Anti - hesitant fuzzy module

^aA. Fadhil.J, ^bM. Jassim. Al-Musafir, ^cR. Hadi ^{a,b,c}Department of Mathematics, College of Education for Pure Sciences, University of Thi-Qar. ^aahmed_fadhil.math@utq.edu.iq, ^bMohammed.195775@gmail.com, ^crhjari@ualr.edu

Abstract: In this paper, we study the definition of hesitant fuzzy set, with some its properties . We introduced the definition of anti-hesitant fuzzy module with the result equivalent of definition . Also, we study the relationship between this concept and the concept hesit-ant fuzzy module with prove some results . We establish anti-image of hesitant fuzzy set, and through which we have the image and the inverse image of the anti-hesitant fuzzy module with respect the homomorphism between modules.

Keywords: hesitant fuzzy set, hesitant fuzzy module, Anti - hesitant fuzzy module.

1-Introduction

The concept of fuzzy sets was first introduced by Zadeh in 1965 as an extension of the classical notion of a set [12]. Torra (2010) proposed a new generalized of fuzzy set called hesitant fuzzy set (HFS) and he defined the complement, union inter- section of HFS [8]. Xia and Xu (2011a) originally gave the mathematical expressions of HFS, and some operational laws for HFS, such as the addition and multiplication [9]. Afterw- ards, Liao and Xu (2014a) introduced the subtraction and division operations over HFSs [11]. Bin Zhu (2012) introduced dual hesitant fuzzy set (DHFS), is an emerging research area due to its capability of representing opposite epistemic degr- ees together with hesitancy [10]. The concept of fuzzy module was introduced by Negoita and Relescu [5] in (1975). sharma (2011) introduced the notion of anti-fuzzy modules of a module and studied some of their properties [7]. Deepak and John (2014) introduced the notion of hesitant fuzzy subgroups [2]. Deepa et al. (2017) introduced the notion of dual hesitant fuzzy subring, dual hesitant fuzzy ideal and the image, pre-image of dual hesitant fuzzy subring under a homomorphism are discussed [3]. Kim et al. (2019) defined hesitant fuzzy subgroupoid, hesitant fuzzy subring, Hesitant fuzzy ideal [4]. Ali and Mohammed (2021) introduce the notions of hesitant fuzzy ideal, hesitant fuzzy prime ideal, hesitant fuzzy strongly prime ideal and hesitant fuzzy 3prime ideals of a ring R [1]. In this paper, we introduced the notion of anti-hesitant fuzzy module and studied some of their properties. Also, we proved the relationship between anti-hesitant fuzzy module and the hesitant fuzzy module with some characteristics around it .

2-Preliminaries

In this section, we shall give the concept of hesitant fuzzy set with some basic definitions and properties about it which are used in the next section.

Definition (2.1) [8]

Let X be a reference set a hesitant fuzzy set (HFS) A on X is defined in terms of a function $h_A(x)$ when applied to X returns a finite subset of [0, 1] i.e. $A = \{(x, h_A(x)) | x \in X\}$ where $h_A(x)$ is a set of some differences values in [0, 1], representing the possible membership degrees of the element $x \in X$ to A for convenience, we call $h_A(x)$ a hesitant fuzzy element (HFE).

Example (2.2)[8]

Let $X = \{x_1, x_2, x_3\}$ be reference set $h_A(x_1) = \{0.2, 0.4, 0.5\}, h_A(x_2) = \{0.3, 0.4\}, h_A(x_3) = \{0.2, 0.3, 0.5, 0.6\}$ be the HFES of $x_i (x_i = 1, 2, 3)$ to a set A, respectively. then A can be considered as a HFS, i.e. $A = \{(x_1, h_A(x_1)), (x_2, h_A(x_2)), (x_3, h_A(x_3)))\}$.

