t \ge 0$ if and only if $x_{e1} = y_{e2}$
- **3)** $\Delta(x_{e1}, y_{e2}, t) = \Delta(y_{e2}, x_{e1}, t)$
- **4)** $\Delta(x_{e1}, z_{e3}, s \oplus t) \ge \Delta(x_{e1}, y_{e2}, s) * \Delta(y_{e2}, z_{e3}, t) \ \forall t, s > 0$
- **5)** $\Delta(x_{e1}, y_{e2}, .) : (0, \infty) \rightarrow (0, 1)$ is continuous .

X with a fuzzy soft metric Δ is called a fuzzy soft metric space and denoted by $(X, \Delta, *)$

Definition(3.4) : Let { \mathcal{X}_{ej}^{n} } be a sequence of vectors in a fuzzy soft normed space $(X, E, \|\cdot\|)$. Then the sequence convergence to x_{ei}^0 with respect to fuzzy soft norm.

If $(X_{ej}^n - X_{ej}^0, t) \ge 1 - \alpha$ for every $n \ge n_0$ and $\alpha \in (0,1]$ where n_0 is positive integer and $t > 0$

or $\lim_{n\to\infty} E(x_{ej}^n - x_{ej}^0, t) = 1$ as $t \to \infty$

Similarly if $\lim_{n\to\infty} \Delta(x_{ej}^n - x_{ej}^0, t) = 1$ as $t \to \infty$, then { x_{ej}^n } is convergent sequence in fuzzy soft metric space $(X, \Delta, *)$

Definition(3.5): A sequence { x_{ej}^n } in a fuzzy soft normed space $(X, E, ||, ||)$ is said to be a Cauchy sequence with respect to the fuzzy soft norm if

 $E(x_{ej}^n - x_{ej}^m, t) \ge 1 - \alpha$ for every $n, m \ge n_0$ and $\alpha \in (0,1]$ where n_0 is positive integer and $t > 0$

or $\lim_{n,m \to \infty} E(x_{ej}^n - x_{ej}^m, t) = 1$ as $t \to \infty$

Similarly if $\lim_{n\to\infty} \Delta(x_{ej}^n - x_{ej}^0, t) = 1$ as $t\to\infty$ then { x_{ej}^n } is a Cauchy sequence in fuzzy soft metric space $(X, \Delta, *)$

Definition(3.6): let $(X, E, ||.||)$ be a fuzzy soft normed space .Then $(X, E, ||.||)$ is said to be complete if every Cauchy sequence in X converge.

Definition(3.7):A Complete fuzzy soft normed space is called a fuzzy soft banach space.

Definition(3.8): let $\{x_{ej}^n\}$ a sequence in a fuzzy soft metric space $(X, \Delta, *)$. Then the sequence $\{x_{ej}^n\}$ is said to be a bounded sequence with respect to the fuzzy soft metric Δ if $\|x_{ej}^n - x_{ej}^m\|_{\alpha} \leq M$

By definition $||x_{ej}^n - x_{ej}^m||_{\alpha} = \inf \{t : \Delta(x_{ej}^n, x_{ej}^m, t) \ge \alpha, \alpha \in (0,1] \}$

That is $\{x_{ej}^n\}$ is said to be bounded if there exist a positive integer N depending on M such that $\Delta(x_{ej}^n, x_{ej}^m, t) \ge \alpha$, $\forall n,m \geq N(M).$

Theorem(3.9) : Every convergent sequence is Cauchy sequence.

Proof : Let $\{x_{ej}^n\}$ be a sequence in a fuzzy soft normed space $(X, E, ||. ||)$. Consider $\{x_{ej}^n\}$ converges to x_{ej}^0 .

