Type of Family Sets With Some of the their Properties ^a Rasha Ali Hussein, ^bNoori F. Al-Mayahi ^a College of Science, University of Al-Qadisiyah, Iraq rasha.ali202085@gmail.com ^b College of Science, University of Al-Qadisiyah, Iraq nfam60@yahoo.com

Abstract. In this work, we introduced new concepts in rings and fields such as $(\alpha$ - ring is α - σ -ring and β - σ -ring is β -ring) and studied the properties of each of them and the relationships between them, in addition to that, the relationships between these concepts and the previous concepts, and we studied a previous one by developing a new definition λ – system to get some results that deal with these definitions used [see 7].

Keyword: rings, fields, α - σ -ring, α -ring, β - σ -ring, β -ring, λ -System.

1. Introduction

The concept of rings and fields was introduced by Robert[9] as a family of subsets of a given set, for the purpose of studying and developing the measure as a set function. As we note in Hallos [2] for sound algebraic reasons for using the terms "lattice" and " ring ".

For certain categories of setes - reasons that are more convincing than the similarities made Hausdorff use "ring" and "field". The notion of ring was studied by Jan Derezinski [4] and Paul [6], The concept of σ -field was studied by Dietmar[1] and Robret[9]. The concept of α -field, α - σ -field, β -field β - σ -field was studied by Ibrahim and Hassan[3]. They provided basic properties, descriptions, and examples of these concepts.

2. Rings and Fields

In this section we will introduce some types of rings and fields as a family of subsets of a given set and present some of the main properties and results related to rings and fields with illustrative examples.

Definition 2.1 [5]

A nonempty family \mathcal{F} of subsets of a set Ω is called:

- 1. A semiring on Ω if :
 - a. If A, B $\in \mathcal{F}$, then A \cap B $\in \mathcal{F}$.
 - b. If A, B $\in \mathcal{F}$, then $A/B = \bigcup_{i=1}^{n} A_i$, where A_i disjoint sets in \mathcal{F} .
- 2. A semifield on Ω if :
 - a. If A, B $\in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.

b. If $A \in \mathcal{F}$, then $A^c = \bigcup_{i=1}^n A_i$, where A_i are disjoint sets in \mathcal{F} .

3. A ring on Ω if :

a. If $A, B \in \mathcal{F}$, then $A/B \in \mathcal{F}$.

b. If $A, B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$

4. A field on Ω if ,

- a. If $A \in \mathcal{F}$, Then $A^c \in \mathcal{F}$.
- b. If $A_1, A_1, \dots, A_n \in \mathcal{F}$, Then $\bigcup_{i=1}^n A_i \in \mathcal{F}$.

4-Khwarium

Journal of Iraqi Al-Khwarizmi Society (JIKhS) Volume: 5 Issue: 1 2021 8th International Scientific Conference of Iraqi Al-Khwarizmi Society 29-30 August 2021

5- A σ -ring on Ω if :

a. If $A, B \in \mathcal{F}$, then $A/B \in \mathcal{F}$.

b. If $A_n \in \mathcal{F}$ $n=1,2,\ldots$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

- 6. A $\sigma\text{-}$ field on Ω if :
 - a. If $A \in \mathcal{F}$, Then $A^c \in \mathcal{F}$.

b. If $A_1, A_2, \dots \in \mathcal{F}$, Then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

Example 2.2

- 1. Let $\Omega = \{a, b, c\}, \quad \mathcal{F}_1 = \{\emptyset, \{a\}, \{b\}, \{c\}, \Omega\}$ and $\mathcal{F}_2 = \{\emptyset, \{a\}, \{b, c\}, \Omega\}$, then \mathcal{F}_1 and \mathcal{F}_2 are semiring and semifields on Ω but that $\mathcal{F}_1 \cap \mathcal{F}_2$ fails to be a semiring and semifields on Ω .
- 2. The family \mathcal{F} of all bounded subsets of \mathbb{R} is a ring on \mathbb{R} .
- 3. The family \mathcal{F} of all subsets of a set Ω is a field on Ω .
- 4. The family \mathcal{F} of all countable subsets of a set Ω is a σ -ring on a set Ω .
- 5. The family \mathcal{F} of all countable subsets of a set Ω and their complements is a σ field on Ω .

Theorem 2.3[5]

- 1. Every semifield is a semiring, but the converse is not true.
- 2. Every field is ring but the converse is not correct.
- 3. Every ring is also a semiring, but the converse is not correct.
- 4. Every field is also semifield, but the convers not correct.
- 5. Every σ -ring is also ring but the convers not true.
- 6. Every σ -field is a field but the converse is not correct.
- 7. Every σ -field is σ -ring but the converse is not correct.

