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Abstract: In this paper, we introduce a new family of continuous distributions based on generalized gamma. As a special case,
generalized gamma - generalized inverse Weibull distribution is proposed. The probability density function, cumulative distribution
function, reliability function and hazard rate function are introduced. Furthermore, most important statistical properties of generalized
gamma - generalized inverse Weibull distribution such as the mean, variance, coefficient of skewness, coefficient of kurtosis, Shannon
entropy, relative entropy and stress strength are obtained.
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1. Introduction

The generalized gamma distribution offers a useful stage, especially for the parametric analysis of survival and reliability data, that lies in
three main reasons (1) its available in most standard statistical packages (2) has several particular cases, such as the exponential, gamma,
Weibull, log-normal, Maxwell-Boltzmann and Rayleigh distributions (3) its hazard functions include different basic shapes (increasing,
decreasing, bathtub and unimodal or arc-shaped)[1]. For more details about the generalized gamma distribution see [3].

However, over the last two decades, according to extending common classes (families) of continuous distributions, many generalized
classes of distributions have been proposed and studied for modeling data in different applied areas such as, engineering, physics, medical
sciences, economics, finance, biological and environmental studies. These generalized distributions seek to give more and more flexibility
by adding one (or more) parameters to the baseline distribution. The generalized class were pioneered to Marshall and Olkin (1997)[5]
who proposed the Marshall-Olkin-G and to Gupta et al. (1998)[4] who proposed the exponentiated-G class. Many other generalized
classes cited via Yousof et al. (2017)[8].

In this paper, a new family of distributions based on generalized gamma, named generalized gamma— G distributions, has been proposed.
The probability density function and cumulative distribution function of this new family are introduced in Section 2. The generalized
gamma-generalized inverse Weibull as a special case along with some its important properties are presented in Sections 3 and 4. The
Shannon entropy, relative entropy and stress - strength of generalized gamma-generalized inverse Weibull random variable are discussed
in Sections 5, 6 and 7 respectively. Finally, in Section 8, some conclusions are addressed.

2. Generalized Gamma — G Distributions

The generalized gamma (GG) distribution was introduced by Stacy [7]. The cumulative distribution function (cdf) of the GG
distribution is given by [6],

v @)
H p 4
(x;a,d,p)=7d;x>0 and a,d,p>0 D
r()
and the corresponding probability distribution function (pdf) is given by [6],
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where y(-, -) is the incomplete gamma function, I'(:) is the gamma function, , a is the scale parameter, d and p are the shape
parameters.

Now, suppose that G (x) and g(x) are the baseline cdf and pdf of a random variable X. The proposed new class of distributions is given
by,

—-InG(x)

1-F(x)=R(x) = f h(x)dx = H(—InG(x)) 3)
0

So, the proposed cdf for this new class of distributions will be,

F(x) =1—-H(=InG(x)) (4)

and the associated pdf, f(x) = ;—x [F(x)] = - % [R(x)], for the new class of distributions will be,

g(x)
x) = h(—InG(x 5
flx) = 1)) ( (x)) (5)

Now, from (4) and (5) above, a new family of continuous distributions based on interval [0, ) generalized gamma distribution,
named generalized gamma— G distributions, have been proposed, where,

rl5 () |
F(g)

(a_) (—lnG(x))d 1eXp[ ( lnG(x)) ] %

H(=InG(x)) = (6)

h(—InG(x)) = —
r(;)
3. Generalized Gamma-Generalized Inverse Weibull Distribution

de Gusmdo et al.[2] introduced a new lifetime distribution with three parameter, named the generalized inverse Weibull (GIW)
distribution. The GIW distribution is much more flexible than the original inverse Weibull distribution and could have decreasing,
increasing and unimodal hazard rate functions.

Suppose that G(x) and g(x) represents the cdf and pdf of GIW distribution given by [2],
B
G(x) = exp [—9 (%) ] (8)

g(x) = 0pal x~B+Dexp [—9 (%)ﬁ] 9

Depending on (6) and (7), H(—InG(x)) and h(—1In G (x)), will be,
d (0 (a\F\’
HEEN
d
r(5)

H(—=InG(x)) =
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h(—InG(x)) =
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Then, the cdf and pdf in (6) and (7) of a new proposed distribution named generalized gamma-generalized inverse Weibull (GG —
GIW) distribution are given by,

a8\’
F) =1 V[%'(%(z) ) ] 10)
x)=1—-——75—
;)
P B (4
f(x)=6%p aﬁd% x~ (D exp [— (g (;) ) ] (11)
P
The reliability and hazard rate functions of GG — GIW distribution are given respectively by,
a8\’
V[%'(%(;) ) ]
Rx)=1-F(&) =—g— (12)
()
v OB aP(Z) e ol (30|
AC =g = POk (1)
e’ |

