Compact Linear Operator on Modular Spaces

Noori F. Al-Mayahi and Al-ham S . Nief

Department of Mathematics College of Computer Science

and Information Technology

University of AL -Qadisiyah , Diwanyah -Iraq

E-mail: nafm60@yahoo.com

Abstract:

 This study tackles Compact linear operator on modular space , we have introduced the definition of Compact linear operator on modular space and also define bounded and continuous linear operator on modular space and proves some new results related with them .

M.S.C: 46A80 .

Keywords: modular space , Compact linear operator on modular space , bounded and continuous linear operator on modular space .

1.Introduction

 The theory of modular space was introduction by Nakano [2] in 1950 in the connection with the theory of order spaces and redefined and generalization by Musielak and Orlicz [4] in 1959 , many other mathematicians have studied modular space from several point of view , there are is a large set of known application of modular space in various part of analysis , probability and mathematical statistics .

In this effort , we introduction the notion Compact linear operator on modular space and bounded linear operator on modular space and also define continuous linear operator in modular space .

2. Main Results

Definition $(2, 1)$ [5]:

Let X be a linear space over afield \mathbb{F} . A function $M: X \to [0, \infty]$ is called modular if:

$$
1.M(x) = 0 \Leftrightarrow x = 0.
$$

2. $M(\alpha x) = M(x)$ for $\alpha \in F$ with $|\alpha| = 1$, for all $\alpha \in F$.

 $3.M(\alpha x + \beta y) \leq M(x) + M(y)$ iff $\alpha, \beta \geq 0$ for all $x \in X$.

Example (2.2) [1]:

Let
$$
X = R^2
$$
 with $(x, y) = |x| + |y|$, for any pair $(x - y)$ in X, then X_M is modular space.

Example (2.3) [5]:

As a classical example we mention to the Orlicz modular defined for every

measurable real function f by the formula

$$
M(f) = \int \phi(|f(t)|) d\mu(t),
$$

where μ denotes the Lebesgue's measure in \mathbb{R} and $\emptyset: \mathbb{R} \to [0,\infty)$ is continuous . we also assume that $\emptyset(y) = 0$ if and only if $y = 0$ and $\emptyset(t) \to \infty$ as $t \to \infty$

Definition (2.4) :

Let X and Y be a modular spaces and $T: X \to Y$ a linear operator .The operator T

is said to be bounded if there exist a real number r Such that $M(T(x)) \leq rM(x)$.

Example (2.5) :

1. The identity operator $I: X \to X$ on a modular space $X \neq \{0\}$ is bounded.

2. The zero operator $0: X \to Y$ on a modular space X is bounded .

Definition (2.6) :

Let X and Y be a modular spaces. A operator $T: X \to Y$ is called compact linear operator if for every bounded subset \overline{B} of \overline{X} that $\overline{T(B)}$ is compact in Y .

Definition (2.7) :

Let (X, M_1) and (Y, M_2) be a modular spaces over the same field F , The

operator $T: (X, M_1) \to (Y, M_2)$ is said to be continuous at $x_0 \in X$ if for every $\varepsilon \in (0,1)$ and all $t > 0$ there exist $\delta \in (0,1)$ such that for all $x \in X$.

$$
M_1(x-x_0)<\delta \implies M_2\bigl(T(x)-T(x_0)\bigr)<\varepsilon
$$

Lemma (2.8) :

Let X and Y be a modular spaces, then Every compact linear operator $T: X \to Y$ is bounded, hence continuous.

Theorem (2.9) :

Let $T: X \to Y$ be a linear operator and X, Y are modular spaces .Then

- 1. \overline{T} is continuous if and only if \overline{T} is bounded.
- 2. If \overline{T} is continuous at a single point , it is bounded.