Then we have $E(x_{ej}^n, -x_{ej}^0, t) \ge 1 - \alpha$ for every $n \ge n_0$ and $\alpha \in (0,1]$ where $n_0 \in N$ and $t > 0$

Therefore

$$
E(x_{ej}^n - x_{ej}^m, t) = E(x_{ej}^n - x_{ej}^m \oplus x_{ej}^0 - x_{ej}^0, t)
$$

\n
$$
= E((x_{ej}^n - x_{ej}^0) \oplus (x_{ej}^m - x_{ej}^0), t)
$$

\n
$$
\ge E(x_{ej}^n - x_{ej}^0, \frac{t}{2}) * E(x_{ej}^m - x_{ej}^0, \frac{t}{2})
$$

\n
$$
\ge (1 - \alpha) * (1 - \alpha)
$$

\n
$$
= \min\{1 - \alpha, 1 - \alpha\}
$$

\n
$$
= 1 - \alpha
$$

 $\mathbb{E}(x_{ej}^n - x_{ej}^m, t) \ge 1 - \alpha$ for every n, m $\ge n_0$ and $\alpha \in (0,1]$

Thus $\{x_{ej}^n\}$ is a Cauchy sequence >

Theorem(3.10): limit of a sequence in fuzzy soft normed space if exist is unique.

Proof :

Let
$$
\{X_{ej}^n\}
$$
 be a sequence in a fuzzy soft normed space $(X, E, ||, ||)$.

Such that $\lim_{n\to\infty} E(x_{ej}^n - x_{ej}, t) = 1$

$$
\text{Lim}_{n\to\infty} \ \mathsf{E}\big(x_{\mathsf{ej}}^n - x_{\mathsf{e}^{-1}}, \mathsf{t}\big) \ = 1 \ \text{, are two limits of sequence } \{x_{\mathsf{ej}}^n\}.
$$

Then by definition there exist positive integers n_1, n_2 such that

$$
E(x_{ej}^n - x_e, t) \ge 1 - \alpha \text{ for every } n \ge n_1 \text{ and } \alpha \in (0, 1]
$$

$$
E(x_{ej}^n - x_e, t) \ge 1 - \alpha \text{ for every } n \ge n_2 \text{ and } \alpha \in (0, 1]
$$

Choose $n \geq n_0$, $n_0 = \min\{n_1, n_2\}$

$$
E(X_e - X_{e^+}, t) = E(X_e - X_{ej}^n \oplus X_{ej}^n - X_{e^+}, t)
$$

\n
$$
= E((X_{ej}^n - X_{e}) \oplus (X_{ej}^n - X_{e^+}), t)
$$

\n
$$
\geq E\left(X_{ej}^n - X_{e^+}\frac{t}{2}\right) * E(X_{ej}^n - X_{e^+}, \frac{t}{2})
$$

\n
$$
\geq (1 - \alpha) * (1 - \alpha)
$$

\n
$$
= \min\{1 - \alpha, 1 - \alpha\}
$$

\n
$$
= 1 - \alpha
$$

 $E(x_e - x_e + t) \ge 1 - \alpha$

That implies $\lim_{n\to\infty} E(x_e - x_e + t) =1$

$$
E(x_e - x_e, t) = 1
$$

By definition of fuzzy soft normed space

 $E(x_e - x_e + t) =1$ with $t > 0$ if and only if $x_e - x_e + t = \theta_0$.

Hence $\chi_{\mathbf{g}} = \chi_{\mathbf{g}}$

Definition(3.11): Let X and Y be two universe sets . We define two fuzzy soft (F, A) and (G,B) over universe sets, respectively. Let $f: X \to Y$ and $g: A \to B$ be two functions. Then the pair (f,g) is called Fuzzy soft function from (F,A) to (G,B) and denoted by (f,g) $(F,A) \rightarrow (G,B)$ if it is satisfies $f(F(x)) = G(g(x))$ for all $x \in A$.