4. Properties of the GG-GIW Distribution

The rt" moment, E(X™) = [°x"f(x) dx , of GG — GIW distribution is,

o D
m%ﬁf””%%“MwH%ﬁp
p
P o
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Therefor the 7" moment is given by:
E(X") = (& )(B « r[1 -L (14)
In particularlil,
)5,
EX) = (a(g r[1——] (15)
9%(12
E(XZ)—()(%) r[1——] (16)
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So that, the mean and variance of GG — GIW random variable can be obtain as,
1
mean = u = E(X) = @' | [1 - L (19)
r(%) Bp

& e o
@

The coefficients of skewness, sk and kurtosis, kr of GG — GIW random variable can be obtain as,

Var(x) = 6?2 = E(X?) —u? = 20)

33 3y_ 2 3

B _ s @
g [02]2
o 4 3 25(%2)_=2,3

oy = Bt B -an BG)reuE(x?) -3 _ 4 (22)

(a2)? (a2)?

where p, 62 asin (19), (20)and E(X?),E(X3),E(X*) asin (16),(17)and (18)reseptivelly.

The characteristic function Qy(t) = E(e'™) = Z?‘;O(iﬁ—?r E(X") of GG — GIW random variable can be obtain as,

™=

Qx(8) = X7 (it:)rr((g)) ri- - (23)

5. Shannon Entropy of GG — GIW Random Variable

The formula of Shannon entropy can be written as [8],

H(x) =— [ f(x) Inf(x) dx (24)

Since,

A
Inf(x) =In{0%p aﬁdf(zz)) x~UHBD exp [_ <§ (%)B>p]
p

(@)

P
Inf(x) =In{0%p aﬁdr—g) -(1+pd)Inx — (g) aPrx—Pp
p
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So that, Eq. (24) will be,

HEx) = —In {Bdﬁ abd @} +(1+Bd) [ Inx f(x) dx + (g)p afPE(XFP) (25)

r(5)

Let [ = fooo Inx f(x) dx, so that,
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Using the transformation, u = (E (;) ) , @s in section 4, then,
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By using, f0°°xs-1 Inx e™ dx =m™SI'(s)((s) — Inm), we get,

ol () - o))

p

I=In (a (g)%) - Biplp (g) (26)

and,

I =

1\‘51’
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(27)

Now substituting (26) and (27)in (25), H(x) will be,

H) = — n{opare 5D+ 11 pa o a(a(@F) = (@] +(©) a2
() R A A O

Therefor the Shannon entropy of GG — GIW random variable can be written as,

Hx) =%—in {edﬁaﬁd ((3} +(1+Bd) [m( (Z)1> - B—lplp (g)] (28)

6. Relative Entropy of GG — GIW Random Variable

The relative entropy can be written as,

_ flx )
DKICFIIR) = f Femi g .
Since,
p
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From (26) and (27), we get respectively that, [,” Inx f(x) dx = In <a (9)5

) - élp (E) and

E[x-Bp F[%“] 1 % Al )
[ |= F(%) aﬁp(g)p = aﬁp(g)p . Also, we can get that,
[t 8] )
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Now substituting (26), (27) and (31)in (30), DkL(f||f;) will be,

1 d
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Therefor the relative entropy of GG — GIW random variable can be written as,
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7. Stress - Strength Model

Stress-strength  model is the most generally approach employed for dependability estimation. This model is used in
various applications especially with engineering such as strength failure and system collapse[8].

Let Y and X be the stress strength random variable independent of each other follow respectively GG — GIW with two different
parameter.

R=P(Y <X)= [ fx(x) Fy(x)dx (33)
B1\P1
o | ]
= f fx(x) |1— i dx
° r (p_l)

91 051 D1
( ) ]fx(x) dx

R=f0°°fx
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Now substituting (35)in (34), R will be,

kpi+dy
0 & (= 1)k( ) af1(k171+d1)
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Therefor the stress - strength of GG — GIW random variable can be written as,

kp1+dq
2]
(- Dk(ai) Bl(kpl+d1)

B1(kpi+d1)
Bilpy+d) [Z Bp (37)

1
R =1 - —g—ar Y=o
F(E)r(ﬁ) k[(d_1+k)aﬁ1(kp1+d1)(g)
P1 a.

8. Concluding Remarks

In this paper, we presented a new family of continuous distributions based on generalized gamma. The generalized gamma-generalized
inverse Weibull (GG-GIW) distribution is discussed as special case of this new family. The most important properties of GG-GIW is
derived. We provide form for characteristic function, r'™ moment, mean, variance, skewness, kurtosis, reliability function, hazard rate
function, Shannon entropy along with relative entropy. This paper deals also with the determination of stress-strength R = P(y < x)
when X (strength) and Y (stress) are two independent GG-GIW distribution with different parameters.
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