Definition (2.3) [6]

Let X be a reference set, then we define some types of hesitant fuzzy set. empty set: $h^0(x) = \{(x, \{0\}) \forall x \in X\} = \{0\}$, full set: $h^1(x) = \{(x, \{1\}) \forall x \in X\} = \{1\}$, complete ignorance for $x \in X$ (all is possible) : $h^{[0,1]}(x) = \{(x, [0,1]) \forall x \in X\} = [0, 1]$ and set for a nonsense $h^{\emptyset}(x) = \{(x, \emptyset) \forall x \in X\} = \emptyset$ such that $h^{\emptyset}(x) \subseteq h(x) \subseteq h^{[0,1]}(x)$

Definition (2.4) [2]

Let *A*, *B* be a hesitant fuzzy set of a set *X* and *Y* respectively and let $f: X \to Y$ be a mapping. Then the image of *A* under *f*, denoted by f(A), is a hesitant fuzzy set in *Y* defined as follows: for each $y \in Y$

$$f(A)(y) = \begin{cases} \bigcup_{x \in f^{-1}(y)} A(x) & iF \ f^{-1}(y) \neq \emptyset \\ \{0\} & \text{otherwise} \end{cases}$$

the invers of B under f, denoted by $f^{-1}(B)$, is a hesitant fuzzy set in X defined as follow: for each $x \in X$, $f^{-1}(B)(x) = B(f(x))$.

Definition (2.5) [6+8+9]

For any h_1, h_2 in HFSs, some operations on them can be described as follows

(1) $(h_1 \cup h_2)(x) = = \bigcup_{y_1 \in h_1, y_2 \in h_2} \max \{y_1, y_2\}$ (2) $(h_1 \cap h_2)(x) = \bigcup_{y_1 \in h_1, y_2 \in h_2} \min \{y_1, y_2\}$ (3) complement $h^c(x) = 1 - h(x) = \{1 - y \mid y \in h(x)\}$ (4) $h^{\lambda}(x) = \{y^{\lambda} \mid y \in h(x)\}$ (5) $\lambda h(x) = \{1 - (1 - y)^{\lambda} \mid y \in h(x)\}$ (6) $(h_1 \otimes h_2)(x) = \{y_1 y_2 \mid y_1 \in h_1(x), y_2 \in h_2(x)\}$

(7) $(h_1 \oplus h_2)(x) = \{y_1 + y_2 - y_1y_2 \mid y_1 \in h_1(x), y_2 \in h_2(x)\}$

<u>Theorem (2,6) [9]:</u>

For three HFEs h, h_1 , h_2 the followings are valid

- (1) $h_1^c \cup h_2^c = (h_1 \cap h_2)^c$
- (2) $h_1^c \cap h_2^c = (h_1 \cap h_2)^c$
- (3) $(h^c)^{\lambda} = (\lambda h)^c$
- (4) $\lambda(h^c) = (h^{\lambda})^c$
- (5) $h_1^c \oplus h_2^c = (h_1 \otimes h_2)^c$
- (6) $h_1^c \otimes h_2^c = (h_1 \oplus h_2)^c$.

Definition (2.7) [2]

Let G be a group and h is hesitant fuzzy set. Then h is called a hesitant fuzzy subgroup (in short, HFG) in G, if it satisfies the following conditions: for any $x, y \in G$,

(i) $h(x - y) \supseteq h(x) \cap h(y)$ (ii) $h(x^{-1}) \supseteq h(x)$

We will denote the set of all HFGs in G by HFG(G).

Definition (2.8) [4]

Let R be a ring and h be hesitant fuzzy set. Then h is a hesitant fuzzy subring of R if and only if for all $x, y \in R$.

(i) $h(x - y) \supseteq h(x) \cap h(y)$ (ii) $h(xy) \supseteq h(x) \cap h(y)$.

Definition (2.9) [4]

Let R be a ring and h be a hesitant fuzzy subring of R. Then $h \in HFI(R)$ [resp. HFLI(R) and HFRI(R)] if and only if for any $x, y \in R$,

```
(i) h(x - y) \supseteq h(x) \cap h(y)
```

(ii) $h(xy) \supseteq h(x) \cup h(y)[resp. h(xy) \supseteq h(y) \text{ and } h(xy) \supseteq h(x)]$

Definition (2.10)

Let X be a reference set and h be an hesitant fuzzy set of X. Then

- (1) the *E* upper (*level set*) of h defined $h_E = \{x \in M : h(x) \supseteq E\}$. Such that the $E \subseteq [0, 1]$
- (2) the E^* lower (level set) of h defined $h_{E^*} = \{x \in M: h(x) \subseteq E^*\}$. Such that the $E^* \subseteq [0, 1]$

3 - Anti - hesitant fuzzy module

In this section, we define the concept of anti-hesitant module and study the relationship between this concept and the concept of hesitant fuzzy module with prove some results about it.