Example 2.4

- 1. Let \mathcal{F} the family of all bounded subsets of \mathbb{R} is a ring on \mathbb{R} . But not field because $\mathbb{R} \notin \Omega$, \mathbb{R} not bounded set.
- 2. The set \mathcal{F} of all open intervals (a, b), closed of intervals[a, b] and half open intervals [a, b), (a, b], including the empty interval $(a, a) = \emptyset$ and the single-element set $[a, a] = \{a\}$, is a semiring on \mathcal{F} . But not a ring for it is not closed under the operation of difference.
- 3. The family $\mathcal{F} = \{(a, b \mid : -\infty < a \le b < \infty\}$ is a semifield but not field on Ω
- 4. Let $\Omega = \mathbb{R}$ and \mathcal{F} consist of all finite disjoint union or right-semi closed intervals. then \mathcal{F} is a ring. but \mathcal{F} is not a σ -ring. Because if we take $A_n = (0, 1 (1/n)]$, n = 1, 2, ... then $A_n \in F$ but $\bigcup_{n=1}^{\infty} A_n = (0, 1) \notin \mathcal{F}$
- 5. Let $\Omega = \mathbb{R}$, and take \mathcal{F} to be the family of all finite disjoint union of intervals of the form $(a, b] = \{x \in \mathbb{R} : a \le x \le b\}$. By convention we also count (a, ∞) as right semi closed. \mathcal{F} is an a field but not σ -field on Ω . Because $A_n = (0, 1 \frac{1}{n}] \in \mathcal{F}$ for all n = 1, 2, ..., but $\bigcup_{n=1}^{\infty} A_n = (0, 1) \notin \mathcal{F}$
- 6. Let $\Omega = \{1,2,3\}$ and $\mathcal{F} = \{\emptyset, \{2\}, \{3\}, \{2,3\}, \Omega\}$ then it is clear that \mathcal{F} is σ -ring but not

 σ -field. Because $\{2\} \in \mathcal{F}$, but $\{2\}^c = \{1, 3\} \notin \mathcal{F}$

Definition 2.5

Let \mathcal{F} be a non-empty collection of subsets of a set Ω . Then \mathcal{F} is called

1. A α -ring if the following conditions are satisfied :

$$a. \emptyset \in \mathcal{F}.$$

b. If $A_1, A_1, \dots, A_n \in \mathcal{F}$ then $\bigcup_{i=1}^n An \in \mathcal{F}$.

2. A α -field if the following conditions are satisfied:[3]

a. $\Omega \in \mathcal{F}$.

b. If $A_1, A_1, \dots, A_n \in \mathcal{F}$ then $\bigcup_{i=1}^n A_i \in \mathcal{F}$.

Example 2.6

1. Let $\Omega = \{a, b, c, d\}$ and $\mathcal{F} = \{\{b, c\}, \{b, d\}, \{b, c, d\}, \emptyset\}$, then \mathcal{F} is a α -ring of a set Ω .

2. Let $\Omega = \{a, b, c\}$ and $\mathcal{F} = \{\{a\}, \{b\}, \{a, b\}, \Omega\}$, then \mathcal{F} is a α -field of a set Ω .

Remark 2.7

A α -field \Leftrightarrow a α -ring, because $\Omega \in \alpha$ -field, bot not necessary $\Omega \notin \alpha$ -ring and $\emptyset \in \alpha$ -ring, bot not necessary $\emptyset \notin \alpha$ -field.

Theorem 2.8

1. Every ring is α -ring but the converse is not correct.

2. Every σ -ring is α -ring, but the converse is not correct.

3. Every field is α -field but the converse is not correct.[3]

4. Every σ -field is α -field, but the converse is not true.[3]

Proof :

1. Let \mathcal{F} be a ring of a set Ω . We have $\emptyset \in \mathcal{F}$.

Let $A_1, A_2, \dots, A_n \in \mathcal{F}$, since \mathcal{F} is ring, we have $\bigcup_{i=1}^n A_i \in \mathcal{F}$, hence \mathcal{F} is a α -ring of a set Ω .

2. Let \mathcal{F} is σ -ring on set Ω , Let $\emptyset \in \mathcal{F}$, if $A, B \in \mathcal{F}$ then $A/B \in \mathcal{F}$

Let $A_1, A_2, ... \in \mathcal{F}$ consider $A_k = \emptyset$ for all k > n, since \mathcal{F} is σ -ring, Then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$, but $A_k = \emptyset$ for all k > n, then $\bigcup_{n=1}^{\infty} A_n = \bigcup_{k=1}^n A_k$, for all k > n. Hence $\bigcup_{k=1}^n A_k \in \mathcal{F}$, therefore \mathcal{F} is α -ring of a set Ω .

Conversely, the above theorem is not true. The next example explain that.

Example 2.9

In example (2.6) part (1) indicate that Ω is α -ring but not a ring and not σ -ring, because $\{b, c\}, \{b, d\} \in \mathcal{F}$, but $\{b, c\} / \{b, d\} = \{c\} \notin \mathcal{F}$.

Definition 2.10

Let \mathcal{F} be a non-empty collection of subsets of a set Ω . Then \mathcal{F} is called

1. A α - σ -ring if the following conditions are satisfied :

 $a. \ \emptyset \ \in \ \mathcal{F}.$

b. If $A_1, A_2, \dots \in \mathcal{F}$ then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

2. A α - σ -field if the following conditions are satisfied : [3]

 $a. \emptyset, \Omega \in \mathcal{F}.$

b. If $A_1, A_2, \dots \in \mathcal{F}$ then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

Example 2.11

1. Let $\Omega = \{a, b, c, d\}$ and $\mathcal{F} = \{\{a, c\}, \{a, d\}, \{a, c, d\}, \emptyset\}$ then \mathcal{F} is α - σ -ring of a set Ω .

