On $g(\mathcal{K}c)$ – Spaces and Weaker Forms of $g(\mathcal{K}c)$ –Spaces

Authors Names	ABSTRACT
Reyadh D. Ali ^{1,a} , Ali Abdul Sahib M.Al- Butahi ^{2,b}	In this paper, the aim was to introduce new concepts of spaces, which is named $g(\mathcal{K}c)$ –spaces (every g – compact subsets are closed) was presented and the properties of these spaces were studied. also investigating their relationship with
Publication data: 30/8/2024 Keywords: $\mathcal{K}c$ – spaces, g – closed and g – compact	some other topological spaces. Also defined Weaker Forms of $g(\mathcal{K}c)$ –spaces and found the relations, theorems, and results stemming from this definition. Additionally, defined Co-g – compact topologies and derived related theorems and results based on this definition. Finally, we have continuing studies on the following topological space, $\mathcal{K}c$ – spaces , $\mathcal{K}(gc)$ – spaces and $g\mathcal{K}(gc)$ – spaces

1. Introduction:

In topology, compact spaces and KC-spaces are of great importance in mathematics and applied sciences. Understanding the properties of these spaces provides a strong foundation for developing theories and solving problems in a wide range of fields, from pure mathematical analysis to practical applications in engineering and sciences .The definition of $\mathcal{K}c$ – space (which every compact subset is closed)was presented by [1] and new concepts were introduced through the definition of the following topological spaces $\mathcal{K}(gc)$ – spaces (which every compact subset is g – closed), g $\mathcal{K}(gc)$ – spaces (which every g – compact subset is g – closed) by S. K. Jassim and H. G. Ali[2]. In this research work, the aim was to introduce new concepts of spaces, which is named g($\mathcal{K}c$) – spaces . New definitions were also introduced, which are On Weaker Forms of g($\mathcal{K}c$) – spaces and Co–g – compact topologies.

2. Preliminaries

In this section, we presented the basic concepts, definitions, theories, and results that we need for this work.

Definition 2.1[3]: A subset \mathcal{F} of a space $(\mathcal{H}, \mathfrak{I})$ is referred to as g - closed set if $\overline{\mathcal{F}} \subseteq \mathbb{N} \forall \mathbb{N} \in$

 $\Im \ni \mathcal{F} \subseteq \mathbb{N}$. If a set is g - closed, then its complement is a g - open. closed set $\Rightarrow g - closed$. The converse is not true in general. open set $\Rightarrow g - open$. In general, the opposite is not true.

Definition2.2 [3]: A space $(\mathcal{H}, \mathfrak{I})$ is known as $\mathfrak{I}_{\frac{1}{2}}$ -space if \mathfrak{g} - closed set \Rightarrow closed set.

Now we have the following diagram

 $\mathfrak{I}_1 - \text{space} \Rightarrow \mathfrak{I}_{\frac{1}{2}} - \text{space} \Rightarrow \mathfrak{I}_0 - \text{space}.$

Definition 2.3 [4]: A space $(\mathcal{H}, \mathfrak{I})$ is known as g - compact space if there is a finite subcover for each g -open cover of \mathcal{H} .

¹Department of Mathematics, College of Education for Pure Science Kerbala University, ^areyadh_delphi@uokerbala.edu.iq ²Department of Applied Sciences of Technology University, ^bali.d.mohammed@uotechnology.edu.iq

Remark 2.4 [5]: $g - compact space \Rightarrow compact$. In general, the opposite is not true, as demonstrated by the example below.

Example 2.5 [5]: Let $\Im = \{ \emptyset, \mathcal{H}, \{\hbar\} \}$ be a topology on $\mathcal{H} = \{\hbar\} \cup \{ \hbar_i : i \in \mathcal{J} \}, \exists \mathcal{J} \text{ is } \mathcal{J} \}$

uncountable, . so \mathcal{H} is compact space nonetheless, is not g - compact, because $\{\{\hbar, \hbar_i\}: i \in \mathcal{J}\}$ is $g - \text{open cover of } \mathcal{H}$ but $\mathcal{H} \neq \bigcup_{i=1}^n \{\hbar, \hbar_i\}$.

Definition 2.6 [6]: A set \mathcal{M} in $(\mathcal{H}, \mathfrak{I})$ known as \mathcal{F}_{σ} -. closed if $\mathcal{M} = \bigcup_{s \in I} \mathcal{F}_s \ni \mathcal{F}_s$ is a closed subset of \mathcal{H} , $\forall s \in I$.