Definition (3.1)

Let *h* be an hesitant fuzzy set over R-module M then h is said to be hesitant fuzzy module (in short, HFM) over R-module M if for all $x, y \in M$, $r \in R$ (i) $h(x - y) \supseteq h(x) \cap h(y)$ (ii) $h(rx) \supseteq h(x)$.

Example (3.2)

Let h be a hesitant fuzzy set of Z_2 -module $(Z_2, +_2)$ such that $h = \{(0, h(0)), (1, h(1))\}$, $h(0) = \{0.1, 0.3, 0.6, 0.8\}$, $h(1) = \{0.1, 0.3\}$ Then h is hesitant fuzzy module of Z_2 -module Z_2 .

Proposition (3.3)

Let h, h_1 and h_2 are two hesitant fuzzy module of R-module M, then $h^{\lambda}, \lambda h, h_1 \cap h_2, h_1 \otimes h_2$ and $h_1 \oplus h_2$ are hesitant fuzzy module of R-module M. It can be easily Prove.

Theorem (3.4)

Jo

Journal of Iraqi Al-Khwarizmi Society (JIKhS) Volume: 5 Issue: 1 2021 8th International Scientific Conference of Iraqi Al-Khwarizmi Society 29-30 August 2021

Let *h* be a hesitant fuzzy set of left R – module *M*. Then *h* is hesitant fuzzy module of *R*-module *M* iff h_E , $E \subseteq [0,1]$ is submodule of *R*-module M. *It can be easily Prove*

Proposition (3.5)

Let *f* be an epimorphism from R-module M into R-module N, if B hesitant fuzzy module of N then $f^{-1}(B)$ hesitant fuzzy module of M.

It can be easily Prove.

Proposition (3.6)

Let f be an onto homomorphism from R-module M into R-module N if A hesitant fuzzy module of M then f(A) hesitant fuzzy module of R-module N. It can be easily Prove.

Definition (3.7)

Let h be an hesitant fuzzy set of an R-module M then h is called an anti-hesitant fuzzy module (in short, A-HFM) of M

if for all $x, y \in M$, $r \in R$, we have (i) $h(x - y) \subseteq h(x) \cup h(y)$ (ii) $h(rx) \subseteq h(x)$.

Example (3.8)

Let h be hesitant fuzzy set of Z_2 -module $(Z_2, +_2)$ such that $h = \{(0, h(0)), (1, h(1))\}$, $h(0) = \{0.2, 0.5\}$, $h(1) = \{0.2, 0.3, 0.5, 0.9\}$ Then h is anti-hesitant

fuzzy module of Z_2 -module Z_2 .

Proposition (3.9)

Let R be a Ring with unity and h be an hesitant fuzzy set over R-module M then h is antihesitant fuzzy module of M if and only if $h(rx - ry) \subseteq h(x) \cap h(y)$ for all $x, y \in M$, $r \in R$.

Proof :

Suppose that h is anti-hesitant fuzzy module of M $h(rx - ry) = h(r(x - y)) \subseteq h(x - y) \subseteq h(x) \cup h(y)$ suppose that the condition $h(rx - ry) \subseteq h(x) \cup h(y)$ holds. Putting r = 1 we get $h((1) x - (1)y) = h(x - y) \subseteq h(x) \cup h(y)$ Again, putting y = 0 $h(r x - (r)(0)) = h(rx - 0) \subseteq h(x) \cup h(0) \subseteq h(x)$ So, h is anti-hesitant fuzzy module of R-module M. \Box

Proposition (3.10)

Every anti - hesitant fuzzy module of R-module M. Then for any $x \in M$ (1) h(-x) = h(x) (2) $h(0) \subseteq h(x)$. **Proof (1)** h(-x) = h(0 - x)Since h is anti - hesitant fuzzy module of R-module M $h(-x) \subseteq h(0) \cup h(x) = h(x)$ implies h(x) = h(0 - (-x))

Since *h* is anti - hesitant fuzzy module of R-module M $h(x) \subseteq h(0) \cup h(-x) = h(-x)$ Thus h(-x) = h(x). \Box

Proof (2)

h(0) = h(x - x)Since h is anti - hesitant fuzzy module of R-module M Thus $h(0) \subseteq h(x) \cup h(x) = h(x)$. \Box

Proposition (3.11)