2. Let $\Omega = \{a, b, c, d\}$ and $\mathcal{F} = \{\Omega, \{a, c\}, \{a, d\}, \{a, c, d\}, \emptyset\}$ then \mathcal{F} is α - σ -field of a set Ω .

Theorem 2.12

Journal of Iraqi Al-Khwarizmi Society (JIKhS) Volume: 5 Issue: 1 2021 th International Scientific Conference of Iraqi Al-Khwarizmi Society 29-30 August 2021

- 1. Every σ -ring is α - σ -ring , but the converse is not correct.
- 2. Every σ -field is α - σ -field, but the converse is not correct.[3]
- 3. Every α - σ -ring is α -ring, but the converse is not correct.
- 4. Every α - σ field is α -field, but the converse is not correct.[3]

Proof :

1. Let \mathcal{F} is σ -ring on Ω , then by definition σ -ring, we have $\emptyset \in \mathcal{F}$. Let $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$, hence \mathcal{F} is α - σ -ring of a set Ω .

3. Let \mathcal{F} is α - σ -ring on Ω , then by definition α - σ -ring, we have $\emptyset \in \mathcal{F}$.

Let $A_1, A_2, \dots, A_n \in \mathcal{F}$ and consider $A_i = \emptyset$ for all i > n, since \mathcal{F} is α - σ -ring, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$, but $A_i = \emptyset$ for all i > n, then $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{n} A_i$, for all i > n.

Hence $\bigcup_{i=1}^{n} A_i \in \mathcal{F}$, therefore \mathcal{F} is α -ring of a set Ω .

Conversely, the above theorem is not true. The next example explain that.

Example 2.13

1. Let $\Omega = \{a, b, c, d\}$ and $F = \{\{a, c\}, \{a, d\}, \{a, c, d\}, \emptyset\}$ then \mathcal{F} is a α - σ -ring but not σ - ring of a set Ω . Because $\{a, c\} / \{a, d\} = \{c\} \notin \mathcal{F}$

2. In example (2.6) show that. \mathcal{F} is a α -ring but not α - σ -ring . Because $\Omega \notin \mathcal{F}$.

Proposition 2.14

Let $\{\mathcal{F}_i, i \in \wedge\}$ be a family of α - σ -ring of a set Ω . then $\bigcap_{i \in \wedge} \mathcal{F}_i$ is α - σ -ring of a set Ω .

Proof:

Since \mathcal{F}_i , $i \in \land$ is α - σ -ring of a set Ω . Then $\emptyset \in \mathcal{F}_i$, $i \in \land$, hence $\emptyset \cap_{i \in \land} \mathcal{F}_i$.

Let A_1 , A_2 , ... $\in \bigcap_{i \in \wedge} \mathcal{F}_i$, then A_1 , A_2 , ... $\in \mathcal{F}_i$, $i \in \wedge$.

Since $\mathcal{F}_{i i} \forall i \in \land$ is $\alpha - \sigma$ -ring, then $\bigcup_{k=1}^{\infty} A_k \in \mathcal{F}_i$, $i \in \land$.

Hence $\bigcup_{k=1}^{\infty} A_k \in \bigcap_{i \in \Lambda} \mathcal{F}_i$, therefore $\bigcap_{i \in \Lambda} \mathcal{F}_i$ is α - σ -ring of a set Ω .

The next example indicate that the union of two α - σ -ring of a set Ω is not necessarily a α - σ -ring of a set Ω .

Example 2.15

Let $\Omega = \{a, b, c, d\}$ and $\mathcal{F}_1 = \{\{a, d\}, \emptyset\}$ and $\mathcal{F}_2 = \{\{c\}, \{c, d\}, \emptyset\}$. Then \mathcal{F}_1 and \mathcal{F}_2 are α -oring of a set Ω , but

 $\mathcal{F}_1 \cup \mathcal{F}_2 = \{c\}, \{c,d\}, \{a\}, \{a,d\}, \emptyset\} \text{ is not } \alpha \text{-}\sigma \text{-}ring \text{ of a set } \Omega, \text{ since } \{a\}, \{c\} \in \mathcal{F}_1 \cup \mathcal{F}_2, \text{ but } \{a\} \cup \{c\} = \{a,c\} \notin \mathcal{F}_1 \cup \mathcal{F}_2.$

Proposition 2.16 [3]

Let $\{\mathcal{F}_i, i \in \land\}$ be a family of α - σ -field of a set Ω .then $\bigcap_{i \in \land} \mathcal{F}_i$ is α - σ -field of a set Ω .

And indicate that the union of two α - σ -field of a set Ω is not necessarily a α - σ -field of a set Ω .