Definition 2.7 [7]: A space $(\mathcal{H}, \mathfrak{I})$ is known as \mathcal{P} – space if \mathcal{F}_{σ} – closed set \Rightarrow closed. **Theorem 2.8[4], [5], [8]:**

(i) Every finite subset is g - compact.

(ii) Let $(\mathcal{H},\mathfrak{I})$ be a g - compact space and $\mathcal{M} \subseteq \mathcal{H}$. If \mathcal{M} is g - closed, then \mathcal{M} is g - compact.

(iii) All \mathfrak{I}_1 compact spaces are \mathfrak{g} - compact.

(iv) Let $(\mathcal{H}, \mathfrak{I})$ be a space and $\mathcal{M}, \mathcal{W} \subseteq \mathcal{H}$. If \mathcal{M} is \mathfrak{g} - compact and \mathcal{W} is \mathfrak{g} - closed, then $\mathcal{M} \cap \mathcal{W}$ is \mathfrak{g} - compact.

3. $g(\mathcal{K}c)$ -space

In this section, we introduced a new definition $g(\mathcal{K}c)$ –spaces and studied its relationship with other topological spaces. We also obtained relations, results, and theorems.

Definition 3.1 : A space $(\mathcal{H}, \mathfrak{I})$ is known as $g(\mathcal{K}\mathfrak{c})$ –space if g – compact set \Rightarrow closed **Theorem3.2:** Every $g(\mathcal{K}\mathfrak{c})$ –space is \mathfrak{I}_1 –space.

Proof.

Let $(\mathcal{H}, \mathfrak{I})$ be an $\mathfrak{g}(\mathcal{K}\mathfrak{c})$ -space, Since $\forall \hbar \in \mathcal{H}, \{\hbar\}$ is a \mathfrak{g} -compact by theorem 2.8, so $\{\hbar\}$ is a closed set(because $(\mathcal{H}, \mathfrak{I})$ is a $\mathfrak{g}(\mathcal{K}\mathfrak{c})$ -space), Hence \mathcal{H} is \mathfrak{I}_1 .

Remark 3.3:

Reverse theorem 3.2 is incorrect. The following example illustrates this.

Example3.4:

Let $\mathfrak{I} = \{\emptyset\} \cup \{\mathcal{B}: \mathcal{B} \subseteq \mathcal{H} \text{ and } \mathcal{B}^{\mathcal{C}} \text{ is finite set}\}$ be a topology on $\mathcal{H} = \mathcal{R}$. So $\mathbb{Q} \subset \mathcal{R}$ is g - compact and \mathbb{Q} is not closed, hence $(\mathcal{H}, \mathfrak{I})$ is \mathfrak{I}_1 and $(\mathcal{H}, \mathfrak{I})$ is not $g(\mathcal{K}\mathfrak{c})$ -space.

Theorem3.5: Every \mathfrak{I}_2 –space is a g($\mathcal{K}\mathfrak{c}$).

Proof.

If \mathcal{F} is $g - \text{compact subset in a } \mathfrak{I}_2 - \text{space } \mathcal{H}$, thus \mathcal{F} is compact (Remark 2.4), so \mathcal{F} is a closed closed. Hence \mathcal{H} is a $\mathfrak{g}(\mathcal{K}\mathfrak{c})$.

Remark 3.6:

Reverse theorem 3.5 is incorrect. The following example illustrates this.

Example 3.7:

Let $\mathcal{H} = \mathcal{R}$, $\mathfrak{I}_{CO} = \{\emptyset\} \cup \{\mathcal{B}: \mathcal{B} \subseteq \mathcal{H} \text{ and } \mathcal{B}^C \text{ is countable set}\}$ be a topology on \mathcal{H} , hence \mathcal{H} is $\mathfrak{g}(\mathcal{K}\mathfrak{c})$ -space and not \mathfrak{I}_2 .

Now the diagram can be written as follows:

 $\mathfrak{I}_2 - \operatorname{space} \Rightarrow \mathfrak{g}(\mathcal{K}\mathfrak{c}) - \operatorname{space} \Rightarrow \mathfrak{I}_1 - \operatorname{space} \Rightarrow \mathfrak{I}_{\frac{1}{2}} - \operatorname{space}$

Theorem 3.8 : In $\mathfrak{I}_{\frac{1}{2}}$ -space $(\mathcal{H},\mathfrak{I})\mathfrak{g}$ - compact space \Leftrightarrow compact space.

Proof.

 \Rightarrow it's clear by Remark 2.4.