Let R be a Ring and h is anti - hesitant fuzzy module of R-module M if h(x - y) = h(0)then h(x) = h(y) for any $x, y \in M$

Proof:

 $\begin{aligned} h(y) &= h(x - (x - y) \subseteq h(x) \cup h(x - y) \\ h(y) &\subseteq h(x) \cup h(0) \quad \text{implies} \quad h(y) \subseteq h(x) \\ h(x) &= h(y - (y - x) \subseteq h(y) \cup h(y - x) \\ h(x) &\subseteq h(y) \cup h(0) \quad \text{implies} \quad h(x) \subseteq h(y) \\ \text{Thus} \quad h(x) &= h(y). \quad \Box \end{aligned}$

Theorem (3.12)

Let h be a anti - hesitant fuzzy module of R-module M, then $A = \{x \in M \mid h(x) = h(0)\}$ is submodule of M.

Proof :

Let $x, y \in A$, we get h(x) = h(0), h(y) = h(0)Since h is anti - hesitant fuzzy module of R-module M $h(x - y) \subseteq h(x) \cup h(y) \subseteq h(0) \cup h(0) \subseteq h(0)$ implies from proposition (3.11) (2) it is obvious that $h(x - y) \supseteq h(0)$ So that h(x - y) = h(0), Thus $x - y \in A$ Let $x \in A, r \in R$, we get h(x) = h(0)Since $h(rx) \subseteq h(x)$, implies $h(rx) \subseteq h(0)$ From proposition (3.11) (2) it is obvious that $h(rx) \supseteq h(0)$ So that h(rx) = h(0), thus $rx \in A$ Hence, A is submodule of M. \Box

Theorem (3.13)

Let h be hesitant fuzzy set of R-module M then h is A-HFM of M iff h^c is HFM of M.

proof :

suppose that h is A-HFM of M and Let $x, y \in M$, $r \in R$. Since $h(x - y) \subseteq h(x) \cup h(y)$ Thus $1 - h^c(x - y) \subseteq (1 - h^c(x)) \cup (1 - h^c(y))$ Implies $1 - h^c(x - y) \subseteq 1 - (h^c(x) \cap h^c(y))$ $-h^c(x - y) \subseteq -(h^c(x) \cap h^c(y))$ Hence $h^c(x - y) \supseteq h^c(x) \cap h^c(y)$(*) Since $h(rx) \subseteq h(x)$ Thus $1 - h^c(rx) \subseteq 1 - h^c(x)$

 $-h^{c}(xr) \subseteq -h^{c}(x)$ $h^c(rx) \supseteq h^c(x)$ (**) Hence From (*), (**) we get h is HFM of M suppose that h^c is *HFM* of M and Let $x, y \in M$, $r \in R$. Since $h^c(x-y) \supseteq h^c(x) \cap h^c(y)$ Thus $1 - h(x - y) \supseteq (1 - h(x)) \cap (1 - h(y))$ Implies $1 - h(x - y) \supseteq 1 - (h(x) \cup h(y))$ $-h(x-y) \supseteq -(h(x) \cup h(y))$ $h(x - y) \subseteq h(x) \cup h(y) \dots (***)$ Hence Since $h^c(rx) \supseteq h^c(x)$ Thus $1 - h(rx) \supseteq 1 - h(x)$ $-h(rx) \supseteq -h(x)$ $h(rx) \subseteq h(x) \quad \dots \quad (^{****})$ Hence From (***), (****) we get h is A-HFM of M. \Box

Theorem (3.14)

Let *h* be a hesitant fuzzy set of R – module *M*. Then *h* is anti-hesitant fuzzy module of *R*-module *M* iff $h_{E^{**}}$ is submodule of M.

proof :

Suppose that h is A-HFM of M Thus h^c is HFM of M (by Theorem 3.13) h^c_E is submodule of M (by Theorem 3.4) We get $h^c_E = h^c(x) \supseteq E$ $= 1 - h(x) \supseteq E$ $= h(x) \subseteq 1 - E$ $= h(x) \subseteq E^* = h_{E^*}$ Hence h_{E^*} is submodule of M. Suppose that h_{E^*} is submodule of M By a bove $h^c_E = h_{E^*}$ Thus h^c is HFM of M Implies h is A-HFM of M. \Box

Proposition (3.15)

Let h_1 and h_2 be a anti-hesitant fuzzy module of R-module M, then $h_1 \cup h_2$ is anti-hesitant fuzzy module of R-module M