Remark 2.17

A α -ring definition equivalence β -field if the following conditions are satisfied : [3]

a. $\phi \in \mathcal{F}$. b. If A_1 , A_2 , ..., $A_n \in \mathcal{F}$ then $\bigcap_{i=1}^n A_i \in \mathcal{F}$. Example 2. 18

1. Let $\Omega = \{ a, b, c \}$ and $\mathcal{F} = \{ \emptyset, \{a\}, \{a, c\}, \{c\} \}$ then \mathcal{F} is β -ring of a set Ω

2. Let $\Omega = \{a, b, c\}$ and $\mathcal{F} = \{\emptyset, \{a\}, \{a, c\}\}$ then \mathcal{F} is β -field of a set Ω .

Theorem 2.19

1. Every ring is β -ring, but the converse is not correct

2. Every σ -ring is β -ring, but the converse is not true.

3. Every field is β -ring, but the converse is not true

4. Every field is β -field, but the converse is not correct.[3]

5. Every σ - field is β -field, but the converse is not correct.[3]

6. Every ring is β -field, but the converse is not correct.[3]

Proof:

1. Let \mathcal{F} is ring on Ω , then by definition ring, we have $\emptyset \in \mathcal{F}$. Let $A_1, A_2, \dots, A_n \in \mathcal{F}$, Then $\bigcup_{i=1}^n A_i \in \mathcal{F}$, to prove $\bigcap_{i=1}^n A_i \in \mathcal{F}$

 $\bigcap_{i=1}^{n} A_{i} = A / \bigcup_{i=1}^{n} (A/A_{i}) \text{ and } \bigcup_{i=1}^{n} (A/A_{i}) \in \mathcal{F}, \text{ therefore } A / \bigcup_{i=1}^{n} (A/A_{i}) \in \mathcal{F}.$

Now,
$$A / \bigcup_{i=1}^{n} (A/A_i) = A / \bigcup_{i=1}^{n} (A \cap A_i^c) = A \cap [\bigcup_{i=1}^{n} (A \cap A_i^c)]^c$$

 $= A \cap [\bigcap_{i=1}^{n} (A^{c} \cup A_{i})] = A \cap [A^{c} \cup (\bigcap_{i=1}^{n} A_{i})]$

 $= (A \cap A^{c}) \cup (A \cap (\bigcap_{i=1}^{n} A_{i})) = \bigcap_{i=1}^{n} A_{i}$

Implies that $\bigcap_{i=1}^{n} A_i \in \mathcal{F}$. Therefore \mathcal{F} is a β -ring.

2. Let \mathcal{F} be a field of a set Ω . Then by definition of \mathcal{F} , we get $\emptyset \in \mathcal{F}$,

let A_1 , A_2 , ..., $A_n \in \mathcal{F}$, then $\bigcup_{i=1}^n A_i \in \mathcal{F}$, from Demorgan laws we have

 $\bigcap_{i=1}^{n} A_i = \left(\bigcup_{i=1}^{n} A_i^c\right)^c, \text{ but } A_1, A_2, \dots A_n \in \mathcal{F}.$

Since \mathcal{F} is closed under complementation, then $A_1^c, A_2^c, \dots A_n^c \in \mathcal{F}$ and $\bigcup_{i=1}^n A_i^c \in \mathcal{F}$, hence $(\bigcup_{i=1}^n A_i^c)^c \in \mathcal{F}$. Therefore $\bigcap_{i=1}^n A_i \in \mathcal{F}$, then is β -ring of a set Ω .

Conversely, the above theorem is not true. The next example explain that.

Example 2.20

1. Let $\Omega = \{a, b, c\}$ and $\mathcal{F} = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}\}$ then \mathcal{F} is β -ring of a set Ω but not ring of a set Ω and not σ -ring, Because $\{a, c\} \setminus \{b, c\} = \{a\} \notin \mathcal{F}$

2. Let $\Omega = \{a, b, c\}$ and $\mathcal{F} = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}\}$ then \mathcal{F} is β -ring of a set Ω but not field of a set Ω . Because $\{c\} \in \mathcal{F}, \{c\}^c = \{a, b\} \notin \mathcal{F}$.

Definition 2.21

Let \mathcal{F} be a nonempty collection of subsets of a set Ω . Then \mathcal{F} is called

1. A $\beta\text{-}\sigma\text{-ring}$ if the following conditions are satisfied :

 $a. \notin \in \mathcal{F}.$

b. $A_1, A_2, \dots, A_n \in \mathcal{F}$ then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$.

2. A β - σ -field if the following conditions are satisfied : [3]

 $a. \Omega, \emptyset \in \mathcal{F}.$

b. $A_1, A_2, \dots \in \mathcal{F}$ then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$.

Example 2.22

1. Let $\Omega = \{a, b, c, d\}$ and $\mathcal{F} = \{\{c\}, \{b, c\}, \{a, c\}, \emptyset\}$ then \mathcal{F} is β - σ -ring of a set Ω .

2. Let $\Omega = \{a, b, c, d\}$ and $\mathcal{F} = \{\Omega, \{a\}, \{a, c\}, \{c\}, \emptyset\}$ then F is β - σ -field of a set Ω .