 $\leftarrow \text{ Let } (\mathcal{H}, \mathfrak{I}) \text{ be compact space and } \{\mathcal{M}_{\lambda}\} \text{ be } g - \text{opencovering of } \mathcal{H} \text{.Since } (\mathcal{H}, \mathfrak{I}) \text{ is a} \\ \mathfrak{I}_{\frac{1}{2}}^{1} - \text{space,then } \{\mathcal{M}_{\lambda}\} \text{ be open covering of } \mathcal{H}.\text{So } \{\mathcal{M}_{\lambda}\}\text{has finite sub cover. Hence}(\mathcal{H}, \mathfrak{I}) \text{ is } g - \text{compact space.} \end{cases}$

Theorem3.9: $\mathcal{K}\mathfrak{c}$ - space $\Leftrightarrow \mathfrak{g}(\mathcal{K}\mathfrak{c})$ - space.

Proof.

Let \mathcal{F} be $g - \text{compact subset in } \mathcal{K}c - \text{space } (\mathcal{H}, \mathfrak{I})$, then \mathcal{F} is compact (Remark 2.4), so \mathcal{F} is a closed .Hence \mathcal{H} is a $g(\mathcal{K}c)$.

Now the reverse, let \mathcal{F} be compact subset in $g(\mathcal{K}c) - \text{space } (\mathcal{H}, \mathfrak{I})$, then \mathcal{F} is $g - \text{compact set } (\mathcal{H}, \mathfrak{I})$, so \mathcal{F} is a close \mathcal{A} . Hence \mathcal{H} is a $\mathcal{K}c$.

Theorem3.10: Every $g(\mathcal{K}c)$ – space is a $g\mathcal{K}(gc)$ – space.

Proof.

If \mathcal{F} is $g - \text{compact subset in a } g(\mathcal{K}c) - \text{space } \mathcal{H}$, then \mathcal{F} is a g - closed. Therefore \mathcal{H} is a $g\mathcal{K}(gc)$.

Remark 3.11:

Reverse theorem 3.10 is incorrect. The following example illustrates this.

Example 3.12:

Let $(\mathcal{H}, \mathfrak{I})$ be finite indiscrete space, hence \mathcal{H} is gK(gC) - space but not $g(\mathcal{K}c) - space$, because if $\mathcal{F} \subset \mathcal{H}$ is g - compact. Hence \mathcal{F} is not closed and is a g - closed.

Remark 3.13:

The following example we show $\mathcal{K}(gc) - space$ is not $g(\mathcal{K}c) - space$.

Example3.14:

Let $(\mathcal{H}, \mathfrak{I})$ be finite indiscrete space, hence \mathcal{H} is $\mathcal{K}(\mathfrak{gc})$ – space but not $\mathfrak{g}(\mathcal{K}\mathfrak{c})$ – space, because if $\mathcal{F} \subset \mathcal{H}$ is compact (g – compact), Hence \mathcal{F} is not closed and is a g – closed. **Theorem3.15:**

From compact space \mathcal{H} into a g($\mathcal{K}c$) – space K, any continuous function \hbar is a closed.

Proof. Let $(\mathcal{H}, \mathfrak{I})$ be a compact space and $\mathcal{F} \subseteq \mathcal{H}$ be a close *d*, then \mathcal{F} is a compact , thus $\hbar(\mathcal{F})$ is a compact in K , so $\hbar(\mathcal{F})$ is a g – compact by theorem 3. 8 in a g($\mathcal{K}c$) K. Hence $\hbar(\mathcal{F})$ is a closed . Therefore \hbar a closed.

Corollay3.16:

From a g – compact space H into a $g(\mathcal{K}c)$ –space K, any continuous function \hbar is a closed. **Proof.** it's clear.

Theorem3.17:

Let $(\mathcal{H},\mathfrak{I})$ be any space and (K,\mathfrak{I}^*) be a g $(\mathcal{K}\mathfrak{c})$ – space . If $\hbar: \mathcal{H} \to K$ is a continuous 1-1 function , then \mathcal{H} is a g $(\mathcal{K}\mathfrak{c})$.

Proof.

If $\mathcal{F} \subseteq \mathcal{H}$ is a g - compact . then \mathcal{F} is a compact in \mathcal{H} , therefore $\hbar(\mathcal{F})$ is a compact , thus $\hbar(\mathcal{F})$ is a g - compact in K. Hence $\hbar(\mathcal{F})$ is a closed (K is a $g(\mathcal{K}c)$ -space), therefore $\hbar^{-1}(\hbar(\mathcal{F})) = \mathcal{F}$ a closed. Hence \mathcal{H} is a $g(\mathcal{K}c)$.