Proof (1) :

Since h_1 and h_2 are anti-hesitant fuzzy module of M Hence h_1^c and h_2^c , are HFM of M (by Theorem 3.13) Since $h_1^c \cap h_2^c$ is HFM of M (by Proposition 3.3) Since $(h_1 \cup h_2)^c = h_1^c \cap h_2^c$, (by Proposition 2.6) Thus $(h_1 \cup h_2)$ is anti-hesitant fuzzy module of M. \Box

Remark (3.16)

Note that the $h_1 \cap h_2$ is not necessarily be a anti-Hesitant fuzzy module of M as in the following Example.

Let M = Z as a Z - module and $h, K : Z \rightarrow P[0,1]$ defined by $h_1(x) = \begin{cases} \{0, 0.4\} & if & x \text{ is multiple } 3\\ \{0, 0.4, 0.8\} & \text{otherwise} \end{cases}$ $h_2(x) = \begin{cases} \{0, 0.4\} & if & x \text{ is even}\\ \{0, 0.4, 0.6\} & \text{otherwise} \end{cases}$

It can be verified that h_1 and h_2 are anti-hesitant fuzzy module of M. Now, take x = 9 and y = 4. We see that

$$\begin{split} h_1(9) &= \{0, 0.4\} \ , \ h_1(4) = \{0, 0.4, 0.8\} \\ h_2(9) &= \{0, 0.4, 0.6\} \ , \ h_2(4) = \{0, 0.4\} \\ \text{Thus} \ \ h_1(9-4) &= h_1(5) = \{0, 0.4, 0.8\} \\ \text{and} \\ h_2(9-4) &= h_2(5) = \{0, 0.4, 0.6\} \\ \text{Hence} \ \ (h_1 \cap h_2)(9) &= \{0, 0.4\} \\ \text{and} \ \ (h_1 \cap h_2)(4) &= \{0, 0.4\} \\ \text{Implies} \ \ (h_1 \cap h_2)(9-4) &= (h_1 \cap h_2)(5) &= \{0, 0.4, 0.6\} \\ (h_1 \cap h_2)(9) \cup (h_1 \cap h_2)(4) &= \{0, 0.4\} \\ \text{Thus} \ \ (h_1 \cap h_2)(9-4) &\not \equiv (h_1 \cap h_2)(9) \cup (h_1 \cap h_2)(4) \\ \text{So} \ , \ h_1 \cap h_2 \ is \ not \ is \ anti-hesitant fuzzy \ module \ of \ M \end{split}$$

Proposition (3.17)

Let h, h_1 and h_2 be a anti-hesitant fuzzy module of R-module M, then 1) $(h_1 \otimes h_2)$, $(h_1 \oplus h_2)$ are anti-hesitant fuzzy module of M 2) h^{λ} , λh are anti-hesitant fuzzy module of M

Proof (1) :

Since h_1 and h_2 are anti-hesitant fuzzy module of M Thus h_1^c and h_2^c , are HFM of M (by Theorem 3.13) Hence $h_1^c \oplus h_2^c$ and $h_1^c \otimes h_2^c$ are HFM of M, (by Proposition 3.3) Since $(h_1 \otimes h_2)^c = h_1^c \oplus h_2^c$ (by Proposition 2.6) $(h_1 \oplus h_2)^c = h_1^c \otimes h_2^c$ Hence $(h_1 \otimes h_2)$ and $(h_1 \oplus h_2)$ are A- HFM of M. \Box

Proof (2) :

Since *h* is anti-hesitant fuzzy module of M then h^c is HFM of M (by Theorem 3.13) Hence $(h^c)^{\lambda}$ and λh^c are HFM of M, (by Proposition 3.3) **Since** $(h^c)^{\lambda} = (\lambda h)^c$, $\lambda h^c = (h^{\lambda})^c$ (by Proposition 2.6) **Hence** h^{λ} and λh are anti-hesitant fuzzy module of M.