Theorem 2.23

1. Every σ -field is β - σ -ring, but the converse is not correct.

2. Every σ -ring is β - σ -ring, but the converse is not correct.

3. Every β - σ -ring is β -ring , but the converse is not correct.

4. Every σ -ring contain ϕ is β - σ -field, but the converse is not true.[3]

5. Every σ -field is β - σ -field, but the converse is not true.[3]

6. Every β - σ -field is β -field , but the converse is not true.[3]

Proof:

1. Let \mathcal{F} is σ -field on Ω , then by definition σ -field, we have $\emptyset \in \mathcal{F}$.

Let $A_1, A_1, ... \in \mathcal{F}$, Then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$, to prove $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$, from demorgan laws we have $\bigcap_{i=1}^{\infty} A_i = (\bigcup_{i=1}^{\infty} A_i^c)^c$, but $A_1, A_1, ... A_n \in \mathcal{F}$. Since \mathcal{F} is closed under complementation, then $A_1^c, A_2^c, ... \in \mathcal{F}$, and $\bigcup_{i=1}^{\infty} A_i^c \in \mathcal{F}$, hence $(\bigcup_{i=1}^{\infty} A_i^c)^c \in \mathcal{F}$. Therefore $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$, then \mathcal{F} is β - σ -ring of a set Ω .

2. Let \mathcal{F} is σ -ring on Ω , then by definition σ -ring, we have $\emptyset \in \mathcal{F}$.

Let $A_1, A_1, \dots, A_n \in \mathcal{F}$, Then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$, to prove $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$, $\bigcap_{i=1}^{\infty} A_i = A / \bigcup_{i=1}^{\infty} (A/A_i)$ and $\bigcup_{i=1}^{\infty} (A/A_i) \in \mathcal{F}$, therefore $A / \bigcup_{i=1}^{\infty} (A/A_i) \in \mathcal{F}$. Now, $A / \bigcup_{i=1}^{\infty} (A/A_i) = A / \bigcup_{i=1}^{\infty} (A \cap A_i^c)) = A \cap [\bigcup_{i=1}^{\infty} (A \cap A_i^c)]^c$ $= A \cap [\bigcap_{i=1}^{\infty} (A^c \cup A_i)] = A \cap [A^c \cup (\bigcap_{i=1}^{\infty} A_i)]$ $= (A \cap A^c) \cup (A \cap (\bigcap_{i=1}^{\infty} A_i)) = \bigcap_{i=1}^{\infty} A_i$

Implies that $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$. Therefore \mathcal{F} is a β - σ -ring.

3. Let \mathcal{F} be a β - σ -ring of a set Ω . Then $\emptyset \in \mathcal{F}$. Let A_1 , A_2 , ..., $A_n \in \mathcal{F}$, take A_{n+1} , ... = Ω

then $\bigcap_{i=1}^{\infty} A_i = \bigcap_{i=1}^n A_i$. Since $A_i \in \mathcal{F}$ for all i = 1, 2, ... and \mathcal{F} be a β - σ -ring, then

 $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$, hence $\bigcap_{i=1}^{n} A_i \in \mathcal{F}$, therefor \mathcal{F} is β -ring of a set Ω .

Conversely, the above theorem is not true. The next example explain that.

Example 2.24

1. Let $\Omega = \{a, b, c, d\}$ and $\mathcal{F} = \{\{c\}, \{b, c\}, \{a, c\}, \emptyset\}$ then \mathcal{F} is β - σ -ring of a set Ω , but not σ -field contain \emptyset . Because $\{a, c\} \in \mathcal{F}$, $\{a, c\}^c = \{b, d\} \notin \mathcal{F}$.

2. Let $\Omega = \{a, b, c, d\}$ and $\mathcal{F} = \{\{c\}, \{b, c\}, \{a, c\}, \emptyset\}$ then \mathcal{F} is β - σ -ring of a set Ω , but not σ -ring. Because $\{a, c\} / \{b, c\} = \{a\} \notin \mathcal{F}$.

3. Let $\Omega = \{ a, b, c \}$ and $\mathcal{F} = \{ \emptyset, \{a\}, \{a, c\}, \{c\} \}$ then \mathcal{F} is β -ring of a set Ω but not

 β -σ-ring, Because $\emptyset \notin \mathcal{F}$.

Theorem 2.25

Let $\{\mathcal{F}_i, \forall i \in \land\}$ be a family of β - σ -ring of a set Ω . then $\bigcap_{i \in \land} \mathcal{F}_i$ is β - σ -ring of a set Ω .

Proof :

Since \mathcal{F}_i , $\forall i \in \land$ is β - σ -ring of a set Ω . Then $\emptyset \in \mathcal{F}_i$, $\forall i \in \land$, hence $\emptyset \in \bigcap_{i \in \land} \mathcal{F}_i$.

Let A_1 , A_1 , ..., $A_n \in \bigcap_{i \in \wedge} \mathcal{F}_i$, then A_1 , A_1 , ..., $A_n \in \mathcal{F}_i$, $\forall i \in \wedge$.