Corollay 3.18:

Let $(\mathcal{H}, \mathfrak{I})$ be any space and (K, \mathfrak{I}^*) be a \mathfrak{I}_2 – space. If $\hbar: \mathcal{H} \to K$ is a continuous 1 - 1 function , then \mathcal{H} is a g($\mathcal{K}c$).

Proof. it's clear.

Theorem3.19:

 $g(\mathcal{K}c)$ –space is a topological property.

Proof.

Let \mathcal{H} be $\mathfrak{g}(\mathcal{K}\mathfrak{c})$ –space and $\hbar: \mathcal{H} \to K$ be a homeomorphism. Suppose $\mathcal{F}^* \subseteq K$ is a \mathfrak{g} – compact, then \mathcal{F}^* is a compact , so $\hbar^{-1}(\mathcal{F}^*) \subseteq \mathcal{H}$ is a compact, therefore $\hbar^{-1}(\mathcal{F}^*)$ is a closed, thus $\hbar(\hbar^{-1}(\mathcal{F}^*)) = \mathcal{F}^* \subseteq K$ is a closed. Hence K is a $\mathfrak{g}(\mathcal{K}\mathfrak{c})$ –space.

Theorem3.20:

 $g(\mathcal{K}c)$ –space is a hereditary.

Proof.

If $\mathcal{B} \subseteq \mathcal{H}$, $(\mathcal{H}, \mathfrak{I})$ is a g($\mathcal{K}c$) –space and $\mathcal{M} \subseteq \mathcal{B}$ is a g – compact ,then \mathcal{M} is a compact, so $\mathcal{M} \subseteq \mathcal{H}$ is a compact ,thus $\mathcal{M} \subseteq \mathcal{H}$ is a closed(since \mathcal{H} is g($\mathcal{K}c$)),therefore $\mathcal{M} \subseteq \mathcal{B}$ is a closed. Hence \mathcal{B} is a g($\mathcal{K}c$) –space.

4. On Weaker Forms of $g(\mathcal{K}c)$ –spaces

In this section, we introduced new definitions, which are called On Weaker Forms of $g(\mathcal{K}c)$ –spaces and we obtained results and theorems related to these definitions

Definition 4.1: A space $(\mathcal{H}, \mathfrak{I})$ is known as

(1) g₁(ℋc) if 𝔅 ⊆ ℋ is g - compact 𝑘_σ - closed ,then 𝔅 is closed.
(2) g₂(ℋc)if 𝔅 ⊆ ℋ is g - compact, then 𝔅 is g - compact.
(3) g₃(ℋc) if 𝔅 ⊆ ℋ is g - compact,then 𝔅 is an 𝑘_σ - closed.
(4) an g₄(ℋc)if 𝔅 ⊆ ℋ is g - compact,then ∃𝑘 is g - compact 𝑘_σ - .closed ∋ 𝔅 ⊆ 𝑘 ⊆ 𝑘.

The first theorem we obtain from the definition 4.1.

Theorem4.2:

(i) Let $(\mathcal{H},\mathfrak{I})$ be an g $(\mathcal{K}\mathfrak{c})$, then $(\mathcal{H},\mathfrak{I})$ is a $\mathfrak{g}_{\mathfrak{f}}(\mathcal{K}\mathfrak{c})$. $\mathfrak{f} = 1,2,3,4$.

- (ii) Let $(\mathcal{H}, \mathfrak{I})$ be an $g_1(\mathcal{K}\mathfrak{c})$ and an $g_3(\mathcal{K}\mathfrak{c})$, then $(\mathcal{H}, \mathfrak{I})$ is an $g(\mathcal{K}\mathfrak{c})$
- (iii) Each space which is $g_1(\mathcal{K}c)$ and $g_4(\mathcal{K}c)$ is an $g_2(\mathcal{K}c)$.
- (iv) Every $g_2(\mathcal{K}c)$ space is an $g_4(\mathcal{K}c)$ space and every $g_3(\mathcal{K}c)$ space is an $g_4(\mathcal{K}c)$ space.
- (v) Every $g_3(\mathcal{K}c)$ space is \mathfrak{I}_1 space.
- (vi) Every is g compact space is an $g_2(\mathcal{K}\mathfrak{c}) \text{space}$, and every $g_2(\mathcal{K}\mathfrak{c}) \text{space}$ having a dense is g compactSubset is g compactS.
- (vii) the property $g_3(\mathcal{K}c)$ space is hereditary, and the properties $g_1(\mathcal{K}c), g_2(\mathcal{K}c), g_4(\mathcal{K}c)$ are hereditary on \mathcal{F}_{σ} –. close *d*.
- (viii) Every \mathcal{P} space is an $g_1(\mathcal{K}c)$ space.