Definition (3.18)

Let A, B be hesitant fuzzy set of a set X and Y respectively and let $f: X \to Y$ be a mapping. Then the anti-image of A under f, denoted by $f_{-}(A)$, is hesitant fuzzy set in Y defined as follows: for each $y \in Y$

$$f_{-}(A)(y) = \begin{cases} \bigcap_{x \in f^{-1}(y)} A(x) & iF \quad f^{-1}(y) \neq \emptyset \\ \{1\} & \text{otherwise} \end{cases}$$

Theorem (3.19)

Let f be be a mapping from R-module M onto R-module N. Then we have that

- 1- If *A* is hesitant fuzzy set of *N*, then $f^{-1}(A^{C})(x) = (f^{-1}(A)(x))^{C}$
- 2- If B is hesitant fuzzy set of in M, then $f(B^{C})(y) = (f_{-}(B)(y))^{C}$
- 3- If K is A-HFM of M then $f_{-}(K)$ is A-HFM of N
- 4- If L is A-HFM of N then $f^{-1}(L)$ is A-HFM of M

Proof (1):

 $f^{-1}(A^{c})(x) = A^{c}(f(x)) = \{1 - y | y \in A(f(x))\}$ = $\{1 - y | y \in f^{-1}(A)(x)\} = (f^{-1}(A)(x))^{c} \square$

Proof (2):

$$f(B^{c})(y) = \bigcup \{B^{c}(x) \mid x \in f^{-1}(y)\} = \bigcup \{1 - y \mid y \in B(x)\}$$

$$= (\cap \{ B(x) \})^{c} = (f_{-}(B)(y))^{c}$$

Similarity $f_{-}(B^{C}) = (f(B))^{C} \square$

Proof (3):

Let K is A-HFM of M then K^c is HFM of M (by Theorem 3.13) Thus $f(K^c)$ is HFM of N (by Proposition 3.5) By above $f(K^c) = (f_-(K))^c$ Implies $f_-(K)$ is A-HFM of N. \Box **Proof (4)**: Let L is A-HFM of N then L^c is HFM of N (by Theorem 3.13) Thus $f^{-1}(L^c)$ is HFM of M (by Proposition 3.6) By above $f^{-1}(L^c) = (f(L))^c$ Implies $f^{-1}(L)$ is A-HFM of M. \Box

References

[1] A. J. Abbas and. M. J. Mohammed, "Hesitant Fuzzy Prime Ideal Of Ring ", Turkish Journal of Computer and Mathematics Education, Vol. 12, No. 10, pp. 7337-7349, (2021).
[2] D. Deepak and S. J. John, "Homomorphisms of Hesitant Fuzzy Subgroups ", International Journal

of Scientific and Engineering Research, Vol. 5, No. 9, PP. 9-14, (2014).

[3] V. Deepa and Sunil Jacob John, " Dual hesitant fuzzy subrings and ideals ", Journal of Annals of Fuzzy Mathematics and Informatics, Vol. 13, No. 3, pp. 437-448, (2017).

[4] J. H. Kim, P. K. Lim, J. G. Lee, K. Hur, "Hesitant Fuzzy Subgroups and subrings", Annals of Fuzzy Mathematics and Informatics, Vol. 18, No. 2, pp. 105–122, (2019).

[5] S. Nanda, "fuzzy modules over fuzzy Rings", Bull. Col. Math. Soc, Vol. 81, PP. 1977–200, (1989).

[6] Z. Pei and L. Yi , " A note on operations of hesitant fuzzy sets "International Journal of Computational Intelligence Systems ,Vol. 8 , No. 2 , PP. 226-239, (2015).

[7] P. K. Sharma, "ANTI FUZZY SUBMODULE OF A MODULE ", Advances in Fuzzy Sets and Systems , Paper # PPH-I-1112-038-AFSS, (2012) .

[8] V. Torra, "Hesitant fuzzy sets ", International Journal of Intelligent Systems, Vol. 25, No. 6, PP. 529–539, (2010).

[9] MM .Xia and ZS . Xu, "Hesitant fuzzy information aggregation in decision making , Int J Approximate Reasoning, Vol .52 , No . 3, PP. 395–407, (2011a)

[10] MM .Xia , ZS . Xu and Zhu B " Dual hesitant fuzzy set , J. Appl. Math 879629 , 13 p. doi:10.1155/2012/879629 , (2012).

[11] ZS . Xu and Liao HC, "Subtraction and division operations over hesitant fuzzy sets", J Intell Fuzzy Syst Vol .27, No . 1, PP. 65–72, (2014a)

[12] L. Zadeh, "Fuzzy sets", Information and Control, Vol. 8, pp. 338-353, (1965).