Since \mathcal{F}_i , $\forall i \in \land$ is β - σ -ring, then $\bigcap_{k=1}^{\infty} A_k \in \mathcal{F}_i$, $\forall i \in \land$. Hence $\bigcap_{k=1}^{\infty} A_k \in \bigcap_{i \in \land} \mathcal{F}_i$, therefore $\bigcap_{i \in \land} \mathcal{F}_i$ is β - σ -ring of a set Ω .

Definition 2.26

Journal of Iraqi Al-Khwarizmi Society (JIKhS) Volume: 5 Issue: 1 2021 ^{3th} International Scientific Conference of Iraqi Al-Khwarizmi Society 29-30 August 2021

Let \mathcal{F} be a non-empty set . A non-empty collection $\mathcal{F} \subseteq P(\mathcal{F})$ is said to be

- 1. A δ -ring of a set Ω . the following conditions are satisfied :
 - $a. \Omega \in \mathcal{F}.$
 - b. If $A, B \in \mathcal{F}$ $A \subset B$ then $B | A \in \mathcal{F}$.

c. If $A_1, A_2, \dots \in \mathcal{F}$ and $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$

- 2. δ -Field of a set Ω . the following conditions are satisfied : [3]
 - $a. \ \emptyset \in \mathcal{F}$
 - b. If a nonempty set in \mathcal{F} and $A \subset B \subseteq \Omega$, then $B \in \mathcal{F}$
 - c. If $A_1, A_2, \dots \in \mathcal{F}$ and $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$

Remark 2.27 [3]

For any δ -Field of a set Ω , the following hold :

- 1. $\Omega \in \mathcal{F}$
- 2. If A_1 , A_2 , ..., $A_n \in \mathcal{F}$ then $\bigcap_{i=1}^n A_i \in \mathcal{F}$
- 3. If A_{λ} for some λ , then $\bigcup_{\lambda \in \Lambda} A_{\lambda}$.

Example 2.28

1. Let $\Omega = \{a, b, c\}$ and $\mathcal{F} = \{\emptyset, \{a, b\}, \{b, c\}, \Omega\}$. Then \mathcal{F} is a δ -ring of set Ω .

2. Let $\Omega = \{a, b, c, d\}$ and $\mathcal{F} = \{\emptyset, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \Omega\}$. Then \mathcal{F} is a δ -field of set Ω .

Theorem 2.29

Every δ -field is δ -ring, but the converse is not true.

Proof:

- 1. Let $\emptyset \in \mathcal{F}$, since $\emptyset \subseteq \Omega$, then $\Omega \in \mathcal{F}$.
- 2. Let A a nonempty set on \mathcal{F} , $A \subseteq \Omega$ then $\Omega \in \mathcal{F}$ such that $\Omega / A \in \mathcal{F}$.
- 3. Let If $A_1, A_2, \dots \in \mathcal{F}$ and , Since F is δ -field, then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$.

Hence \mathcal{F} is δ -ring.

Conversely, the above theorem is not true. The next example explain that.

Example 2.30

Let $\Omega = \{1,2,3,4\}$ and $\mathcal{F} = \{\{1,2\}, \{1,2,3\}, \{1,2,4\}, \Omega\}$. then \mathcal{F} is δ -ring of a set Ω but not δ -field, Because $\emptyset \notin \mathcal{F}$. The following diagrams illustrate the relationships between the concepts used in this thesis.

Remark 2.31

Directly from the definition δ -ring we can prove each of the following:

- 1. Every δ -ring is α -ring, but the converse is not correct.
- 2. Every δ -ring is α - σ -ring, but the converse is not correct.
- 3. Every δ -ring is β -ring , but the converse is not correct.
- 4. Every δ -ring is β - σ -ring, but the converse is not true.
- **3.** π system and λ system

Journal of Iraqi Al-Khwarizmi Society (JIKhS) Volume: 5 Issue: 1 2021 8th International Scientific Conference of Iraqi Al-Khwarizmi Society 29-30 August 2021

This section, we found some new definitions such as π - system and λ – system to obtain some results deals with these definitions. We give basic properties and examples of these concepts.

Definition 3.1[7]

"A family \mathcal{F} of subsets of a set Ω is named :

- 1. π system on a set Ω , if $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.
- 2. λ system (or Dynkin system) on a set Ω , if
- $a. \Omega \in \mathcal{F}$
- *b*. If $A, B \in \mathcal{F}$ and $A \subseteq B$ then $B \mid A \in \mathcal{F}$
- c. If $\{A_n\}$ is an increasing sequence of sets in Ω , Then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$
- A λ measurable Space is a pair (Ω, \mathcal{F}) , where Ω is a set and \mathcal{F} is a λ -system on Ω .

Proposition 3.2[7]

Let (Ω, \mathcal{F}) be a λ -measurable space. Then $A^c \in \mathcal{F}$, if $A \in \mathcal{F}$. Hence $\emptyset \in \mathcal{F}$. **Remark 3.3[7]** If \mathcal{F} is λ -system on Ω , it is clear to show that: 1. If $A_1, A_2, \dots A_n \in \mathcal{F}$ then $\bigcup_{n=1}^n A_n \in \mathcal{F}$ and $\bigcap_{i=1}^n A_i \in \mathcal{F}$

2. If $A_n \in \mathcal{F}$, n = 1, 2, ... then $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$.

Example 3.4

Every semifield is a π - system.