Proof.,

(i) Where if $\mathfrak{t} = 1$, let $(\mathcal{H}, \mathfrak{I})$ be $\mathfrak{g}(\mathcal{K}\mathfrak{c})$. If $\mathcal{F} \subseteq \mathcal{H}$ is \mathfrak{g} - compact \mathcal{F}_{σ} - closed \mathcal{H} , then \mathcal{F} is closed closed. Hence \mathcal{H} is a $\mathfrak{g}_1(\mathcal{K}\mathfrak{c})$ - space.

if $\mathfrak{t} = 2$, let \mathcal{H} be $\mathfrak{g}(\mathcal{K}\mathfrak{c})$ – space and \mathcal{F} be \mathfrak{g} – compactsubset of \mathcal{H} , then \mathcal{F} is closed, so $\mathcal{F} = \overline{\mathcal{F}}$ and $\overline{\mathcal{F}}$ is \mathfrak{g} – compact. Hence \mathcal{H} is a $\mathfrak{g}_2(\mathcal{K}\mathfrak{c})$ – space.

if $\mathfrak{t} = 3$, let \mathcal{H} be $\mathfrak{g}(\mathcal{K}\mathfrak{c})$. If $\mathcal{F} \subseteq \mathcal{H}$ is \mathfrak{g} - compact, so \mathcal{F} is closed, thus \mathcal{F} is \mathcal{F}_{σ} -.closed. Hence \mathcal{H} is a $\mathfrak{g}_3(\mathcal{K}\mathfrak{c})$ - space.

If $\mathfrak{k} = 4$, let \mathcal{H} be $\mathfrak{g}(\mathcal{K}\mathfrak{c})$ – space and \mathfrak{g} be \mathfrak{g} – compact subset of \mathcal{H} , then \mathfrak{g} is a closed, so \mathfrak{g} is an \mathcal{F}_{σ} –.closed set, now if $\mathcal{F} = \mathfrak{g}$ so \mathcal{F} is an \mathfrak{g} – compact \mathcal{F}_{σ} –.closed and thus $\mathfrak{g} \subseteq \mathcal{F} \subseteq \overline{\mathfrak{g}}$. Hence \mathcal{H} is a $\mathfrak{g}_4(\mathsf{KC})$ – space.

(ii) If \mathcal{F} is an g - compact subset in \mathcal{H} , then \mathcal{F} is an \mathcal{F}_{σ} -.closed (since \mathcal{H} is an $g_3(\mathcal{K}\mathfrak{c})$), but \mathcal{H} is an $g_1(\mathcal{K}\mathfrak{c})$, thus \mathcal{F} a closed. Hence \mathcal{H} is an $g(\mathcal{K}\mathfrak{c})$ - space.

(iii) If $\ell \subseteq \mathcal{H}$ is an g - compact, then $\exists \mathcal{F}$ which is an g - compact \mathcal{F}_{σ} - closed $\exists \ell \subseteq \mathcal{F} \subseteq \overline{\ell}$ (since \mathcal{H} is an $g_4(KC)$), so \mathcal{F} is closed(since \mathcal{H} is an $g_1(\mathcal{K}c)$ - space), then $\mathcal{F} = \overline{\ell}$, so $\overline{\ell}$ is an

g - compact. Hence \mathcal{H} is an $g_2(KC)$ - space.

(iv) it's clear.

(v) Let \mathcal{H} be an $g_3(\mathcal{K}c)$ -space, Since $\forall \hbar \in \mathcal{H}, \mathcal{F} = \{\hbar\}$ is a g - compact subset in \mathcal{H} , then $\mathcal{F} = \{\hbar\}$ is an \mathcal{F}_{σ} -. closed, thus $\mathcal{F} = \{\hbar\}$ is closed $\forall \hbar \in \mathcal{H}$. Hence \mathcal{H} is \mathfrak{I}_1 -space.

(vi) Let \mathcal{H} be an g - compact space . If $\ell \subseteq \mathcal{H}$ is an g - compact, then $\overline{\ell}$ is closed, as is g - closed, so $\overline{\ell}$ is g - compact. Hence \mathcal{H} is an $g_2(\text{ KC})$ - space.