The image of the fuzzy soft set (F,A) under the fuzzy soft function (f, g) , denoted by (f, g) (F,A) =($f(F)$,B), is a fuzzy Soft set over universe set Y and defined by $\begin{cases} \nabla g(x) = y f(F(x)) & \text{if } g^{-1}(y) \neq \emptyset \\ \emptyset & \text{otherwise} \end{cases}$

For all $X \in B$. The pre-image of fuzzy soft set (G,B) under fuzzy soft set (f, g), denoted by $(f,g)^{_1}$ (G,B) =($f^{-1}(G), A$) is fuzzy soft set over verse set X and defined by

Definition(3.12): Let $(X, E, ||. ||)$ and $(Y, E, ||. ||)$ be two fuzzy soft normed spaces . A function $f: X \to Y$ is said to be fuzzy soft continuous at $x_0 \in X$ if for every sequence { X_{en}^n } in X with $\{X_{en}^n\} \to \{X_{e0}^0\}$ as $n \to \infty$ we have $f(X_{\epsilon n}^n) \to f(X_{\epsilon 0}^0)$ as $n \to \infty$. if f is fuzzy soft continuous at each vector of X then f is said to be fuzzy soft continuous function .

Theorem(3.13): If $(X, E, ||.||)$ be a fuzzy soft normed space then

- **a**) the function $(X_e, Y_e \rightarrow Y_e \rightarrow X_e \oplus Y_e \rightarrow \cdots)$ is continuous
- b) the function $(C, x_e) \to C \ast X_e$ is continuous where $x_{e1}, y_{e2} \in \text{SSP}(X)$ and $C \in K$

Proof :

a) If $x_{en} \to x_e$ and $y_{en} \to y_e$ then as $n \to \infty$

$$
E(X_{en} \oplus y_{e_n}) - (x_e \oplus y_{e_n}), t) = E(X_{en} \oplus y_{e_n} - x_e - y_{e_n}), t)
$$

$$
= E((X_{en} - x_e) \oplus (y_{e_n} - y_{e_n}), t)
$$

$$
= E(X_{en} - x_e, \frac{t}{2}) * E(y_{e_n} - y_{e_n}), t)
$$

$$
\to 1 \text{ as } t \to \infty
$$

Thus the function(X_{g} , Y_{g}) \rightarrow $X_{e} \oplus Y_{g}$) is continuous

Definition(3.14): A fuzzy soft function $f : X \to Y$ is said to be fuzzy soft bounded ,if there exist a fuzzy soft real number M such that $||f(x_e)|| \leq M ||x_e||$ for all $x_e \in X$

Theorem(3.15) : The fuzzy soft function $f : X \to Y$ is fuzzy soft continuous if and only if it is fuzzy soft bounded.

Proof: Assume that $f : X \to Y$ be fuzzy soft continuous and f is not fuzzy soft bounded .Thus, there exist at least one sequence $\{X_{\epsilon n}^{n}\}$ such that

$$
||f(X_{en}^n)|| \ge n ||X_{en}^n|| \tag{1}
$$

Where n is a fuzzy soft real number . It s clear that $x_{en}^n \neq \theta_0$. Let us construct a fuzzy soft sequence as follow :

$$
y_{en}^n = \frac{x_{en}^n}{n \|x_{en}^n\|}
$$

It is clear that $y_{en}^m \to \theta_0$ as $n \to \infty$. Since f is fuzzy soft continuous, then we have .

$$
||f(y_{en}^n)|| = ||f\frac{x_{en}^n}{n||x_{en}^n||}|| = \frac{i}{n||x_{en}^n||} ||f(x_{en}^n)|| > \frac{n ||X_{en}^n||}{n ||X_{en}^n||} = 1
$$

Which is a contradiction

Conversely, suppose that $f: X \to Y$ is fuzzy soft bounded and the fuzzy soft sequence $\{X_{\epsilon n}^n\}$ is convergent to the $\{X_{\epsilon 0}^0\}$. In this case

$$
||f(X_{en}^n) - f(X_{e0}^0)|| = ||f(X_{en}^n - X_{e0}^0)|| \le M||X_{en}^n - X_{e0}^0|| \to 0
$$

Which indicates that f is fuzzy soft continuous.

Definition(3.16): A fuzzy soft function $f : X \to Y$ is said to be fuzzy soft linear function if

1) f is additive, that is
$$
f(x_e + y_e) = f(x_e) + f(y_e)
$$
 for every $x_e, y_e \in X$

2) f is homogeneous ,that is , for every soft scalar r , $f(r x_e) = |r| f(x_e)$ for every $x_e \in X$,

Theorem(3.17) : Every fuzzy soft normed space is a fuzzy soft metric space.