Example 3.5

Every σ -field \mathcal{F} is a λ -system . But a field need not be a λ - system.

Theorem 3.6 [8]

"A family $\mathcal F$ of subsets of a set Ω is λ -system on a set Ω , iff

- 1. $\Omega \in \mathcal{F}$.
- 2. If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$.
- 3. If $\{A_n\}$ is a sequence of disjoint sets in \mathcal{F} , then Then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$."

Theorem 3.7 [8]

"A family \mathcal{F} of subsets of a set Ω is σ -field iff it is both a π - system and a λ -system on Ω ."

Theorem 3.8 [8]

"Let \mathcal{F} be a λ -system on a set Ω . Fix $D \in \mathcal{F}$, then $\mathcal{G} = \{A \in \mathcal{F} : A \cap D \in \mathcal{F} \}$ is λ -system."

Theorem 3.9 [5]

- 1. If $\{\mathcal{F}_a\}_{a \in \Lambda}$ is a family of π -system, then $\mathcal{F} = \bigcap_{a \in \Lambda} \mathcal{F}_a$ is also π -system.
- 2. If $\{\mathcal{F}_a\}_{a \in \Lambda}$ is a family of λ -system, then $\mathcal{F} = \bigcap_{a \in \Lambda} \mathcal{F}_a$ is also λ -system.
- 3. If $\{\mathcal{F}_a\}_{a\in\wedge}$ is a family of σ -field, then $\mathcal{F} = \bigcap_{a\in\wedge}\mathcal{F}_a$ is also σ -field.

Definition 3.10 [10]

"Let \mathcal{G} be a family of subsets of a set Ω .

1. The smallest π - system including \mathcal{G} named the π - system generated by \mathcal{G} and it is mean by $\pi(\mathcal{G})$. 2. The smallest λ -system including \mathcal{G} named the λ -system generated by \mathcal{G} and it is mean by $\lambda(\mathcal{G})$. 3. The smallest σ -field including \mathcal{G} named the σ -field generated by \mathcal{G} and it is mean by $\sigma(\mathcal{G})^{"}$.

Example 3.11

A field \mathcal{F} need not be a λ -system.

Theorem 3.12

Let \mathcal{F} be a λ -system on a set Ω . Fix $D \in \mathcal{F}$, then $\mathcal{F} = \{A \in \mathcal{F} : A \cap D \in \mathcal{F}\}$ is λ -system.

Theorem 3.13

Let \mathcal{F} is π -system then $\lambda(\mathcal{F}) = \sigma(\mathcal{F})$ **Proof**: Let \mathcal{F} be a π -system on Ω , then is σ -field on Ω , $\mathcal{F} \subset \sigma(\mathcal{F})$. $\sigma(\mathcal{F})$ is λ -system on Ω , we have $\lambda(\mathcal{F}) \subset \sigma(\mathcal{F})...(1)$ Now, to show that $\sigma(\mathcal{F}) \subset \lambda(\mathcal{F})$, when \mathcal{F} is π -system. Step 1 : $\mathcal{F} \subset \lambda(\mathcal{F})$ $\sigma(\mathcal{F}) \subset \sigma(\lambda(\mathcal{F}))...(2)$ Step 2 : We need to show that , $\sigma(\lambda(\mathcal{F})) = \lambda(\mathcal{F})$, i.e. we must show that $\lambda(\mathcal{F})$ is σ -field on Ω . Let \mathcal{F} be family of subsets of Ω , then \mathcal{F} is σ -field iff \mathcal{F} is field $A_n \in \mathcal{F}$, $A_n \subset A_{n+1} \forall n$, $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$, thus it is ciosed under intersection. Let $\lambda_1(\mathcal{F}) = \{ A : A \in \lambda(\mathcal{F}), A \cap B \in \lambda(\mathcal{F}) \forall B \in \mathcal{F} \}$ $\lambda_1(\mathcal{F})$ is a λ -system and \mathcal{F} is π -system , $\mathcal{F} \subset \lambda_1(\mathcal{F}) \to \lambda(\mathcal{F}) \subset \lambda_1(\mathcal{F})$ But $\lambda_1(\mathcal{F}) \subset \lambda(\mathcal{F}) \rightarrow \lambda_1(\mathcal{F}) = \lambda(\mathcal{F})$ Let $\lambda_2(\mathcal{F}) = \{ A : A \in \lambda(\mathcal{F}), A \cap B \in \lambda(\mathcal{F}) \forall B \in \lambda(\mathcal{F}) \}$ $\lambda_2(\mathcal{F})$ is a λ -system and $\mathcal{F} \subset \lambda_2(\mathcal{F}) \subset \lambda(\mathcal{F})$, $\lambda_2(\mathcal{F}) = \lambda(\mathcal{F})$, i.e. $\lambda(\mathcal{F})$ it is closed under intersection , then $\lambda(\mathcal{F}) \mathcal{F}$ is σ -field $\sigma(\lambda(\mathcal{F})) = \lambda(\mathcal{F}) \dots \text{from} (2) \ \sigma(\mathcal{F}) \subset \sigma(\lambda(\mathcal{F}))$ i.e. $\sigma(\mathcal{F}) \subset \lambda(\mathcal{F}) \dots (3) \Longrightarrow$ Thus $\lambda(\mathcal{F}) = \sigma(\mathcal{F})$.