(vii) Let $(\mathcal{H}, \mathfrak{I})$ be $g_3(\mathcal{K}\mathfrak{c})$, \mathcal{B} be a subspace of \mathcal{H} . If $\mathcal{M}^* \subseteq \mathcal{B}$ is a g- compact, then \mathcal{M}^* is a compact, so \mathcal{M}^* is a compact, as is g- compact subset of \mathcal{H} , then \mathcal{M}^* is an \mathcal{F}_{σ} - closed(since \mathcal{H} is $g_3(\mathcal{K}\mathfrak{c})$ - space), so $\mathcal{M}^* = \bigcup_{s \in I} \mathcal{M}_s \ni \mathcal{M}_s$ is a closed subset of \mathcal{H} , $\forall s \in I$, therefore

 $\mathcal{M}^* = \mathcal{M}^* \cap \mathcal{H} = \bigcup_{s \in I} \mathcal{M}_s \cap \mathcal{H} = \bigcup_{s \in I} (\mathcal{M}_s \cap \mathcal{H}) \bigcup_{s \in I} \mathcal{M}^*_s \quad \exists \mathcal{M}^*_s \quad \text{is a closed subset of } \mathcal{B},$ thus \mathcal{M}^* is an \mathcal{F}_{σ} - closed subset of \mathcal{B} . Hence \mathcal{B} is an $g_3(\mathcal{K}c)$ - space.

Let \mathcal{B} be \mathcal{F}_{σ} -.closed a subspace of $g_1(\mathcal{K}c)$ - space \mathcal{H} and \mathcal{M}^* be a g - compact \mathcal{F}_{σ} -. closed subset of \mathcal{B} , then $\mathcal{M}^* = \bigcup_{s \in I} \mathcal{M}^*_s \ni \mathcal{M}^*_s$ is a closed subset of \mathcal{B} , $\forall s \in I$, since $\mathcal{M}^*_s = \mathcal{M}_s \cap \mathcal{B} \ \forall s \in I$, $\exists \alpha \in \mathcal{M}_s$ is a closed subset of \mathcal{H} , $\forall s \in I$, thus:

 $\mathcal{M}^* = \bigcup_{s \in I} (\mathcal{M}_s \cap \mathcal{B}) = \bigcup_{s \in I} (\mathcal{M}_s) \cap \mathcal{B} = \bigcup_{s \in I} (\mathcal{M}_s) \cap \bigcup_{r \in I} \mathcal{B}_r \ni \mathcal{B}_r \text{ is a closed subset of } \mathcal{H} \text{ (since } \mathcal{B} \text{ is an } \mathcal{F}_{\sigma} - \text{. closed}\text{),so } \mathcal{M}^* = \bigcup_{s,r \in I} (\mathcal{M}_s \cup \mathcal{B}_r)\text{, therefore } \mathcal{M}^* \text{ is a } g - \text{ compact } \mathcal{F}_{\sigma} - \text{. closed} \text{ subset of } \mathcal{H}, \text{which is } g_1(\mathcal{K}c) - \text{ space } \mathcal{H}, \text{so } \mathcal{M}^* \subseteq \mathcal{H} \text{ is a closed , then } \mathcal{M}^* \subseteq \mathcal{B} \text{ is a closed. Hence } \mathcal{B} \text{ is an } g_1(\mathcal{K}c) - \text{ space } \text{. The remainder of the proof is done in a similar manner.}$

(viii) Let \mathcal{H} be \mathcal{P} – space. If $\mathcal{F} \subseteq \mathcal{H}$ is g – compact \mathcal{F}_{σ} –.closed,then \mathcal{F} is a closed. Hence \mathcal{H} is an $g_1(\mathcal{K}c)$ – space.

Theorem4.3:

In \mathfrak{I}_2 -space $(\mathcal{H},\mathfrak{I})$: \mathcal{H} is an $\mathfrak{g}(\mathcal{K}\mathfrak{c}) \Leftrightarrow \mathcal{H}$ is an $\mathfrak{g}_1(\mathcal{K}\mathfrak{c})$ and an $\mathfrak{g}_2(\mathcal{K}\mathfrak{c})$

Proof.

 \Rightarrow : Obvious by Theorem 4.2(i).

 $\leftarrow \text{Suppose } \mathcal{F} \subseteq \mathcal{H} \text{ is } g - \text{ compact } \ni f \notin \mathcal{F}.$

Since \mathcal{H} is $\mathfrak{I}_2, \forall \mathfrak{X} \in \mathcal{F} \exists \mathcal{O}_{\mathfrak{X}} \in \mathfrak{I} \ni \mathfrak{X} \in \mathcal{O}_{\mathfrak{X}}$ with $\mathfrak{f} \notin \overline{\mathcal{O}_{\mathfrak{X}}}$. Clearly $\{\mathcal{O}_{\mathfrak{X}}; \mathfrak{X} \in \mathcal{F}\}$ is g-open cover of \mathcal{F} and so \exists a finite sub cover $\ni \mathcal{F} \subseteq \bigcup_{s=1}^n \mathcal{O}_{\mathfrak{X}_s} \subseteq \bigcup_{s=1}^n \overline{\mathcal{O}_{\mathfrak{X}_s}}$.