Proof :

Define the fuzzy soft metric space by $\Delta(x_{e1}, y_{e2}, t) = E(\mathcal{X}_{e_1} - \mathcal{Y}_{e_2}, t)$* for every $\mathcal{X}_{e_1}, \mathcal{Y}_{e_2} \in X$. Then it is clear to show that the fuzzy soft metric space axioms are satisfied .

1)
$$
\Delta(x_{e1}, y_{e2}, t) = E(\mathcal{X}_{e_1} - \mathcal{Y}_{e_2}, t) = 0 \text{ if } t \leq 0
$$

2)
$$
\Delta(x_{el}, y_{el}, t) = E(X_{e_1} - y_{e_2}, t) = 1 \text{ if } t > 0
$$

. K

3)
$$
\Delta(x_{e1}, y_{e2}, t) = E(\mathcal{X}_{e_1} - \mathcal{Y}_{e_2}, t)
$$

$$
= E(\mathcal{Y}_{e_2} - \mathcal{X}_{e_1}, t)
$$

$$
= \Delta(\mathcal{Y}_{e_2}, \mathcal{X}_{e_1}, t)
$$

$$
\Delta(x_{e1}, y_{e2}, t) = \Delta(y_{e_2}, x_{e_1}, t)
$$
\n4)
$$
\Delta(x_{e1}, Z_{e_2}, s \oplus t) = E(X_{e_1} - Z_{e_2}, t \oplus S)
$$
\n
$$
= E(X_{e_1} - y_{e_2} + y_{e_2} - Z_{e_3}, t \oplus S)
$$
\n
$$
\geq E(X_{e_1} - y_{e_2}, S) * E(X_{e_1} - Z_{e_2}, t)
$$
\n
$$
= \Delta(x_{e_1}, y_{e_2}, s) * \Delta(x_{e_1}, Z_{e_2}, t)
$$
\n
$$
\Delta(x_{e1}, Z_{e_2}, s \oplus t) \geq \Delta(x_{e_1}, y_{e_2}, s) * \Delta(x_{e_1}, Z_{e_2}, t)
$$
\n5) By the definition * of Δ we get Δ is continuous and $\Delta(X_{e_1}, y_{e_2}, \ldots; (0, \infty) \rightarrow [0, 1]$
\n**Theorem(3.18): Let** $f: X \rightarrow Y$ be a fuzzy soft function. Then $||f||$ is fuzzy soft norm.
\n**Theorem(3.19): Let** $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two fuzzy soft function. Then
\na)
$$
||f \circ g|| \leq ||f||||g||
$$

Proof :

a)
$$
||f \circ g|| = \sup{||f \circ g(x_e)||: ||x_e|| \le 1}
$$

$$
= \sup{||f(g(x_e))||: ||x_e|| \le 1}
$$

$$
\le \sup{||f||. ||g(x_e)||: ||x_e|| \le 1}
$$

$$
\le ||f||||g||
$$

b) If we take
$$
f = g
$$
 then we have $||f^2|| \le ||f||^2$. Then $||f^n|| \le ||f||^n$ is obtained.

References

[1] P.K. Maji, R. Biswas, A.R. Roy, Fuzzy Soft Set ,Journal of Fuzzy Mathematics 9 (3) (2001) 589-602.

[2] B. Ahmad and Athar Kharal, On Fuzzy Soft sets, Advances in Fuzzy Systems, Volume 2009, Article ID 586507.

[3] Athar Kharal and B. Ahmad, Mappings on Fuzzy Soft Classes, Advances in Fuzzy Systems, Volume 2009, Article ID 407890. 3308-3314.

- [4] B. Tanay, M. B. Kandemir, Topological structure of fuzzy soft sets, Computers and Mathematics with Applications 61 (2011) 2952-2957.
- [5] J. Mahanta and P. K. Das, Results on fuzzy soft topological spaces, arXiv:1203.0634v1 [math.GM] 3 Mar 2012

[6] L.A.Zadeh, Fuzzy sets , Inf. Control, 8 (1965), 338-353