Theorem 3.14

Every ring is π -system but the converse is not true.

Example 3.15

Let $\Omega = \{1,2,3\}$ and $\mathcal{F} = \{\emptyset, \{2\}, \Omega\}$ Thus \mathcal{F} is π -system but not ring. Because $\Omega / \{2\} = \{1,3\} \notin \mathcal{F}$.

Theorem 3.16[7]

Let Ω_1 and Ω_2 be $\neq 0$ sets, and $f: \Omega_1 \to \Omega_2$ is any function. 1.If \mathcal{F} is a λ -system on Ω_1 , then $\mathcal{H}=\{A \subseteq \Omega_2: f^{-1}(A) \in \mathcal{F}\}$ is a λ -system on Ω_2 . 2.If \mathcal{G} is a a λ -system on Ω_2 , then $f^{-1}(\mathcal{G}) =\{f^{-1}(A): A \in \mathcal{G}\}$ is a λ -system on Ω_2 .

Theorem 3.17[7]

If $\{\mathcal{F}_{\lambda}\}_{\lambda \in \Lambda}$ be an arbitrary family of λ -system on a set Ω where $\Lambda \neq \emptyset$, then $\mathcal{F} = \bigcap_{\lambda \in \Lambda} \mathcal{F}_{\lambda}$ is a λ -system on Ω .

Definition 3.18[7]

Let G be a family of sets of a set Ω . The smallest λ -system Containing G called the λ -system generated by G and it is Denoted by $\lambda(G)$.

Theorem 3.19[7]

Let Ω_1 and Ω_2 be nonempty sets, and $f: \Omega_1 \to \Omega_2$ is any function . If \mathcal{G} is a family of set in Ω_2 . Then $\lambda(f^{-1}(\mathcal{G})) = f^{-1}(\lambda(\mathcal{G}))$, where $f^{-1}(\mathcal{G}) = \{f^{-1}(A): A \in \mathcal{G}\}$.

Definition 3.20[7]

Let \mathcal{G} be a family of subsets of a set Ω , and let $A \subset \Omega$. The restriction (or trace) of \mathcal{G} on A is the collection of all sets of the form $A \cap B$, were $B \in \mathcal{G}$, and it is denoted by $\mathcal{G}_A(\text{or } A \cap \mathcal{G})$

$$\mathcal{G}_A = A \cap \mathcal{G} = \{A \cap B : B \in \mathcal{G}\}$$

 \mathcal{G}_A is family of subsets of A. The fuzzy λ -system $\sigma(\mathcal{G}_A)$ generated by \mathcal{G}_A . Some time denoted by $\lambda_a(A \cap \mathcal{G})$, i.e. $\lambda(\mathcal{G}_A) = \lambda_a(A \cap \mathcal{G})$.

Journal of Iraqi Al-Khwarizmi Society (JIKhS) Volume: 5 Issue: 1 2021 8th International Scientific Conference of Iraqi Al-Khwarizmi Society 29-30 August 2021

Theorem 3.21[7]

Let *G* be a family of subsets of a set Ω , and let $A \subset \Omega$. Then $A \cap \lambda(G) = \lambda(A \cap G)$.

References

[1] Dietmar, A. S. 2016. Measure and Integration.

https://people.math.ethz.ch/~salamon/PREPRINTS/measure.pdf

[2] Hallos, P.R., "Measure Theory", New York, N.Y.: D. Van Nostrand Co. 1950.

[3] Ibrahim , S.A. and Hassan H. E. , " On α -field and β -field", IOP Conf. Series: Journal of Physics: Conf. Series 1294 (2019) 032015.

[4] Jan Derezinski. 2017. Measure Theory. www.fuw.edu.pl/~derezins/mat-m.pdf

[5] Noori, F. A.: Measure Theory and Applications. Deposit number in the National Library and Archives in Baghdad (1780). First edition, Iraq (2018).

[6] Paul, R. H. 1974. Measure Theory. Springer – Verlag New York.

[7] Rasha A. H. and Noori F. A., " λ - Borel and λ - Baire Credibility on Normal Topological Spaces", College of Science, University of Al-Qadisiyah, Iraq.

[8] Rasha A.H. and Noori F.A.: Credibility Space and Fuzzy Variables on λ –System , Journal of Physics: Conference Series(Research under publication) 2021.

[9] Robert, B. A., " Real Analysis and Probability ", (1972) Academic Press, INC, University of Illinois .

[10] Sharma J. N., Vishnu K., "Topology", Krishna Prakashan Media P Ltd, 2003.