 $\forall \mathfrak{X}_s, s = 1,2,3, ..., n$, $\mathcal{F} \cap \overline{\mathcal{O}_{\mathfrak{X}_s}}$ is an g – compact and so $\overline{\mathcal{F} \cap \overline{\mathcal{O}_{\mathfrak{X}_s}}}$ is an g – compact (since \mathcal{H} is an $\mathfrak{g}_2(\mathcal{K}\mathfrak{c})$ – space).

Additionally, if $w = \bigcup_{s=1}^{n} \overline{\mathcal{F}} \cap \overline{\mathcal{O}}_{\mathfrak{X}_{s}}$, then w is an g- compact \mathcal{F}_{σ} -. closed, since \mathcal{H} is an $g_{1}(\mathcal{K}c)$ - space, w is a closed g - compact $s \ni \mathfrak{F} \notin w$. Thus $\mathfrak{F} \notin \overline{\mathcal{F}}$. Therefore \mathcal{F} is closed in \mathcal{H} .

5- Co-g - compact topologies

In this section, we introduced a new definition, which is called Co-g - compact topologies and through this definition, we presented results and theorem

Definition 5.1: Let $(\mathcal{H}, \mathfrak{I})$ be a topological space. The collection $gc(\mathfrak{I}) = \{\phi\} \cup \{\mathfrak{B} \in \mathfrak{I}: \mathfrak{B}^c \text{ is } g - compact in <math>(\mathcal{H}, \mathfrak{I})\}$ is a topology on \mathcal{H} with $gc(\mathfrak{I}) \subseteq \mathfrak{I}$, called the Co-g - compact topology of \mathfrak{I} on \mathcal{H} . It is evident that $gc(\mathfrak{I})$ is a topology on \mathcal{H} since the g - compact property is hereditary on closed set, by Theorem 1.3.7

Theorem 5. In *a* space $(\mathcal{H}, \mathfrak{I}) : (\mathcal{H}, \mathfrak{I})$ is an $g_1(\mathcal{K}\mathfrak{c})$ if and only if $(\mathcal{H}, \mathfrak{gc}(\mathfrak{I}))$ is a \mathcal{P} - space

Proof.

⇒ : Let $\mathcal{M} = \bigcup_{s \in I} \mathcal{M}_s \ni \mathcal{M}_s$ be a closed in $(\mathcal{H}, gc(\mathfrak{I}))$. If $\mathcal{M} = \mathcal{H}$ we're completed, alternatively \mathcal{M}_s is an g – compact and closed in $(\mathcal{H}, \mathfrak{I})$, so \mathcal{M} is an g – compact and closed in $(\mathcal{H}, \mathfrak{I})$, thus \mathcal{M} is closed in $(\mathcal{H}, gc(\mathfrak{I}))$. Hence $(\mathcal{H}, gc(\mathfrak{I}))$ is a \mathcal{P} – space.

 $\leftarrow: \text{Let } \mathcal{M} \text{ be } g - \text{ compact } \text{ and } \mathcal{M} = \bigcup_{s \in I} \mathcal{M}_s \ni \mathcal{M}_s \text{ be a closed in } (\mathcal{H}, \mathfrak{I})_{, \text{ then }} \mathcal{M}_s \forall s \text{ is closed in } (\mathcal{H}, \mathfrak{gc}(\mathfrak{I})), \text{ so } \mathcal{M} \text{ is is closed in } (\mathcal{H}, \mathfrak{gc}(\mathfrak{I})), \text{ thus } \mathcal{M} \text{ is closed in } (\mathcal{H}, \mathfrak{I}). \text{ Hence } (\mathcal{H}, \mathfrak{I}) \text{ is an } \mathfrak{g}_1(\mathcal{K}\mathfrak{c}) - \mathfrak{space} .$

Corollary5.3:

- (i) If $(\mathcal{H}, \mathfrak{I})$ is \mathfrak{g} compact then $\mathfrak{gc}(\mathfrak{I}) = \mathfrak{I}$.
- (ii) If $(\mathcal{H}, \mathfrak{I})$ is an $g(\mathcal{K}\mathfrak{c})$ space then $(\mathcal{H}, g\mathfrak{c}(\mathfrak{I}))$ is a \mathcal{P} space.