Definition (2.10) [3]:

Let $T: X \longrightarrow Y$ be a linear operator , then null space of T is the set of all $x \in X$ such that $Tx = 0$. **Corollary (2.11) [3]:**

Let \overline{T} be a bounded linear operator .Then :

- 1. $x_n \to x$ implies $T_{x_n} \to T_x$.
- 2. The null spaces $\mathcal{N}(T)$ is closed .

Definition (2.12) :

Let (X, M) be a modular space. A subset A of X is said to be compact if any sequence $\{x_n\}$ in A has a subsequence converging to an element of \boldsymbol{A} .

Theorem (1.13) :

Let (X, M) be a modular spaces ,then

1. If
$$
x_n \to x
$$
, $y_n \to y$, then $x_n + y_n \to x + y$.
\n2. If $x_n \to x$ then $x_n \to cx, c \in F/\{0\}$.

Proof :

1. Let $X_n \to X$ and $Y_n \to Y$ $M((x_n + y_n) - (x + y)) = M((x_n - x) + (y_n - y))$ $\leq M(x_n - x) + M(y_n - y)$ Since $M(x_n - x) \to 0$ and $M(y_n - y) \to 0$ Then $M((x_n + y_n) - (x + y)) \rightarrow 0$ as $n \rightarrow \infty$ Then $x_n + y_n \rightarrow x + y$. 2. Let $X_n \to X$ $M(cx_n - cx) = M(c(x_n - x)) = M(x_n - x)$ Since $M(x_n - x) \to 0$ as $\to \infty$, then $M(cx_n - cx) \to 0$ as $n \to \infty$ Then $cx_n \rightarrow cx$.

Theorem (2.14) :

Let X, Y be a modular spaces and $T: X \to Y$ is linear operator .Then T is compact linear operator if and only if it maps every bounded sequence $\{\mathcal{X}_n\}$ in X onto a sequence $\{T(\mathcal{X}_n)\}$ in Y which has a convergent subsequence.

Proof :

If T is compact linear operator and $\{\mathcal{X}_n\}$ is bounded ,then the closure of $\{T(\mathcal{X}_n)\}$ in Y is compact and from definition (2.6) shows that $\{T(x_n)\}$ contains a convergent subsequence.

Conversely , suppose that every bounded sequence $\{x_n\}$ contains a subsequence

 $\{x_{n_k}\}\$ such that $\{T(x_{n_k})\}\$ converges in Y.Considerevery bounded subset $A \subseteq X$, and let $\{y_n\}\$ be any sequence in $T(A)$ Then $y_n = T(x_n)$ for some $x_n \in A$, and $\{x_n\}$ is bounded

since \hat{A} is bounded . By a ssumption , $\{T(x_n)\}$ contains a convergent subsequence.

Hence $\overline{T(A)}$ by definition (2.12) because $\{y_n\}$ in $T(A)$ was arbitrary. By definition, this shows that T is compact linear operator.

Theorem (2.15):

Let X and Y be a modular spaces and $T_g: X \to Y$ is compact linear operator where $g = 1, 2$. Then $T_1 + T_2$ is compact linear operator and also cT_g is compact linear operator, where c any scalar $c \in F - \{0\}$, (F is field and $g = 1,2$.

Proof

Let $\{x_n\}$ bounded sequence in modular space X

Since $T_g: X \to Y$ is compact linear operator where $g = 1,2$

Then from theorem (2.14) we have $\{\mathcal{X}_n\}$ contains a subsequence $\{\mathcal{X}_n\}$ such that

 ${T_1(x_{n_k})}$ and ${T_2(x_{n_k})}$ are converges in Y

then from theorem (2.13) we have $\{T_1(x_{n_k}) + T_2(x_{n_k})\}$ is converges in $Y \implies \{(T_1 + T_2)(x_{n_k})\}$ is converges in Y

Therefore from theorem (2.14) we have $T_1 + T_2$ is compact linear operator.

Also since $\{T_g(x_{n_k})\}$ is converges in Y where $g = 1,2$.