Proof. Obvious.

Theorem 5.4: In $g_3(\mathcal{K}c)$ - space $(\mathcal{H},\mathfrak{I})$: $(\mathcal{H},\mathfrak{I})$ is an $g(\mathcal{K}c) \Leftrightarrow (\mathcal{H},\mathfrak{g}c(\mathfrak{I}))$ is a \mathcal{P} - space

Proof. \Rightarrow : Evident by Corollary 5.3(ii).

 $\Leftarrow: \text{If } (\mathcal{H}, gc(\mathfrak{I})) \text{ is a } \mathcal{P} - \text{space }, \text{ then}(\mathcal{H}, \mathfrak{I}) \text{ is an } g_1(\mathcal{K}c) - \text{sp by Theorem 5.2. Since } (\mathcal{H}, \mathfrak{I}) \text{ is an } g_3(\mathcal{K}c) - \text{space, hence } (\mathcal{H}, \mathfrak{I}) \text{ is an } g(\mathcal{K}c) - \text{space by Theorem 4.2(ii).}$

Theorem 5.5:

In $\mathfrak{I}_2 \mathfrak{g}_2(\mathcal{K}\mathfrak{c}) - \operatorname{space} (\mathcal{H}, \mathfrak{I}): (\mathcal{H}, \mathfrak{I}) \text{ is an } \mathfrak{g}(\mathcal{K}\mathfrak{c}) \Leftrightarrow (\mathcal{H}, \mathfrak{g}\mathfrak{c}(\mathfrak{I})) \text{ is a } \mathcal{P} - \operatorname{space}$

Proof. \Rightarrow : Evident by Corollary 5.3(ii)

 $\leftarrow: \text{ If } (\mathcal{H}, gc(\mathfrak{I})) \text{ is a } \mathcal{P} - \text{ space, then } (\mathcal{H}, \mathfrak{I}) \text{ is } ang_1(\mathcal{K}c) - \text{ space by Theorem } 5.2. \text{Since}(\mathcal{H}, \mathfrak{I}) \text{ is } a\mathfrak{I}_2 g_2(\mathcal{K}c) - \text{ space. Hence}(\mathcal{H}, \mathfrak{I}) \text{ is } ang(\mathcal{K}c) - \text{ space by Theorem } 4.3.$

Corollary5.6:

If $(\mathcal{H},\mathfrak{I})$ is an $g_1(\mathcal{K}\mathfrak{c})$ -space then $(\mathcal{H},\mathfrak{gc}(\mathfrak{I}))$ is an $g_1(\mathcal{K}\mathfrak{c})$ -space.

Proof. Since $(\mathcal{H}, \mathfrak{I})$ is an $g_1(\mathcal{K}\mathfrak{c})$ -space, then $(\mathcal{H}, \mathfrak{gc}(\mathfrak{I}))$ is a \mathcal{P} -space by Theorem 5.2.Hence $(\mathcal{H}, \mathfrak{gc}(\mathfrak{I}))$ is an $g_1(\mathcal{K}\mathfrak{c})$ -space by Theorem 4.2(viii).

References

[1] Wilansky, A. (1967). Between T_1 and T_2 . The American Mathematical Monthly, 74(3), 261-266.

[2] Jassim, S. K., & Ali, H. G. (2011). When compact sets are g-closed. Journal of Al-Qadisiyah for computer science and mathematics, 3(2), 99-109.

[3] Levine, N. (1970). Generalized closed sets in topology. Rendiconti del Circolo Matematico di Palermo, 19, 89-96.

[4] Ali, H. J., & Mohammed, A. J. (2010). On g, g*, g**-compact functions. Al- Nahrain Journal of Science, 13(2), 205-209.

[5] Caldas, M., Jafari, S., Moshokoa, S. P., & Noiri, T. (2008). ON *GO*- COMPACT SPACES. Filomat, 22(1), 47-55.

[6] Engelking R. (1989). General Topology. Heldermann Verlag, Berlin, revised and completed edition.

[7] Misra, A. K. (1972). A topological view of P-spaces. General Topology and its Applications, 2(4), 349-362.

[8] Selvarani, S. (2013). Generalization of extreme value theorems in g-compact spaces, generalization of Intermediate value theorem g-connected spaces and generalization of Urysohon's Lemma and Tietze extension theorem in g- multiplicative spaces. International Journal of Computer, vol. 2.