Then by theorem (2.13) $\{cT_g(x_{n_k})\}$ is converges in Y where where C any scalar

 $c \in F - \{0\}$, (*F* is field)

Then from theorem (2.14) we have cT_g is compact linear operator.

Theorem (2.16) :(Riesz Lemma)

Let C be a closed proper subspace of modular space and Let λ a real numbers such that $0 < \lambda < 1$ then there exists a vector $x_{\lambda} \in X$ such that $M(x_{\lambda}) > 0$ and $M(x - x_{\lambda}) \geq \lambda$ for all $x \in C$.

Proof:

Since $\mathcal C$ be a closed proper subspace of $X \implies \mathcal C \neq X$

There exist $x_0 \in X$ such that $x_0 \notin C$

Let $d = \inf \{M(x - x_0): x \in C\}$

Since $x_0 \notin M \Longrightarrow d > 0$, since $0 < \lambda < 1 \Longrightarrow \frac{d}{\lambda} > d$

By the definition of infimum, there exist $x_1 \in C$ such that $d \leq M(x - x_1) \leq \frac{d}{\lambda}$

Let
$$
x_{\lambda} = K(x_0 - x_1)
$$
 where $K = M(x_0 - x_1)^{-1} > 0$.\n\nThen $M(x_{\lambda}) = M(K(x_0 - x_1)) = M(x_0 - x_1) > 0$.\n\nLet $x \in C \Rightarrow k^{-1}x + x_1 \in C$.\n\n $M(x - x_{\lambda}) = M(x - k(x_0 - x_1))$ \n $= kM(k^{-1}x + x_1) - x_0 \geq kd$ \n\nWe have $\frac{1}{k} \leq \frac{d}{\lambda}$ so $kd \geq \lambda$.\n\nHence $M(x - x_{\lambda}) \geq \lambda$

Theorem (2.17) :

Let X be a modular space and assume that $A = \{x : M(x) = 1\}$ is compact then X is finite dimensional.

Proof:

Suppose that \boldsymbol{X} is not finite dimensional Choose $x_1 \in A$ and let M_1 be the subspace spanned by x_1 Then M_1 is proper subspace of X Since M_1 is finite dimensional $\Rightarrow M_1$ is complete $\Rightarrow M_1$ is closed By Riesz Lemma then there exist $x_2 \in A$ such that $M(x_2 - x_1) \geq \frac{1}{2}$ Let M_2 be the closed proper subspace of X generated by $\{x_1, x_2\}$ Then $\exists x_3 \in A$ such that $\mu(x_3 - x) \geq \frac{1}{2}$ It follows that neither the sequence $\{x_n\}$ nor its any subsequence converges, this is contradiction

Then \boldsymbol{X} is finite dimensional.

Lemma (2.18) :

Let $T: X \to X$ be a compact linear operator and $S: X \to X$ be a bounded linear operator on a modular spaces \overline{X} . Then \overline{ST} are compact linear operator.

Proof:

To prove that ST is compact linear operator

Let (x_n) be any bounded sequence in X

Then (Tx_n) has convergent subsequence (Tx_{nk}) by theorem (2.14) and (STx_{nk})

converges by theorem (2.15)Then ST is compact (by theorem(2.15)).

References

- [1] Krar . E . Abdul Sada , Invariant Best Approximation in Modular spaces , M. S.C. Thesis , University of Baghdad , (2018) .
- [2] Nakano , H , Modular semi –ordered spaces , Tokyo Mathematical Book Series , Maruzen Co.Ltd ,Tokyo , Japan .
- [3] E. Kreyszig, Introductory functional analysis with applications, John Wiley and Sons, Inc. ,(1978).

[4] J . Musielak and W . Orlicz, some remarks on modular spaces, Bull . A cad . polon . Sci .Ser .Sci . Math . Astronom . Phys . 7 (1959) , pp .661-668 .

[5] Chen , R . Wang , X . (2013) , Fixed point of nonlinear contraction in modular spaces , J. of Ineq . And Appl .